power_supply.h (38652B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12#ifndef __LINUX_POWER_SUPPLY_H__ 13#define __LINUX_POWER_SUPPLY_H__ 14 15#include <linux/device.h> 16#include <linux/workqueue.h> 17#include <linux/leds.h> 18#include <linux/spinlock.h> 19#include <linux/notifier.h> 20 21/* 22 * All voltages, currents, charges, energies, time and temperatures in uV, 23 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise 24 * stated. It's driver's job to convert its raw values to units in which 25 * this class operates. 26 */ 27 28/* 29 * For systems where the charger determines the maximum battery capacity 30 * the min and max fields should be used to present these values to user 31 * space. Unused/unknown fields will not appear in sysfs. 32 */ 33 34enum { 35 POWER_SUPPLY_STATUS_UNKNOWN = 0, 36 POWER_SUPPLY_STATUS_CHARGING, 37 POWER_SUPPLY_STATUS_DISCHARGING, 38 POWER_SUPPLY_STATUS_NOT_CHARGING, 39 POWER_SUPPLY_STATUS_FULL, 40}; 41 42/* What algorithm is the charger using? */ 43enum { 44 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0, 45 POWER_SUPPLY_CHARGE_TYPE_NONE, 46 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */ 47 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */ 48 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */ 49 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */ 50 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */ 51 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */ 52 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */ 53}; 54 55enum { 56 POWER_SUPPLY_HEALTH_UNKNOWN = 0, 57 POWER_SUPPLY_HEALTH_GOOD, 58 POWER_SUPPLY_HEALTH_OVERHEAT, 59 POWER_SUPPLY_HEALTH_DEAD, 60 POWER_SUPPLY_HEALTH_OVERVOLTAGE, 61 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, 62 POWER_SUPPLY_HEALTH_COLD, 63 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE, 64 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE, 65 POWER_SUPPLY_HEALTH_OVERCURRENT, 66 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED, 67 POWER_SUPPLY_HEALTH_WARM, 68 POWER_SUPPLY_HEALTH_COOL, 69 POWER_SUPPLY_HEALTH_HOT, 70 POWER_SUPPLY_HEALTH_NO_BATTERY, 71}; 72 73enum { 74 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0, 75 POWER_SUPPLY_TECHNOLOGY_NiMH, 76 POWER_SUPPLY_TECHNOLOGY_LION, 77 POWER_SUPPLY_TECHNOLOGY_LIPO, 78 POWER_SUPPLY_TECHNOLOGY_LiFe, 79 POWER_SUPPLY_TECHNOLOGY_NiCd, 80 POWER_SUPPLY_TECHNOLOGY_LiMn, 81}; 82 83enum { 84 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0, 85 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL, 86 POWER_SUPPLY_CAPACITY_LEVEL_LOW, 87 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL, 88 POWER_SUPPLY_CAPACITY_LEVEL_HIGH, 89 POWER_SUPPLY_CAPACITY_LEVEL_FULL, 90}; 91 92enum { 93 POWER_SUPPLY_SCOPE_UNKNOWN = 0, 94 POWER_SUPPLY_SCOPE_SYSTEM, 95 POWER_SUPPLY_SCOPE_DEVICE, 96}; 97 98enum power_supply_property { 99 /* Properties of type `int' */ 100 POWER_SUPPLY_PROP_STATUS = 0, 101 POWER_SUPPLY_PROP_CHARGE_TYPE, 102 POWER_SUPPLY_PROP_HEALTH, 103 POWER_SUPPLY_PROP_PRESENT, 104 POWER_SUPPLY_PROP_ONLINE, 105 POWER_SUPPLY_PROP_AUTHENTIC, 106 POWER_SUPPLY_PROP_TECHNOLOGY, 107 POWER_SUPPLY_PROP_CYCLE_COUNT, 108 POWER_SUPPLY_PROP_VOLTAGE_MAX, 109 POWER_SUPPLY_PROP_VOLTAGE_MIN, 110 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 111 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 112 POWER_SUPPLY_PROP_VOLTAGE_NOW, 113 POWER_SUPPLY_PROP_VOLTAGE_AVG, 114 POWER_SUPPLY_PROP_VOLTAGE_OCV, 115 POWER_SUPPLY_PROP_VOLTAGE_BOOT, 116 POWER_SUPPLY_PROP_CURRENT_MAX, 117 POWER_SUPPLY_PROP_CURRENT_NOW, 118 POWER_SUPPLY_PROP_CURRENT_AVG, 119 POWER_SUPPLY_PROP_CURRENT_BOOT, 120 POWER_SUPPLY_PROP_POWER_NOW, 121 POWER_SUPPLY_PROP_POWER_AVG, 122 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 123 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, 124 POWER_SUPPLY_PROP_CHARGE_FULL, 125 POWER_SUPPLY_PROP_CHARGE_EMPTY, 126 POWER_SUPPLY_PROP_CHARGE_NOW, 127 POWER_SUPPLY_PROP_CHARGE_AVG, 128 POWER_SUPPLY_PROP_CHARGE_COUNTER, 129 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, 130 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 131 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, 132 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 133 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, 134 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, 135 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */ 136 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */ 137 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR, 138 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, 139 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, 140 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT, 141 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 142 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, 143 POWER_SUPPLY_PROP_ENERGY_FULL, 144 POWER_SUPPLY_PROP_ENERGY_EMPTY, 145 POWER_SUPPLY_PROP_ENERGY_NOW, 146 POWER_SUPPLY_PROP_ENERGY_AVG, 147 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */ 148 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */ 149 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */ 150 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */ 151 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 152 POWER_SUPPLY_PROP_TEMP, 153 POWER_SUPPLY_PROP_TEMP_MAX, 154 POWER_SUPPLY_PROP_TEMP_MIN, 155 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 156 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 157 POWER_SUPPLY_PROP_TEMP_AMBIENT, 158 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 159 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 160 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 161 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 162 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 163 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 164 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */ 165 POWER_SUPPLY_PROP_USB_TYPE, 166 POWER_SUPPLY_PROP_SCOPE, 167 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 168 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 169 POWER_SUPPLY_PROP_CALIBRATE, 170 POWER_SUPPLY_PROP_MANUFACTURE_YEAR, 171 POWER_SUPPLY_PROP_MANUFACTURE_MONTH, 172 POWER_SUPPLY_PROP_MANUFACTURE_DAY, 173 /* Properties of type `const char *' */ 174 POWER_SUPPLY_PROP_MODEL_NAME, 175 POWER_SUPPLY_PROP_MANUFACTURER, 176 POWER_SUPPLY_PROP_SERIAL_NUMBER, 177}; 178 179enum power_supply_type { 180 POWER_SUPPLY_TYPE_UNKNOWN = 0, 181 POWER_SUPPLY_TYPE_BATTERY, 182 POWER_SUPPLY_TYPE_UPS, 183 POWER_SUPPLY_TYPE_MAINS, 184 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */ 185 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */ 186 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */ 187 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */ 188 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */ 189 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */ 190 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */ 191 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 192 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */ 193}; 194 195enum power_supply_usb_type { 196 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, 197 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ 198 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ 199 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ 200 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ 201 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ 202 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ 203 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ 204 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ 205 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 206}; 207 208enum power_supply_charge_behaviour { 209 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0, 210 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE, 211 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE, 212}; 213 214enum power_supply_notifier_events { 215 PSY_EVENT_PROP_CHANGED, 216}; 217 218union power_supply_propval { 219 int intval; 220 const char *strval; 221}; 222 223struct device_node; 224struct power_supply; 225 226/* Run-time specific power supply configuration */ 227struct power_supply_config { 228 struct device_node *of_node; 229 struct fwnode_handle *fwnode; 230 231 /* Driver private data */ 232 void *drv_data; 233 234 /* Device specific sysfs attributes */ 235 const struct attribute_group **attr_grp; 236 237 char **supplied_to; 238 size_t num_supplicants; 239}; 240 241/* Description of power supply */ 242struct power_supply_desc { 243 const char *name; 244 enum power_supply_type type; 245 const enum power_supply_usb_type *usb_types; 246 size_t num_usb_types; 247 const enum power_supply_property *properties; 248 size_t num_properties; 249 250 /* 251 * Functions for drivers implementing power supply class. 252 * These shouldn't be called directly by other drivers for accessing 253 * this power supply. Instead use power_supply_*() functions (for 254 * example power_supply_get_property()). 255 */ 256 int (*get_property)(struct power_supply *psy, 257 enum power_supply_property psp, 258 union power_supply_propval *val); 259 int (*set_property)(struct power_supply *psy, 260 enum power_supply_property psp, 261 const union power_supply_propval *val); 262 /* 263 * property_is_writeable() will be called during registration 264 * of power supply. If this happens during device probe then it must 265 * not access internal data of device (because probe did not end). 266 */ 267 int (*property_is_writeable)(struct power_supply *psy, 268 enum power_supply_property psp); 269 void (*external_power_changed)(struct power_supply *psy); 270 void (*set_charged)(struct power_supply *psy); 271 272 /* 273 * Set if thermal zone should not be created for this power supply. 274 * For example for virtual supplies forwarding calls to actual 275 * sensors or other supplies. 276 */ 277 bool no_thermal; 278 /* For APM emulation, think legacy userspace. */ 279 int use_for_apm; 280}; 281 282struct power_supply { 283 const struct power_supply_desc *desc; 284 285 char **supplied_to; 286 size_t num_supplicants; 287 288 char **supplied_from; 289 size_t num_supplies; 290 struct device_node *of_node; 291 292 /* Driver private data */ 293 void *drv_data; 294 295 /* private */ 296 struct device dev; 297 struct work_struct changed_work; 298 struct delayed_work deferred_register_work; 299 spinlock_t changed_lock; 300 bool changed; 301 bool initialized; 302 bool removing; 303 atomic_t use_cnt; 304#ifdef CONFIG_THERMAL 305 struct thermal_zone_device *tzd; 306 struct thermal_cooling_device *tcd; 307#endif 308 309#ifdef CONFIG_LEDS_TRIGGERS 310 struct led_trigger *charging_full_trig; 311 char *charging_full_trig_name; 312 struct led_trigger *charging_trig; 313 char *charging_trig_name; 314 struct led_trigger *full_trig; 315 char *full_trig_name; 316 struct led_trigger *online_trig; 317 char *online_trig_name; 318 struct led_trigger *charging_blink_full_solid_trig; 319 char *charging_blink_full_solid_trig_name; 320#endif 321}; 322 323/* 324 * This is recommended structure to specify static power supply parameters. 325 * Generic one, parametrizable for different power supplies. Power supply 326 * class itself does not use it, but that's what implementing most platform 327 * drivers, should try reuse for consistency. 328 */ 329 330struct power_supply_info { 331 const char *name; 332 int technology; 333 int voltage_max_design; 334 int voltage_min_design; 335 int charge_full_design; 336 int charge_empty_design; 337 int energy_full_design; 338 int energy_empty_design; 339 int use_for_apm; 340}; 341 342struct power_supply_battery_ocv_table { 343 int ocv; /* microVolts */ 344 int capacity; /* percent */ 345}; 346 347struct power_supply_resistance_temp_table { 348 int temp; /* celsius */ 349 int resistance; /* internal resistance percent */ 350}; 351 352struct power_supply_vbat_ri_table { 353 int vbat_uv; /* Battery voltage in microvolt */ 354 int ri_uohm; /* Internal resistance in microohm */ 355}; 356 357/** 358 * struct power_supply_maintenance_charge_table - setting for maintenace charging 359 * @charge_current_max_ua: maintenance charging current that is used to keep 360 * the charge of the battery full as current is consumed after full charging. 361 * The corresponding charge_voltage_max_uv is used as a safeguard: when we 362 * reach this voltage the maintenance charging current is turned off. It is 363 * turned back on if we fall below this voltage. 364 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit 365 * lower than the constant_charge_voltage_max_uv. We can apply this settings 366 * charge_current_max_ua until we get back up to this voltage. 367 * @safety_timer_minutes: maintenance charging safety timer, with an expiry 368 * time in minutes. We will only use maintenance charging in this setting 369 * for a certain amount of time, then we will first move to the next 370 * maintenance charge current and voltage pair in respective array and wait 371 * for the next safety timer timeout, or, if we reached the last maintencance 372 * charging setting, disable charging until we reach 373 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there. 374 * These timers should be chosen to align with the typical discharge curve 375 * for the battery. 376 * 377 * When the main CC/CV charging is complete the battery can optionally be 378 * maintenance charged at the voltages from this table: a table of settings is 379 * traversed using a slightly lower current and voltage than what is used for 380 * CC/CV charging. The maintenance charging will for safety reasons not go on 381 * indefinately: we lower the current and voltage with successive maintenance 382 * settings, then disable charging completely after we reach the last one, 383 * and after that we do not restart charging until we reach 384 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart 385 * ordinary CC/CV charging from there. 386 * 387 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged 388 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for 389 * 60 hours, then maintenance charged at 600mA and 4100mV for 200 hours. 390 * After this the charge cycle is restarted waiting for 391 * charge_restart_voltage_uv. 392 * 393 * For most mobile electronics this type of maintenance charging is enough for 394 * the user to disconnect the device and make use of it before both maintenance 395 * charging cycles are complete. 396 */ 397struct power_supply_maintenance_charge_table { 398 int charge_current_max_ua; 399 int charge_voltage_max_uv; 400 int charge_safety_timer_minutes; 401}; 402 403#define POWER_SUPPLY_OCV_TEMP_MAX 20 404 405/** 406 * struct power_supply_battery_info - information about batteries 407 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum 408 * @energy_full_design_uwh: energy content when fully charged in microwatt 409 * hours 410 * @charge_full_design_uah: charge content when fully charged in microampere 411 * hours 412 * @voltage_min_design_uv: minimum voltage across the poles when the battery 413 * is at minimum voltage level in microvolts. If the voltage drops below this 414 * level the battery will need precharging when using CC/CV charging. 415 * @voltage_max_design_uv: voltage across the poles when the battery is fully 416 * charged in microvolts. This is the "nominal voltage" i.e. the voltage 417 * printed on the label of the battery. 418 * @tricklecharge_current_ua: the tricklecharge current used when trickle 419 * charging the battery in microamperes. This is the charging phase when the 420 * battery is completely empty and we need to carefully trickle in some 421 * charge until we reach the precharging voltage. 422 * @precharge_current_ua: current to use in the precharge phase in microamperes, 423 * the precharge rate is limited by limiting the current to this value. 424 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in 425 * microvolts. When we pass this voltage we will nominally switch over to the 426 * CC (constant current) charging phase defined by constant_charge_current_ua 427 * and constant_charge_voltage_max_uv. 428 * @charge_term_current_ua: when the current in the CV (constant voltage) 429 * charging phase drops below this value in microamperes the charging will 430 * terminate completely and not restart until the voltage over the battery 431 * poles reach charge_restart_voltage_uv unless we use maintenance charging. 432 * @charge_restart_voltage_uv: when the battery has been fully charged by 433 * CC/CV charging and charging has been disabled, and the voltage subsequently 434 * drops below this value in microvolts, the charging will be restarted 435 * (typically using CV charging). 436 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage 437 * voltage_max_design_uv and we reach this voltage level, all charging must 438 * stop and emergency procedures take place, such as shutting down the system 439 * in some cases. 440 * @constant_charge_current_max_ua: current in microamperes to use in the CC 441 * (constant current) charging phase. The charging rate is limited 442 * by this current. This is the main charging phase and as the current is 443 * constant into the battery the voltage slowly ascends to 444 * constant_charge_voltage_max_uv. 445 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of 446 * the CC (constant current) charging phase and the beginning of the CV 447 * (constant voltage) charging phase. 448 * @maintenance_charge: an array of maintenance charging settings to be used 449 * after the main CC/CV charging phase is complete. 450 * @maintenance_charge_size: the number of maintenance charging settings in 451 * maintenance_charge. 452 * @alert_low_temp_charge_current_ua: The charging current to use if the battery 453 * enters low alert temperature, i.e. if the internal temperature is between 454 * temp_alert_min and temp_min. No matter the charging phase, this 455 * and alert_high_temp_charge_voltage_uv will be applied. 456 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua, 457 * but for the charging voltage. 458 * @alert_high_temp_charge_current_ua: The charging current to use if the 459 * battery enters high alert temperature, i.e. if the internal temperature is 460 * between temp_alert_max and temp_max. No matter the charging phase, this 461 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering 462 * the charging current as an evasive manouver. 463 * @alert_high_temp_charge_voltage_uv: Same as 464 * alert_high_temp_charge_current_ua, but for the charging voltage. 465 * @factory_internal_resistance_uohm: the internal resistance of the battery 466 * at fabrication time, expressed in microohms. This resistance will vary 467 * depending on the lifetime and charge of the battery, so this is just a 468 * nominal ballpark figure. This internal resistance is given for the state 469 * when the battery is discharging. 470 * @factory_internal_resistance_charging_uohm: the internal resistance of the 471 * battery at fabrication time while charging, expressed in microohms. 472 * The charging process will affect the internal resistance of the battery 473 * so this value provides a better resistance under these circumstances. 474 * This resistance will vary depending on the lifetime and charge of the 475 * battery, so this is just a nominal ballpark figure. 476 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity 477 * temperature indices. This is an array of temperatures in degrees Celsius 478 * indicating which capacity table to use for a certain temperature, since 479 * the capacity for reasons of chemistry will be different at different 480 * temperatures. Determining capacity is a multivariate problem and the 481 * temperature is the first variable we determine. 482 * @temp_ambient_alert_min: the battery will go outside of operating conditions 483 * when the ambient temperature goes below this temperature in degrees 484 * Celsius. 485 * @temp_ambient_alert_max: the battery will go outside of operating conditions 486 * when the ambient temperature goes above this temperature in degrees 487 * Celsius. 488 * @temp_alert_min: the battery should issue an alert if the internal 489 * temperature goes below this temperature in degrees Celsius. 490 * @temp_alert_max: the battery should issue an alert if the internal 491 * temperature goes above this temperature in degrees Celsius. 492 * @temp_min: the battery will go outside of operating conditions when 493 * the internal temperature goes below this temperature in degrees Celsius. 494 * Normally this means the system should shut down. 495 * @temp_max: the battery will go outside of operating conditions when 496 * the internal temperature goes above this temperature in degrees Celsius. 497 * Normally this means the system should shut down. 498 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in 499 * ocv_table and a size for each entry in ocv_table_size. These arrays 500 * determine the capacity in percent in relation to the voltage in microvolts 501 * at the indexed temperature. 502 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of 503 * each entry in the array of capacity arrays in ocv_table. 504 * @resist_table: this is a table that correlates a battery temperature to the 505 * expected internal resistance at this temperature. The resistance is given 506 * as a percentage of factory_internal_resistance_uohm. Knowing the 507 * resistance of the battery is usually necessary for calculating the open 508 * circuit voltage (OCV) that is then used with the ocv_table to calculate 509 * the capacity of the battery. The resist_table must be ordered descending 510 * by temperature: highest temperature with lowest resistance first, lowest 511 * temperature with highest resistance last. 512 * @resist_table_size: the number of items in the resist_table. 513 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT) 514 * to internal resistance (Ri). The resistance is given in microohm for the 515 * corresponding voltage in microvolts. The internal resistance is used to 516 * determine the open circuit voltage so that we can determine the capacity 517 * of the battery. These voltages to resistance tables apply when the battery 518 * is discharging. The table must be ordered descending by voltage: highest 519 * voltage first. 520 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging 521 * table. 522 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state 523 * when the battery is charging. Being under charge changes the battery's 524 * internal resistance characteristics so a separate table is needed.* 525 * The table must be ordered descending by voltage: highest voltage first. 526 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging 527 * table. 528 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance 529 * in ohms for this battery, if an identification resistor is mounted 530 * between a third battery terminal and ground. This scheme is used by a lot 531 * of mobile device batteries. 532 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance, 533 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the 534 * tolerance is 10% we will detect a proper battery if the BTI resistance 535 * is between 6300 and 7700 Ohm. 536 * 537 * This is the recommended struct to manage static battery parameters, 538 * populated by power_supply_get_battery_info(). Most platform drivers should 539 * use these for consistency. 540 * 541 * Its field names must correspond to elements in enum power_supply_property. 542 * The default field value is -EINVAL or NULL for pointers. 543 * 544 * CC/CV CHARGING: 545 * 546 * The charging parameters here assume a CC/CV charging scheme. This method 547 * is most common with Lithium Ion batteries (other methods are possible) and 548 * looks as follows: 549 * 550 * ^ Battery voltage 551 * | --- overvoltage_limit_uv 552 * | 553 * | ................................................... 554 * | .. constant_charge_voltage_max_uv 555 * | .. 556 * | . 557 * | . 558 * | . 559 * | . 560 * | . 561 * | .. precharge_voltage_max_uv 562 * | .. 563 * |. (trickle charging) 564 * +------------------------------------------------------------------> time 565 * 566 * ^ Current into the battery 567 * | 568 * | ............. constant_charge_current_max_ua 569 * | . . 570 * | . . 571 * | . . 572 * | . . 573 * | . .. 574 * | . .... 575 * | . ..... 576 * | ... precharge_current_ua ....... charge_term_current_ua 577 * | . . 578 * | . . 579 * |.... tricklecharge_current_ua . 580 * | . 581 * +-----------------------------------------------------------------> time 582 * 583 * These diagrams are synchronized on time and the voltage and current 584 * follow each other. 585 * 586 * With CC/CV charging commence over time like this for an empty battery: 587 * 588 * 1. When the battery is completely empty it may need to be charged with 589 * an especially small current so that electrons just "trickle in", 590 * this is the tricklecharge_current_ua. 591 * 592 * 2. Next a small initial pre-charge current (precharge_current_ua) 593 * is applied if the voltage is below precharge_voltage_max_uv until we 594 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred 595 * to as "trickle charging" but the use in the Linux kernel is different 596 * see below! 597 * 598 * 3. Then the main charging current is applied, which is called the constant 599 * current (CC) phase. A current regulator is set up to allow 600 * constant_charge_current_max_ua of current to flow into the battery. 601 * The chemical reaction in the battery will make the voltage go up as 602 * charge goes into the battery. This current is applied until we reach 603 * the constant_charge_voltage_max_uv voltage. 604 * 605 * 4. At this voltage we switch over to the constant voltage (CV) phase. This 606 * means we allow current to go into the battery, but we keep the voltage 607 * fixed. This current will continue to charge the battery while keeping 608 * the voltage the same. A chemical reaction in the battery goes on 609 * storing energy without affecting the voltage. Over time the current 610 * will slowly drop and when we reach charge_term_current_ua we will 611 * end the constant voltage phase. 612 * 613 * After this the battery is fully charged, and if we do not support maintenance 614 * charging, the charging will not restart until power dissipation makes the 615 * voltage fall so that we reach charge_restart_voltage_uv and at this point 616 * we restart charging at the appropriate phase, usually this will be inside 617 * the CV phase. 618 * 619 * If we support maintenance charging the voltage is however kept high after 620 * the CV phase with a very low current. This is meant to let the same charge 621 * go in for usage while the charger is still connected, mainly for 622 * dissipation for the power consuming entity while connected to the 623 * charger. 624 * 625 * All charging MUST terminate if the overvoltage_limit_uv is ever reached. 626 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or 627 * explosions. 628 * 629 * DETERMINING BATTERY CAPACITY: 630 * 631 * Several members of the struct deal with trying to determine the remaining 632 * capacity in the battery, usually as a percentage of charge. In practice 633 * many chargers uses a so-called fuel gauge or coloumb counter that measure 634 * how much charge goes into the battery and how much goes out (+/- leak 635 * consumption). This does not help if we do not know how much capacity the 636 * battery has to begin with, such as when it is first used or was taken out 637 * and charged in a separate charger. Therefore many capacity algorithms use 638 * the open circuit voltage with a look-up table to determine the rough 639 * capacity of the battery. The open circuit voltage can be conceptualized 640 * with an ideal voltage source (V) in series with an internal resistance (Ri) 641 * like this: 642 * 643 * +-------> IBAT >----------------+ 644 * | ^ | 645 * [ ] Ri | | 646 * | | VBAT | 647 * o <---------- | | 648 * +| ^ | [ ] Rload 649 * .---. | | | 650 * | V | | OCV | | 651 * '---' | | | 652 * | | | | 653 * GND +-------------------------------+ 654 * 655 * If we disconnect the load (here simplified as a fixed resistance Rload) 656 * and measure VBAT with a infinite impedance voltage meter we will get 657 * VBAT = OCV and this assumption is sometimes made even under load, assuming 658 * Rload is insignificant. However this will be of dubious quality because the 659 * load is rarely that small and Ri is strongly nonlinear depending on 660 * temperature and how much capacity is left in the battery due to the 661 * chemistry involved. 662 * 663 * In many practical applications we cannot just disconnect the battery from 664 * the load, so instead we often try to measure the instantaneous IBAT (the 665 * current out from the battery), estimate the Ri and thus calculate the 666 * voltage drop over Ri and compensate like this: 667 * 668 * OCV = VBAT - (IBAT * Ri) 669 * 670 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine 671 * (by interpolation) the Ri from the VBAT under load. These curves are highly 672 * nonlinear and may need many datapoints but can be found in datasheets for 673 * some batteries. This gives the compensated open circuit voltage (OCV) for 674 * the battery even under load. Using this method will also compensate for 675 * temperature changes in the environment: this will also make the internal 676 * resistance change, and it will affect the VBAT under load, so correlating 677 * VBAT to Ri takes both remaining capacity and temperature into consideration. 678 * 679 * Alternatively a manufacturer can specify how the capacity of the battery 680 * is dependent on the battery temperature which is the main factor affecting 681 * Ri. As we know all checmical reactions are faster when it is warm and slower 682 * when it is cold. You can put in 1500mAh and only get 800mAh out before the 683 * voltage drops too low for example. This effect is also highly nonlinear and 684 * the purpose of the table resist_table: this will take a temperature and 685 * tell us how big percentage of Ri the specified temperature correlates to. 686 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees 687 * Celsius. 688 * 689 * The power supply class itself doesn't use this struct as of now. 690 */ 691 692struct power_supply_battery_info { 693 unsigned int technology; 694 int energy_full_design_uwh; 695 int charge_full_design_uah; 696 int voltage_min_design_uv; 697 int voltage_max_design_uv; 698 int tricklecharge_current_ua; 699 int precharge_current_ua; 700 int precharge_voltage_max_uv; 701 int charge_term_current_ua; 702 int charge_restart_voltage_uv; 703 int overvoltage_limit_uv; 704 int constant_charge_current_max_ua; 705 int constant_charge_voltage_max_uv; 706 struct power_supply_maintenance_charge_table *maintenance_charge; 707 int maintenance_charge_size; 708 int alert_low_temp_charge_current_ua; 709 int alert_low_temp_charge_voltage_uv; 710 int alert_high_temp_charge_current_ua; 711 int alert_high_temp_charge_voltage_uv; 712 int factory_internal_resistance_uohm; 713 int factory_internal_resistance_charging_uohm; 714 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX]; 715 int temp_ambient_alert_min; 716 int temp_ambient_alert_max; 717 int temp_alert_min; 718 int temp_alert_max; 719 int temp_min; 720 int temp_max; 721 struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX]; 722 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX]; 723 struct power_supply_resistance_temp_table *resist_table; 724 int resist_table_size; 725 struct power_supply_vbat_ri_table *vbat2ri_discharging; 726 int vbat2ri_discharging_size; 727 struct power_supply_vbat_ri_table *vbat2ri_charging; 728 int vbat2ri_charging_size; 729 int bti_resistance_ohm; 730 int bti_resistance_tolerance; 731}; 732 733extern struct atomic_notifier_head power_supply_notifier; 734extern int power_supply_reg_notifier(struct notifier_block *nb); 735extern void power_supply_unreg_notifier(struct notifier_block *nb); 736#if IS_ENABLED(CONFIG_POWER_SUPPLY) 737extern struct power_supply *power_supply_get_by_name(const char *name); 738extern void power_supply_put(struct power_supply *psy); 739#else 740static inline void power_supply_put(struct power_supply *psy) {} 741static inline struct power_supply *power_supply_get_by_name(const char *name) 742{ return NULL; } 743#endif 744#ifdef CONFIG_OF 745extern struct power_supply *power_supply_get_by_phandle(struct device_node *np, 746 const char *property); 747extern struct power_supply *devm_power_supply_get_by_phandle( 748 struct device *dev, const char *property); 749#else /* !CONFIG_OF */ 750static inline struct power_supply * 751power_supply_get_by_phandle(struct device_node *np, const char *property) 752{ return NULL; } 753static inline struct power_supply * 754devm_power_supply_get_by_phandle(struct device *dev, const char *property) 755{ return NULL; } 756#endif /* CONFIG_OF */ 757 758extern int power_supply_get_battery_info(struct power_supply *psy, 759 struct power_supply_battery_info **info_out); 760extern void power_supply_put_battery_info(struct power_supply *psy, 761 struct power_supply_battery_info *info); 762extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, 763 int table_len, int ocv); 764extern struct power_supply_battery_ocv_table * 765power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 766 int temp, int *table_len); 767extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 768 int ocv, int temp); 769extern int 770power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, 771 int table_len, int temp); 772extern int power_supply_vbat2ri(struct power_supply_battery_info *info, 773 int vbat_uv, bool charging); 774extern struct power_supply_maintenance_charge_table * 775power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index); 776extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 777 int resistance); 778extern void power_supply_changed(struct power_supply *psy); 779extern int power_supply_am_i_supplied(struct power_supply *psy); 780int power_supply_get_property_from_supplier(struct power_supply *psy, 781 enum power_supply_property psp, 782 union power_supply_propval *val); 783extern int power_supply_set_battery_charged(struct power_supply *psy); 784 785static inline bool 786power_supply_supports_maintenance_charging(struct power_supply_battery_info *info) 787{ 788 struct power_supply_maintenance_charge_table *mt; 789 790 mt = power_supply_get_maintenance_charging_setting(info, 0); 791 792 return (mt != NULL); 793} 794 795static inline bool 796power_supply_supports_vbat2ri(struct power_supply_battery_info *info) 797{ 798 return ((info->vbat2ri_discharging != NULL) && 799 info->vbat2ri_discharging_size > 0); 800} 801 802static inline bool 803power_supply_supports_temp2ri(struct power_supply_battery_info *info) 804{ 805 return ((info->resist_table != NULL) && 806 info->resist_table_size > 0); 807} 808 809#ifdef CONFIG_POWER_SUPPLY 810extern int power_supply_is_system_supplied(void); 811#else 812static inline int power_supply_is_system_supplied(void) { return -ENOSYS; } 813#endif 814 815extern int power_supply_get_property(struct power_supply *psy, 816 enum power_supply_property psp, 817 union power_supply_propval *val); 818#if IS_ENABLED(CONFIG_POWER_SUPPLY) 819extern int power_supply_set_property(struct power_supply *psy, 820 enum power_supply_property psp, 821 const union power_supply_propval *val); 822#else 823static inline int power_supply_set_property(struct power_supply *psy, 824 enum power_supply_property psp, 825 const union power_supply_propval *val) 826{ return 0; } 827#endif 828extern int power_supply_property_is_writeable(struct power_supply *psy, 829 enum power_supply_property psp); 830extern void power_supply_external_power_changed(struct power_supply *psy); 831 832extern struct power_supply *__must_check 833power_supply_register(struct device *parent, 834 const struct power_supply_desc *desc, 835 const struct power_supply_config *cfg); 836extern struct power_supply *__must_check 837power_supply_register_no_ws(struct device *parent, 838 const struct power_supply_desc *desc, 839 const struct power_supply_config *cfg); 840extern struct power_supply *__must_check 841devm_power_supply_register(struct device *parent, 842 const struct power_supply_desc *desc, 843 const struct power_supply_config *cfg); 844extern struct power_supply *__must_check 845devm_power_supply_register_no_ws(struct device *parent, 846 const struct power_supply_desc *desc, 847 const struct power_supply_config *cfg); 848extern void power_supply_unregister(struct power_supply *psy); 849extern int power_supply_powers(struct power_supply *psy, struct device *dev); 850 851#define to_power_supply(device) container_of(device, struct power_supply, dev) 852 853extern void *power_supply_get_drvdata(struct power_supply *psy); 854/* For APM emulation, think legacy userspace. */ 855extern struct class *power_supply_class; 856 857static inline bool power_supply_is_amp_property(enum power_supply_property psp) 858{ 859 switch (psp) { 860 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 861 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: 862 case POWER_SUPPLY_PROP_CHARGE_FULL: 863 case POWER_SUPPLY_PROP_CHARGE_EMPTY: 864 case POWER_SUPPLY_PROP_CHARGE_NOW: 865 case POWER_SUPPLY_PROP_CHARGE_AVG: 866 case POWER_SUPPLY_PROP_CHARGE_COUNTER: 867 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 868 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 869 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: 870 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 871 case POWER_SUPPLY_PROP_CURRENT_MAX: 872 case POWER_SUPPLY_PROP_CURRENT_NOW: 873 case POWER_SUPPLY_PROP_CURRENT_AVG: 874 case POWER_SUPPLY_PROP_CURRENT_BOOT: 875 return true; 876 default: 877 break; 878 } 879 880 return false; 881} 882 883static inline bool power_supply_is_watt_property(enum power_supply_property psp) 884{ 885 switch (psp) { 886 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 887 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: 888 case POWER_SUPPLY_PROP_ENERGY_FULL: 889 case POWER_SUPPLY_PROP_ENERGY_EMPTY: 890 case POWER_SUPPLY_PROP_ENERGY_NOW: 891 case POWER_SUPPLY_PROP_ENERGY_AVG: 892 case POWER_SUPPLY_PROP_VOLTAGE_MAX: 893 case POWER_SUPPLY_PROP_VOLTAGE_MIN: 894 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 895 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 896 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 897 case POWER_SUPPLY_PROP_VOLTAGE_AVG: 898 case POWER_SUPPLY_PROP_VOLTAGE_OCV: 899 case POWER_SUPPLY_PROP_VOLTAGE_BOOT: 900 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: 901 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 902 case POWER_SUPPLY_PROP_POWER_NOW: 903 return true; 904 default: 905 break; 906 } 907 908 return false; 909} 910 911#ifdef CONFIG_POWER_SUPPLY_HWMON 912int power_supply_add_hwmon_sysfs(struct power_supply *psy); 913void power_supply_remove_hwmon_sysfs(struct power_supply *psy); 914#else 915static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy) 916{ 917 return 0; 918} 919 920static inline 921void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {} 922#endif 923 924#ifdef CONFIG_SYSFS 925ssize_t power_supply_charge_behaviour_show(struct device *dev, 926 unsigned int available_behaviours, 927 enum power_supply_charge_behaviour behaviour, 928 char *buf); 929 930int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf); 931#else 932static inline 933ssize_t power_supply_charge_behaviour_show(struct device *dev, 934 unsigned int available_behaviours, 935 enum power_supply_charge_behaviour behaviour, 936 char *buf) 937{ 938 return -EOPNOTSUPP; 939} 940 941static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours, 942 const char *buf) 943{ 944 return -EOPNOTSUPP; 945} 946#endif 947 948#endif /* __LINUX_POWER_SUPPLY_H__ */