preempt.h (12825B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_PREEMPT_H 3#define __LINUX_PREEMPT_H 4 5/* 6 * include/linux/preempt.h - macros for accessing and manipulating 7 * preempt_count (used for kernel preemption, interrupt count, etc.) 8 */ 9 10#include <linux/linkage.h> 11#include <linux/list.h> 12 13/* 14 * We put the hardirq and softirq counter into the preemption 15 * counter. The bitmask has the following meaning: 16 * 17 * - bits 0-7 are the preemption count (max preemption depth: 256) 18 * - bits 8-15 are the softirq count (max # of softirqs: 256) 19 * 20 * The hardirq count could in theory be the same as the number of 21 * interrupts in the system, but we run all interrupt handlers with 22 * interrupts disabled, so we cannot have nesting interrupts. Though 23 * there are a few palaeontologic drivers which reenable interrupts in 24 * the handler, so we need more than one bit here. 25 * 26 * PREEMPT_MASK: 0x000000ff 27 * SOFTIRQ_MASK: 0x0000ff00 28 * HARDIRQ_MASK: 0x000f0000 29 * NMI_MASK: 0x00f00000 30 * PREEMPT_NEED_RESCHED: 0x80000000 31 */ 32#define PREEMPT_BITS 8 33#define SOFTIRQ_BITS 8 34#define HARDIRQ_BITS 4 35#define NMI_BITS 4 36 37#define PREEMPT_SHIFT 0 38#define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) 39#define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) 40#define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS) 41 42#define __IRQ_MASK(x) ((1UL << (x))-1) 43 44#define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) 45#define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) 46#define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) 47#define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT) 48 49#define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT) 50#define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT) 51#define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) 52#define NMI_OFFSET (1UL << NMI_SHIFT) 53 54#define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) 55 56#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 57 58/* 59 * Disable preemption until the scheduler is running -- use an unconditional 60 * value so that it also works on !PREEMPT_COUNT kernels. 61 * 62 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 63 */ 64#define INIT_PREEMPT_COUNT PREEMPT_OFFSET 65 66/* 67 * Initial preempt_count value; reflects the preempt_count schedule invariant 68 * which states that during context switches: 69 * 70 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 71 * 72 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 73 * Note: See finish_task_switch(). 74 */ 75#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 76 77/* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ 78#include <asm/preempt.h> 79 80/** 81 * interrupt_context_level - return interrupt context level 82 * 83 * Returns the current interrupt context level. 84 * 0 - normal context 85 * 1 - softirq context 86 * 2 - hardirq context 87 * 3 - NMI context 88 */ 89static __always_inline unsigned char interrupt_context_level(void) 90{ 91 unsigned long pc = preempt_count(); 92 unsigned char level = 0; 93 94 level += !!(pc & (NMI_MASK)); 95 level += !!(pc & (NMI_MASK | HARDIRQ_MASK)); 96 level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); 97 98 return level; 99} 100 101#define nmi_count() (preempt_count() & NMI_MASK) 102#define hardirq_count() (preempt_count() & HARDIRQ_MASK) 103#ifdef CONFIG_PREEMPT_RT 104# define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK) 105#else 106# define softirq_count() (preempt_count() & SOFTIRQ_MASK) 107#endif 108#define irq_count() (nmi_count() | hardirq_count() | softirq_count()) 109 110/* 111 * Macros to retrieve the current execution context: 112 * 113 * in_nmi() - We're in NMI context 114 * in_hardirq() - We're in hard IRQ context 115 * in_serving_softirq() - We're in softirq context 116 * in_task() - We're in task context 117 */ 118#define in_nmi() (nmi_count()) 119#define in_hardirq() (hardirq_count()) 120#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) 121#define in_task() (!(in_nmi() | in_hardirq() | in_serving_softirq())) 122 123/* 124 * The following macros are deprecated and should not be used in new code: 125 * in_irq() - Obsolete version of in_hardirq() 126 * in_softirq() - We have BH disabled, or are processing softirqs 127 * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled 128 */ 129#define in_irq() (hardirq_count()) 130#define in_softirq() (softirq_count()) 131#define in_interrupt() (irq_count()) 132 133/* 134 * The preempt_count offset after preempt_disable(); 135 */ 136#if defined(CONFIG_PREEMPT_COUNT) 137# define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET 138#else 139# define PREEMPT_DISABLE_OFFSET 0 140#endif 141 142/* 143 * The preempt_count offset after spin_lock() 144 */ 145#if !defined(CONFIG_PREEMPT_RT) 146#define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET 147#else 148/* Locks on RT do not disable preemption */ 149#define PREEMPT_LOCK_OFFSET 0 150#endif 151 152/* 153 * The preempt_count offset needed for things like: 154 * 155 * spin_lock_bh() 156 * 157 * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and 158 * softirqs, such that unlock sequences of: 159 * 160 * spin_unlock(); 161 * local_bh_enable(); 162 * 163 * Work as expected. 164 */ 165#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) 166 167/* 168 * Are we running in atomic context? WARNING: this macro cannot 169 * always detect atomic context; in particular, it cannot know about 170 * held spinlocks in non-preemptible kernels. Thus it should not be 171 * used in the general case to determine whether sleeping is possible. 172 * Do not use in_atomic() in driver code. 173 */ 174#define in_atomic() (preempt_count() != 0) 175 176/* 177 * Check whether we were atomic before we did preempt_disable(): 178 * (used by the scheduler) 179 */ 180#define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET) 181 182#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 183extern void preempt_count_add(int val); 184extern void preempt_count_sub(int val); 185#define preempt_count_dec_and_test() \ 186 ({ preempt_count_sub(1); should_resched(0); }) 187#else 188#define preempt_count_add(val) __preempt_count_add(val) 189#define preempt_count_sub(val) __preempt_count_sub(val) 190#define preempt_count_dec_and_test() __preempt_count_dec_and_test() 191#endif 192 193#define __preempt_count_inc() __preempt_count_add(1) 194#define __preempt_count_dec() __preempt_count_sub(1) 195 196#define preempt_count_inc() preempt_count_add(1) 197#define preempt_count_dec() preempt_count_sub(1) 198 199#ifdef CONFIG_PREEMPT_COUNT 200 201#define preempt_disable() \ 202do { \ 203 preempt_count_inc(); \ 204 barrier(); \ 205} while (0) 206 207#define sched_preempt_enable_no_resched() \ 208do { \ 209 barrier(); \ 210 preempt_count_dec(); \ 211} while (0) 212 213#define preempt_enable_no_resched() sched_preempt_enable_no_resched() 214 215#define preemptible() (preempt_count() == 0 && !irqs_disabled()) 216 217#ifdef CONFIG_PREEMPTION 218#define preempt_enable() \ 219do { \ 220 barrier(); \ 221 if (unlikely(preempt_count_dec_and_test())) \ 222 __preempt_schedule(); \ 223} while (0) 224 225#define preempt_enable_notrace() \ 226do { \ 227 barrier(); \ 228 if (unlikely(__preempt_count_dec_and_test())) \ 229 __preempt_schedule_notrace(); \ 230} while (0) 231 232#define preempt_check_resched() \ 233do { \ 234 if (should_resched(0)) \ 235 __preempt_schedule(); \ 236} while (0) 237 238#else /* !CONFIG_PREEMPTION */ 239#define preempt_enable() \ 240do { \ 241 barrier(); \ 242 preempt_count_dec(); \ 243} while (0) 244 245#define preempt_enable_notrace() \ 246do { \ 247 barrier(); \ 248 __preempt_count_dec(); \ 249} while (0) 250 251#define preempt_check_resched() do { } while (0) 252#endif /* CONFIG_PREEMPTION */ 253 254#define preempt_disable_notrace() \ 255do { \ 256 __preempt_count_inc(); \ 257 barrier(); \ 258} while (0) 259 260#define preempt_enable_no_resched_notrace() \ 261do { \ 262 barrier(); \ 263 __preempt_count_dec(); \ 264} while (0) 265 266#else /* !CONFIG_PREEMPT_COUNT */ 267 268/* 269 * Even if we don't have any preemption, we need preempt disable/enable 270 * to be barriers, so that we don't have things like get_user/put_user 271 * that can cause faults and scheduling migrate into our preempt-protected 272 * region. 273 */ 274#define preempt_disable() barrier() 275#define sched_preempt_enable_no_resched() barrier() 276#define preempt_enable_no_resched() barrier() 277#define preempt_enable() barrier() 278#define preempt_check_resched() do { } while (0) 279 280#define preempt_disable_notrace() barrier() 281#define preempt_enable_no_resched_notrace() barrier() 282#define preempt_enable_notrace() barrier() 283#define preemptible() 0 284 285#endif /* CONFIG_PREEMPT_COUNT */ 286 287#ifdef MODULE 288/* 289 * Modules have no business playing preemption tricks. 290 */ 291#undef sched_preempt_enable_no_resched 292#undef preempt_enable_no_resched 293#undef preempt_enable_no_resched_notrace 294#undef preempt_check_resched 295#endif 296 297#define preempt_set_need_resched() \ 298do { \ 299 set_preempt_need_resched(); \ 300} while (0) 301#define preempt_fold_need_resched() \ 302do { \ 303 if (tif_need_resched()) \ 304 set_preempt_need_resched(); \ 305} while (0) 306 307#ifdef CONFIG_PREEMPT_NOTIFIERS 308 309struct preempt_notifier; 310 311/** 312 * preempt_ops - notifiers called when a task is preempted and rescheduled 313 * @sched_in: we're about to be rescheduled: 314 * notifier: struct preempt_notifier for the task being scheduled 315 * cpu: cpu we're scheduled on 316 * @sched_out: we've just been preempted 317 * notifier: struct preempt_notifier for the task being preempted 318 * next: the task that's kicking us out 319 * 320 * Please note that sched_in and out are called under different 321 * contexts. sched_out is called with rq lock held and irq disabled 322 * while sched_in is called without rq lock and irq enabled. This 323 * difference is intentional and depended upon by its users. 324 */ 325struct preempt_ops { 326 void (*sched_in)(struct preempt_notifier *notifier, int cpu); 327 void (*sched_out)(struct preempt_notifier *notifier, 328 struct task_struct *next); 329}; 330 331/** 332 * preempt_notifier - key for installing preemption notifiers 333 * @link: internal use 334 * @ops: defines the notifier functions to be called 335 * 336 * Usually used in conjunction with container_of(). 337 */ 338struct preempt_notifier { 339 struct hlist_node link; 340 struct preempt_ops *ops; 341}; 342 343void preempt_notifier_inc(void); 344void preempt_notifier_dec(void); 345void preempt_notifier_register(struct preempt_notifier *notifier); 346void preempt_notifier_unregister(struct preempt_notifier *notifier); 347 348static inline void preempt_notifier_init(struct preempt_notifier *notifier, 349 struct preempt_ops *ops) 350{ 351 INIT_HLIST_NODE(¬ifier->link); 352 notifier->ops = ops; 353} 354 355#endif 356 357#ifdef CONFIG_SMP 358 359/* 360 * Migrate-Disable and why it is undesired. 361 * 362 * When a preempted task becomes elegible to run under the ideal model (IOW it 363 * becomes one of the M highest priority tasks), it might still have to wait 364 * for the preemptee's migrate_disable() section to complete. Thereby suffering 365 * a reduction in bandwidth in the exact duration of the migrate_disable() 366 * section. 367 * 368 * Per this argument, the change from preempt_disable() to migrate_disable() 369 * gets us: 370 * 371 * - a higher priority tasks gains reduced wake-up latency; with preempt_disable() 372 * it would have had to wait for the lower priority task. 373 * 374 * - a lower priority tasks; which under preempt_disable() could've instantly 375 * migrated away when another CPU becomes available, is now constrained 376 * by the ability to push the higher priority task away, which might itself be 377 * in a migrate_disable() section, reducing it's available bandwidth. 378 * 379 * IOW it trades latency / moves the interference term, but it stays in the 380 * system, and as long as it remains unbounded, the system is not fully 381 * deterministic. 382 * 383 * 384 * The reason we have it anyway. 385 * 386 * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a 387 * number of primitives into becoming preemptible, they would also allow 388 * migration. This turns out to break a bunch of per-cpu usage. To this end, 389 * all these primitives employ migirate_disable() to restore this implicit 390 * assumption. 391 * 392 * This is a 'temporary' work-around at best. The correct solution is getting 393 * rid of the above assumptions and reworking the code to employ explicit 394 * per-cpu locking or short preempt-disable regions. 395 * 396 * The end goal must be to get rid of migrate_disable(), alternatively we need 397 * a schedulability theory that does not depend on abritrary migration. 398 * 399 * 400 * Notes on the implementation. 401 * 402 * The implementation is particularly tricky since existing code patterns 403 * dictate neither migrate_disable() nor migrate_enable() is allowed to block. 404 * This means that it cannot use cpus_read_lock() to serialize against hotplug, 405 * nor can it easily migrate itself into a pending affinity mask change on 406 * migrate_enable(). 407 * 408 * 409 * Note: even non-work-conserving schedulers like semi-partitioned depends on 410 * migration, so migrate_disable() is not only a problem for 411 * work-conserving schedulers. 412 * 413 */ 414extern void migrate_disable(void); 415extern void migrate_enable(void); 416 417#else 418 419static inline void migrate_disable(void) { } 420static inline void migrate_enable(void) { } 421 422#endif /* CONFIG_SMP */ 423 424#endif /* __LINUX_PREEMPT_H */