cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rcupdate.h (37567B)


      1/* SPDX-License-Identifier: GPL-2.0+ */
      2/*
      3 * Read-Copy Update mechanism for mutual exclusion
      4 *
      5 * Copyright IBM Corporation, 2001
      6 *
      7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
      8 *
      9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
     10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
     11 * Papers:
     12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
     13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
     14 *
     15 * For detailed explanation of Read-Copy Update mechanism see -
     16 *		http://lse.sourceforge.net/locking/rcupdate.html
     17 *
     18 */
     19
     20#ifndef __LINUX_RCUPDATE_H
     21#define __LINUX_RCUPDATE_H
     22
     23#include <linux/types.h>
     24#include <linux/compiler.h>
     25#include <linux/atomic.h>
     26#include <linux/irqflags.h>
     27#include <linux/preempt.h>
     28#include <linux/bottom_half.h>
     29#include <linux/lockdep.h>
     30#include <asm/processor.h>
     31#include <linux/cpumask.h>
     32
     33#define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
     34#define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
     35#define ulong2long(a)		(*(long *)(&(a)))
     36#define USHORT_CMP_GE(a, b)	(USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
     37#define USHORT_CMP_LT(a, b)	(USHRT_MAX / 2 < (unsigned short)((a) - (b)))
     38
     39/* Exported common interfaces */
     40void call_rcu(struct rcu_head *head, rcu_callback_t func);
     41void rcu_barrier_tasks(void);
     42void rcu_barrier_tasks_rude(void);
     43void synchronize_rcu(void);
     44
     45#ifdef CONFIG_PREEMPT_RCU
     46
     47void __rcu_read_lock(void);
     48void __rcu_read_unlock(void);
     49
     50/*
     51 * Defined as a macro as it is a very low level header included from
     52 * areas that don't even know about current.  This gives the rcu_read_lock()
     53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
     54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
     55 */
     56#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
     57
     58#else /* #ifdef CONFIG_PREEMPT_RCU */
     59
     60#ifdef CONFIG_TINY_RCU
     61#define rcu_read_unlock_strict() do { } while (0)
     62#else
     63void rcu_read_unlock_strict(void);
     64#endif
     65
     66static inline void __rcu_read_lock(void)
     67{
     68	preempt_disable();
     69}
     70
     71static inline void __rcu_read_unlock(void)
     72{
     73	preempt_enable();
     74	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
     75		rcu_read_unlock_strict();
     76}
     77
     78static inline int rcu_preempt_depth(void)
     79{
     80	return 0;
     81}
     82
     83#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
     84
     85/* Internal to kernel */
     86void rcu_init(void);
     87extern int rcu_scheduler_active;
     88void rcu_sched_clock_irq(int user);
     89void rcu_report_dead(unsigned int cpu);
     90void rcutree_migrate_callbacks(int cpu);
     91
     92#ifdef CONFIG_TASKS_RCU_GENERIC
     93void rcu_init_tasks_generic(void);
     94#else
     95static inline void rcu_init_tasks_generic(void) { }
     96#endif
     97
     98#ifdef CONFIG_RCU_STALL_COMMON
     99void rcu_sysrq_start(void);
    100void rcu_sysrq_end(void);
    101#else /* #ifdef CONFIG_RCU_STALL_COMMON */
    102static inline void rcu_sysrq_start(void) { }
    103static inline void rcu_sysrq_end(void) { }
    104#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
    105
    106#ifdef CONFIG_NO_HZ_FULL
    107void rcu_user_enter(void);
    108void rcu_user_exit(void);
    109#else
    110static inline void rcu_user_enter(void) { }
    111static inline void rcu_user_exit(void) { }
    112#endif /* CONFIG_NO_HZ_FULL */
    113
    114#ifdef CONFIG_RCU_NOCB_CPU
    115void rcu_init_nohz(void);
    116int rcu_nocb_cpu_offload(int cpu);
    117int rcu_nocb_cpu_deoffload(int cpu);
    118void rcu_nocb_flush_deferred_wakeup(void);
    119#else /* #ifdef CONFIG_RCU_NOCB_CPU */
    120static inline void rcu_init_nohz(void) { }
    121static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
    122static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
    123static inline void rcu_nocb_flush_deferred_wakeup(void) { }
    124#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
    125
    126/**
    127 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
    128 * @a: Code that RCU needs to pay attention to.
    129 *
    130 * RCU read-side critical sections are forbidden in the inner idle loop,
    131 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
    132 * will happily ignore any such read-side critical sections.  However,
    133 * things like powertop need tracepoints in the inner idle loop.
    134 *
    135 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
    136 * will tell RCU that it needs to pay attention, invoke its argument
    137 * (in this example, calling the do_something_with_RCU() function),
    138 * and then tell RCU to go back to ignoring this CPU.  It is permissible
    139 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
    140 * on the order of a million or so, even on 32-bit systems).  It is
    141 * not legal to block within RCU_NONIDLE(), nor is it permissible to
    142 * transfer control either into or out of RCU_NONIDLE()'s statement.
    143 */
    144#define RCU_NONIDLE(a) \
    145	do { \
    146		rcu_irq_enter_irqson(); \
    147		do { a; } while (0); \
    148		rcu_irq_exit_irqson(); \
    149	} while (0)
    150
    151/*
    152 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
    153 * This is a macro rather than an inline function to avoid #include hell.
    154 */
    155#ifdef CONFIG_TASKS_RCU_GENERIC
    156
    157# ifdef CONFIG_TASKS_RCU
    158# define rcu_tasks_classic_qs(t, preempt)				\
    159	do {								\
    160		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
    161			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
    162	} while (0)
    163void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
    164void synchronize_rcu_tasks(void);
    165# else
    166# define rcu_tasks_classic_qs(t, preempt) do { } while (0)
    167# define call_rcu_tasks call_rcu
    168# define synchronize_rcu_tasks synchronize_rcu
    169# endif
    170
    171# ifdef CONFIG_TASKS_TRACE_RCU
    172# define rcu_tasks_trace_qs(t)						\
    173	do {								\
    174		if (!likely(READ_ONCE((t)->trc_reader_checked)) &&	\
    175		    !unlikely(READ_ONCE((t)->trc_reader_nesting))) {	\
    176			smp_store_release(&(t)->trc_reader_checked, true); \
    177			smp_mb(); /* Readers partitioned by store. */	\
    178		}							\
    179	} while (0)
    180# else
    181# define rcu_tasks_trace_qs(t) do { } while (0)
    182# endif
    183
    184#define rcu_tasks_qs(t, preempt)					\
    185do {									\
    186	rcu_tasks_classic_qs((t), (preempt));				\
    187	rcu_tasks_trace_qs((t));					\
    188} while (0)
    189
    190# ifdef CONFIG_TASKS_RUDE_RCU
    191void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
    192void synchronize_rcu_tasks_rude(void);
    193# endif
    194
    195#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
    196void exit_tasks_rcu_start(void);
    197void exit_tasks_rcu_finish(void);
    198#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
    199#define rcu_tasks_classic_qs(t, preempt) do { } while (0)
    200#define rcu_tasks_qs(t, preempt) do { } while (0)
    201#define rcu_note_voluntary_context_switch(t) do { } while (0)
    202#define call_rcu_tasks call_rcu
    203#define synchronize_rcu_tasks synchronize_rcu
    204static inline void exit_tasks_rcu_start(void) { }
    205static inline void exit_tasks_rcu_finish(void) { }
    206#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
    207
    208/**
    209 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
    210 *
    211 * This macro resembles cond_resched(), except that it is defined to
    212 * report potential quiescent states to RCU-tasks even if the cond_resched()
    213 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
    214 */
    215#define cond_resched_tasks_rcu_qs() \
    216do { \
    217	rcu_tasks_qs(current, false); \
    218	cond_resched(); \
    219} while (0)
    220
    221/*
    222 * Infrastructure to implement the synchronize_() primitives in
    223 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
    224 */
    225
    226#if defined(CONFIG_TREE_RCU)
    227#include <linux/rcutree.h>
    228#elif defined(CONFIG_TINY_RCU)
    229#include <linux/rcutiny.h>
    230#else
    231#error "Unknown RCU implementation specified to kernel configuration"
    232#endif
    233
    234/*
    235 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
    236 * are needed for dynamic initialization and destruction of rcu_head
    237 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
    238 * dynamic initialization and destruction of statically allocated rcu_head
    239 * structures.  However, rcu_head structures allocated dynamically in the
    240 * heap don't need any initialization.
    241 */
    242#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
    243void init_rcu_head(struct rcu_head *head);
    244void destroy_rcu_head(struct rcu_head *head);
    245void init_rcu_head_on_stack(struct rcu_head *head);
    246void destroy_rcu_head_on_stack(struct rcu_head *head);
    247#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
    248static inline void init_rcu_head(struct rcu_head *head) { }
    249static inline void destroy_rcu_head(struct rcu_head *head) { }
    250static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
    251static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
    252#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
    253
    254#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
    255bool rcu_lockdep_current_cpu_online(void);
    256#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
    257static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
    258#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
    259
    260extern struct lockdep_map rcu_lock_map;
    261extern struct lockdep_map rcu_bh_lock_map;
    262extern struct lockdep_map rcu_sched_lock_map;
    263extern struct lockdep_map rcu_callback_map;
    264
    265#ifdef CONFIG_DEBUG_LOCK_ALLOC
    266
    267static inline void rcu_lock_acquire(struct lockdep_map *map)
    268{
    269	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
    270}
    271
    272static inline void rcu_lock_release(struct lockdep_map *map)
    273{
    274	lock_release(map, _THIS_IP_);
    275}
    276
    277int debug_lockdep_rcu_enabled(void);
    278int rcu_read_lock_held(void);
    279int rcu_read_lock_bh_held(void);
    280int rcu_read_lock_sched_held(void);
    281int rcu_read_lock_any_held(void);
    282
    283#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
    284
    285# define rcu_lock_acquire(a)		do { } while (0)
    286# define rcu_lock_release(a)		do { } while (0)
    287
    288static inline int rcu_read_lock_held(void)
    289{
    290	return 1;
    291}
    292
    293static inline int rcu_read_lock_bh_held(void)
    294{
    295	return 1;
    296}
    297
    298static inline int rcu_read_lock_sched_held(void)
    299{
    300	return !preemptible();
    301}
    302
    303static inline int rcu_read_lock_any_held(void)
    304{
    305	return !preemptible();
    306}
    307
    308#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
    309
    310#ifdef CONFIG_PROVE_RCU
    311
    312/**
    313 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
    314 * @c: condition to check
    315 * @s: informative message
    316 */
    317#define RCU_LOCKDEP_WARN(c, s)						\
    318	do {								\
    319		static bool __section(".data.unlikely") __warned;	\
    320		if ((c) && debug_lockdep_rcu_enabled() && !__warned) {	\
    321			__warned = true;				\
    322			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
    323		}							\
    324	} while (0)
    325
    326#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
    327static inline void rcu_preempt_sleep_check(void)
    328{
    329	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
    330			 "Illegal context switch in RCU read-side critical section");
    331}
    332#else /* #ifdef CONFIG_PROVE_RCU */
    333static inline void rcu_preempt_sleep_check(void) { }
    334#endif /* #else #ifdef CONFIG_PROVE_RCU */
    335
    336#define rcu_sleep_check()						\
    337	do {								\
    338		rcu_preempt_sleep_check();				\
    339		if (!IS_ENABLED(CONFIG_PREEMPT_RT))			\
    340		    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
    341				 "Illegal context switch in RCU-bh read-side critical section"); \
    342		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
    343				 "Illegal context switch in RCU-sched read-side critical section"); \
    344	} while (0)
    345
    346#else /* #ifdef CONFIG_PROVE_RCU */
    347
    348#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
    349#define rcu_sleep_check() do { } while (0)
    350
    351#endif /* #else #ifdef CONFIG_PROVE_RCU */
    352
    353/*
    354 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
    355 * and rcu_assign_pointer().  Some of these could be folded into their
    356 * callers, but they are left separate in order to ease introduction of
    357 * multiple pointers markings to match different RCU implementations
    358 * (e.g., __srcu), should this make sense in the future.
    359 */
    360
    361#ifdef __CHECKER__
    362#define rcu_check_sparse(p, space) \
    363	((void)(((typeof(*p) space *)p) == p))
    364#else /* #ifdef __CHECKER__ */
    365#define rcu_check_sparse(p, space)
    366#endif /* #else #ifdef __CHECKER__ */
    367
    368#define __unrcu_pointer(p, local)					\
    369({									\
    370	typeof(*p) *local = (typeof(*p) *__force)(p);			\
    371	rcu_check_sparse(p, __rcu);					\
    372	((typeof(*p) __force __kernel *)(local)); 			\
    373})
    374/**
    375 * unrcu_pointer - mark a pointer as not being RCU protected
    376 * @p: pointer needing to lose its __rcu property
    377 *
    378 * Converts @p from an __rcu pointer to a __kernel pointer.
    379 * This allows an __rcu pointer to be used with xchg() and friends.
    380 */
    381#define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
    382
    383#define __rcu_access_pointer(p, local, space) \
    384({ \
    385	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
    386	rcu_check_sparse(p, space); \
    387	((typeof(*p) __force __kernel *)(local)); \
    388})
    389#define __rcu_dereference_check(p, local, c, space) \
    390({ \
    391	/* Dependency order vs. p above. */ \
    392	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
    393	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
    394	rcu_check_sparse(p, space); \
    395	((typeof(*p) __force __kernel *)(local)); \
    396})
    397#define __rcu_dereference_protected(p, local, c, space) \
    398({ \
    399	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
    400	rcu_check_sparse(p, space); \
    401	((typeof(*p) __force __kernel *)(p)); \
    402})
    403#define __rcu_dereference_raw(p, local) \
    404({ \
    405	/* Dependency order vs. p above. */ \
    406	typeof(p) local = READ_ONCE(p); \
    407	((typeof(*p) __force __kernel *)(local)); \
    408})
    409#define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
    410
    411/**
    412 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
    413 * @v: The value to statically initialize with.
    414 */
    415#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
    416
    417/**
    418 * rcu_assign_pointer() - assign to RCU-protected pointer
    419 * @p: pointer to assign to
    420 * @v: value to assign (publish)
    421 *
    422 * Assigns the specified value to the specified RCU-protected
    423 * pointer, ensuring that any concurrent RCU readers will see
    424 * any prior initialization.
    425 *
    426 * Inserts memory barriers on architectures that require them
    427 * (which is most of them), and also prevents the compiler from
    428 * reordering the code that initializes the structure after the pointer
    429 * assignment.  More importantly, this call documents which pointers
    430 * will be dereferenced by RCU read-side code.
    431 *
    432 * In some special cases, you may use RCU_INIT_POINTER() instead
    433 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
    434 * to the fact that it does not constrain either the CPU or the compiler.
    435 * That said, using RCU_INIT_POINTER() when you should have used
    436 * rcu_assign_pointer() is a very bad thing that results in
    437 * impossible-to-diagnose memory corruption.  So please be careful.
    438 * See the RCU_INIT_POINTER() comment header for details.
    439 *
    440 * Note that rcu_assign_pointer() evaluates each of its arguments only
    441 * once, appearances notwithstanding.  One of the "extra" evaluations
    442 * is in typeof() and the other visible only to sparse (__CHECKER__),
    443 * neither of which actually execute the argument.  As with most cpp
    444 * macros, this execute-arguments-only-once property is important, so
    445 * please be careful when making changes to rcu_assign_pointer() and the
    446 * other macros that it invokes.
    447 */
    448#define rcu_assign_pointer(p, v)					      \
    449do {									      \
    450	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
    451	rcu_check_sparse(p, __rcu);					      \
    452									      \
    453	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
    454		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
    455	else								      \
    456		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
    457} while (0)
    458
    459/**
    460 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
    461 * @rcu_ptr: RCU pointer, whose old value is returned
    462 * @ptr: regular pointer
    463 * @c: the lockdep conditions under which the dereference will take place
    464 *
    465 * Perform a replacement, where @rcu_ptr is an RCU-annotated
    466 * pointer and @c is the lockdep argument that is passed to the
    467 * rcu_dereference_protected() call used to read that pointer.  The old
    468 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
    469 */
    470#define rcu_replace_pointer(rcu_ptr, ptr, c)				\
    471({									\
    472	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
    473	rcu_assign_pointer((rcu_ptr), (ptr));				\
    474	__tmp;								\
    475})
    476
    477/**
    478 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
    479 * @p: The pointer to read
    480 *
    481 * Return the value of the specified RCU-protected pointer, but omit the
    482 * lockdep checks for being in an RCU read-side critical section.  This is
    483 * useful when the value of this pointer is accessed, but the pointer is
    484 * not dereferenced, for example, when testing an RCU-protected pointer
    485 * against NULL.  Although rcu_access_pointer() may also be used in cases
    486 * where update-side locks prevent the value of the pointer from changing,
    487 * you should instead use rcu_dereference_protected() for this use case.
    488 *
    489 * It is also permissible to use rcu_access_pointer() when read-side
    490 * access to the pointer was removed at least one grace period ago, as
    491 * is the case in the context of the RCU callback that is freeing up
    492 * the data, or after a synchronize_rcu() returns.  This can be useful
    493 * when tearing down multi-linked structures after a grace period
    494 * has elapsed.
    495 */
    496#define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
    497
    498/**
    499 * rcu_dereference_check() - rcu_dereference with debug checking
    500 * @p: The pointer to read, prior to dereferencing
    501 * @c: The conditions under which the dereference will take place
    502 *
    503 * Do an rcu_dereference(), but check that the conditions under which the
    504 * dereference will take place are correct.  Typically the conditions
    505 * indicate the various locking conditions that should be held at that
    506 * point.  The check should return true if the conditions are satisfied.
    507 * An implicit check for being in an RCU read-side critical section
    508 * (rcu_read_lock()) is included.
    509 *
    510 * For example:
    511 *
    512 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
    513 *
    514 * could be used to indicate to lockdep that foo->bar may only be dereferenced
    515 * if either rcu_read_lock() is held, or that the lock required to replace
    516 * the bar struct at foo->bar is held.
    517 *
    518 * Note that the list of conditions may also include indications of when a lock
    519 * need not be held, for example during initialisation or destruction of the
    520 * target struct:
    521 *
    522 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
    523 *					      atomic_read(&foo->usage) == 0);
    524 *
    525 * Inserts memory barriers on architectures that require them
    526 * (currently only the Alpha), prevents the compiler from refetching
    527 * (and from merging fetches), and, more importantly, documents exactly
    528 * which pointers are protected by RCU and checks that the pointer is
    529 * annotated as __rcu.
    530 */
    531#define rcu_dereference_check(p, c) \
    532	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
    533				(c) || rcu_read_lock_held(), __rcu)
    534
    535/**
    536 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
    537 * @p: The pointer to read, prior to dereferencing
    538 * @c: The conditions under which the dereference will take place
    539 *
    540 * This is the RCU-bh counterpart to rcu_dereference_check().  However,
    541 * please note that starting in v5.0 kernels, vanilla RCU grace periods
    542 * wait for local_bh_disable() regions of code in addition to regions of
    543 * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
    544 * that synchronize_rcu(), call_rcu, and friends all take not only
    545 * rcu_read_lock() but also rcu_read_lock_bh() into account.
    546 */
    547#define rcu_dereference_bh_check(p, c) \
    548	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
    549				(c) || rcu_read_lock_bh_held(), __rcu)
    550
    551/**
    552 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
    553 * @p: The pointer to read, prior to dereferencing
    554 * @c: The conditions under which the dereference will take place
    555 *
    556 * This is the RCU-sched counterpart to rcu_dereference_check().
    557 * However, please note that starting in v5.0 kernels, vanilla RCU grace
    558 * periods wait for preempt_disable() regions of code in addition to
    559 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
    560 * This means that synchronize_rcu(), call_rcu, and friends all take not
    561 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
    562 */
    563#define rcu_dereference_sched_check(p, c) \
    564	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
    565				(c) || rcu_read_lock_sched_held(), \
    566				__rcu)
    567
    568/*
    569 * The tracing infrastructure traces RCU (we want that), but unfortunately
    570 * some of the RCU checks causes tracing to lock up the system.
    571 *
    572 * The no-tracing version of rcu_dereference_raw() must not call
    573 * rcu_read_lock_held().
    574 */
    575#define rcu_dereference_raw_check(p) \
    576	__rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
    577
    578/**
    579 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
    580 * @p: The pointer to read, prior to dereferencing
    581 * @c: The conditions under which the dereference will take place
    582 *
    583 * Return the value of the specified RCU-protected pointer, but omit
    584 * the READ_ONCE().  This is useful in cases where update-side locks
    585 * prevent the value of the pointer from changing.  Please note that this
    586 * primitive does *not* prevent the compiler from repeating this reference
    587 * or combining it with other references, so it should not be used without
    588 * protection of appropriate locks.
    589 *
    590 * This function is only for update-side use.  Using this function
    591 * when protected only by rcu_read_lock() will result in infrequent
    592 * but very ugly failures.
    593 */
    594#define rcu_dereference_protected(p, c) \
    595	__rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
    596
    597
    598/**
    599 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
    600 * @p: The pointer to read, prior to dereferencing
    601 *
    602 * This is a simple wrapper around rcu_dereference_check().
    603 */
    604#define rcu_dereference(p) rcu_dereference_check(p, 0)
    605
    606/**
    607 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
    608 * @p: The pointer to read, prior to dereferencing
    609 *
    610 * Makes rcu_dereference_check() do the dirty work.
    611 */
    612#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
    613
    614/**
    615 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
    616 * @p: The pointer to read, prior to dereferencing
    617 *
    618 * Makes rcu_dereference_check() do the dirty work.
    619 */
    620#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
    621
    622/**
    623 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
    624 * @p: The pointer to hand off
    625 *
    626 * This is simply an identity function, but it documents where a pointer
    627 * is handed off from RCU to some other synchronization mechanism, for
    628 * example, reference counting or locking.  In C11, it would map to
    629 * kill_dependency().  It could be used as follows::
    630 *
    631 *	rcu_read_lock();
    632 *	p = rcu_dereference(gp);
    633 *	long_lived = is_long_lived(p);
    634 *	if (long_lived) {
    635 *		if (!atomic_inc_not_zero(p->refcnt))
    636 *			long_lived = false;
    637 *		else
    638 *			p = rcu_pointer_handoff(p);
    639 *	}
    640 *	rcu_read_unlock();
    641 */
    642#define rcu_pointer_handoff(p) (p)
    643
    644/**
    645 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
    646 *
    647 * When synchronize_rcu() is invoked on one CPU while other CPUs
    648 * are within RCU read-side critical sections, then the
    649 * synchronize_rcu() is guaranteed to block until after all the other
    650 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
    651 * on one CPU while other CPUs are within RCU read-side critical
    652 * sections, invocation of the corresponding RCU callback is deferred
    653 * until after the all the other CPUs exit their critical sections.
    654 *
    655 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
    656 * wait for regions of code with preemption disabled, including regions of
    657 * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
    658 * define synchronize_sched(), only code enclosed within rcu_read_lock()
    659 * and rcu_read_unlock() are guaranteed to be waited for.
    660 *
    661 * Note, however, that RCU callbacks are permitted to run concurrently
    662 * with new RCU read-side critical sections.  One way that this can happen
    663 * is via the following sequence of events: (1) CPU 0 enters an RCU
    664 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
    665 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
    666 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
    667 * callback is invoked.  This is legal, because the RCU read-side critical
    668 * section that was running concurrently with the call_rcu() (and which
    669 * therefore might be referencing something that the corresponding RCU
    670 * callback would free up) has completed before the corresponding
    671 * RCU callback is invoked.
    672 *
    673 * RCU read-side critical sections may be nested.  Any deferred actions
    674 * will be deferred until the outermost RCU read-side critical section
    675 * completes.
    676 *
    677 * You can avoid reading and understanding the next paragraph by
    678 * following this rule: don't put anything in an rcu_read_lock() RCU
    679 * read-side critical section that would block in a !PREEMPTION kernel.
    680 * But if you want the full story, read on!
    681 *
    682 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
    683 * it is illegal to block while in an RCU read-side critical section.
    684 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
    685 * kernel builds, RCU read-side critical sections may be preempted,
    686 * but explicit blocking is illegal.  Finally, in preemptible RCU
    687 * implementations in real-time (with -rt patchset) kernel builds, RCU
    688 * read-side critical sections may be preempted and they may also block, but
    689 * only when acquiring spinlocks that are subject to priority inheritance.
    690 */
    691static __always_inline void rcu_read_lock(void)
    692{
    693	__rcu_read_lock();
    694	__acquire(RCU);
    695	rcu_lock_acquire(&rcu_lock_map);
    696	RCU_LOCKDEP_WARN(!rcu_is_watching(),
    697			 "rcu_read_lock() used illegally while idle");
    698}
    699
    700/*
    701 * So where is rcu_write_lock()?  It does not exist, as there is no
    702 * way for writers to lock out RCU readers.  This is a feature, not
    703 * a bug -- this property is what provides RCU's performance benefits.
    704 * Of course, writers must coordinate with each other.  The normal
    705 * spinlock primitives work well for this, but any other technique may be
    706 * used as well.  RCU does not care how the writers keep out of each
    707 * others' way, as long as they do so.
    708 */
    709
    710/**
    711 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
    712 *
    713 * In almost all situations, rcu_read_unlock() is immune from deadlock.
    714 * In recent kernels that have consolidated synchronize_sched() and
    715 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
    716 * also extends to the scheduler's runqueue and priority-inheritance
    717 * spinlocks, courtesy of the quiescent-state deferral that is carried
    718 * out when rcu_read_unlock() is invoked with interrupts disabled.
    719 *
    720 * See rcu_read_lock() for more information.
    721 */
    722static inline void rcu_read_unlock(void)
    723{
    724	RCU_LOCKDEP_WARN(!rcu_is_watching(),
    725			 "rcu_read_unlock() used illegally while idle");
    726	__release(RCU);
    727	__rcu_read_unlock();
    728	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
    729}
    730
    731/**
    732 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
    733 *
    734 * This is equivalent to rcu_read_lock(), but also disables softirqs.
    735 * Note that anything else that disables softirqs can also serve as an RCU
    736 * read-side critical section.  However, please note that this equivalence
    737 * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
    738 * rcu_read_lock_bh() were unrelated.
    739 *
    740 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
    741 * must occur in the same context, for example, it is illegal to invoke
    742 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
    743 * was invoked from some other task.
    744 */
    745static inline void rcu_read_lock_bh(void)
    746{
    747	local_bh_disable();
    748	__acquire(RCU_BH);
    749	rcu_lock_acquire(&rcu_bh_lock_map);
    750	RCU_LOCKDEP_WARN(!rcu_is_watching(),
    751			 "rcu_read_lock_bh() used illegally while idle");
    752}
    753
    754/**
    755 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
    756 *
    757 * See rcu_read_lock_bh() for more information.
    758 */
    759static inline void rcu_read_unlock_bh(void)
    760{
    761	RCU_LOCKDEP_WARN(!rcu_is_watching(),
    762			 "rcu_read_unlock_bh() used illegally while idle");
    763	rcu_lock_release(&rcu_bh_lock_map);
    764	__release(RCU_BH);
    765	local_bh_enable();
    766}
    767
    768/**
    769 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
    770 *
    771 * This is equivalent to rcu_read_lock(), but also disables preemption.
    772 * Read-side critical sections can also be introduced by anything else that
    773 * disables preemption, including local_irq_disable() and friends.  However,
    774 * please note that the equivalence to rcu_read_lock() applies only to
    775 * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
    776 * were unrelated.
    777 *
    778 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
    779 * must occur in the same context, for example, it is illegal to invoke
    780 * rcu_read_unlock_sched() from process context if the matching
    781 * rcu_read_lock_sched() was invoked from an NMI handler.
    782 */
    783static inline void rcu_read_lock_sched(void)
    784{
    785	preempt_disable();
    786	__acquire(RCU_SCHED);
    787	rcu_lock_acquire(&rcu_sched_lock_map);
    788	RCU_LOCKDEP_WARN(!rcu_is_watching(),
    789			 "rcu_read_lock_sched() used illegally while idle");
    790}
    791
    792/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
    793static inline notrace void rcu_read_lock_sched_notrace(void)
    794{
    795	preempt_disable_notrace();
    796	__acquire(RCU_SCHED);
    797}
    798
    799/**
    800 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
    801 *
    802 * See rcu_read_lock_sched() for more information.
    803 */
    804static inline void rcu_read_unlock_sched(void)
    805{
    806	RCU_LOCKDEP_WARN(!rcu_is_watching(),
    807			 "rcu_read_unlock_sched() used illegally while idle");
    808	rcu_lock_release(&rcu_sched_lock_map);
    809	__release(RCU_SCHED);
    810	preempt_enable();
    811}
    812
    813/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
    814static inline notrace void rcu_read_unlock_sched_notrace(void)
    815{
    816	__release(RCU_SCHED);
    817	preempt_enable_notrace();
    818}
    819
    820/**
    821 * RCU_INIT_POINTER() - initialize an RCU protected pointer
    822 * @p: The pointer to be initialized.
    823 * @v: The value to initialized the pointer to.
    824 *
    825 * Initialize an RCU-protected pointer in special cases where readers
    826 * do not need ordering constraints on the CPU or the compiler.  These
    827 * special cases are:
    828 *
    829 * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
    830 * 2.	The caller has taken whatever steps are required to prevent
    831 *	RCU readers from concurrently accessing this pointer *or*
    832 * 3.	The referenced data structure has already been exposed to
    833 *	readers either at compile time or via rcu_assign_pointer() *and*
    834 *
    835 *	a.	You have not made *any* reader-visible changes to
    836 *		this structure since then *or*
    837 *	b.	It is OK for readers accessing this structure from its
    838 *		new location to see the old state of the structure.  (For
    839 *		example, the changes were to statistical counters or to
    840 *		other state where exact synchronization is not required.)
    841 *
    842 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
    843 * result in impossible-to-diagnose memory corruption.  As in the structures
    844 * will look OK in crash dumps, but any concurrent RCU readers might
    845 * see pre-initialized values of the referenced data structure.  So
    846 * please be very careful how you use RCU_INIT_POINTER()!!!
    847 *
    848 * If you are creating an RCU-protected linked structure that is accessed
    849 * by a single external-to-structure RCU-protected pointer, then you may
    850 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
    851 * pointers, but you must use rcu_assign_pointer() to initialize the
    852 * external-to-structure pointer *after* you have completely initialized
    853 * the reader-accessible portions of the linked structure.
    854 *
    855 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
    856 * ordering guarantees for either the CPU or the compiler.
    857 */
    858#define RCU_INIT_POINTER(p, v) \
    859	do { \
    860		rcu_check_sparse(p, __rcu); \
    861		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
    862	} while (0)
    863
    864/**
    865 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
    866 * @p: The pointer to be initialized.
    867 * @v: The value to initialized the pointer to.
    868 *
    869 * GCC-style initialization for an RCU-protected pointer in a structure field.
    870 */
    871#define RCU_POINTER_INITIALIZER(p, v) \
    872		.p = RCU_INITIALIZER(v)
    873
    874/*
    875 * Does the specified offset indicate that the corresponding rcu_head
    876 * structure can be handled by kvfree_rcu()?
    877 */
    878#define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
    879
    880/**
    881 * kfree_rcu() - kfree an object after a grace period.
    882 * @ptr: pointer to kfree for both single- and double-argument invocations.
    883 * @rhf: the name of the struct rcu_head within the type of @ptr,
    884 *       but only for double-argument invocations.
    885 *
    886 * Many rcu callbacks functions just call kfree() on the base structure.
    887 * These functions are trivial, but their size adds up, and furthermore
    888 * when they are used in a kernel module, that module must invoke the
    889 * high-latency rcu_barrier() function at module-unload time.
    890 *
    891 * The kfree_rcu() function handles this issue.  Rather than encoding a
    892 * function address in the embedded rcu_head structure, kfree_rcu() instead
    893 * encodes the offset of the rcu_head structure within the base structure.
    894 * Because the functions are not allowed in the low-order 4096 bytes of
    895 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
    896 * If the offset is larger than 4095 bytes, a compile-time error will
    897 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
    898 * either fall back to use of call_rcu() or rearrange the structure to
    899 * position the rcu_head structure into the first 4096 bytes.
    900 *
    901 * Note that the allowable offset might decrease in the future, for example,
    902 * to allow something like kmem_cache_free_rcu().
    903 *
    904 * The BUILD_BUG_ON check must not involve any function calls, hence the
    905 * checks are done in macros here.
    906 */
    907#define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
    908
    909/**
    910 * kvfree_rcu() - kvfree an object after a grace period.
    911 *
    912 * This macro consists of one or two arguments and it is
    913 * based on whether an object is head-less or not. If it
    914 * has a head then a semantic stays the same as it used
    915 * to be before:
    916 *
    917 *     kvfree_rcu(ptr, rhf);
    918 *
    919 * where @ptr is a pointer to kvfree(), @rhf is the name
    920 * of the rcu_head structure within the type of @ptr.
    921 *
    922 * When it comes to head-less variant, only one argument
    923 * is passed and that is just a pointer which has to be
    924 * freed after a grace period. Therefore the semantic is
    925 *
    926 *     kvfree_rcu(ptr);
    927 *
    928 * where @ptr is the pointer to be freed by kvfree().
    929 *
    930 * Please note, head-less way of freeing is permitted to
    931 * use from a context that has to follow might_sleep()
    932 * annotation. Otherwise, please switch and embed the
    933 * rcu_head structure within the type of @ptr.
    934 */
    935#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,		\
    936	kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
    937
    938#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
    939#define kvfree_rcu_arg_2(ptr, rhf)					\
    940do {									\
    941	typeof (ptr) ___p = (ptr);					\
    942									\
    943	if (___p) {									\
    944		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));	\
    945		kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long)		\
    946			(offsetof(typeof(*(ptr)), rhf)));				\
    947	}										\
    948} while (0)
    949
    950#define kvfree_rcu_arg_1(ptr)					\
    951do {								\
    952	typeof(ptr) ___p = (ptr);				\
    953								\
    954	if (___p)						\
    955		kvfree_call_rcu(NULL, (rcu_callback_t) (___p));	\
    956} while (0)
    957
    958/*
    959 * Place this after a lock-acquisition primitive to guarantee that
    960 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
    961 * if the UNLOCK and LOCK are executed by the same CPU or if the
    962 * UNLOCK and LOCK operate on the same lock variable.
    963 */
    964#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
    965#define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
    966#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
    967#define smp_mb__after_unlock_lock()	do { } while (0)
    968#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
    969
    970
    971/* Has the specified rcu_head structure been handed to call_rcu()? */
    972
    973/**
    974 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
    975 * @rhp: The rcu_head structure to initialize.
    976 *
    977 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
    978 * given rcu_head structure has already been passed to call_rcu(), then
    979 * you must also invoke this rcu_head_init() function on it just after
    980 * allocating that structure.  Calls to this function must not race with
    981 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
    982 */
    983static inline void rcu_head_init(struct rcu_head *rhp)
    984{
    985	rhp->func = (rcu_callback_t)~0L;
    986}
    987
    988/**
    989 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
    990 * @rhp: The rcu_head structure to test.
    991 * @f: The function passed to call_rcu() along with @rhp.
    992 *
    993 * Returns @true if the @rhp has been passed to call_rcu() with @func,
    994 * and @false otherwise.  Emits a warning in any other case, including
    995 * the case where @rhp has already been invoked after a grace period.
    996 * Calls to this function must not race with callback invocation.  One way
    997 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
    998 * in an RCU read-side critical section that includes a read-side fetch
    999 * of the pointer to the structure containing @rhp.
   1000 */
   1001static inline bool
   1002rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
   1003{
   1004	rcu_callback_t func = READ_ONCE(rhp->func);
   1005
   1006	if (func == f)
   1007		return true;
   1008	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
   1009	return false;
   1010}
   1011
   1012/* kernel/ksysfs.c definitions */
   1013extern int rcu_expedited;
   1014extern int rcu_normal;
   1015
   1016#endif /* __LINUX_RCUPDATE_H */