cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

radix-tree.h (16326B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 * Copyright (C) 2001 Momchil Velikov
      4 * Portions Copyright (C) 2001 Christoph Hellwig
      5 * Copyright (C) 2006 Nick Piggin
      6 * Copyright (C) 2012 Konstantin Khlebnikov
      7 */
      8#ifndef _LINUX_RADIX_TREE_H
      9#define _LINUX_RADIX_TREE_H
     10
     11#include <linux/bitops.h>
     12#include <linux/gfp.h>
     13#include <linux/list.h>
     14#include <linux/lockdep.h>
     15#include <linux/math.h>
     16#include <linux/percpu.h>
     17#include <linux/preempt.h>
     18#include <linux/rcupdate.h>
     19#include <linux/spinlock.h>
     20#include <linux/types.h>
     21#include <linux/xarray.h>
     22#include <linux/local_lock.h>
     23
     24/* Keep unconverted code working */
     25#define radix_tree_root		xarray
     26#define radix_tree_node		xa_node
     27
     28struct radix_tree_preload {
     29	local_lock_t lock;
     30	unsigned nr;
     31	/* nodes->parent points to next preallocated node */
     32	struct radix_tree_node *nodes;
     33};
     34DECLARE_PER_CPU(struct radix_tree_preload, radix_tree_preloads);
     35
     36/*
     37 * The bottom two bits of the slot determine how the remaining bits in the
     38 * slot are interpreted:
     39 *
     40 * 00 - data pointer
     41 * 10 - internal entry
     42 * x1 - value entry
     43 *
     44 * The internal entry may be a pointer to the next level in the tree, a
     45 * sibling entry, or an indicator that the entry in this slot has been moved
     46 * to another location in the tree and the lookup should be restarted.  While
     47 * NULL fits the 'data pointer' pattern, it means that there is no entry in
     48 * the tree for this index (no matter what level of the tree it is found at).
     49 * This means that storing a NULL entry in the tree is the same as deleting
     50 * the entry from the tree.
     51 */
     52#define RADIX_TREE_ENTRY_MASK		3UL
     53#define RADIX_TREE_INTERNAL_NODE	2UL
     54
     55static inline bool radix_tree_is_internal_node(void *ptr)
     56{
     57	return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
     58				RADIX_TREE_INTERNAL_NODE;
     59}
     60
     61/*** radix-tree API starts here ***/
     62
     63#define RADIX_TREE_MAP_SHIFT	XA_CHUNK_SHIFT
     64#define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
     65#define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
     66
     67#define RADIX_TREE_MAX_TAGS	XA_MAX_MARKS
     68#define RADIX_TREE_TAG_LONGS	XA_MARK_LONGS
     69
     70#define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
     71#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
     72					  RADIX_TREE_MAP_SHIFT))
     73
     74/* The IDR tag is stored in the low bits of xa_flags */
     75#define ROOT_IS_IDR	((__force gfp_t)4)
     76/* The top bits of xa_flags are used to store the root tags */
     77#define ROOT_TAG_SHIFT	(__GFP_BITS_SHIFT)
     78
     79#define RADIX_TREE_INIT(name, mask)	XARRAY_INIT(name, mask)
     80
     81#define RADIX_TREE(name, mask) \
     82	struct radix_tree_root name = RADIX_TREE_INIT(name, mask)
     83
     84#define INIT_RADIX_TREE(root, mask) xa_init_flags(root, mask)
     85
     86static inline bool radix_tree_empty(const struct radix_tree_root *root)
     87{
     88	return root->xa_head == NULL;
     89}
     90
     91/**
     92 * struct radix_tree_iter - radix tree iterator state
     93 *
     94 * @index:	index of current slot
     95 * @next_index:	one beyond the last index for this chunk
     96 * @tags:	bit-mask for tag-iterating
     97 * @node:	node that contains current slot
     98 *
     99 * This radix tree iterator works in terms of "chunks" of slots.  A chunk is a
    100 * subinterval of slots contained within one radix tree leaf node.  It is
    101 * described by a pointer to its first slot and a struct radix_tree_iter
    102 * which holds the chunk's position in the tree and its size.  For tagged
    103 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
    104 * radix tree tag.
    105 */
    106struct radix_tree_iter {
    107	unsigned long	index;
    108	unsigned long	next_index;
    109	unsigned long	tags;
    110	struct radix_tree_node *node;
    111};
    112
    113/**
    114 * Radix-tree synchronization
    115 *
    116 * The radix-tree API requires that users provide all synchronisation (with
    117 * specific exceptions, noted below).
    118 *
    119 * Synchronization of access to the data items being stored in the tree, and
    120 * management of their lifetimes must be completely managed by API users.
    121 *
    122 * For API usage, in general,
    123 * - any function _modifying_ the tree or tags (inserting or deleting
    124 *   items, setting or clearing tags) must exclude other modifications, and
    125 *   exclude any functions reading the tree.
    126 * - any function _reading_ the tree or tags (looking up items or tags,
    127 *   gang lookups) must exclude modifications to the tree, but may occur
    128 *   concurrently with other readers.
    129 *
    130 * The notable exceptions to this rule are the following functions:
    131 * __radix_tree_lookup
    132 * radix_tree_lookup
    133 * radix_tree_lookup_slot
    134 * radix_tree_tag_get
    135 * radix_tree_gang_lookup
    136 * radix_tree_gang_lookup_tag
    137 * radix_tree_gang_lookup_tag_slot
    138 * radix_tree_tagged
    139 *
    140 * The first 7 functions are able to be called locklessly, using RCU. The
    141 * caller must ensure calls to these functions are made within rcu_read_lock()
    142 * regions. Other readers (lock-free or otherwise) and modifications may be
    143 * running concurrently.
    144 *
    145 * It is still required that the caller manage the synchronization and lifetimes
    146 * of the items. So if RCU lock-free lookups are used, typically this would mean
    147 * that the items have their own locks, or are amenable to lock-free access; and
    148 * that the items are freed by RCU (or only freed after having been deleted from
    149 * the radix tree *and* a synchronize_rcu() grace period).
    150 *
    151 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
    152 * access to data items when inserting into or looking up from the radix tree)
    153 *
    154 * Note that the value returned by radix_tree_tag_get() may not be relied upon
    155 * if only the RCU read lock is held.  Functions to set/clear tags and to
    156 * delete nodes running concurrently with it may affect its result such that
    157 * two consecutive reads in the same locked section may return different
    158 * values.  If reliability is required, modification functions must also be
    159 * excluded from concurrency.
    160 *
    161 * radix_tree_tagged is able to be called without locking or RCU.
    162 */
    163
    164/**
    165 * radix_tree_deref_slot - dereference a slot
    166 * @slot: slot pointer, returned by radix_tree_lookup_slot
    167 *
    168 * For use with radix_tree_lookup_slot().  Caller must hold tree at least read
    169 * locked across slot lookup and dereference. Not required if write lock is
    170 * held (ie. items cannot be concurrently inserted).
    171 *
    172 * radix_tree_deref_retry must be used to confirm validity of the pointer if
    173 * only the read lock is held.
    174 *
    175 * Return: entry stored in that slot.
    176 */
    177static inline void *radix_tree_deref_slot(void __rcu **slot)
    178{
    179	return rcu_dereference(*slot);
    180}
    181
    182/**
    183 * radix_tree_deref_slot_protected - dereference a slot with tree lock held
    184 * @slot: slot pointer, returned by radix_tree_lookup_slot
    185 *
    186 * Similar to radix_tree_deref_slot.  The caller does not hold the RCU read
    187 * lock but it must hold the tree lock to prevent parallel updates.
    188 *
    189 * Return: entry stored in that slot.
    190 */
    191static inline void *radix_tree_deref_slot_protected(void __rcu **slot,
    192							spinlock_t *treelock)
    193{
    194	return rcu_dereference_protected(*slot, lockdep_is_held(treelock));
    195}
    196
    197/**
    198 * radix_tree_deref_retry	- check radix_tree_deref_slot
    199 * @arg:	pointer returned by radix_tree_deref_slot
    200 * Returns:	0 if retry is not required, otherwise retry is required
    201 *
    202 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
    203 */
    204static inline int radix_tree_deref_retry(void *arg)
    205{
    206	return unlikely(radix_tree_is_internal_node(arg));
    207}
    208
    209/**
    210 * radix_tree_exception	- radix_tree_deref_slot returned either exception?
    211 * @arg:	value returned by radix_tree_deref_slot
    212 * Returns:	0 if well-aligned pointer, non-0 if either kind of exception.
    213 */
    214static inline int radix_tree_exception(void *arg)
    215{
    216	return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
    217}
    218
    219int radix_tree_insert(struct radix_tree_root *, unsigned long index,
    220			void *);
    221void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index,
    222			  struct radix_tree_node **nodep, void __rcu ***slotp);
    223void *radix_tree_lookup(const struct radix_tree_root *, unsigned long);
    224void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *,
    225					unsigned long index);
    226void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *,
    227			  void __rcu **slot, void *entry);
    228void radix_tree_iter_replace(struct radix_tree_root *,
    229		const struct radix_tree_iter *, void __rcu **slot, void *entry);
    230void radix_tree_replace_slot(struct radix_tree_root *,
    231			     void __rcu **slot, void *entry);
    232void radix_tree_iter_delete(struct radix_tree_root *,
    233			struct radix_tree_iter *iter, void __rcu **slot);
    234void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
    235void *radix_tree_delete(struct radix_tree_root *, unsigned long);
    236unsigned int radix_tree_gang_lookup(const struct radix_tree_root *,
    237			void **results, unsigned long first_index,
    238			unsigned int max_items);
    239int radix_tree_preload(gfp_t gfp_mask);
    240int radix_tree_maybe_preload(gfp_t gfp_mask);
    241void radix_tree_init(void);
    242void *radix_tree_tag_set(struct radix_tree_root *,
    243			unsigned long index, unsigned int tag);
    244void *radix_tree_tag_clear(struct radix_tree_root *,
    245			unsigned long index, unsigned int tag);
    246int radix_tree_tag_get(const struct radix_tree_root *,
    247			unsigned long index, unsigned int tag);
    248void radix_tree_iter_tag_clear(struct radix_tree_root *,
    249		const struct radix_tree_iter *iter, unsigned int tag);
    250unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *,
    251		void **results, unsigned long first_index,
    252		unsigned int max_items, unsigned int tag);
    253unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *,
    254		void __rcu ***results, unsigned long first_index,
    255		unsigned int max_items, unsigned int tag);
    256int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag);
    257
    258static inline void radix_tree_preload_end(void)
    259{
    260	local_unlock(&radix_tree_preloads.lock);
    261}
    262
    263void __rcu **idr_get_free(struct radix_tree_root *root,
    264			      struct radix_tree_iter *iter, gfp_t gfp,
    265			      unsigned long max);
    266
    267enum {
    268	RADIX_TREE_ITER_TAG_MASK = 0x0f,	/* tag index in lower nybble */
    269	RADIX_TREE_ITER_TAGGED   = 0x10,	/* lookup tagged slots */
    270	RADIX_TREE_ITER_CONTIG   = 0x20,	/* stop at first hole */
    271};
    272
    273/**
    274 * radix_tree_iter_init - initialize radix tree iterator
    275 *
    276 * @iter:	pointer to iterator state
    277 * @start:	iteration starting index
    278 * Returns:	NULL
    279 */
    280static __always_inline void __rcu **
    281radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
    282{
    283	/*
    284	 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
    285	 * in the case of a successful tagged chunk lookup.  If the lookup was
    286	 * unsuccessful or non-tagged then nobody cares about ->tags.
    287	 *
    288	 * Set index to zero to bypass next_index overflow protection.
    289	 * See the comment in radix_tree_next_chunk() for details.
    290	 */
    291	iter->index = 0;
    292	iter->next_index = start;
    293	return NULL;
    294}
    295
    296/**
    297 * radix_tree_next_chunk - find next chunk of slots for iteration
    298 *
    299 * @root:	radix tree root
    300 * @iter:	iterator state
    301 * @flags:	RADIX_TREE_ITER_* flags and tag index
    302 * Returns:	pointer to chunk first slot, or NULL if there no more left
    303 *
    304 * This function looks up the next chunk in the radix tree starting from
    305 * @iter->next_index.  It returns a pointer to the chunk's first slot.
    306 * Also it fills @iter with data about chunk: position in the tree (index),
    307 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
    308 */
    309void __rcu **radix_tree_next_chunk(const struct radix_tree_root *,
    310			     struct radix_tree_iter *iter, unsigned flags);
    311
    312/**
    313 * radix_tree_iter_lookup - look up an index in the radix tree
    314 * @root: radix tree root
    315 * @iter: iterator state
    316 * @index: key to look up
    317 *
    318 * If @index is present in the radix tree, this function returns the slot
    319 * containing it and updates @iter to describe the entry.  If @index is not
    320 * present, it returns NULL.
    321 */
    322static inline void __rcu **
    323radix_tree_iter_lookup(const struct radix_tree_root *root,
    324			struct radix_tree_iter *iter, unsigned long index)
    325{
    326	radix_tree_iter_init(iter, index);
    327	return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG);
    328}
    329
    330/**
    331 * radix_tree_iter_retry - retry this chunk of the iteration
    332 * @iter:	iterator state
    333 *
    334 * If we iterate over a tree protected only by the RCU lock, a race
    335 * against deletion or creation may result in seeing a slot for which
    336 * radix_tree_deref_retry() returns true.  If so, call this function
    337 * and continue the iteration.
    338 */
    339static inline __must_check
    340void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter)
    341{
    342	iter->next_index = iter->index;
    343	iter->tags = 0;
    344	return NULL;
    345}
    346
    347static inline unsigned long
    348__radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
    349{
    350	return iter->index + slots;
    351}
    352
    353/**
    354 * radix_tree_iter_resume - resume iterating when the chunk may be invalid
    355 * @slot: pointer to current slot
    356 * @iter: iterator state
    357 * Returns: New slot pointer
    358 *
    359 * If the iterator needs to release then reacquire a lock, the chunk may
    360 * have been invalidated by an insertion or deletion.  Call this function
    361 * before releasing the lock to continue the iteration from the next index.
    362 */
    363void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot,
    364					struct radix_tree_iter *iter);
    365
    366/**
    367 * radix_tree_chunk_size - get current chunk size
    368 *
    369 * @iter:	pointer to radix tree iterator
    370 * Returns:	current chunk size
    371 */
    372static __always_inline long
    373radix_tree_chunk_size(struct radix_tree_iter *iter)
    374{
    375	return iter->next_index - iter->index;
    376}
    377
    378/**
    379 * radix_tree_next_slot - find next slot in chunk
    380 *
    381 * @slot:	pointer to current slot
    382 * @iter:	pointer to iterator state
    383 * @flags:	RADIX_TREE_ITER_*, should be constant
    384 * Returns:	pointer to next slot, or NULL if there no more left
    385 *
    386 * This function updates @iter->index in the case of a successful lookup.
    387 * For tagged lookup it also eats @iter->tags.
    388 *
    389 * There are several cases where 'slot' can be passed in as NULL to this
    390 * function.  These cases result from the use of radix_tree_iter_resume() or
    391 * radix_tree_iter_retry().  In these cases we don't end up dereferencing
    392 * 'slot' because either:
    393 * a) we are doing tagged iteration and iter->tags has been set to 0, or
    394 * b) we are doing non-tagged iteration, and iter->index and iter->next_index
    395 *    have been set up so that radix_tree_chunk_size() returns 1 or 0.
    396 */
    397static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot,
    398				struct radix_tree_iter *iter, unsigned flags)
    399{
    400	if (flags & RADIX_TREE_ITER_TAGGED) {
    401		iter->tags >>= 1;
    402		if (unlikely(!iter->tags))
    403			return NULL;
    404		if (likely(iter->tags & 1ul)) {
    405			iter->index = __radix_tree_iter_add(iter, 1);
    406			slot++;
    407			goto found;
    408		}
    409		if (!(flags & RADIX_TREE_ITER_CONTIG)) {
    410			unsigned offset = __ffs(iter->tags);
    411
    412			iter->tags >>= offset++;
    413			iter->index = __radix_tree_iter_add(iter, offset);
    414			slot += offset;
    415			goto found;
    416		}
    417	} else {
    418		long count = radix_tree_chunk_size(iter);
    419
    420		while (--count > 0) {
    421			slot++;
    422			iter->index = __radix_tree_iter_add(iter, 1);
    423
    424			if (likely(*slot))
    425				goto found;
    426			if (flags & RADIX_TREE_ITER_CONTIG) {
    427				/* forbid switching to the next chunk */
    428				iter->next_index = 0;
    429				break;
    430			}
    431		}
    432	}
    433	return NULL;
    434
    435 found:
    436	return slot;
    437}
    438
    439/**
    440 * radix_tree_for_each_slot - iterate over non-empty slots
    441 *
    442 * @slot:	the void** variable for pointer to slot
    443 * @root:	the struct radix_tree_root pointer
    444 * @iter:	the struct radix_tree_iter pointer
    445 * @start:	iteration starting index
    446 *
    447 * @slot points to radix tree slot, @iter->index contains its index.
    448 */
    449#define radix_tree_for_each_slot(slot, root, iter, start)		\
    450	for (slot = radix_tree_iter_init(iter, start) ;			\
    451	     slot || (slot = radix_tree_next_chunk(root, iter, 0)) ;	\
    452	     slot = radix_tree_next_slot(slot, iter, 0))
    453
    454/**
    455 * radix_tree_for_each_tagged - iterate over tagged slots
    456 *
    457 * @slot:	the void** variable for pointer to slot
    458 * @root:	the struct radix_tree_root pointer
    459 * @iter:	the struct radix_tree_iter pointer
    460 * @start:	iteration starting index
    461 * @tag:	tag index
    462 *
    463 * @slot points to radix tree slot, @iter->index contains its index.
    464 */
    465#define radix_tree_for_each_tagged(slot, root, iter, start, tag)	\
    466	for (slot = radix_tree_iter_init(iter, start) ;			\
    467	     slot || (slot = radix_tree_next_chunk(root, iter,		\
    468			      RADIX_TREE_ITER_TAGGED | tag)) ;		\
    469	     slot = radix_tree_next_slot(slot, iter,			\
    470				RADIX_TREE_ITER_TAGGED | tag))
    471
    472#endif /* _LINUX_RADIX_TREE_H */