cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mm.h (14022B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _LINUX_SCHED_MM_H
      3#define _LINUX_SCHED_MM_H
      4
      5#include <linux/kernel.h>
      6#include <linux/atomic.h>
      7#include <linux/sched.h>
      8#include <linux/mm_types.h>
      9#include <linux/gfp.h>
     10#include <linux/sync_core.h>
     11#include <linux/ioasid.h>
     12
     13/*
     14 * Routines for handling mm_structs
     15 */
     16extern struct mm_struct *mm_alloc(void);
     17
     18/**
     19 * mmgrab() - Pin a &struct mm_struct.
     20 * @mm: The &struct mm_struct to pin.
     21 *
     22 * Make sure that @mm will not get freed even after the owning task
     23 * exits. This doesn't guarantee that the associated address space
     24 * will still exist later on and mmget_not_zero() has to be used before
     25 * accessing it.
     26 *
     27 * This is a preferred way to pin @mm for a longer/unbounded amount
     28 * of time.
     29 *
     30 * Use mmdrop() to release the reference acquired by mmgrab().
     31 *
     32 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
     33 * of &mm_struct.mm_count vs &mm_struct.mm_users.
     34 */
     35static inline void mmgrab(struct mm_struct *mm)
     36{
     37	atomic_inc(&mm->mm_count);
     38}
     39
     40extern void __mmdrop(struct mm_struct *mm);
     41
     42static inline void mmdrop(struct mm_struct *mm)
     43{
     44	/*
     45	 * The implicit full barrier implied by atomic_dec_and_test() is
     46	 * required by the membarrier system call before returning to
     47	 * user-space, after storing to rq->curr.
     48	 */
     49	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
     50		__mmdrop(mm);
     51}
     52
     53#ifdef CONFIG_PREEMPT_RT
     54/*
     55 * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is
     56 * by far the least expensive way to do that.
     57 */
     58static inline void __mmdrop_delayed(struct rcu_head *rhp)
     59{
     60	struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop);
     61
     62	__mmdrop(mm);
     63}
     64
     65/*
     66 * Invoked from finish_task_switch(). Delegates the heavy lifting on RT
     67 * kernels via RCU.
     68 */
     69static inline void mmdrop_sched(struct mm_struct *mm)
     70{
     71	/* Provides a full memory barrier. See mmdrop() */
     72	if (atomic_dec_and_test(&mm->mm_count))
     73		call_rcu(&mm->delayed_drop, __mmdrop_delayed);
     74}
     75#else
     76static inline void mmdrop_sched(struct mm_struct *mm)
     77{
     78	mmdrop(mm);
     79}
     80#endif
     81
     82/**
     83 * mmget() - Pin the address space associated with a &struct mm_struct.
     84 * @mm: The address space to pin.
     85 *
     86 * Make sure that the address space of the given &struct mm_struct doesn't
     87 * go away. This does not protect against parts of the address space being
     88 * modified or freed, however.
     89 *
     90 * Never use this function to pin this address space for an
     91 * unbounded/indefinite amount of time.
     92 *
     93 * Use mmput() to release the reference acquired by mmget().
     94 *
     95 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
     96 * of &mm_struct.mm_count vs &mm_struct.mm_users.
     97 */
     98static inline void mmget(struct mm_struct *mm)
     99{
    100	atomic_inc(&mm->mm_users);
    101}
    102
    103static inline bool mmget_not_zero(struct mm_struct *mm)
    104{
    105	return atomic_inc_not_zero(&mm->mm_users);
    106}
    107
    108/* mmput gets rid of the mappings and all user-space */
    109extern void mmput(struct mm_struct *);
    110#ifdef CONFIG_MMU
    111/* same as above but performs the slow path from the async context. Can
    112 * be called from the atomic context as well
    113 */
    114void mmput_async(struct mm_struct *);
    115#endif
    116
    117/* Grab a reference to a task's mm, if it is not already going away */
    118extern struct mm_struct *get_task_mm(struct task_struct *task);
    119/*
    120 * Grab a reference to a task's mm, if it is not already going away
    121 * and ptrace_may_access with the mode parameter passed to it
    122 * succeeds.
    123 */
    124extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
    125/* Remove the current tasks stale references to the old mm_struct on exit() */
    126extern void exit_mm_release(struct task_struct *, struct mm_struct *);
    127/* Remove the current tasks stale references to the old mm_struct on exec() */
    128extern void exec_mm_release(struct task_struct *, struct mm_struct *);
    129
    130#ifdef CONFIG_MEMCG
    131extern void mm_update_next_owner(struct mm_struct *mm);
    132#else
    133static inline void mm_update_next_owner(struct mm_struct *mm)
    134{
    135}
    136#endif /* CONFIG_MEMCG */
    137
    138#ifdef CONFIG_MMU
    139#ifndef arch_get_mmap_end
    140#define arch_get_mmap_end(addr, len, flags)	(TASK_SIZE)
    141#endif
    142
    143#ifndef arch_get_mmap_base
    144#define arch_get_mmap_base(addr, base) (base)
    145#endif
    146
    147extern void arch_pick_mmap_layout(struct mm_struct *mm,
    148				  struct rlimit *rlim_stack);
    149extern unsigned long
    150arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
    151		       unsigned long, unsigned long);
    152extern unsigned long
    153arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
    154			  unsigned long len, unsigned long pgoff,
    155			  unsigned long flags);
    156
    157unsigned long
    158generic_get_unmapped_area(struct file *filp, unsigned long addr,
    159			  unsigned long len, unsigned long pgoff,
    160			  unsigned long flags);
    161unsigned long
    162generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
    163				  unsigned long len, unsigned long pgoff,
    164				  unsigned long flags);
    165#else
    166static inline void arch_pick_mmap_layout(struct mm_struct *mm,
    167					 struct rlimit *rlim_stack) {}
    168#endif
    169
    170static inline bool in_vfork(struct task_struct *tsk)
    171{
    172	bool ret;
    173
    174	/*
    175	 * need RCU to access ->real_parent if CLONE_VM was used along with
    176	 * CLONE_PARENT.
    177	 *
    178	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
    179	 * imply CLONE_VM
    180	 *
    181	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
    182	 * ->real_parent is not necessarily the task doing vfork(), so in
    183	 * theory we can't rely on task_lock() if we want to dereference it.
    184	 *
    185	 * And in this case we can't trust the real_parent->mm == tsk->mm
    186	 * check, it can be false negative. But we do not care, if init or
    187	 * another oom-unkillable task does this it should blame itself.
    188	 */
    189	rcu_read_lock();
    190	ret = tsk->vfork_done &&
    191			rcu_dereference(tsk->real_parent)->mm == tsk->mm;
    192	rcu_read_unlock();
    193
    194	return ret;
    195}
    196
    197/*
    198 * Applies per-task gfp context to the given allocation flags.
    199 * PF_MEMALLOC_NOIO implies GFP_NOIO
    200 * PF_MEMALLOC_NOFS implies GFP_NOFS
    201 * PF_MEMALLOC_PIN  implies !GFP_MOVABLE
    202 */
    203static inline gfp_t current_gfp_context(gfp_t flags)
    204{
    205	unsigned int pflags = READ_ONCE(current->flags);
    206
    207	if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) {
    208		/*
    209		 * NOIO implies both NOIO and NOFS and it is a weaker context
    210		 * so always make sure it makes precedence
    211		 */
    212		if (pflags & PF_MEMALLOC_NOIO)
    213			flags &= ~(__GFP_IO | __GFP_FS);
    214		else if (pflags & PF_MEMALLOC_NOFS)
    215			flags &= ~__GFP_FS;
    216
    217		if (pflags & PF_MEMALLOC_PIN)
    218			flags &= ~__GFP_MOVABLE;
    219	}
    220	return flags;
    221}
    222
    223#ifdef CONFIG_LOCKDEP
    224extern void __fs_reclaim_acquire(unsigned long ip);
    225extern void __fs_reclaim_release(unsigned long ip);
    226extern void fs_reclaim_acquire(gfp_t gfp_mask);
    227extern void fs_reclaim_release(gfp_t gfp_mask);
    228#else
    229static inline void __fs_reclaim_acquire(unsigned long ip) { }
    230static inline void __fs_reclaim_release(unsigned long ip) { }
    231static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
    232static inline void fs_reclaim_release(gfp_t gfp_mask) { }
    233#endif
    234
    235/* Any memory-allocation retry loop should use
    236 * memalloc_retry_wait(), and pass the flags for the most
    237 * constrained allocation attempt that might have failed.
    238 * This provides useful documentation of where loops are,
    239 * and a central place to fine tune the waiting as the MM
    240 * implementation changes.
    241 */
    242static inline void memalloc_retry_wait(gfp_t gfp_flags)
    243{
    244	/* We use io_schedule_timeout because waiting for memory
    245	 * typically included waiting for dirty pages to be
    246	 * written out, which requires IO.
    247	 */
    248	__set_current_state(TASK_UNINTERRUPTIBLE);
    249	gfp_flags = current_gfp_context(gfp_flags);
    250	if (gfpflags_allow_blocking(gfp_flags) &&
    251	    !(gfp_flags & __GFP_NORETRY))
    252		/* Probably waited already, no need for much more */
    253		io_schedule_timeout(1);
    254	else
    255		/* Probably didn't wait, and has now released a lock,
    256		 * so now is a good time to wait
    257		 */
    258		io_schedule_timeout(HZ/50);
    259}
    260
    261/**
    262 * might_alloc - Mark possible allocation sites
    263 * @gfp_mask: gfp_t flags that would be used to allocate
    264 *
    265 * Similar to might_sleep() and other annotations, this can be used in functions
    266 * that might allocate, but often don't. Compiles to nothing without
    267 * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
    268 */
    269static inline void might_alloc(gfp_t gfp_mask)
    270{
    271	fs_reclaim_acquire(gfp_mask);
    272	fs_reclaim_release(gfp_mask);
    273
    274	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
    275}
    276
    277/**
    278 * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
    279 *
    280 * This functions marks the beginning of the GFP_NOIO allocation scope.
    281 * All further allocations will implicitly drop __GFP_IO flag and so
    282 * they are safe for the IO critical section from the allocation recursion
    283 * point of view. Use memalloc_noio_restore to end the scope with flags
    284 * returned by this function.
    285 *
    286 * This function is safe to be used from any context.
    287 */
    288static inline unsigned int memalloc_noio_save(void)
    289{
    290	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
    291	current->flags |= PF_MEMALLOC_NOIO;
    292	return flags;
    293}
    294
    295/**
    296 * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
    297 * @flags: Flags to restore.
    298 *
    299 * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
    300 * Always make sure that the given flags is the return value from the
    301 * pairing memalloc_noio_save call.
    302 */
    303static inline void memalloc_noio_restore(unsigned int flags)
    304{
    305	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
    306}
    307
    308/**
    309 * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
    310 *
    311 * This functions marks the beginning of the GFP_NOFS allocation scope.
    312 * All further allocations will implicitly drop __GFP_FS flag and so
    313 * they are safe for the FS critical section from the allocation recursion
    314 * point of view. Use memalloc_nofs_restore to end the scope with flags
    315 * returned by this function.
    316 *
    317 * This function is safe to be used from any context.
    318 */
    319static inline unsigned int memalloc_nofs_save(void)
    320{
    321	unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
    322	current->flags |= PF_MEMALLOC_NOFS;
    323	return flags;
    324}
    325
    326/**
    327 * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
    328 * @flags: Flags to restore.
    329 *
    330 * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
    331 * Always make sure that the given flags is the return value from the
    332 * pairing memalloc_nofs_save call.
    333 */
    334static inline void memalloc_nofs_restore(unsigned int flags)
    335{
    336	current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
    337}
    338
    339static inline unsigned int memalloc_noreclaim_save(void)
    340{
    341	unsigned int flags = current->flags & PF_MEMALLOC;
    342	current->flags |= PF_MEMALLOC;
    343	return flags;
    344}
    345
    346static inline void memalloc_noreclaim_restore(unsigned int flags)
    347{
    348	current->flags = (current->flags & ~PF_MEMALLOC) | flags;
    349}
    350
    351static inline unsigned int memalloc_pin_save(void)
    352{
    353	unsigned int flags = current->flags & PF_MEMALLOC_PIN;
    354
    355	current->flags |= PF_MEMALLOC_PIN;
    356	return flags;
    357}
    358
    359static inline void memalloc_pin_restore(unsigned int flags)
    360{
    361	current->flags = (current->flags & ~PF_MEMALLOC_PIN) | flags;
    362}
    363
    364#ifdef CONFIG_MEMCG
    365DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
    366/**
    367 * set_active_memcg - Starts the remote memcg charging scope.
    368 * @memcg: memcg to charge.
    369 *
    370 * This function marks the beginning of the remote memcg charging scope. All the
    371 * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
    372 * given memcg.
    373 *
    374 * NOTE: This function can nest. Users must save the return value and
    375 * reset the previous value after their own charging scope is over.
    376 */
    377static inline struct mem_cgroup *
    378set_active_memcg(struct mem_cgroup *memcg)
    379{
    380	struct mem_cgroup *old;
    381
    382	if (!in_task()) {
    383		old = this_cpu_read(int_active_memcg);
    384		this_cpu_write(int_active_memcg, memcg);
    385	} else {
    386		old = current->active_memcg;
    387		current->active_memcg = memcg;
    388	}
    389
    390	return old;
    391}
    392#else
    393static inline struct mem_cgroup *
    394set_active_memcg(struct mem_cgroup *memcg)
    395{
    396	return NULL;
    397}
    398#endif
    399
    400#ifdef CONFIG_MEMBARRIER
    401enum {
    402	MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY		= (1U << 0),
    403	MEMBARRIER_STATE_PRIVATE_EXPEDITED			= (1U << 1),
    404	MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY			= (1U << 2),
    405	MEMBARRIER_STATE_GLOBAL_EXPEDITED			= (1U << 3),
    406	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY	= (1U << 4),
    407	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE		= (1U << 5),
    408	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY		= (1U << 6),
    409	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ			= (1U << 7),
    410};
    411
    412enum {
    413	MEMBARRIER_FLAG_SYNC_CORE	= (1U << 0),
    414	MEMBARRIER_FLAG_RSEQ		= (1U << 1),
    415};
    416
    417#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
    418#include <asm/membarrier.h>
    419#endif
    420
    421static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
    422{
    423	if (current->mm != mm)
    424		return;
    425	if (likely(!(atomic_read(&mm->membarrier_state) &
    426		     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
    427		return;
    428	sync_core_before_usermode();
    429}
    430
    431extern void membarrier_exec_mmap(struct mm_struct *mm);
    432
    433extern void membarrier_update_current_mm(struct mm_struct *next_mm);
    434
    435#else
    436#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
    437static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
    438					     struct mm_struct *next,
    439					     struct task_struct *tsk)
    440{
    441}
    442#endif
    443static inline void membarrier_exec_mmap(struct mm_struct *mm)
    444{
    445}
    446static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
    447{
    448}
    449static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
    450{
    451}
    452#endif
    453
    454#ifdef CONFIG_IOMMU_SVA
    455static inline void mm_pasid_init(struct mm_struct *mm)
    456{
    457	mm->pasid = INVALID_IOASID;
    458}
    459
    460/* Associate a PASID with an mm_struct: */
    461static inline void mm_pasid_set(struct mm_struct *mm, u32 pasid)
    462{
    463	mm->pasid = pasid;
    464}
    465
    466static inline void mm_pasid_drop(struct mm_struct *mm)
    467{
    468	if (pasid_valid(mm->pasid)) {
    469		ioasid_free(mm->pasid);
    470		mm->pasid = INVALID_IOASID;
    471	}
    472}
    473#else
    474static inline void mm_pasid_init(struct mm_struct *mm) {}
    475static inline void mm_pasid_set(struct mm_struct *mm, u32 pasid) {}
    476static inline void mm_pasid_drop(struct mm_struct *mm) {}
    477#endif
    478
    479#endif /* _LINUX_SCHED_MM_H */