cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

regset.h (11626B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * User-mode machine state access
      4 *
      5 * Copyright (C) 2007 Red Hat, Inc.  All rights reserved.
      6 *
      7 * Red Hat Author: Roland McGrath.
      8 */
      9
     10#ifndef _LINUX_REGSET_H
     11#define _LINUX_REGSET_H	1
     12
     13#include <linux/compiler.h>
     14#include <linux/types.h>
     15#include <linux/bug.h>
     16#include <linux/uaccess.h>
     17struct task_struct;
     18struct user_regset;
     19
     20struct membuf {
     21	void *p;
     22	size_t left;
     23};
     24
     25static inline int membuf_zero(struct membuf *s, size_t size)
     26{
     27	if (s->left) {
     28		if (size > s->left)
     29			size = s->left;
     30		memset(s->p, 0, size);
     31		s->p += size;
     32		s->left -= size;
     33	}
     34	return s->left;
     35}
     36
     37static inline int membuf_write(struct membuf *s, const void *v, size_t size)
     38{
     39	if (s->left) {
     40		if (size > s->left)
     41			size = s->left;
     42		memcpy(s->p, v, size);
     43		s->p += size;
     44		s->left -= size;
     45	}
     46	return s->left;
     47}
     48
     49static inline struct membuf membuf_at(const struct membuf *s, size_t offs)
     50{
     51	struct membuf n = *s;
     52
     53	if (offs > n.left)
     54		offs = n.left;
     55	n.p += offs;
     56	n.left -= offs;
     57
     58	return n;
     59}
     60
     61/* current s->p must be aligned for v; v must be a scalar */
     62#define membuf_store(s, v)				\
     63({							\
     64	struct membuf *__s = (s);			\
     65        if (__s->left) {				\
     66		typeof(v) __v = (v);			\
     67		size_t __size = sizeof(__v);		\
     68		if (unlikely(__size > __s->left)) {	\
     69			__size = __s->left;		\
     70			memcpy(__s->p, &__v, __size);	\
     71		} else {				\
     72			*(typeof(__v + 0) *)__s->p = __v;	\
     73		}					\
     74		__s->p += __size;			\
     75		__s->left -= __size;			\
     76	}						\
     77	__s->left;})
     78
     79/**
     80 * user_regset_active_fn - type of @active function in &struct user_regset
     81 * @target:	thread being examined
     82 * @regset:	regset being examined
     83 *
     84 * Return -%ENODEV if not available on the hardware found.
     85 * Return %0 if no interesting state in this thread.
     86 * Return >%0 number of @size units of interesting state.
     87 * Any get call fetching state beyond that number will
     88 * see the default initialization state for this data,
     89 * so a caller that knows what the default state is need
     90 * not copy it all out.
     91 * This call is optional; the pointer is %NULL if there
     92 * is no inexpensive check to yield a value < @n.
     93 */
     94typedef int user_regset_active_fn(struct task_struct *target,
     95				  const struct user_regset *regset);
     96
     97typedef int user_regset_get2_fn(struct task_struct *target,
     98			       const struct user_regset *regset,
     99			       struct membuf to);
    100
    101/**
    102 * user_regset_set_fn - type of @set function in &struct user_regset
    103 * @target:	thread being examined
    104 * @regset:	regset being examined
    105 * @pos:	offset into the regset data to access, in bytes
    106 * @count:	amount of data to copy, in bytes
    107 * @kbuf:	if not %NULL, a kernel-space pointer to copy from
    108 * @ubuf:	if @kbuf is %NULL, a user-space pointer to copy from
    109 *
    110 * Store register values.  Return %0 on success; -%EIO or -%ENODEV
    111 * are usual failure returns.  The @pos and @count values are in
    112 * bytes, but must be properly aligned.  If @kbuf is non-null, that
    113 * buffer is used and @ubuf is ignored.  If @kbuf is %NULL, then
    114 * ubuf gives a userland pointer to access directly, and an -%EFAULT
    115 * return value is possible.
    116 */
    117typedef int user_regset_set_fn(struct task_struct *target,
    118			       const struct user_regset *regset,
    119			       unsigned int pos, unsigned int count,
    120			       const void *kbuf, const void __user *ubuf);
    121
    122/**
    123 * user_regset_writeback_fn - type of @writeback function in &struct user_regset
    124 * @target:	thread being examined
    125 * @regset:	regset being examined
    126 * @immediate:	zero if writeback at completion of next context switch is OK
    127 *
    128 * This call is optional; usually the pointer is %NULL.  When
    129 * provided, there is some user memory associated with this regset's
    130 * hardware, such as memory backing cached register data on register
    131 * window machines; the regset's data controls what user memory is
    132 * used (e.g. via the stack pointer value).
    133 *
    134 * Write register data back to user memory.  If the @immediate flag
    135 * is nonzero, it must be written to the user memory so uaccess or
    136 * access_process_vm() can see it when this call returns; if zero,
    137 * then it must be written back by the time the task completes a
    138 * context switch (as synchronized with wait_task_inactive()).
    139 * Return %0 on success or if there was nothing to do, -%EFAULT for
    140 * a memory problem (bad stack pointer or whatever), or -%EIO for a
    141 * hardware problem.
    142 */
    143typedef int user_regset_writeback_fn(struct task_struct *target,
    144				     const struct user_regset *regset,
    145				     int immediate);
    146
    147/**
    148 * struct user_regset - accessible thread CPU state
    149 * @n:			Number of slots (registers).
    150 * @size:		Size in bytes of a slot (register).
    151 * @align:		Required alignment, in bytes.
    152 * @bias:		Bias from natural indexing.
    153 * @core_note_type:	ELF note @n_type value used in core dumps.
    154 * @get:		Function to fetch values.
    155 * @set:		Function to store values.
    156 * @active:		Function to report if regset is active, or %NULL.
    157 * @writeback:		Function to write data back to user memory, or %NULL.
    158 *
    159 * This data structure describes a machine resource we call a register set.
    160 * This is part of the state of an individual thread, not necessarily
    161 * actual CPU registers per se.  A register set consists of a number of
    162 * similar slots, given by @n.  Each slot is @size bytes, and aligned to
    163 * @align bytes (which is at least @size).  For dynamically-sized
    164 * regsets, @n must contain the maximum possible number of slots for the
    165 * regset.
    166 *
    167 * For backward compatibility, the @get and @set methods must pad to, or
    168 * accept, @n * @size bytes, even if the current regset size is smaller.
    169 * The precise semantics of these operations depend on the regset being
    170 * accessed.
    171 *
    172 * The functions to which &struct user_regset members point must be
    173 * called only on the current thread or on a thread that is in
    174 * %TASK_STOPPED or %TASK_TRACED state, that we are guaranteed will not
    175 * be woken up and return to user mode, and that we have called
    176 * wait_task_inactive() on.  (The target thread always might wake up for
    177 * SIGKILL while these functions are working, in which case that
    178 * thread's user_regset state might be scrambled.)
    179 *
    180 * The @pos argument must be aligned according to @align; the @count
    181 * argument must be a multiple of @size.  These functions are not
    182 * responsible for checking for invalid arguments.
    183 *
    184 * When there is a natural value to use as an index, @bias gives the
    185 * difference between the natural index and the slot index for the
    186 * register set.  For example, x86 GDT segment descriptors form a regset;
    187 * the segment selector produces a natural index, but only a subset of
    188 * that index space is available as a regset (the TLS slots); subtracting
    189 * @bias from a segment selector index value computes the regset slot.
    190 *
    191 * If nonzero, @core_note_type gives the n_type field (NT_* value)
    192 * of the core file note in which this regset's data appears.
    193 * NT_PRSTATUS is a special case in that the regset data starts at
    194 * offsetof(struct elf_prstatus, pr_reg) into the note data; that is
    195 * part of the per-machine ELF formats userland knows about.  In
    196 * other cases, the core file note contains exactly the whole regset
    197 * (@n * @size) and nothing else.  The core file note is normally
    198 * omitted when there is an @active function and it returns zero.
    199 */
    200struct user_regset {
    201	user_regset_get2_fn		*regset_get;
    202	user_regset_set_fn		*set;
    203	user_regset_active_fn		*active;
    204	user_regset_writeback_fn	*writeback;
    205	unsigned int			n;
    206	unsigned int 			size;
    207	unsigned int 			align;
    208	unsigned int 			bias;
    209	unsigned int 			core_note_type;
    210};
    211
    212/**
    213 * struct user_regset_view - available regsets
    214 * @name:	Identifier, e.g. UTS_MACHINE string.
    215 * @regsets:	Array of @n regsets available in this view.
    216 * @n:		Number of elements in @regsets.
    217 * @e_machine:	ELF header @e_machine %EM_* value written in core dumps.
    218 * @e_flags:	ELF header @e_flags value written in core dumps.
    219 * @ei_osabi:	ELF header @e_ident[%EI_OSABI] value written in core dumps.
    220 *
    221 * A regset view is a collection of regsets (&struct user_regset,
    222 * above).  This describes all the state of a thread that can be seen
    223 * from a given architecture/ABI environment.  More than one view might
    224 * refer to the same &struct user_regset, or more than one regset
    225 * might refer to the same machine-specific state in the thread.  For
    226 * example, a 32-bit thread's state could be examined from the 32-bit
    227 * view or from the 64-bit view.  Either method reaches the same thread
    228 * register state, doing appropriate widening or truncation.
    229 */
    230struct user_regset_view {
    231	const char *name;
    232	const struct user_regset *regsets;
    233	unsigned int n;
    234	u32 e_flags;
    235	u16 e_machine;
    236	u8 ei_osabi;
    237};
    238
    239/*
    240 * This is documented here rather than at the definition sites because its
    241 * implementation is machine-dependent but its interface is universal.
    242 */
    243/**
    244 * task_user_regset_view - Return the process's native regset view.
    245 * @tsk: a thread of the process in question
    246 *
    247 * Return the &struct user_regset_view that is native for the given process.
    248 * For example, what it would access when it called ptrace().
    249 * Throughout the life of the process, this only changes at exec.
    250 */
    251const struct user_regset_view *task_user_regset_view(struct task_struct *tsk);
    252
    253static inline int user_regset_copyin(unsigned int *pos, unsigned int *count,
    254				     const void **kbuf,
    255				     const void __user **ubuf, void *data,
    256				     const int start_pos, const int end_pos)
    257{
    258	if (*count == 0)
    259		return 0;
    260	BUG_ON(*pos < start_pos);
    261	if (end_pos < 0 || *pos < end_pos) {
    262		unsigned int copy = (end_pos < 0 ? *count
    263				     : min(*count, end_pos - *pos));
    264		data += *pos - start_pos;
    265		if (*kbuf) {
    266			memcpy(data, *kbuf, copy);
    267			*kbuf += copy;
    268		} else if (__copy_from_user(data, *ubuf, copy))
    269			return -EFAULT;
    270		else
    271			*ubuf += copy;
    272		*pos += copy;
    273		*count -= copy;
    274	}
    275	return 0;
    276}
    277
    278static inline int user_regset_copyin_ignore(unsigned int *pos,
    279					    unsigned int *count,
    280					    const void **kbuf,
    281					    const void __user **ubuf,
    282					    const int start_pos,
    283					    const int end_pos)
    284{
    285	if (*count == 0)
    286		return 0;
    287	BUG_ON(*pos < start_pos);
    288	if (end_pos < 0 || *pos < end_pos) {
    289		unsigned int copy = (end_pos < 0 ? *count
    290				     : min(*count, end_pos - *pos));
    291		if (*kbuf)
    292			*kbuf += copy;
    293		else
    294			*ubuf += copy;
    295		*pos += copy;
    296		*count -= copy;
    297	}
    298	return 0;
    299}
    300
    301extern int regset_get(struct task_struct *target,
    302		      const struct user_regset *regset,
    303		      unsigned int size, void *data);
    304
    305extern int regset_get_alloc(struct task_struct *target,
    306			    const struct user_regset *regset,
    307			    unsigned int size,
    308			    void **data);
    309
    310extern int copy_regset_to_user(struct task_struct *target,
    311			       const struct user_regset_view *view,
    312			       unsigned int setno, unsigned int offset,
    313			       unsigned int size, void __user *data);
    314
    315/**
    316 * copy_regset_from_user - store into thread's user_regset data from user memory
    317 * @target:	thread to be examined
    318 * @view:	&struct user_regset_view describing user thread machine state
    319 * @setno:	index in @view->regsets
    320 * @offset:	offset into the regset data, in bytes
    321 * @size:	amount of data to copy, in bytes
    322 * @data:	user-mode pointer to copy from
    323 */
    324static inline int copy_regset_from_user(struct task_struct *target,
    325					const struct user_regset_view *view,
    326					unsigned int setno,
    327					unsigned int offset, unsigned int size,
    328					const void __user *data)
    329{
    330	const struct user_regset *regset = &view->regsets[setno];
    331
    332	if (!regset->set)
    333		return -EOPNOTSUPP;
    334
    335	if (!access_ok(data, size))
    336		return -EFAULT;
    337
    338	return regset->set(target, regset, offset, size, NULL, data);
    339}
    340
    341#endif	/* <linux/regset.h> */