cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

power_supply.h (38652B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 *  Universal power supply monitor class
      4 *
      5 *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
      6 *  Copyright © 2004  Szabolcs Gyurko
      7 *  Copyright © 2003  Ian Molton <spyro@f2s.com>
      8 *
      9 *  Modified: 2004, Oct     Szabolcs Gyurko
     10 */
     11
     12#ifndef __LINUX_POWER_SUPPLY_H__
     13#define __LINUX_POWER_SUPPLY_H__
     14
     15#include <linux/device.h>
     16#include <linux/workqueue.h>
     17#include <linux/leds.h>
     18#include <linux/spinlock.h>
     19#include <linux/notifier.h>
     20
     21/*
     22 * All voltages, currents, charges, energies, time and temperatures in uV,
     23 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
     24 * stated. It's driver's job to convert its raw values to units in which
     25 * this class operates.
     26 */
     27
     28/*
     29 * For systems where the charger determines the maximum battery capacity
     30 * the min and max fields should be used to present these values to user
     31 * space. Unused/unknown fields will not appear in sysfs.
     32 */
     33
     34enum {
     35	POWER_SUPPLY_STATUS_UNKNOWN = 0,
     36	POWER_SUPPLY_STATUS_CHARGING,
     37	POWER_SUPPLY_STATUS_DISCHARGING,
     38	POWER_SUPPLY_STATUS_NOT_CHARGING,
     39	POWER_SUPPLY_STATUS_FULL,
     40};
     41
     42/* What algorithm is the charger using? */
     43enum {
     44	POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
     45	POWER_SUPPLY_CHARGE_TYPE_NONE,
     46	POWER_SUPPLY_CHARGE_TYPE_TRICKLE,	/* slow speed */
     47	POWER_SUPPLY_CHARGE_TYPE_FAST,		/* fast speed */
     48	POWER_SUPPLY_CHARGE_TYPE_STANDARD,	/* normal speed */
     49	POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE,	/* dynamically adjusted speed */
     50	POWER_SUPPLY_CHARGE_TYPE_CUSTOM,	/* use CHARGE_CONTROL_* props */
     51	POWER_SUPPLY_CHARGE_TYPE_LONGLIFE,	/* slow speed, longer life */
     52	POWER_SUPPLY_CHARGE_TYPE_BYPASS,	/* bypassing the charger */
     53};
     54
     55enum {
     56	POWER_SUPPLY_HEALTH_UNKNOWN = 0,
     57	POWER_SUPPLY_HEALTH_GOOD,
     58	POWER_SUPPLY_HEALTH_OVERHEAT,
     59	POWER_SUPPLY_HEALTH_DEAD,
     60	POWER_SUPPLY_HEALTH_OVERVOLTAGE,
     61	POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
     62	POWER_SUPPLY_HEALTH_COLD,
     63	POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
     64	POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
     65	POWER_SUPPLY_HEALTH_OVERCURRENT,
     66	POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
     67	POWER_SUPPLY_HEALTH_WARM,
     68	POWER_SUPPLY_HEALTH_COOL,
     69	POWER_SUPPLY_HEALTH_HOT,
     70	POWER_SUPPLY_HEALTH_NO_BATTERY,
     71};
     72
     73enum {
     74	POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
     75	POWER_SUPPLY_TECHNOLOGY_NiMH,
     76	POWER_SUPPLY_TECHNOLOGY_LION,
     77	POWER_SUPPLY_TECHNOLOGY_LIPO,
     78	POWER_SUPPLY_TECHNOLOGY_LiFe,
     79	POWER_SUPPLY_TECHNOLOGY_NiCd,
     80	POWER_SUPPLY_TECHNOLOGY_LiMn,
     81};
     82
     83enum {
     84	POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
     85	POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
     86	POWER_SUPPLY_CAPACITY_LEVEL_LOW,
     87	POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
     88	POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
     89	POWER_SUPPLY_CAPACITY_LEVEL_FULL,
     90};
     91
     92enum {
     93	POWER_SUPPLY_SCOPE_UNKNOWN = 0,
     94	POWER_SUPPLY_SCOPE_SYSTEM,
     95	POWER_SUPPLY_SCOPE_DEVICE,
     96};
     97
     98enum power_supply_property {
     99	/* Properties of type `int' */
    100	POWER_SUPPLY_PROP_STATUS = 0,
    101	POWER_SUPPLY_PROP_CHARGE_TYPE,
    102	POWER_SUPPLY_PROP_HEALTH,
    103	POWER_SUPPLY_PROP_PRESENT,
    104	POWER_SUPPLY_PROP_ONLINE,
    105	POWER_SUPPLY_PROP_AUTHENTIC,
    106	POWER_SUPPLY_PROP_TECHNOLOGY,
    107	POWER_SUPPLY_PROP_CYCLE_COUNT,
    108	POWER_SUPPLY_PROP_VOLTAGE_MAX,
    109	POWER_SUPPLY_PROP_VOLTAGE_MIN,
    110	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
    111	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
    112	POWER_SUPPLY_PROP_VOLTAGE_NOW,
    113	POWER_SUPPLY_PROP_VOLTAGE_AVG,
    114	POWER_SUPPLY_PROP_VOLTAGE_OCV,
    115	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
    116	POWER_SUPPLY_PROP_CURRENT_MAX,
    117	POWER_SUPPLY_PROP_CURRENT_NOW,
    118	POWER_SUPPLY_PROP_CURRENT_AVG,
    119	POWER_SUPPLY_PROP_CURRENT_BOOT,
    120	POWER_SUPPLY_PROP_POWER_NOW,
    121	POWER_SUPPLY_PROP_POWER_AVG,
    122	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
    123	POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
    124	POWER_SUPPLY_PROP_CHARGE_FULL,
    125	POWER_SUPPLY_PROP_CHARGE_EMPTY,
    126	POWER_SUPPLY_PROP_CHARGE_NOW,
    127	POWER_SUPPLY_PROP_CHARGE_AVG,
    128	POWER_SUPPLY_PROP_CHARGE_COUNTER,
    129	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
    130	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
    131	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
    132	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
    133	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
    134	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
    135	POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
    136	POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
    137	POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
    138	POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
    139	POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
    140	POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
    141	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
    142	POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
    143	POWER_SUPPLY_PROP_ENERGY_FULL,
    144	POWER_SUPPLY_PROP_ENERGY_EMPTY,
    145	POWER_SUPPLY_PROP_ENERGY_NOW,
    146	POWER_SUPPLY_PROP_ENERGY_AVG,
    147	POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
    148	POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
    149	POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
    150	POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
    151	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
    152	POWER_SUPPLY_PROP_TEMP,
    153	POWER_SUPPLY_PROP_TEMP_MAX,
    154	POWER_SUPPLY_PROP_TEMP_MIN,
    155	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
    156	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
    157	POWER_SUPPLY_PROP_TEMP_AMBIENT,
    158	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
    159	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
    160	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
    161	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
    162	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
    163	POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
    164	POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
    165	POWER_SUPPLY_PROP_USB_TYPE,
    166	POWER_SUPPLY_PROP_SCOPE,
    167	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
    168	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
    169	POWER_SUPPLY_PROP_CALIBRATE,
    170	POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
    171	POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
    172	POWER_SUPPLY_PROP_MANUFACTURE_DAY,
    173	/* Properties of type `const char *' */
    174	POWER_SUPPLY_PROP_MODEL_NAME,
    175	POWER_SUPPLY_PROP_MANUFACTURER,
    176	POWER_SUPPLY_PROP_SERIAL_NUMBER,
    177};
    178
    179enum power_supply_type {
    180	POWER_SUPPLY_TYPE_UNKNOWN = 0,
    181	POWER_SUPPLY_TYPE_BATTERY,
    182	POWER_SUPPLY_TYPE_UPS,
    183	POWER_SUPPLY_TYPE_MAINS,
    184	POWER_SUPPLY_TYPE_USB,			/* Standard Downstream Port */
    185	POWER_SUPPLY_TYPE_USB_DCP,		/* Dedicated Charging Port */
    186	POWER_SUPPLY_TYPE_USB_CDP,		/* Charging Downstream Port */
    187	POWER_SUPPLY_TYPE_USB_ACA,		/* Accessory Charger Adapters */
    188	POWER_SUPPLY_TYPE_USB_TYPE_C,		/* Type C Port */
    189	POWER_SUPPLY_TYPE_USB_PD,		/* Power Delivery Port */
    190	POWER_SUPPLY_TYPE_USB_PD_DRP,		/* PD Dual Role Port */
    191	POWER_SUPPLY_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
    192	POWER_SUPPLY_TYPE_WIRELESS,		/* Wireless */
    193};
    194
    195enum power_supply_usb_type {
    196	POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
    197	POWER_SUPPLY_USB_TYPE_SDP,		/* Standard Downstream Port */
    198	POWER_SUPPLY_USB_TYPE_DCP,		/* Dedicated Charging Port */
    199	POWER_SUPPLY_USB_TYPE_CDP,		/* Charging Downstream Port */
    200	POWER_SUPPLY_USB_TYPE_ACA,		/* Accessory Charger Adapters */
    201	POWER_SUPPLY_USB_TYPE_C,		/* Type C Port */
    202	POWER_SUPPLY_USB_TYPE_PD,		/* Power Delivery Port */
    203	POWER_SUPPLY_USB_TYPE_PD_DRP,		/* PD Dual Role Port */
    204	POWER_SUPPLY_USB_TYPE_PD_PPS,		/* PD Programmable Power Supply */
    205	POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
    206};
    207
    208enum power_supply_charge_behaviour {
    209	POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
    210	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
    211	POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
    212};
    213
    214enum power_supply_notifier_events {
    215	PSY_EVENT_PROP_CHANGED,
    216};
    217
    218union power_supply_propval {
    219	int intval;
    220	const char *strval;
    221};
    222
    223struct device_node;
    224struct power_supply;
    225
    226/* Run-time specific power supply configuration */
    227struct power_supply_config {
    228	struct device_node *of_node;
    229	struct fwnode_handle *fwnode;
    230
    231	/* Driver private data */
    232	void *drv_data;
    233
    234	/* Device specific sysfs attributes */
    235	const struct attribute_group **attr_grp;
    236
    237	char **supplied_to;
    238	size_t num_supplicants;
    239};
    240
    241/* Description of power supply */
    242struct power_supply_desc {
    243	const char *name;
    244	enum power_supply_type type;
    245	const enum power_supply_usb_type *usb_types;
    246	size_t num_usb_types;
    247	const enum power_supply_property *properties;
    248	size_t num_properties;
    249
    250	/*
    251	 * Functions for drivers implementing power supply class.
    252	 * These shouldn't be called directly by other drivers for accessing
    253	 * this power supply. Instead use power_supply_*() functions (for
    254	 * example power_supply_get_property()).
    255	 */
    256	int (*get_property)(struct power_supply *psy,
    257			    enum power_supply_property psp,
    258			    union power_supply_propval *val);
    259	int (*set_property)(struct power_supply *psy,
    260			    enum power_supply_property psp,
    261			    const union power_supply_propval *val);
    262	/*
    263	 * property_is_writeable() will be called during registration
    264	 * of power supply. If this happens during device probe then it must
    265	 * not access internal data of device (because probe did not end).
    266	 */
    267	int (*property_is_writeable)(struct power_supply *psy,
    268				     enum power_supply_property psp);
    269	void (*external_power_changed)(struct power_supply *psy);
    270	void (*set_charged)(struct power_supply *psy);
    271
    272	/*
    273	 * Set if thermal zone should not be created for this power supply.
    274	 * For example for virtual supplies forwarding calls to actual
    275	 * sensors or other supplies.
    276	 */
    277	bool no_thermal;
    278	/* For APM emulation, think legacy userspace. */
    279	int use_for_apm;
    280};
    281
    282struct power_supply {
    283	const struct power_supply_desc *desc;
    284
    285	char **supplied_to;
    286	size_t num_supplicants;
    287
    288	char **supplied_from;
    289	size_t num_supplies;
    290	struct device_node *of_node;
    291
    292	/* Driver private data */
    293	void *drv_data;
    294
    295	/* private */
    296	struct device dev;
    297	struct work_struct changed_work;
    298	struct delayed_work deferred_register_work;
    299	spinlock_t changed_lock;
    300	bool changed;
    301	bool initialized;
    302	bool removing;
    303	atomic_t use_cnt;
    304#ifdef CONFIG_THERMAL
    305	struct thermal_zone_device *tzd;
    306	struct thermal_cooling_device *tcd;
    307#endif
    308
    309#ifdef CONFIG_LEDS_TRIGGERS
    310	struct led_trigger *charging_full_trig;
    311	char *charging_full_trig_name;
    312	struct led_trigger *charging_trig;
    313	char *charging_trig_name;
    314	struct led_trigger *full_trig;
    315	char *full_trig_name;
    316	struct led_trigger *online_trig;
    317	char *online_trig_name;
    318	struct led_trigger *charging_blink_full_solid_trig;
    319	char *charging_blink_full_solid_trig_name;
    320#endif
    321};
    322
    323/*
    324 * This is recommended structure to specify static power supply parameters.
    325 * Generic one, parametrizable for different power supplies. Power supply
    326 * class itself does not use it, but that's what implementing most platform
    327 * drivers, should try reuse for consistency.
    328 */
    329
    330struct power_supply_info {
    331	const char *name;
    332	int technology;
    333	int voltage_max_design;
    334	int voltage_min_design;
    335	int charge_full_design;
    336	int charge_empty_design;
    337	int energy_full_design;
    338	int energy_empty_design;
    339	int use_for_apm;
    340};
    341
    342struct power_supply_battery_ocv_table {
    343	int ocv;	/* microVolts */
    344	int capacity;	/* percent */
    345};
    346
    347struct power_supply_resistance_temp_table {
    348	int temp;	/* celsius */
    349	int resistance;	/* internal resistance percent */
    350};
    351
    352struct power_supply_vbat_ri_table {
    353	int vbat_uv;	/* Battery voltage in microvolt */
    354	int ri_uohm;	/* Internal resistance in microohm */
    355};
    356
    357/**
    358 * struct power_supply_maintenance_charge_table - setting for maintenace charging
    359 * @charge_current_max_ua: maintenance charging current that is used to keep
    360 *   the charge of the battery full as current is consumed after full charging.
    361 *   The corresponding charge_voltage_max_uv is used as a safeguard: when we
    362 *   reach this voltage the maintenance charging current is turned off. It is
    363 *   turned back on if we fall below this voltage.
    364 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
    365 *   lower than the constant_charge_voltage_max_uv. We can apply this settings
    366 *   charge_current_max_ua until we get back up to this voltage.
    367 * @safety_timer_minutes: maintenance charging safety timer, with an expiry
    368 *   time in minutes. We will only use maintenance charging in this setting
    369 *   for a certain amount of time, then we will first move to the next
    370 *   maintenance charge current and voltage pair in respective array and wait
    371 *   for the next safety timer timeout, or, if we reached the last maintencance
    372 *   charging setting, disable charging until we reach
    373 *   charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
    374 *   These timers should be chosen to align with the typical discharge curve
    375 *   for the battery.
    376 *
    377 * When the main CC/CV charging is complete the battery can optionally be
    378 * maintenance charged at the voltages from this table: a table of settings is
    379 * traversed using a slightly lower current and voltage than what is used for
    380 * CC/CV charging. The maintenance charging will for safety reasons not go on
    381 * indefinately: we lower the current and voltage with successive maintenance
    382 * settings, then disable charging completely after we reach the last one,
    383 * and after that we do not restart charging until we reach
    384 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
    385 * ordinary CC/CV charging from there.
    386 *
    387 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
    388 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for
    389 * 60 hours, then maintenance charged at 600mA and 4100mV for 200 hours.
    390 * After this the charge cycle is restarted waiting for
    391 * charge_restart_voltage_uv.
    392 *
    393 * For most mobile electronics this type of maintenance charging is enough for
    394 * the user to disconnect the device and make use of it before both maintenance
    395 * charging cycles are complete.
    396 */
    397struct power_supply_maintenance_charge_table {
    398	int charge_current_max_ua;
    399	int charge_voltage_max_uv;
    400	int charge_safety_timer_minutes;
    401};
    402
    403#define POWER_SUPPLY_OCV_TEMP_MAX 20
    404
    405/**
    406 * struct power_supply_battery_info - information about batteries
    407 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
    408 * @energy_full_design_uwh: energy content when fully charged in microwatt
    409 *   hours
    410 * @charge_full_design_uah: charge content when fully charged in microampere
    411 *   hours
    412 * @voltage_min_design_uv: minimum voltage across the poles when the battery
    413 *   is at minimum voltage level in microvolts. If the voltage drops below this
    414 *   level the battery will need precharging when using CC/CV charging.
    415 * @voltage_max_design_uv: voltage across the poles when the battery is fully
    416 *   charged in microvolts. This is the "nominal voltage" i.e. the voltage
    417 *   printed on the label of the battery.
    418 * @tricklecharge_current_ua: the tricklecharge current used when trickle
    419 *   charging the battery in microamperes. This is the charging phase when the
    420 *   battery is completely empty and we need to carefully trickle in some
    421 *   charge until we reach the precharging voltage.
    422 * @precharge_current_ua: current to use in the precharge phase in microamperes,
    423 *   the precharge rate is limited by limiting the current to this value.
    424 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
    425 *   microvolts. When we pass this voltage we will nominally switch over to the
    426 *   CC (constant current) charging phase defined by constant_charge_current_ua
    427 *   and constant_charge_voltage_max_uv.
    428 * @charge_term_current_ua: when the current in the CV (constant voltage)
    429 *   charging phase drops below this value in microamperes the charging will
    430 *   terminate completely and not restart until the voltage over the battery
    431 *   poles reach charge_restart_voltage_uv unless we use maintenance charging.
    432 * @charge_restart_voltage_uv: when the battery has been fully charged by
    433 *   CC/CV charging and charging has been disabled, and the voltage subsequently
    434 *   drops below this value in microvolts, the charging will be restarted
    435 *   (typically using CV charging).
    436 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
    437 *   voltage_max_design_uv and we reach this voltage level, all charging must
    438 *   stop and emergency procedures take place, such as shutting down the system
    439 *   in some cases.
    440 * @constant_charge_current_max_ua: current in microamperes to use in the CC
    441 *   (constant current) charging phase. The charging rate is limited
    442 *   by this current. This is the main charging phase and as the current is
    443 *   constant into the battery the voltage slowly ascends to
    444 *   constant_charge_voltage_max_uv.
    445 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
    446 *   the CC (constant current) charging phase and the beginning of the CV
    447 *   (constant voltage) charging phase.
    448 * @maintenance_charge: an array of maintenance charging settings to be used
    449 *   after the main CC/CV charging phase is complete.
    450 * @maintenance_charge_size: the number of maintenance charging settings in
    451 *   maintenance_charge.
    452 * @alert_low_temp_charge_current_ua: The charging current to use if the battery
    453 *   enters low alert temperature, i.e. if the internal temperature is between
    454 *   temp_alert_min and temp_min. No matter the charging phase, this
    455 *   and alert_high_temp_charge_voltage_uv will be applied.
    456 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
    457 *   but for the charging voltage.
    458 * @alert_high_temp_charge_current_ua: The charging current to use if the
    459 *   battery enters high alert temperature, i.e. if the internal temperature is
    460 *   between temp_alert_max and temp_max. No matter the charging phase, this
    461 *   and alert_high_temp_charge_voltage_uv will be applied, usually lowering
    462 *   the charging current as an evasive manouver.
    463 * @alert_high_temp_charge_voltage_uv: Same as
    464 *   alert_high_temp_charge_current_ua, but for the charging voltage.
    465 * @factory_internal_resistance_uohm: the internal resistance of the battery
    466 *   at fabrication time, expressed in microohms. This resistance will vary
    467 *   depending on the lifetime and charge of the battery, so this is just a
    468 *   nominal ballpark figure. This internal resistance is given for the state
    469 *   when the battery is discharging.
    470 * @factory_internal_resistance_charging_uohm: the internal resistance of the
    471 *   battery at fabrication time while charging, expressed in microohms.
    472 *   The charging process will affect the internal resistance of the battery
    473 *   so this value provides a better resistance under these circumstances.
    474 *   This resistance will vary depending on the lifetime and charge of the
    475 *   battery, so this is just a nominal ballpark figure.
    476 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
    477 *   temperature indices. This is an array of temperatures in degrees Celsius
    478 *   indicating which capacity table to use for a certain temperature, since
    479 *   the capacity for reasons of chemistry will be different at different
    480 *   temperatures. Determining capacity is a multivariate problem and the
    481 *   temperature is the first variable we determine.
    482 * @temp_ambient_alert_min: the battery will go outside of operating conditions
    483 *   when the ambient temperature goes below this temperature in degrees
    484 *   Celsius.
    485 * @temp_ambient_alert_max: the battery will go outside of operating conditions
    486 *   when the ambient temperature goes above this temperature in degrees
    487 *   Celsius.
    488 * @temp_alert_min: the battery should issue an alert if the internal
    489 *   temperature goes below this temperature in degrees Celsius.
    490 * @temp_alert_max: the battery should issue an alert if the internal
    491 *   temperature goes above this temperature in degrees Celsius.
    492 * @temp_min: the battery will go outside of operating conditions when
    493 *   the internal temperature goes below this temperature in degrees Celsius.
    494 *   Normally this means the system should shut down.
    495 * @temp_max: the battery will go outside of operating conditions when
    496 *   the internal temperature goes above this temperature in degrees Celsius.
    497 *   Normally this means the system should shut down.
    498 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
    499 *   ocv_table and a size for each entry in ocv_table_size. These arrays
    500 *   determine the capacity in percent in relation to the voltage in microvolts
    501 *   at the indexed temperature.
    502 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
    503 *   each entry in the array of capacity arrays in ocv_table.
    504 * @resist_table: this is a table that correlates a battery temperature to the
    505 *   expected internal resistance at this temperature. The resistance is given
    506 *   as a percentage of factory_internal_resistance_uohm. Knowing the
    507 *   resistance of the battery is usually necessary for calculating the open
    508 *   circuit voltage (OCV) that is then used with the ocv_table to calculate
    509 *   the capacity of the battery. The resist_table must be ordered descending
    510 *   by temperature: highest temperature with lowest resistance first, lowest
    511 *   temperature with highest resistance last.
    512 * @resist_table_size: the number of items in the resist_table.
    513 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
    514 *   to internal resistance (Ri). The resistance is given in microohm for the
    515 *   corresponding voltage in microvolts. The internal resistance is used to
    516 *   determine the open circuit voltage so that we can determine the capacity
    517 *   of the battery. These voltages to resistance tables apply when the battery
    518 *   is discharging. The table must be ordered descending by voltage: highest
    519 *   voltage first.
    520 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
    521 *   table.
    522 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
    523 *   when the battery is charging. Being under charge changes the battery's
    524 *   internal resistance characteristics so a separate table is needed.*
    525 *   The table must be ordered descending by voltage: highest voltage first.
    526 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
    527 *   table.
    528 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
    529 *   in ohms for this battery, if an identification resistor is mounted
    530 *   between a third battery terminal and ground. This scheme is used by a lot
    531 *   of mobile device batteries.
    532 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
    533 *   for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
    534 *   tolerance is 10% we will detect a proper battery if the BTI resistance
    535 *   is between 6300 and 7700 Ohm.
    536 *
    537 * This is the recommended struct to manage static battery parameters,
    538 * populated by power_supply_get_battery_info(). Most platform drivers should
    539 * use these for consistency.
    540 *
    541 * Its field names must correspond to elements in enum power_supply_property.
    542 * The default field value is -EINVAL or NULL for pointers.
    543 *
    544 * CC/CV CHARGING:
    545 *
    546 * The charging parameters here assume a CC/CV charging scheme. This method
    547 * is most common with Lithium Ion batteries (other methods are possible) and
    548 * looks as follows:
    549 *
    550 * ^ Battery voltage
    551 * |                                               --- overvoltage_limit_uv
    552 * |
    553 * |                    ...................................................
    554 * |                 .. constant_charge_voltage_max_uv
    555 * |              ..
    556 * |             .
    557 * |            .
    558 * |           .
    559 * |          .
    560 * |         .
    561 * |     .. precharge_voltage_max_uv
    562 * |  ..
    563 * |. (trickle charging)
    564 * +------------------------------------------------------------------> time
    565 *
    566 * ^ Current into the battery
    567 * |
    568 * |      ............. constant_charge_current_max_ua
    569 * |      .            .
    570 * |      .             .
    571 * |      .              .
    572 * |      .               .
    573 * |      .                ..
    574 * |      .                  ....
    575 * |      .                       .....
    576 * |    ... precharge_current_ua       .......  charge_term_current_ua
    577 * |    .                                    .
    578 * |    .                                    .
    579 * |.... tricklecharge_current_ua            .
    580 * |                                         .
    581 * +-----------------------------------------------------------------> time
    582 *
    583 * These diagrams are synchronized on time and the voltage and current
    584 * follow each other.
    585 *
    586 * With CC/CV charging commence over time like this for an empty battery:
    587 *
    588 * 1. When the battery is completely empty it may need to be charged with
    589 *    an especially small current so that electrons just "trickle in",
    590 *    this is the tricklecharge_current_ua.
    591 *
    592 * 2. Next a small initial pre-charge current (precharge_current_ua)
    593 *    is applied if the voltage is below precharge_voltage_max_uv until we
    594 *    reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
    595 *    to as "trickle charging" but the use in the Linux kernel is different
    596 *    see below!
    597 *
    598 * 3. Then the main charging current is applied, which is called the constant
    599 *    current (CC) phase. A current regulator is set up to allow
    600 *    constant_charge_current_max_ua of current to flow into the battery.
    601 *    The chemical reaction in the battery will make the voltage go up as
    602 *    charge goes into the battery. This current is applied until we reach
    603 *    the constant_charge_voltage_max_uv voltage.
    604 *
    605 * 4. At this voltage we switch over to the constant voltage (CV) phase. This
    606 *    means we allow current to go into the battery, but we keep the voltage
    607 *    fixed. This current will continue to charge the battery while keeping
    608 *    the voltage the same. A chemical reaction in the battery goes on
    609 *    storing energy without affecting the voltage. Over time the current
    610 *    will slowly drop and when we reach charge_term_current_ua we will
    611 *    end the constant voltage phase.
    612 *
    613 * After this the battery is fully charged, and if we do not support maintenance
    614 * charging, the charging will not restart until power dissipation makes the
    615 * voltage fall so that we reach charge_restart_voltage_uv and at this point
    616 * we restart charging at the appropriate phase, usually this will be inside
    617 * the CV phase.
    618 *
    619 * If we support maintenance charging the voltage is however kept high after
    620 * the CV phase with a very low current. This is meant to let the same charge
    621 * go in for usage while the charger is still connected, mainly for
    622 * dissipation for the power consuming entity while connected to the
    623 * charger.
    624 *
    625 * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
    626 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
    627 * explosions.
    628 *
    629 * DETERMINING BATTERY CAPACITY:
    630 *
    631 * Several members of the struct deal with trying to determine the remaining
    632 * capacity in the battery, usually as a percentage of charge. In practice
    633 * many chargers uses a so-called fuel gauge or coloumb counter that measure
    634 * how much charge goes into the battery and how much goes out (+/- leak
    635 * consumption). This does not help if we do not know how much capacity the
    636 * battery has to begin with, such as when it is first used or was taken out
    637 * and charged in a separate charger. Therefore many capacity algorithms use
    638 * the open circuit voltage with a look-up table to determine the rough
    639 * capacity of the battery. The open circuit voltage can be conceptualized
    640 * with an ideal voltage source (V) in series with an internal resistance (Ri)
    641 * like this:
    642 *
    643 *      +-------> IBAT >----------------+
    644 *      |                    ^          |
    645 *     [ ] Ri                |          |
    646 *      |                    | VBAT     |
    647 *      o <----------        |          |
    648 *     +|           ^        |         [ ] Rload
    649 *    .---.         |        |          |
    650 *    | V |         | OCV    |          |
    651 *    '---'         |        |          |
    652 *      |           |        |          |
    653 *  GND +-------------------------------+
    654 *
    655 * If we disconnect the load (here simplified as a fixed resistance Rload)
    656 * and measure VBAT with a infinite impedance voltage meter we will get
    657 * VBAT = OCV and this assumption is sometimes made even under load, assuming
    658 * Rload is insignificant. However this will be of dubious quality because the
    659 * load is rarely that small and Ri is strongly nonlinear depending on
    660 * temperature and how much capacity is left in the battery due to the
    661 * chemistry involved.
    662 *
    663 * In many practical applications we cannot just disconnect the battery from
    664 * the load, so instead we often try to measure the instantaneous IBAT (the
    665 * current out from the battery), estimate the Ri and thus calculate the
    666 * voltage drop over Ri and compensate like this:
    667 *
    668 *   OCV = VBAT - (IBAT * Ri)
    669 *
    670 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
    671 * (by interpolation) the Ri from the VBAT under load. These curves are highly
    672 * nonlinear and may need many datapoints but can be found in datasheets for
    673 * some batteries. This gives the compensated open circuit voltage (OCV) for
    674 * the battery even under load. Using this method will also compensate for
    675 * temperature changes in the environment: this will also make the internal
    676 * resistance change, and it will affect the VBAT under load, so correlating
    677 * VBAT to Ri takes both remaining capacity and temperature into consideration.
    678 *
    679 * Alternatively a manufacturer can specify how the capacity of the battery
    680 * is dependent on the battery temperature which is the main factor affecting
    681 * Ri. As we know all checmical reactions are faster when it is warm and slower
    682 * when it is cold. You can put in 1500mAh and only get 800mAh out before the
    683 * voltage drops too low for example. This effect is also highly nonlinear and
    684 * the purpose of the table resist_table: this will take a temperature and
    685 * tell us how big percentage of Ri the specified temperature correlates to.
    686 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
    687 * Celsius.
    688 *
    689 * The power supply class itself doesn't use this struct as of now.
    690 */
    691
    692struct power_supply_battery_info {
    693	unsigned int technology;
    694	int energy_full_design_uwh;
    695	int charge_full_design_uah;
    696	int voltage_min_design_uv;
    697	int voltage_max_design_uv;
    698	int tricklecharge_current_ua;
    699	int precharge_current_ua;
    700	int precharge_voltage_max_uv;
    701	int charge_term_current_ua;
    702	int charge_restart_voltage_uv;
    703	int overvoltage_limit_uv;
    704	int constant_charge_current_max_ua;
    705	int constant_charge_voltage_max_uv;
    706	struct power_supply_maintenance_charge_table *maintenance_charge;
    707	int maintenance_charge_size;
    708	int alert_low_temp_charge_current_ua;
    709	int alert_low_temp_charge_voltage_uv;
    710	int alert_high_temp_charge_current_ua;
    711	int alert_high_temp_charge_voltage_uv;
    712	int factory_internal_resistance_uohm;
    713	int factory_internal_resistance_charging_uohm;
    714	int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
    715	int temp_ambient_alert_min;
    716	int temp_ambient_alert_max;
    717	int temp_alert_min;
    718	int temp_alert_max;
    719	int temp_min;
    720	int temp_max;
    721	struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
    722	int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
    723	struct power_supply_resistance_temp_table *resist_table;
    724	int resist_table_size;
    725	struct power_supply_vbat_ri_table *vbat2ri_discharging;
    726	int vbat2ri_discharging_size;
    727	struct power_supply_vbat_ri_table *vbat2ri_charging;
    728	int vbat2ri_charging_size;
    729	int bti_resistance_ohm;
    730	int bti_resistance_tolerance;
    731};
    732
    733extern struct atomic_notifier_head power_supply_notifier;
    734extern int power_supply_reg_notifier(struct notifier_block *nb);
    735extern void power_supply_unreg_notifier(struct notifier_block *nb);
    736#if IS_ENABLED(CONFIG_POWER_SUPPLY)
    737extern struct power_supply *power_supply_get_by_name(const char *name);
    738extern void power_supply_put(struct power_supply *psy);
    739#else
    740static inline void power_supply_put(struct power_supply *psy) {}
    741static inline struct power_supply *power_supply_get_by_name(const char *name)
    742{ return NULL; }
    743#endif
    744#ifdef CONFIG_OF
    745extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
    746							const char *property);
    747extern struct power_supply *devm_power_supply_get_by_phandle(
    748				    struct device *dev, const char *property);
    749#else /* !CONFIG_OF */
    750static inline struct power_supply *
    751power_supply_get_by_phandle(struct device_node *np, const char *property)
    752{ return NULL; }
    753static inline struct power_supply *
    754devm_power_supply_get_by_phandle(struct device *dev, const char *property)
    755{ return NULL; }
    756#endif /* CONFIG_OF */
    757
    758extern int power_supply_get_battery_info(struct power_supply *psy,
    759					 struct power_supply_battery_info **info_out);
    760extern void power_supply_put_battery_info(struct power_supply *psy,
    761					  struct power_supply_battery_info *info);
    762extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
    763				       int table_len, int ocv);
    764extern struct power_supply_battery_ocv_table *
    765power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
    766				int temp, int *table_len);
    767extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
    768					int ocv, int temp);
    769extern int
    770power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
    771				int table_len, int temp);
    772extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
    773				int vbat_uv, bool charging);
    774extern struct power_supply_maintenance_charge_table *
    775power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
    776extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
    777					      int resistance);
    778extern void power_supply_changed(struct power_supply *psy);
    779extern int power_supply_am_i_supplied(struct power_supply *psy);
    780int power_supply_get_property_from_supplier(struct power_supply *psy,
    781					    enum power_supply_property psp,
    782					    union power_supply_propval *val);
    783extern int power_supply_set_battery_charged(struct power_supply *psy);
    784
    785static inline bool
    786power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
    787{
    788	struct power_supply_maintenance_charge_table *mt;
    789
    790	mt = power_supply_get_maintenance_charging_setting(info, 0);
    791
    792	return (mt != NULL);
    793}
    794
    795static inline bool
    796power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
    797{
    798	return ((info->vbat2ri_discharging != NULL) &&
    799		info->vbat2ri_discharging_size > 0);
    800}
    801
    802static inline bool
    803power_supply_supports_temp2ri(struct power_supply_battery_info *info)
    804{
    805	return ((info->resist_table != NULL) &&
    806		info->resist_table_size > 0);
    807}
    808
    809#ifdef CONFIG_POWER_SUPPLY
    810extern int power_supply_is_system_supplied(void);
    811#else
    812static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
    813#endif
    814
    815extern int power_supply_get_property(struct power_supply *psy,
    816			    enum power_supply_property psp,
    817			    union power_supply_propval *val);
    818#if IS_ENABLED(CONFIG_POWER_SUPPLY)
    819extern int power_supply_set_property(struct power_supply *psy,
    820			    enum power_supply_property psp,
    821			    const union power_supply_propval *val);
    822#else
    823static inline int power_supply_set_property(struct power_supply *psy,
    824			    enum power_supply_property psp,
    825			    const union power_supply_propval *val)
    826{ return 0; }
    827#endif
    828extern int power_supply_property_is_writeable(struct power_supply *psy,
    829					enum power_supply_property psp);
    830extern void power_supply_external_power_changed(struct power_supply *psy);
    831
    832extern struct power_supply *__must_check
    833power_supply_register(struct device *parent,
    834				 const struct power_supply_desc *desc,
    835				 const struct power_supply_config *cfg);
    836extern struct power_supply *__must_check
    837power_supply_register_no_ws(struct device *parent,
    838				 const struct power_supply_desc *desc,
    839				 const struct power_supply_config *cfg);
    840extern struct power_supply *__must_check
    841devm_power_supply_register(struct device *parent,
    842				 const struct power_supply_desc *desc,
    843				 const struct power_supply_config *cfg);
    844extern struct power_supply *__must_check
    845devm_power_supply_register_no_ws(struct device *parent,
    846				 const struct power_supply_desc *desc,
    847				 const struct power_supply_config *cfg);
    848extern void power_supply_unregister(struct power_supply *psy);
    849extern int power_supply_powers(struct power_supply *psy, struct device *dev);
    850
    851#define to_power_supply(device) container_of(device, struct power_supply, dev)
    852
    853extern void *power_supply_get_drvdata(struct power_supply *psy);
    854/* For APM emulation, think legacy userspace. */
    855extern struct class *power_supply_class;
    856
    857static inline bool power_supply_is_amp_property(enum power_supply_property psp)
    858{
    859	switch (psp) {
    860	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
    861	case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
    862	case POWER_SUPPLY_PROP_CHARGE_FULL:
    863	case POWER_SUPPLY_PROP_CHARGE_EMPTY:
    864	case POWER_SUPPLY_PROP_CHARGE_NOW:
    865	case POWER_SUPPLY_PROP_CHARGE_AVG:
    866	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
    867	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
    868	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
    869	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
    870	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
    871	case POWER_SUPPLY_PROP_CURRENT_MAX:
    872	case POWER_SUPPLY_PROP_CURRENT_NOW:
    873	case POWER_SUPPLY_PROP_CURRENT_AVG:
    874	case POWER_SUPPLY_PROP_CURRENT_BOOT:
    875		return true;
    876	default:
    877		break;
    878	}
    879
    880	return false;
    881}
    882
    883static inline bool power_supply_is_watt_property(enum power_supply_property psp)
    884{
    885	switch (psp) {
    886	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
    887	case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
    888	case POWER_SUPPLY_PROP_ENERGY_FULL:
    889	case POWER_SUPPLY_PROP_ENERGY_EMPTY:
    890	case POWER_SUPPLY_PROP_ENERGY_NOW:
    891	case POWER_SUPPLY_PROP_ENERGY_AVG:
    892	case POWER_SUPPLY_PROP_VOLTAGE_MAX:
    893	case POWER_SUPPLY_PROP_VOLTAGE_MIN:
    894	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
    895	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
    896	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
    897	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
    898	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
    899	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
    900	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
    901	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
    902	case POWER_SUPPLY_PROP_POWER_NOW:
    903		return true;
    904	default:
    905		break;
    906	}
    907
    908	return false;
    909}
    910
    911#ifdef CONFIG_POWER_SUPPLY_HWMON
    912int power_supply_add_hwmon_sysfs(struct power_supply *psy);
    913void power_supply_remove_hwmon_sysfs(struct power_supply *psy);
    914#else
    915static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy)
    916{
    917	return 0;
    918}
    919
    920static inline
    921void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {}
    922#endif
    923
    924#ifdef CONFIG_SYSFS
    925ssize_t power_supply_charge_behaviour_show(struct device *dev,
    926					   unsigned int available_behaviours,
    927					   enum power_supply_charge_behaviour behaviour,
    928					   char *buf);
    929
    930int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
    931#else
    932static inline
    933ssize_t power_supply_charge_behaviour_show(struct device *dev,
    934					   unsigned int available_behaviours,
    935					   enum power_supply_charge_behaviour behaviour,
    936					   char *buf)
    937{
    938	return -EOPNOTSUPP;
    939}
    940
    941static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
    942						      const char *buf)
    943{
    944	return -EOPNOTSUPP;
    945}
    946#endif
    947
    948#endif /* __LINUX_POWER_SUPPLY_H__ */