radix-tree.h (16326B)
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright (C) 2001 Momchil Velikov 4 * Portions Copyright (C) 2001 Christoph Hellwig 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 */ 8#ifndef _LINUX_RADIX_TREE_H 9#define _LINUX_RADIX_TREE_H 10 11#include <linux/bitops.h> 12#include <linux/gfp.h> 13#include <linux/list.h> 14#include <linux/lockdep.h> 15#include <linux/math.h> 16#include <linux/percpu.h> 17#include <linux/preempt.h> 18#include <linux/rcupdate.h> 19#include <linux/spinlock.h> 20#include <linux/types.h> 21#include <linux/xarray.h> 22#include <linux/local_lock.h> 23 24/* Keep unconverted code working */ 25#define radix_tree_root xarray 26#define radix_tree_node xa_node 27 28struct radix_tree_preload { 29 local_lock_t lock; 30 unsigned nr; 31 /* nodes->parent points to next preallocated node */ 32 struct radix_tree_node *nodes; 33}; 34DECLARE_PER_CPU(struct radix_tree_preload, radix_tree_preloads); 35 36/* 37 * The bottom two bits of the slot determine how the remaining bits in the 38 * slot are interpreted: 39 * 40 * 00 - data pointer 41 * 10 - internal entry 42 * x1 - value entry 43 * 44 * The internal entry may be a pointer to the next level in the tree, a 45 * sibling entry, or an indicator that the entry in this slot has been moved 46 * to another location in the tree and the lookup should be restarted. While 47 * NULL fits the 'data pointer' pattern, it means that there is no entry in 48 * the tree for this index (no matter what level of the tree it is found at). 49 * This means that storing a NULL entry in the tree is the same as deleting 50 * the entry from the tree. 51 */ 52#define RADIX_TREE_ENTRY_MASK 3UL 53#define RADIX_TREE_INTERNAL_NODE 2UL 54 55static inline bool radix_tree_is_internal_node(void *ptr) 56{ 57 return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) == 58 RADIX_TREE_INTERNAL_NODE; 59} 60 61/*** radix-tree API starts here ***/ 62 63#define RADIX_TREE_MAP_SHIFT XA_CHUNK_SHIFT 64#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) 65#define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) 66 67#define RADIX_TREE_MAX_TAGS XA_MAX_MARKS 68#define RADIX_TREE_TAG_LONGS XA_MARK_LONGS 69 70#define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) 71#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ 72 RADIX_TREE_MAP_SHIFT)) 73 74/* The IDR tag is stored in the low bits of xa_flags */ 75#define ROOT_IS_IDR ((__force gfp_t)4) 76/* The top bits of xa_flags are used to store the root tags */ 77#define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT) 78 79#define RADIX_TREE_INIT(name, mask) XARRAY_INIT(name, mask) 80 81#define RADIX_TREE(name, mask) \ 82 struct radix_tree_root name = RADIX_TREE_INIT(name, mask) 83 84#define INIT_RADIX_TREE(root, mask) xa_init_flags(root, mask) 85 86static inline bool radix_tree_empty(const struct radix_tree_root *root) 87{ 88 return root->xa_head == NULL; 89} 90 91/** 92 * struct radix_tree_iter - radix tree iterator state 93 * 94 * @index: index of current slot 95 * @next_index: one beyond the last index for this chunk 96 * @tags: bit-mask for tag-iterating 97 * @node: node that contains current slot 98 * 99 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a 100 * subinterval of slots contained within one radix tree leaf node. It is 101 * described by a pointer to its first slot and a struct radix_tree_iter 102 * which holds the chunk's position in the tree and its size. For tagged 103 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen 104 * radix tree tag. 105 */ 106struct radix_tree_iter { 107 unsigned long index; 108 unsigned long next_index; 109 unsigned long tags; 110 struct radix_tree_node *node; 111}; 112 113/** 114 * Radix-tree synchronization 115 * 116 * The radix-tree API requires that users provide all synchronisation (with 117 * specific exceptions, noted below). 118 * 119 * Synchronization of access to the data items being stored in the tree, and 120 * management of their lifetimes must be completely managed by API users. 121 * 122 * For API usage, in general, 123 * - any function _modifying_ the tree or tags (inserting or deleting 124 * items, setting or clearing tags) must exclude other modifications, and 125 * exclude any functions reading the tree. 126 * - any function _reading_ the tree or tags (looking up items or tags, 127 * gang lookups) must exclude modifications to the tree, but may occur 128 * concurrently with other readers. 129 * 130 * The notable exceptions to this rule are the following functions: 131 * __radix_tree_lookup 132 * radix_tree_lookup 133 * radix_tree_lookup_slot 134 * radix_tree_tag_get 135 * radix_tree_gang_lookup 136 * radix_tree_gang_lookup_tag 137 * radix_tree_gang_lookup_tag_slot 138 * radix_tree_tagged 139 * 140 * The first 7 functions are able to be called locklessly, using RCU. The 141 * caller must ensure calls to these functions are made within rcu_read_lock() 142 * regions. Other readers (lock-free or otherwise) and modifications may be 143 * running concurrently. 144 * 145 * It is still required that the caller manage the synchronization and lifetimes 146 * of the items. So if RCU lock-free lookups are used, typically this would mean 147 * that the items have their own locks, or are amenable to lock-free access; and 148 * that the items are freed by RCU (or only freed after having been deleted from 149 * the radix tree *and* a synchronize_rcu() grace period). 150 * 151 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control 152 * access to data items when inserting into or looking up from the radix tree) 153 * 154 * Note that the value returned by radix_tree_tag_get() may not be relied upon 155 * if only the RCU read lock is held. Functions to set/clear tags and to 156 * delete nodes running concurrently with it may affect its result such that 157 * two consecutive reads in the same locked section may return different 158 * values. If reliability is required, modification functions must also be 159 * excluded from concurrency. 160 * 161 * radix_tree_tagged is able to be called without locking or RCU. 162 */ 163 164/** 165 * radix_tree_deref_slot - dereference a slot 166 * @slot: slot pointer, returned by radix_tree_lookup_slot 167 * 168 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read 169 * locked across slot lookup and dereference. Not required if write lock is 170 * held (ie. items cannot be concurrently inserted). 171 * 172 * radix_tree_deref_retry must be used to confirm validity of the pointer if 173 * only the read lock is held. 174 * 175 * Return: entry stored in that slot. 176 */ 177static inline void *radix_tree_deref_slot(void __rcu **slot) 178{ 179 return rcu_dereference(*slot); 180} 181 182/** 183 * radix_tree_deref_slot_protected - dereference a slot with tree lock held 184 * @slot: slot pointer, returned by radix_tree_lookup_slot 185 * 186 * Similar to radix_tree_deref_slot. The caller does not hold the RCU read 187 * lock but it must hold the tree lock to prevent parallel updates. 188 * 189 * Return: entry stored in that slot. 190 */ 191static inline void *radix_tree_deref_slot_protected(void __rcu **slot, 192 spinlock_t *treelock) 193{ 194 return rcu_dereference_protected(*slot, lockdep_is_held(treelock)); 195} 196 197/** 198 * radix_tree_deref_retry - check radix_tree_deref_slot 199 * @arg: pointer returned by radix_tree_deref_slot 200 * Returns: 0 if retry is not required, otherwise retry is required 201 * 202 * radix_tree_deref_retry must be used with radix_tree_deref_slot. 203 */ 204static inline int radix_tree_deref_retry(void *arg) 205{ 206 return unlikely(radix_tree_is_internal_node(arg)); 207} 208 209/** 210 * radix_tree_exception - radix_tree_deref_slot returned either exception? 211 * @arg: value returned by radix_tree_deref_slot 212 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception. 213 */ 214static inline int radix_tree_exception(void *arg) 215{ 216 return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK); 217} 218 219int radix_tree_insert(struct radix_tree_root *, unsigned long index, 220 void *); 221void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index, 222 struct radix_tree_node **nodep, void __rcu ***slotp); 223void *radix_tree_lookup(const struct radix_tree_root *, unsigned long); 224void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *, 225 unsigned long index); 226void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *, 227 void __rcu **slot, void *entry); 228void radix_tree_iter_replace(struct radix_tree_root *, 229 const struct radix_tree_iter *, void __rcu **slot, void *entry); 230void radix_tree_replace_slot(struct radix_tree_root *, 231 void __rcu **slot, void *entry); 232void radix_tree_iter_delete(struct radix_tree_root *, 233 struct radix_tree_iter *iter, void __rcu **slot); 234void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *); 235void *radix_tree_delete(struct radix_tree_root *, unsigned long); 236unsigned int radix_tree_gang_lookup(const struct radix_tree_root *, 237 void **results, unsigned long first_index, 238 unsigned int max_items); 239int radix_tree_preload(gfp_t gfp_mask); 240int radix_tree_maybe_preload(gfp_t gfp_mask); 241void radix_tree_init(void); 242void *radix_tree_tag_set(struct radix_tree_root *, 243 unsigned long index, unsigned int tag); 244void *radix_tree_tag_clear(struct radix_tree_root *, 245 unsigned long index, unsigned int tag); 246int radix_tree_tag_get(const struct radix_tree_root *, 247 unsigned long index, unsigned int tag); 248void radix_tree_iter_tag_clear(struct radix_tree_root *, 249 const struct radix_tree_iter *iter, unsigned int tag); 250unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *, 251 void **results, unsigned long first_index, 252 unsigned int max_items, unsigned int tag); 253unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *, 254 void __rcu ***results, unsigned long first_index, 255 unsigned int max_items, unsigned int tag); 256int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag); 257 258static inline void radix_tree_preload_end(void) 259{ 260 local_unlock(&radix_tree_preloads.lock); 261} 262 263void __rcu **idr_get_free(struct radix_tree_root *root, 264 struct radix_tree_iter *iter, gfp_t gfp, 265 unsigned long max); 266 267enum { 268 RADIX_TREE_ITER_TAG_MASK = 0x0f, /* tag index in lower nybble */ 269 RADIX_TREE_ITER_TAGGED = 0x10, /* lookup tagged slots */ 270 RADIX_TREE_ITER_CONTIG = 0x20, /* stop at first hole */ 271}; 272 273/** 274 * radix_tree_iter_init - initialize radix tree iterator 275 * 276 * @iter: pointer to iterator state 277 * @start: iteration starting index 278 * Returns: NULL 279 */ 280static __always_inline void __rcu ** 281radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start) 282{ 283 /* 284 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it 285 * in the case of a successful tagged chunk lookup. If the lookup was 286 * unsuccessful or non-tagged then nobody cares about ->tags. 287 * 288 * Set index to zero to bypass next_index overflow protection. 289 * See the comment in radix_tree_next_chunk() for details. 290 */ 291 iter->index = 0; 292 iter->next_index = start; 293 return NULL; 294} 295 296/** 297 * radix_tree_next_chunk - find next chunk of slots for iteration 298 * 299 * @root: radix tree root 300 * @iter: iterator state 301 * @flags: RADIX_TREE_ITER_* flags and tag index 302 * Returns: pointer to chunk first slot, or NULL if there no more left 303 * 304 * This function looks up the next chunk in the radix tree starting from 305 * @iter->next_index. It returns a pointer to the chunk's first slot. 306 * Also it fills @iter with data about chunk: position in the tree (index), 307 * its end (next_index), and constructs a bit mask for tagged iterating (tags). 308 */ 309void __rcu **radix_tree_next_chunk(const struct radix_tree_root *, 310 struct radix_tree_iter *iter, unsigned flags); 311 312/** 313 * radix_tree_iter_lookup - look up an index in the radix tree 314 * @root: radix tree root 315 * @iter: iterator state 316 * @index: key to look up 317 * 318 * If @index is present in the radix tree, this function returns the slot 319 * containing it and updates @iter to describe the entry. If @index is not 320 * present, it returns NULL. 321 */ 322static inline void __rcu ** 323radix_tree_iter_lookup(const struct radix_tree_root *root, 324 struct radix_tree_iter *iter, unsigned long index) 325{ 326 radix_tree_iter_init(iter, index); 327 return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG); 328} 329 330/** 331 * radix_tree_iter_retry - retry this chunk of the iteration 332 * @iter: iterator state 333 * 334 * If we iterate over a tree protected only by the RCU lock, a race 335 * against deletion or creation may result in seeing a slot for which 336 * radix_tree_deref_retry() returns true. If so, call this function 337 * and continue the iteration. 338 */ 339static inline __must_check 340void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter) 341{ 342 iter->next_index = iter->index; 343 iter->tags = 0; 344 return NULL; 345} 346 347static inline unsigned long 348__radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots) 349{ 350 return iter->index + slots; 351} 352 353/** 354 * radix_tree_iter_resume - resume iterating when the chunk may be invalid 355 * @slot: pointer to current slot 356 * @iter: iterator state 357 * Returns: New slot pointer 358 * 359 * If the iterator needs to release then reacquire a lock, the chunk may 360 * have been invalidated by an insertion or deletion. Call this function 361 * before releasing the lock to continue the iteration from the next index. 362 */ 363void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot, 364 struct radix_tree_iter *iter); 365 366/** 367 * radix_tree_chunk_size - get current chunk size 368 * 369 * @iter: pointer to radix tree iterator 370 * Returns: current chunk size 371 */ 372static __always_inline long 373radix_tree_chunk_size(struct radix_tree_iter *iter) 374{ 375 return iter->next_index - iter->index; 376} 377 378/** 379 * radix_tree_next_slot - find next slot in chunk 380 * 381 * @slot: pointer to current slot 382 * @iter: pointer to iterator state 383 * @flags: RADIX_TREE_ITER_*, should be constant 384 * Returns: pointer to next slot, or NULL if there no more left 385 * 386 * This function updates @iter->index in the case of a successful lookup. 387 * For tagged lookup it also eats @iter->tags. 388 * 389 * There are several cases where 'slot' can be passed in as NULL to this 390 * function. These cases result from the use of radix_tree_iter_resume() or 391 * radix_tree_iter_retry(). In these cases we don't end up dereferencing 392 * 'slot' because either: 393 * a) we are doing tagged iteration and iter->tags has been set to 0, or 394 * b) we are doing non-tagged iteration, and iter->index and iter->next_index 395 * have been set up so that radix_tree_chunk_size() returns 1 or 0. 396 */ 397static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot, 398 struct radix_tree_iter *iter, unsigned flags) 399{ 400 if (flags & RADIX_TREE_ITER_TAGGED) { 401 iter->tags >>= 1; 402 if (unlikely(!iter->tags)) 403 return NULL; 404 if (likely(iter->tags & 1ul)) { 405 iter->index = __radix_tree_iter_add(iter, 1); 406 slot++; 407 goto found; 408 } 409 if (!(flags & RADIX_TREE_ITER_CONTIG)) { 410 unsigned offset = __ffs(iter->tags); 411 412 iter->tags >>= offset++; 413 iter->index = __radix_tree_iter_add(iter, offset); 414 slot += offset; 415 goto found; 416 } 417 } else { 418 long count = radix_tree_chunk_size(iter); 419 420 while (--count > 0) { 421 slot++; 422 iter->index = __radix_tree_iter_add(iter, 1); 423 424 if (likely(*slot)) 425 goto found; 426 if (flags & RADIX_TREE_ITER_CONTIG) { 427 /* forbid switching to the next chunk */ 428 iter->next_index = 0; 429 break; 430 } 431 } 432 } 433 return NULL; 434 435 found: 436 return slot; 437} 438 439/** 440 * radix_tree_for_each_slot - iterate over non-empty slots 441 * 442 * @slot: the void** variable for pointer to slot 443 * @root: the struct radix_tree_root pointer 444 * @iter: the struct radix_tree_iter pointer 445 * @start: iteration starting index 446 * 447 * @slot points to radix tree slot, @iter->index contains its index. 448 */ 449#define radix_tree_for_each_slot(slot, root, iter, start) \ 450 for (slot = radix_tree_iter_init(iter, start) ; \ 451 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \ 452 slot = radix_tree_next_slot(slot, iter, 0)) 453 454/** 455 * radix_tree_for_each_tagged - iterate over tagged slots 456 * 457 * @slot: the void** variable for pointer to slot 458 * @root: the struct radix_tree_root pointer 459 * @iter: the struct radix_tree_iter pointer 460 * @start: iteration starting index 461 * @tag: tag index 462 * 463 * @slot points to radix tree slot, @iter->index contains its index. 464 */ 465#define radix_tree_for_each_tagged(slot, root, iter, start, tag) \ 466 for (slot = radix_tree_iter_init(iter, start) ; \ 467 slot || (slot = radix_tree_next_chunk(root, iter, \ 468 RADIX_TREE_ITER_TAGGED | tag)) ; \ 469 slot = radix_tree_next_slot(slot, iter, \ 470 RADIX_TREE_ITER_TAGGED | tag)) 471 472#endif /* _LINUX_RADIX_TREE_H */