rcupdate.h (37567B)
1/* SPDX-License-Identifier: GPL-2.0+ */ 2/* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <dipankar@in.ibm.com> 8 * 9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20#ifndef __LINUX_RCUPDATE_H 21#define __LINUX_RCUPDATE_H 22 23#include <linux/types.h> 24#include <linux/compiler.h> 25#include <linux/atomic.h> 26#include <linux/irqflags.h> 27#include <linux/preempt.h> 28#include <linux/bottom_half.h> 29#include <linux/lockdep.h> 30#include <asm/processor.h> 31#include <linux/cpumask.h> 32 33#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 34#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 35#define ulong2long(a) (*(long *)(&(a))) 36#define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) 37#define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) 38 39/* Exported common interfaces */ 40void call_rcu(struct rcu_head *head, rcu_callback_t func); 41void rcu_barrier_tasks(void); 42void rcu_barrier_tasks_rude(void); 43void synchronize_rcu(void); 44 45#ifdef CONFIG_PREEMPT_RCU 46 47void __rcu_read_lock(void); 48void __rcu_read_unlock(void); 49 50/* 51 * Defined as a macro as it is a very low level header included from 52 * areas that don't even know about current. This gives the rcu_read_lock() 53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 55 */ 56#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 57 58#else /* #ifdef CONFIG_PREEMPT_RCU */ 59 60#ifdef CONFIG_TINY_RCU 61#define rcu_read_unlock_strict() do { } while (0) 62#else 63void rcu_read_unlock_strict(void); 64#endif 65 66static inline void __rcu_read_lock(void) 67{ 68 preempt_disable(); 69} 70 71static inline void __rcu_read_unlock(void) 72{ 73 preempt_enable(); 74 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 75 rcu_read_unlock_strict(); 76} 77 78static inline int rcu_preempt_depth(void) 79{ 80 return 0; 81} 82 83#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 84 85/* Internal to kernel */ 86void rcu_init(void); 87extern int rcu_scheduler_active; 88void rcu_sched_clock_irq(int user); 89void rcu_report_dead(unsigned int cpu); 90void rcutree_migrate_callbacks(int cpu); 91 92#ifdef CONFIG_TASKS_RCU_GENERIC 93void rcu_init_tasks_generic(void); 94#else 95static inline void rcu_init_tasks_generic(void) { } 96#endif 97 98#ifdef CONFIG_RCU_STALL_COMMON 99void rcu_sysrq_start(void); 100void rcu_sysrq_end(void); 101#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 102static inline void rcu_sysrq_start(void) { } 103static inline void rcu_sysrq_end(void) { } 104#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 105 106#ifdef CONFIG_NO_HZ_FULL 107void rcu_user_enter(void); 108void rcu_user_exit(void); 109#else 110static inline void rcu_user_enter(void) { } 111static inline void rcu_user_exit(void) { } 112#endif /* CONFIG_NO_HZ_FULL */ 113 114#ifdef CONFIG_RCU_NOCB_CPU 115void rcu_init_nohz(void); 116int rcu_nocb_cpu_offload(int cpu); 117int rcu_nocb_cpu_deoffload(int cpu); 118void rcu_nocb_flush_deferred_wakeup(void); 119#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 120static inline void rcu_init_nohz(void) { } 121static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 122static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 123static inline void rcu_nocb_flush_deferred_wakeup(void) { } 124#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 125 126/** 127 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 128 * @a: Code that RCU needs to pay attention to. 129 * 130 * RCU read-side critical sections are forbidden in the inner idle loop, 131 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU 132 * will happily ignore any such read-side critical sections. However, 133 * things like powertop need tracepoints in the inner idle loop. 134 * 135 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 136 * will tell RCU that it needs to pay attention, invoke its argument 137 * (in this example, calling the do_something_with_RCU() function), 138 * and then tell RCU to go back to ignoring this CPU. It is permissible 139 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 140 * on the order of a million or so, even on 32-bit systems). It is 141 * not legal to block within RCU_NONIDLE(), nor is it permissible to 142 * transfer control either into or out of RCU_NONIDLE()'s statement. 143 */ 144#define RCU_NONIDLE(a) \ 145 do { \ 146 rcu_irq_enter_irqson(); \ 147 do { a; } while (0); \ 148 rcu_irq_exit_irqson(); \ 149 } while (0) 150 151/* 152 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 153 * This is a macro rather than an inline function to avoid #include hell. 154 */ 155#ifdef CONFIG_TASKS_RCU_GENERIC 156 157# ifdef CONFIG_TASKS_RCU 158# define rcu_tasks_classic_qs(t, preempt) \ 159 do { \ 160 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 161 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 162 } while (0) 163void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 164void synchronize_rcu_tasks(void); 165# else 166# define rcu_tasks_classic_qs(t, preempt) do { } while (0) 167# define call_rcu_tasks call_rcu 168# define synchronize_rcu_tasks synchronize_rcu 169# endif 170 171# ifdef CONFIG_TASKS_TRACE_RCU 172# define rcu_tasks_trace_qs(t) \ 173 do { \ 174 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ 175 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ 176 smp_store_release(&(t)->trc_reader_checked, true); \ 177 smp_mb(); /* Readers partitioned by store. */ \ 178 } \ 179 } while (0) 180# else 181# define rcu_tasks_trace_qs(t) do { } while (0) 182# endif 183 184#define rcu_tasks_qs(t, preempt) \ 185do { \ 186 rcu_tasks_classic_qs((t), (preempt)); \ 187 rcu_tasks_trace_qs((t)); \ 188} while (0) 189 190# ifdef CONFIG_TASKS_RUDE_RCU 191void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 192void synchronize_rcu_tasks_rude(void); 193# endif 194 195#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 196void exit_tasks_rcu_start(void); 197void exit_tasks_rcu_finish(void); 198#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 199#define rcu_tasks_classic_qs(t, preempt) do { } while (0) 200#define rcu_tasks_qs(t, preempt) do { } while (0) 201#define rcu_note_voluntary_context_switch(t) do { } while (0) 202#define call_rcu_tasks call_rcu 203#define synchronize_rcu_tasks synchronize_rcu 204static inline void exit_tasks_rcu_start(void) { } 205static inline void exit_tasks_rcu_finish(void) { } 206#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 207 208/** 209 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 210 * 211 * This macro resembles cond_resched(), except that it is defined to 212 * report potential quiescent states to RCU-tasks even if the cond_resched() 213 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 214 */ 215#define cond_resched_tasks_rcu_qs() \ 216do { \ 217 rcu_tasks_qs(current, false); \ 218 cond_resched(); \ 219} while (0) 220 221/* 222 * Infrastructure to implement the synchronize_() primitives in 223 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 224 */ 225 226#if defined(CONFIG_TREE_RCU) 227#include <linux/rcutree.h> 228#elif defined(CONFIG_TINY_RCU) 229#include <linux/rcutiny.h> 230#else 231#error "Unknown RCU implementation specified to kernel configuration" 232#endif 233 234/* 235 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 236 * are needed for dynamic initialization and destruction of rcu_head 237 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 238 * dynamic initialization and destruction of statically allocated rcu_head 239 * structures. However, rcu_head structures allocated dynamically in the 240 * heap don't need any initialization. 241 */ 242#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 243void init_rcu_head(struct rcu_head *head); 244void destroy_rcu_head(struct rcu_head *head); 245void init_rcu_head_on_stack(struct rcu_head *head); 246void destroy_rcu_head_on_stack(struct rcu_head *head); 247#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 248static inline void init_rcu_head(struct rcu_head *head) { } 249static inline void destroy_rcu_head(struct rcu_head *head) { } 250static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 251static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 252#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 253 254#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 255bool rcu_lockdep_current_cpu_online(void); 256#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 257static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 258#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 259 260extern struct lockdep_map rcu_lock_map; 261extern struct lockdep_map rcu_bh_lock_map; 262extern struct lockdep_map rcu_sched_lock_map; 263extern struct lockdep_map rcu_callback_map; 264 265#ifdef CONFIG_DEBUG_LOCK_ALLOC 266 267static inline void rcu_lock_acquire(struct lockdep_map *map) 268{ 269 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 270} 271 272static inline void rcu_lock_release(struct lockdep_map *map) 273{ 274 lock_release(map, _THIS_IP_); 275} 276 277int debug_lockdep_rcu_enabled(void); 278int rcu_read_lock_held(void); 279int rcu_read_lock_bh_held(void); 280int rcu_read_lock_sched_held(void); 281int rcu_read_lock_any_held(void); 282 283#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 284 285# define rcu_lock_acquire(a) do { } while (0) 286# define rcu_lock_release(a) do { } while (0) 287 288static inline int rcu_read_lock_held(void) 289{ 290 return 1; 291} 292 293static inline int rcu_read_lock_bh_held(void) 294{ 295 return 1; 296} 297 298static inline int rcu_read_lock_sched_held(void) 299{ 300 return !preemptible(); 301} 302 303static inline int rcu_read_lock_any_held(void) 304{ 305 return !preemptible(); 306} 307 308#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 309 310#ifdef CONFIG_PROVE_RCU 311 312/** 313 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 314 * @c: condition to check 315 * @s: informative message 316 */ 317#define RCU_LOCKDEP_WARN(c, s) \ 318 do { \ 319 static bool __section(".data.unlikely") __warned; \ 320 if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \ 321 __warned = true; \ 322 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 323 } \ 324 } while (0) 325 326#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 327static inline void rcu_preempt_sleep_check(void) 328{ 329 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 330 "Illegal context switch in RCU read-side critical section"); 331} 332#else /* #ifdef CONFIG_PROVE_RCU */ 333static inline void rcu_preempt_sleep_check(void) { } 334#endif /* #else #ifdef CONFIG_PROVE_RCU */ 335 336#define rcu_sleep_check() \ 337 do { \ 338 rcu_preempt_sleep_check(); \ 339 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 340 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 341 "Illegal context switch in RCU-bh read-side critical section"); \ 342 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 343 "Illegal context switch in RCU-sched read-side critical section"); \ 344 } while (0) 345 346#else /* #ifdef CONFIG_PROVE_RCU */ 347 348#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 349#define rcu_sleep_check() do { } while (0) 350 351#endif /* #else #ifdef CONFIG_PROVE_RCU */ 352 353/* 354 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 355 * and rcu_assign_pointer(). Some of these could be folded into their 356 * callers, but they are left separate in order to ease introduction of 357 * multiple pointers markings to match different RCU implementations 358 * (e.g., __srcu), should this make sense in the future. 359 */ 360 361#ifdef __CHECKER__ 362#define rcu_check_sparse(p, space) \ 363 ((void)(((typeof(*p) space *)p) == p)) 364#else /* #ifdef __CHECKER__ */ 365#define rcu_check_sparse(p, space) 366#endif /* #else #ifdef __CHECKER__ */ 367 368#define __unrcu_pointer(p, local) \ 369({ \ 370 typeof(*p) *local = (typeof(*p) *__force)(p); \ 371 rcu_check_sparse(p, __rcu); \ 372 ((typeof(*p) __force __kernel *)(local)); \ 373}) 374/** 375 * unrcu_pointer - mark a pointer as not being RCU protected 376 * @p: pointer needing to lose its __rcu property 377 * 378 * Converts @p from an __rcu pointer to a __kernel pointer. 379 * This allows an __rcu pointer to be used with xchg() and friends. 380 */ 381#define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu)) 382 383#define __rcu_access_pointer(p, local, space) \ 384({ \ 385 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 386 rcu_check_sparse(p, space); \ 387 ((typeof(*p) __force __kernel *)(local)); \ 388}) 389#define __rcu_dereference_check(p, local, c, space) \ 390({ \ 391 /* Dependency order vs. p above. */ \ 392 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 393 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 394 rcu_check_sparse(p, space); \ 395 ((typeof(*p) __force __kernel *)(local)); \ 396}) 397#define __rcu_dereference_protected(p, local, c, space) \ 398({ \ 399 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 400 rcu_check_sparse(p, space); \ 401 ((typeof(*p) __force __kernel *)(p)); \ 402}) 403#define __rcu_dereference_raw(p, local) \ 404({ \ 405 /* Dependency order vs. p above. */ \ 406 typeof(p) local = READ_ONCE(p); \ 407 ((typeof(*p) __force __kernel *)(local)); \ 408}) 409#define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu)) 410 411/** 412 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 413 * @v: The value to statically initialize with. 414 */ 415#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 416 417/** 418 * rcu_assign_pointer() - assign to RCU-protected pointer 419 * @p: pointer to assign to 420 * @v: value to assign (publish) 421 * 422 * Assigns the specified value to the specified RCU-protected 423 * pointer, ensuring that any concurrent RCU readers will see 424 * any prior initialization. 425 * 426 * Inserts memory barriers on architectures that require them 427 * (which is most of them), and also prevents the compiler from 428 * reordering the code that initializes the structure after the pointer 429 * assignment. More importantly, this call documents which pointers 430 * will be dereferenced by RCU read-side code. 431 * 432 * In some special cases, you may use RCU_INIT_POINTER() instead 433 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 434 * to the fact that it does not constrain either the CPU or the compiler. 435 * That said, using RCU_INIT_POINTER() when you should have used 436 * rcu_assign_pointer() is a very bad thing that results in 437 * impossible-to-diagnose memory corruption. So please be careful. 438 * See the RCU_INIT_POINTER() comment header for details. 439 * 440 * Note that rcu_assign_pointer() evaluates each of its arguments only 441 * once, appearances notwithstanding. One of the "extra" evaluations 442 * is in typeof() and the other visible only to sparse (__CHECKER__), 443 * neither of which actually execute the argument. As with most cpp 444 * macros, this execute-arguments-only-once property is important, so 445 * please be careful when making changes to rcu_assign_pointer() and the 446 * other macros that it invokes. 447 */ 448#define rcu_assign_pointer(p, v) \ 449do { \ 450 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 451 rcu_check_sparse(p, __rcu); \ 452 \ 453 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 454 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 455 else \ 456 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 457} while (0) 458 459/** 460 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 461 * @rcu_ptr: RCU pointer, whose old value is returned 462 * @ptr: regular pointer 463 * @c: the lockdep conditions under which the dereference will take place 464 * 465 * Perform a replacement, where @rcu_ptr is an RCU-annotated 466 * pointer and @c is the lockdep argument that is passed to the 467 * rcu_dereference_protected() call used to read that pointer. The old 468 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 469 */ 470#define rcu_replace_pointer(rcu_ptr, ptr, c) \ 471({ \ 472 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 473 rcu_assign_pointer((rcu_ptr), (ptr)); \ 474 __tmp; \ 475}) 476 477/** 478 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 479 * @p: The pointer to read 480 * 481 * Return the value of the specified RCU-protected pointer, but omit the 482 * lockdep checks for being in an RCU read-side critical section. This is 483 * useful when the value of this pointer is accessed, but the pointer is 484 * not dereferenced, for example, when testing an RCU-protected pointer 485 * against NULL. Although rcu_access_pointer() may also be used in cases 486 * where update-side locks prevent the value of the pointer from changing, 487 * you should instead use rcu_dereference_protected() for this use case. 488 * 489 * It is also permissible to use rcu_access_pointer() when read-side 490 * access to the pointer was removed at least one grace period ago, as 491 * is the case in the context of the RCU callback that is freeing up 492 * the data, or after a synchronize_rcu() returns. This can be useful 493 * when tearing down multi-linked structures after a grace period 494 * has elapsed. 495 */ 496#define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu) 497 498/** 499 * rcu_dereference_check() - rcu_dereference with debug checking 500 * @p: The pointer to read, prior to dereferencing 501 * @c: The conditions under which the dereference will take place 502 * 503 * Do an rcu_dereference(), but check that the conditions under which the 504 * dereference will take place are correct. Typically the conditions 505 * indicate the various locking conditions that should be held at that 506 * point. The check should return true if the conditions are satisfied. 507 * An implicit check for being in an RCU read-side critical section 508 * (rcu_read_lock()) is included. 509 * 510 * For example: 511 * 512 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 513 * 514 * could be used to indicate to lockdep that foo->bar may only be dereferenced 515 * if either rcu_read_lock() is held, or that the lock required to replace 516 * the bar struct at foo->bar is held. 517 * 518 * Note that the list of conditions may also include indications of when a lock 519 * need not be held, for example during initialisation or destruction of the 520 * target struct: 521 * 522 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 523 * atomic_read(&foo->usage) == 0); 524 * 525 * Inserts memory barriers on architectures that require them 526 * (currently only the Alpha), prevents the compiler from refetching 527 * (and from merging fetches), and, more importantly, documents exactly 528 * which pointers are protected by RCU and checks that the pointer is 529 * annotated as __rcu. 530 */ 531#define rcu_dereference_check(p, c) \ 532 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 533 (c) || rcu_read_lock_held(), __rcu) 534 535/** 536 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 537 * @p: The pointer to read, prior to dereferencing 538 * @c: The conditions under which the dereference will take place 539 * 540 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 541 * please note that starting in v5.0 kernels, vanilla RCU grace periods 542 * wait for local_bh_disable() regions of code in addition to regions of 543 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 544 * that synchronize_rcu(), call_rcu, and friends all take not only 545 * rcu_read_lock() but also rcu_read_lock_bh() into account. 546 */ 547#define rcu_dereference_bh_check(p, c) \ 548 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 549 (c) || rcu_read_lock_bh_held(), __rcu) 550 551/** 552 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 553 * @p: The pointer to read, prior to dereferencing 554 * @c: The conditions under which the dereference will take place 555 * 556 * This is the RCU-sched counterpart to rcu_dereference_check(). 557 * However, please note that starting in v5.0 kernels, vanilla RCU grace 558 * periods wait for preempt_disable() regions of code in addition to 559 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 560 * This means that synchronize_rcu(), call_rcu, and friends all take not 561 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 562 */ 563#define rcu_dereference_sched_check(p, c) \ 564 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 565 (c) || rcu_read_lock_sched_held(), \ 566 __rcu) 567 568/* 569 * The tracing infrastructure traces RCU (we want that), but unfortunately 570 * some of the RCU checks causes tracing to lock up the system. 571 * 572 * The no-tracing version of rcu_dereference_raw() must not call 573 * rcu_read_lock_held(). 574 */ 575#define rcu_dereference_raw_check(p) \ 576 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu) 577 578/** 579 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 580 * @p: The pointer to read, prior to dereferencing 581 * @c: The conditions under which the dereference will take place 582 * 583 * Return the value of the specified RCU-protected pointer, but omit 584 * the READ_ONCE(). This is useful in cases where update-side locks 585 * prevent the value of the pointer from changing. Please note that this 586 * primitive does *not* prevent the compiler from repeating this reference 587 * or combining it with other references, so it should not be used without 588 * protection of appropriate locks. 589 * 590 * This function is only for update-side use. Using this function 591 * when protected only by rcu_read_lock() will result in infrequent 592 * but very ugly failures. 593 */ 594#define rcu_dereference_protected(p, c) \ 595 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu) 596 597 598/** 599 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 600 * @p: The pointer to read, prior to dereferencing 601 * 602 * This is a simple wrapper around rcu_dereference_check(). 603 */ 604#define rcu_dereference(p) rcu_dereference_check(p, 0) 605 606/** 607 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 608 * @p: The pointer to read, prior to dereferencing 609 * 610 * Makes rcu_dereference_check() do the dirty work. 611 */ 612#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 613 614/** 615 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 616 * @p: The pointer to read, prior to dereferencing 617 * 618 * Makes rcu_dereference_check() do the dirty work. 619 */ 620#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 621 622/** 623 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 624 * @p: The pointer to hand off 625 * 626 * This is simply an identity function, but it documents where a pointer 627 * is handed off from RCU to some other synchronization mechanism, for 628 * example, reference counting or locking. In C11, it would map to 629 * kill_dependency(). It could be used as follows:: 630 * 631 * rcu_read_lock(); 632 * p = rcu_dereference(gp); 633 * long_lived = is_long_lived(p); 634 * if (long_lived) { 635 * if (!atomic_inc_not_zero(p->refcnt)) 636 * long_lived = false; 637 * else 638 * p = rcu_pointer_handoff(p); 639 * } 640 * rcu_read_unlock(); 641 */ 642#define rcu_pointer_handoff(p) (p) 643 644/** 645 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 646 * 647 * When synchronize_rcu() is invoked on one CPU while other CPUs 648 * are within RCU read-side critical sections, then the 649 * synchronize_rcu() is guaranteed to block until after all the other 650 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 651 * on one CPU while other CPUs are within RCU read-side critical 652 * sections, invocation of the corresponding RCU callback is deferred 653 * until after the all the other CPUs exit their critical sections. 654 * 655 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also 656 * wait for regions of code with preemption disabled, including regions of 657 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which 658 * define synchronize_sched(), only code enclosed within rcu_read_lock() 659 * and rcu_read_unlock() are guaranteed to be waited for. 660 * 661 * Note, however, that RCU callbacks are permitted to run concurrently 662 * with new RCU read-side critical sections. One way that this can happen 663 * is via the following sequence of events: (1) CPU 0 enters an RCU 664 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 665 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 666 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 667 * callback is invoked. This is legal, because the RCU read-side critical 668 * section that was running concurrently with the call_rcu() (and which 669 * therefore might be referencing something that the corresponding RCU 670 * callback would free up) has completed before the corresponding 671 * RCU callback is invoked. 672 * 673 * RCU read-side critical sections may be nested. Any deferred actions 674 * will be deferred until the outermost RCU read-side critical section 675 * completes. 676 * 677 * You can avoid reading and understanding the next paragraph by 678 * following this rule: don't put anything in an rcu_read_lock() RCU 679 * read-side critical section that would block in a !PREEMPTION kernel. 680 * But if you want the full story, read on! 681 * 682 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 683 * it is illegal to block while in an RCU read-side critical section. 684 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 685 * kernel builds, RCU read-side critical sections may be preempted, 686 * but explicit blocking is illegal. Finally, in preemptible RCU 687 * implementations in real-time (with -rt patchset) kernel builds, RCU 688 * read-side critical sections may be preempted and they may also block, but 689 * only when acquiring spinlocks that are subject to priority inheritance. 690 */ 691static __always_inline void rcu_read_lock(void) 692{ 693 __rcu_read_lock(); 694 __acquire(RCU); 695 rcu_lock_acquire(&rcu_lock_map); 696 RCU_LOCKDEP_WARN(!rcu_is_watching(), 697 "rcu_read_lock() used illegally while idle"); 698} 699 700/* 701 * So where is rcu_write_lock()? It does not exist, as there is no 702 * way for writers to lock out RCU readers. This is a feature, not 703 * a bug -- this property is what provides RCU's performance benefits. 704 * Of course, writers must coordinate with each other. The normal 705 * spinlock primitives work well for this, but any other technique may be 706 * used as well. RCU does not care how the writers keep out of each 707 * others' way, as long as they do so. 708 */ 709 710/** 711 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 712 * 713 * In almost all situations, rcu_read_unlock() is immune from deadlock. 714 * In recent kernels that have consolidated synchronize_sched() and 715 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity 716 * also extends to the scheduler's runqueue and priority-inheritance 717 * spinlocks, courtesy of the quiescent-state deferral that is carried 718 * out when rcu_read_unlock() is invoked with interrupts disabled. 719 * 720 * See rcu_read_lock() for more information. 721 */ 722static inline void rcu_read_unlock(void) 723{ 724 RCU_LOCKDEP_WARN(!rcu_is_watching(), 725 "rcu_read_unlock() used illegally while idle"); 726 __release(RCU); 727 __rcu_read_unlock(); 728 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 729} 730 731/** 732 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 733 * 734 * This is equivalent to rcu_read_lock(), but also disables softirqs. 735 * Note that anything else that disables softirqs can also serve as an RCU 736 * read-side critical section. However, please note that this equivalence 737 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 738 * rcu_read_lock_bh() were unrelated. 739 * 740 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 741 * must occur in the same context, for example, it is illegal to invoke 742 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 743 * was invoked from some other task. 744 */ 745static inline void rcu_read_lock_bh(void) 746{ 747 local_bh_disable(); 748 __acquire(RCU_BH); 749 rcu_lock_acquire(&rcu_bh_lock_map); 750 RCU_LOCKDEP_WARN(!rcu_is_watching(), 751 "rcu_read_lock_bh() used illegally while idle"); 752} 753 754/** 755 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 756 * 757 * See rcu_read_lock_bh() for more information. 758 */ 759static inline void rcu_read_unlock_bh(void) 760{ 761 RCU_LOCKDEP_WARN(!rcu_is_watching(), 762 "rcu_read_unlock_bh() used illegally while idle"); 763 rcu_lock_release(&rcu_bh_lock_map); 764 __release(RCU_BH); 765 local_bh_enable(); 766} 767 768/** 769 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 770 * 771 * This is equivalent to rcu_read_lock(), but also disables preemption. 772 * Read-side critical sections can also be introduced by anything else that 773 * disables preemption, including local_irq_disable() and friends. However, 774 * please note that the equivalence to rcu_read_lock() applies only to 775 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 776 * were unrelated. 777 * 778 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 779 * must occur in the same context, for example, it is illegal to invoke 780 * rcu_read_unlock_sched() from process context if the matching 781 * rcu_read_lock_sched() was invoked from an NMI handler. 782 */ 783static inline void rcu_read_lock_sched(void) 784{ 785 preempt_disable(); 786 __acquire(RCU_SCHED); 787 rcu_lock_acquire(&rcu_sched_lock_map); 788 RCU_LOCKDEP_WARN(!rcu_is_watching(), 789 "rcu_read_lock_sched() used illegally while idle"); 790} 791 792/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 793static inline notrace void rcu_read_lock_sched_notrace(void) 794{ 795 preempt_disable_notrace(); 796 __acquire(RCU_SCHED); 797} 798 799/** 800 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 801 * 802 * See rcu_read_lock_sched() for more information. 803 */ 804static inline void rcu_read_unlock_sched(void) 805{ 806 RCU_LOCKDEP_WARN(!rcu_is_watching(), 807 "rcu_read_unlock_sched() used illegally while idle"); 808 rcu_lock_release(&rcu_sched_lock_map); 809 __release(RCU_SCHED); 810 preempt_enable(); 811} 812 813/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 814static inline notrace void rcu_read_unlock_sched_notrace(void) 815{ 816 __release(RCU_SCHED); 817 preempt_enable_notrace(); 818} 819 820/** 821 * RCU_INIT_POINTER() - initialize an RCU protected pointer 822 * @p: The pointer to be initialized. 823 * @v: The value to initialized the pointer to. 824 * 825 * Initialize an RCU-protected pointer in special cases where readers 826 * do not need ordering constraints on the CPU or the compiler. These 827 * special cases are: 828 * 829 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 830 * 2. The caller has taken whatever steps are required to prevent 831 * RCU readers from concurrently accessing this pointer *or* 832 * 3. The referenced data structure has already been exposed to 833 * readers either at compile time or via rcu_assign_pointer() *and* 834 * 835 * a. You have not made *any* reader-visible changes to 836 * this structure since then *or* 837 * b. It is OK for readers accessing this structure from its 838 * new location to see the old state of the structure. (For 839 * example, the changes were to statistical counters or to 840 * other state where exact synchronization is not required.) 841 * 842 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 843 * result in impossible-to-diagnose memory corruption. As in the structures 844 * will look OK in crash dumps, but any concurrent RCU readers might 845 * see pre-initialized values of the referenced data structure. So 846 * please be very careful how you use RCU_INIT_POINTER()!!! 847 * 848 * If you are creating an RCU-protected linked structure that is accessed 849 * by a single external-to-structure RCU-protected pointer, then you may 850 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 851 * pointers, but you must use rcu_assign_pointer() to initialize the 852 * external-to-structure pointer *after* you have completely initialized 853 * the reader-accessible portions of the linked structure. 854 * 855 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 856 * ordering guarantees for either the CPU or the compiler. 857 */ 858#define RCU_INIT_POINTER(p, v) \ 859 do { \ 860 rcu_check_sparse(p, __rcu); \ 861 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 862 } while (0) 863 864/** 865 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 866 * @p: The pointer to be initialized. 867 * @v: The value to initialized the pointer to. 868 * 869 * GCC-style initialization for an RCU-protected pointer in a structure field. 870 */ 871#define RCU_POINTER_INITIALIZER(p, v) \ 872 .p = RCU_INITIALIZER(v) 873 874/* 875 * Does the specified offset indicate that the corresponding rcu_head 876 * structure can be handled by kvfree_rcu()? 877 */ 878#define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 879 880/** 881 * kfree_rcu() - kfree an object after a grace period. 882 * @ptr: pointer to kfree for both single- and double-argument invocations. 883 * @rhf: the name of the struct rcu_head within the type of @ptr, 884 * but only for double-argument invocations. 885 * 886 * Many rcu callbacks functions just call kfree() on the base structure. 887 * These functions are trivial, but their size adds up, and furthermore 888 * when they are used in a kernel module, that module must invoke the 889 * high-latency rcu_barrier() function at module-unload time. 890 * 891 * The kfree_rcu() function handles this issue. Rather than encoding a 892 * function address in the embedded rcu_head structure, kfree_rcu() instead 893 * encodes the offset of the rcu_head structure within the base structure. 894 * Because the functions are not allowed in the low-order 4096 bytes of 895 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 896 * If the offset is larger than 4095 bytes, a compile-time error will 897 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 898 * either fall back to use of call_rcu() or rearrange the structure to 899 * position the rcu_head structure into the first 4096 bytes. 900 * 901 * Note that the allowable offset might decrease in the future, for example, 902 * to allow something like kmem_cache_free_rcu(). 903 * 904 * The BUILD_BUG_ON check must not involve any function calls, hence the 905 * checks are done in macros here. 906 */ 907#define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf) 908 909/** 910 * kvfree_rcu() - kvfree an object after a grace period. 911 * 912 * This macro consists of one or two arguments and it is 913 * based on whether an object is head-less or not. If it 914 * has a head then a semantic stays the same as it used 915 * to be before: 916 * 917 * kvfree_rcu(ptr, rhf); 918 * 919 * where @ptr is a pointer to kvfree(), @rhf is the name 920 * of the rcu_head structure within the type of @ptr. 921 * 922 * When it comes to head-less variant, only one argument 923 * is passed and that is just a pointer which has to be 924 * freed after a grace period. Therefore the semantic is 925 * 926 * kvfree_rcu(ptr); 927 * 928 * where @ptr is the pointer to be freed by kvfree(). 929 * 930 * Please note, head-less way of freeing is permitted to 931 * use from a context that has to follow might_sleep() 932 * annotation. Otherwise, please switch and embed the 933 * rcu_head structure within the type of @ptr. 934 */ 935#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ 936 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) 937 938#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME 939#define kvfree_rcu_arg_2(ptr, rhf) \ 940do { \ 941 typeof (ptr) ___p = (ptr); \ 942 \ 943 if (___p) { \ 944 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 945 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \ 946 (offsetof(typeof(*(ptr)), rhf))); \ 947 } \ 948} while (0) 949 950#define kvfree_rcu_arg_1(ptr) \ 951do { \ 952 typeof(ptr) ___p = (ptr); \ 953 \ 954 if (___p) \ 955 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ 956} while (0) 957 958/* 959 * Place this after a lock-acquisition primitive to guarantee that 960 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 961 * if the UNLOCK and LOCK are executed by the same CPU or if the 962 * UNLOCK and LOCK operate on the same lock variable. 963 */ 964#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 965#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 966#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 967#define smp_mb__after_unlock_lock() do { } while (0) 968#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 969 970 971/* Has the specified rcu_head structure been handed to call_rcu()? */ 972 973/** 974 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 975 * @rhp: The rcu_head structure to initialize. 976 * 977 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 978 * given rcu_head structure has already been passed to call_rcu(), then 979 * you must also invoke this rcu_head_init() function on it just after 980 * allocating that structure. Calls to this function must not race with 981 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 982 */ 983static inline void rcu_head_init(struct rcu_head *rhp) 984{ 985 rhp->func = (rcu_callback_t)~0L; 986} 987 988/** 989 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 990 * @rhp: The rcu_head structure to test. 991 * @f: The function passed to call_rcu() along with @rhp. 992 * 993 * Returns @true if the @rhp has been passed to call_rcu() with @func, 994 * and @false otherwise. Emits a warning in any other case, including 995 * the case where @rhp has already been invoked after a grace period. 996 * Calls to this function must not race with callback invocation. One way 997 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 998 * in an RCU read-side critical section that includes a read-side fetch 999 * of the pointer to the structure containing @rhp. 1000 */ 1001static inline bool 1002rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 1003{ 1004 rcu_callback_t func = READ_ONCE(rhp->func); 1005 1006 if (func == f) 1007 return true; 1008 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1009 return false; 1010} 1011 1012/* kernel/ksysfs.c definitions */ 1013extern int rcu_expedited; 1014extern int rcu_normal; 1015 1016#endif /* __LINUX_RCUPDATE_H */