cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

skbuff.h (151197B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 *	Definitions for the 'struct sk_buff' memory handlers.
      4 *
      5 *	Authors:
      6 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
      7 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
      8 */
      9
     10#ifndef _LINUX_SKBUFF_H
     11#define _LINUX_SKBUFF_H
     12
     13#include <linux/kernel.h>
     14#include <linux/compiler.h>
     15#include <linux/time.h>
     16#include <linux/bug.h>
     17#include <linux/bvec.h>
     18#include <linux/cache.h>
     19#include <linux/rbtree.h>
     20#include <linux/socket.h>
     21#include <linux/refcount.h>
     22
     23#include <linux/atomic.h>
     24#include <asm/types.h>
     25#include <linux/spinlock.h>
     26#include <linux/net.h>
     27#include <linux/textsearch.h>
     28#include <net/checksum.h>
     29#include <linux/rcupdate.h>
     30#include <linux/hrtimer.h>
     31#include <linux/dma-mapping.h>
     32#include <linux/netdev_features.h>
     33#include <linux/sched.h>
     34#include <linux/sched/clock.h>
     35#include <net/flow_dissector.h>
     36#include <linux/splice.h>
     37#include <linux/in6.h>
     38#include <linux/if_packet.h>
     39#include <linux/llist.h>
     40#include <net/flow.h>
     41#include <net/page_pool.h>
     42#if IS_ENABLED(CONFIG_NF_CONNTRACK)
     43#include <linux/netfilter/nf_conntrack_common.h>
     44#endif
     45#include <net/net_debug.h>
     46
     47/**
     48 * DOC: skb checksums
     49 *
     50 * The interface for checksum offload between the stack and networking drivers
     51 * is as follows...
     52 *
     53 * IP checksum related features
     54 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     55 *
     56 * Drivers advertise checksum offload capabilities in the features of a device.
     57 * From the stack's point of view these are capabilities offered by the driver.
     58 * A driver typically only advertises features that it is capable of offloading
     59 * to its device.
     60 *
     61 * .. flat-table:: Checksum related device features
     62 *   :widths: 1 10
     63 *
     64 *   * - %NETIF_F_HW_CSUM
     65 *     - The driver (or its device) is able to compute one
     66 *	 IP (one's complement) checksum for any combination
     67 *	 of protocols or protocol layering. The checksum is
     68 *	 computed and set in a packet per the CHECKSUM_PARTIAL
     69 *	 interface (see below).
     70 *
     71 *   * - %NETIF_F_IP_CSUM
     72 *     - Driver (device) is only able to checksum plain
     73 *	 TCP or UDP packets over IPv4. These are specifically
     74 *	 unencapsulated packets of the form IPv4|TCP or
     75 *	 IPv4|UDP where the Protocol field in the IPv4 header
     76 *	 is TCP or UDP. The IPv4 header may contain IP options.
     77 *	 This feature cannot be set in features for a device
     78 *	 with NETIF_F_HW_CSUM also set. This feature is being
     79 *	 DEPRECATED (see below).
     80 *
     81 *   * - %NETIF_F_IPV6_CSUM
     82 *     - Driver (device) is only able to checksum plain
     83 *	 TCP or UDP packets over IPv6. These are specifically
     84 *	 unencapsulated packets of the form IPv6|TCP or
     85 *	 IPv6|UDP where the Next Header field in the IPv6
     86 *	 header is either TCP or UDP. IPv6 extension headers
     87 *	 are not supported with this feature. This feature
     88 *	 cannot be set in features for a device with
     89 *	 NETIF_F_HW_CSUM also set. This feature is being
     90 *	 DEPRECATED (see below).
     91 *
     92 *   * - %NETIF_F_RXCSUM
     93 *     - Driver (device) performs receive checksum offload.
     94 *	 This flag is only used to disable the RX checksum
     95 *	 feature for a device. The stack will accept receive
     96 *	 checksum indication in packets received on a device
     97 *	 regardless of whether NETIF_F_RXCSUM is set.
     98 *
     99 * Checksumming of received packets by device
    100 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    101 *
    102 * Indication of checksum verification is set in &sk_buff.ip_summed.
    103 * Possible values are:
    104 *
    105 * - %CHECKSUM_NONE
    106 *
    107 *   Device did not checksum this packet e.g. due to lack of capabilities.
    108 *   The packet contains full (though not verified) checksum in packet but
    109 *   not in skb->csum. Thus, skb->csum is undefined in this case.
    110 *
    111 * - %CHECKSUM_UNNECESSARY
    112 *
    113 *   The hardware you're dealing with doesn't calculate the full checksum
    114 *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
    115 *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
    116 *   if their checksums are okay. &sk_buff.csum is still undefined in this case
    117 *   though. A driver or device must never modify the checksum field in the
    118 *   packet even if checksum is verified.
    119 *
    120 *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
    121 *
    122 *     - TCP: IPv6 and IPv4.
    123 *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
    124 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
    125 *       may perform further validation in this case.
    126 *     - GRE: only if the checksum is present in the header.
    127 *     - SCTP: indicates the CRC in SCTP header has been validated.
    128 *     - FCOE: indicates the CRC in FC frame has been validated.
    129 *
    130 *   &sk_buff.csum_level indicates the number of consecutive checksums found in
    131 *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
    132 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
    133 *   and a device is able to verify the checksums for UDP (possibly zero),
    134 *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
    135 *   two. If the device were only able to verify the UDP checksum and not
    136 *   GRE, either because it doesn't support GRE checksum or because GRE
    137 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
    138 *   not considered in this case).
    139 *
    140 * - %CHECKSUM_COMPLETE
    141 *
    142 *   This is the most generic way. The device supplied checksum of the _whole_
    143 *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
    144 *   hardware doesn't need to parse L3/L4 headers to implement this.
    145 *
    146 *   Notes:
    147 *
    148 *   - Even if device supports only some protocols, but is able to produce
    149 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
    150 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
    151 *
    152 * - %CHECKSUM_PARTIAL
    153 *
    154 *   A checksum is set up to be offloaded to a device as described in the
    155 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
    156 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
    157 *   on the same host, or it may be set in the input path in GRO or remote
    158 *   checksum offload. For the purposes of checksum verification, the checksum
    159 *   referred to by skb->csum_start + skb->csum_offset and any preceding
    160 *   checksums in the packet are considered verified. Any checksums in the
    161 *   packet that are after the checksum being offloaded are not considered to
    162 *   be verified.
    163 *
    164 * Checksumming on transmit for non-GSO
    165 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    166 *
    167 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
    168 * Values are:
    169 *
    170 * - %CHECKSUM_PARTIAL
    171 *
    172 *   The driver is required to checksum the packet as seen by hard_start_xmit()
    173 *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
    174 *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
    175 *   A driver may verify that the
    176 *   csum_start and csum_offset values are valid values given the length and
    177 *   offset of the packet, but it should not attempt to validate that the
    178 *   checksum refers to a legitimate transport layer checksum -- it is the
    179 *   purview of the stack to validate that csum_start and csum_offset are set
    180 *   correctly.
    181 *
    182 *   When the stack requests checksum offload for a packet, the driver MUST
    183 *   ensure that the checksum is set correctly. A driver can either offload the
    184 *   checksum calculation to the device, or call skb_checksum_help (in the case
    185 *   that the device does not support offload for a particular checksum).
    186 *
    187 *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
    188 *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
    189 *   checksum offload capability.
    190 *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
    191 *   on network device checksumming capabilities: if a packet does not match
    192 *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
    193 *   &sk_buff.csum_not_inet, see :ref:`crc`)
    194 *   is called to resolve the checksum.
    195 *
    196 * - %CHECKSUM_NONE
    197 *
    198 *   The skb was already checksummed by the protocol, or a checksum is not
    199 *   required.
    200 *
    201 * - %CHECKSUM_UNNECESSARY
    202 *
    203 *   This has the same meaning as CHECKSUM_NONE for checksum offload on
    204 *   output.
    205 *
    206 * - %CHECKSUM_COMPLETE
    207 *
    208 *   Not used in checksum output. If a driver observes a packet with this value
    209 *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
    210 *
    211 * .. _crc:
    212 *
    213 * Non-IP checksum (CRC) offloads
    214 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    215 *
    216 * .. flat-table::
    217 *   :widths: 1 10
    218 *
    219 *   * - %NETIF_F_SCTP_CRC
    220 *     - This feature indicates that a device is capable of
    221 *	 offloading the SCTP CRC in a packet. To perform this offload the stack
    222 *	 will set csum_start and csum_offset accordingly, set ip_summed to
    223 *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
    224 *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
    225 *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
    226 *	 must verify which offload is configured for a packet by testing the
    227 *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
    228 *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
    229 *
    230 *   * - %NETIF_F_FCOE_CRC
    231 *     - This feature indicates that a device is capable of offloading the FCOE
    232 *	 CRC in a packet. To perform this offload the stack will set ip_summed
    233 *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
    234 *	 accordingly. Note that there is no indication in the skbuff that the
    235 *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
    236 *	 both IP checksum offload and FCOE CRC offload must verify which offload
    237 *	 is configured for a packet, presumably by inspecting packet headers.
    238 *
    239 * Checksumming on output with GSO
    240 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    241 *
    242 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
    243 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
    244 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
    245 * part of the GSO operation is implied. If a checksum is being offloaded
    246 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
    247 * csum_offset are set to refer to the outermost checksum being offloaded
    248 * (two offloaded checksums are possible with UDP encapsulation).
    249 */
    250
    251/* Don't change this without changing skb_csum_unnecessary! */
    252#define CHECKSUM_NONE		0
    253#define CHECKSUM_UNNECESSARY	1
    254#define CHECKSUM_COMPLETE	2
    255#define CHECKSUM_PARTIAL	3
    256
    257/* Maximum value in skb->csum_level */
    258#define SKB_MAX_CSUM_LEVEL	3
    259
    260#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
    261#define SKB_WITH_OVERHEAD(X)	\
    262	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
    263#define SKB_MAX_ORDER(X, ORDER) \
    264	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
    265#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
    266#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
    267
    268/* return minimum truesize of one skb containing X bytes of data */
    269#define SKB_TRUESIZE(X) ((X) +						\
    270			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
    271			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
    272
    273struct ahash_request;
    274struct net_device;
    275struct scatterlist;
    276struct pipe_inode_info;
    277struct iov_iter;
    278struct napi_struct;
    279struct bpf_prog;
    280union bpf_attr;
    281struct skb_ext;
    282
    283#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
    284struct nf_bridge_info {
    285	enum {
    286		BRNF_PROTO_UNCHANGED,
    287		BRNF_PROTO_8021Q,
    288		BRNF_PROTO_PPPOE
    289	} orig_proto:8;
    290	u8			pkt_otherhost:1;
    291	u8			in_prerouting:1;
    292	u8			bridged_dnat:1;
    293	__u16			frag_max_size;
    294	struct net_device	*physindev;
    295
    296	/* always valid & non-NULL from FORWARD on, for physdev match */
    297	struct net_device	*physoutdev;
    298	union {
    299		/* prerouting: detect dnat in orig/reply direction */
    300		__be32          ipv4_daddr;
    301		struct in6_addr ipv6_daddr;
    302
    303		/* after prerouting + nat detected: store original source
    304		 * mac since neigh resolution overwrites it, only used while
    305		 * skb is out in neigh layer.
    306		 */
    307		char neigh_header[8];
    308	};
    309};
    310#endif
    311
    312#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
    313/* Chain in tc_skb_ext will be used to share the tc chain with
    314 * ovs recirc_id. It will be set to the current chain by tc
    315 * and read by ovs to recirc_id.
    316 */
    317struct tc_skb_ext {
    318	__u32 chain;
    319	__u16 mru;
    320	__u16 zone;
    321	u8 post_ct:1;
    322	u8 post_ct_snat:1;
    323	u8 post_ct_dnat:1;
    324};
    325#endif
    326
    327struct sk_buff_head {
    328	/* These two members must be first to match sk_buff. */
    329	struct_group_tagged(sk_buff_list, list,
    330		struct sk_buff	*next;
    331		struct sk_buff	*prev;
    332	);
    333
    334	__u32		qlen;
    335	spinlock_t	lock;
    336};
    337
    338struct sk_buff;
    339
    340/* The reason of skb drop, which is used in kfree_skb_reason().
    341 * en...maybe they should be splited by group?
    342 *
    343 * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
    344 * used to translate the reason to string.
    345 */
    346enum skb_drop_reason {
    347	SKB_NOT_DROPPED_YET = 0,
    348	SKB_DROP_REASON_NOT_SPECIFIED,	/* drop reason is not specified */
    349	SKB_DROP_REASON_NO_SOCKET,	/* socket not found */
    350	SKB_DROP_REASON_PKT_TOO_SMALL,	/* packet size is too small */
    351	SKB_DROP_REASON_TCP_CSUM,	/* TCP checksum error */
    352	SKB_DROP_REASON_SOCKET_FILTER,	/* dropped by socket filter */
    353	SKB_DROP_REASON_UDP_CSUM,	/* UDP checksum error */
    354	SKB_DROP_REASON_NETFILTER_DROP,	/* dropped by netfilter */
    355	SKB_DROP_REASON_OTHERHOST,	/* packet don't belong to current
    356					 * host (interface is in promisc
    357					 * mode)
    358					 */
    359	SKB_DROP_REASON_IP_CSUM,	/* IP checksum error */
    360	SKB_DROP_REASON_IP_INHDR,	/* there is something wrong with
    361					 * IP header (see
    362					 * IPSTATS_MIB_INHDRERRORS)
    363					 */
    364	SKB_DROP_REASON_IP_RPFILTER,	/* IP rpfilter validate failed.
    365					 * see the document for rp_filter
    366					 * in ip-sysctl.rst for more
    367					 * information
    368					 */
    369	SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2
    370						  * is multicast, but L3 is
    371						  * unicast.
    372						  */
    373	SKB_DROP_REASON_XFRM_POLICY,	/* xfrm policy check failed */
    374	SKB_DROP_REASON_IP_NOPROTO,	/* no support for IP protocol */
    375	SKB_DROP_REASON_SOCKET_RCVBUFF,	/* socket receive buff is full */
    376	SKB_DROP_REASON_PROTO_MEM,	/* proto memory limition, such as
    377					 * udp packet drop out of
    378					 * udp_memory_allocated.
    379					 */
    380	SKB_DROP_REASON_TCP_MD5NOTFOUND,	/* no MD5 hash and one
    381						 * expected, corresponding
    382						 * to LINUX_MIB_TCPMD5NOTFOUND
    383						 */
    384	SKB_DROP_REASON_TCP_MD5UNEXPECTED,	/* MD5 hash and we're not
    385						 * expecting one, corresponding
    386						 * to LINUX_MIB_TCPMD5UNEXPECTED
    387						 */
    388	SKB_DROP_REASON_TCP_MD5FAILURE,	/* MD5 hash and its wrong,
    389					 * corresponding to
    390					 * LINUX_MIB_TCPMD5FAILURE
    391					 */
    392	SKB_DROP_REASON_SOCKET_BACKLOG,	/* failed to add skb to socket
    393					 * backlog (see
    394					 * LINUX_MIB_TCPBACKLOGDROP)
    395					 */
    396	SKB_DROP_REASON_TCP_FLAGS,	/* TCP flags invalid */
    397	SKB_DROP_REASON_TCP_ZEROWINDOW,	/* TCP receive window size is zero,
    398					 * see LINUX_MIB_TCPZEROWINDOWDROP
    399					 */
    400	SKB_DROP_REASON_TCP_OLD_DATA,	/* the TCP data reveived is already
    401					 * received before (spurious retrans
    402					 * may happened), see
    403					 * LINUX_MIB_DELAYEDACKLOST
    404					 */
    405	SKB_DROP_REASON_TCP_OVERWINDOW,	/* the TCP data is out of window,
    406					 * the seq of the first byte exceed
    407					 * the right edges of receive
    408					 * window
    409					 */
    410	SKB_DROP_REASON_TCP_OFOMERGE,	/* the data of skb is already in
    411					 * the ofo queue, corresponding to
    412					 * LINUX_MIB_TCPOFOMERGE
    413					 */
    414	SKB_DROP_REASON_TCP_RFC7323_PAWS, /* PAWS check, corresponding to
    415					   * LINUX_MIB_PAWSESTABREJECTED
    416					   */
    417	SKB_DROP_REASON_TCP_INVALID_SEQUENCE, /* Not acceptable SEQ field */
    418	SKB_DROP_REASON_TCP_RESET,	/* Invalid RST packet */
    419	SKB_DROP_REASON_TCP_INVALID_SYN, /* Incoming packet has unexpected SYN flag */
    420	SKB_DROP_REASON_TCP_CLOSE,	/* TCP socket in CLOSE state */
    421	SKB_DROP_REASON_TCP_FASTOPEN,	/* dropped by FASTOPEN request socket */
    422	SKB_DROP_REASON_TCP_OLD_ACK,	/* TCP ACK is old, but in window */
    423	SKB_DROP_REASON_TCP_TOO_OLD_ACK, /* TCP ACK is too old */
    424	SKB_DROP_REASON_TCP_ACK_UNSENT_DATA, /* TCP ACK for data we haven't sent yet */
    425	SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE, /* pruned from TCP OFO queue */
    426	SKB_DROP_REASON_TCP_OFO_DROP,	/* data already in receive queue */
    427	SKB_DROP_REASON_IP_OUTNOROUTES,	/* route lookup failed */
    428	SKB_DROP_REASON_BPF_CGROUP_EGRESS,	/* dropped by
    429						 * BPF_PROG_TYPE_CGROUP_SKB
    430						 * eBPF program
    431						 */
    432	SKB_DROP_REASON_IPV6DISABLED,	/* IPv6 is disabled on the device */
    433	SKB_DROP_REASON_NEIGH_CREATEFAIL,	/* failed to create neigh
    434						 * entry
    435						 */
    436	SKB_DROP_REASON_NEIGH_FAILED,	/* neigh entry in failed state */
    437	SKB_DROP_REASON_NEIGH_QUEUEFULL,	/* arp_queue for neigh
    438						 * entry is full
    439						 */
    440	SKB_DROP_REASON_NEIGH_DEAD,	/* neigh entry is dead */
    441	SKB_DROP_REASON_TC_EGRESS,	/* dropped in TC egress HOOK */
    442	SKB_DROP_REASON_QDISC_DROP,	/* dropped by qdisc when packet
    443					 * outputting (failed to enqueue to
    444					 * current qdisc)
    445					 */
    446	SKB_DROP_REASON_CPU_BACKLOG,	/* failed to enqueue the skb to
    447					 * the per CPU backlog queue. This
    448					 * can be caused by backlog queue
    449					 * full (see netdev_max_backlog in
    450					 * net.rst) or RPS flow limit
    451					 */
    452	SKB_DROP_REASON_XDP,		/* dropped by XDP in input path */
    453	SKB_DROP_REASON_TC_INGRESS,	/* dropped in TC ingress HOOK */
    454	SKB_DROP_REASON_UNHANDLED_PROTO,	/* protocol not implemented
    455						 * or not supported
    456						 */
    457	SKB_DROP_REASON_SKB_CSUM,	/* sk_buff checksum computation
    458					 * error
    459					 */
    460	SKB_DROP_REASON_SKB_GSO_SEG,	/* gso segmentation error */
    461	SKB_DROP_REASON_SKB_UCOPY_FAULT,	/* failed to copy data from
    462						 * user space, e.g., via
    463						 * zerocopy_sg_from_iter()
    464						 * or skb_orphan_frags_rx()
    465						 */
    466	SKB_DROP_REASON_DEV_HDR,	/* device driver specific
    467					 * header/metadata is invalid
    468					 */
    469	/* the device is not ready to xmit/recv due to any of its data
    470	 * structure that is not up/ready/initialized, e.g., the IFF_UP is
    471	 * not set, or driver specific tun->tfiles[txq] is not initialized
    472	 */
    473	SKB_DROP_REASON_DEV_READY,
    474	SKB_DROP_REASON_FULL_RING,	/* ring buffer is full */
    475	SKB_DROP_REASON_NOMEM,		/* error due to OOM */
    476	SKB_DROP_REASON_HDR_TRUNC,      /* failed to trunc/extract the header
    477					 * from networking data, e.g., failed
    478					 * to pull the protocol header from
    479					 * frags via pskb_may_pull()
    480					 */
    481	SKB_DROP_REASON_TAP_FILTER,     /* dropped by (ebpf) filter directly
    482					 * attached to tun/tap, e.g., via
    483					 * TUNSETFILTEREBPF
    484					 */
    485	SKB_DROP_REASON_TAP_TXFILTER,	/* dropped by tx filter implemented
    486					 * at tun/tap, e.g., check_filter()
    487					 */
    488	SKB_DROP_REASON_ICMP_CSUM,	/* ICMP checksum error */
    489	SKB_DROP_REASON_INVALID_PROTO,	/* the packet doesn't follow RFC
    490					 * 2211, such as a broadcasts
    491					 * ICMP_TIMESTAMP
    492					 */
    493	SKB_DROP_REASON_IP_INADDRERRORS,	/* host unreachable, corresponding
    494						 * to IPSTATS_MIB_INADDRERRORS
    495						 */
    496	SKB_DROP_REASON_IP_INNOROUTES,	/* network unreachable, corresponding
    497					 * to IPSTATS_MIB_INADDRERRORS
    498					 */
    499	SKB_DROP_REASON_PKT_TOO_BIG,	/* packet size is too big (maybe exceed
    500					 * the MTU)
    501					 */
    502	SKB_DROP_REASON_MAX,
    503};
    504
    505#define SKB_DR_INIT(name, reason)				\
    506	enum skb_drop_reason name = SKB_DROP_REASON_##reason
    507#define SKB_DR(name)						\
    508	SKB_DR_INIT(name, NOT_SPECIFIED)
    509#define SKB_DR_SET(name, reason)				\
    510	(name = SKB_DROP_REASON_##reason)
    511#define SKB_DR_OR(name, reason)					\
    512	do {							\
    513		if (name == SKB_DROP_REASON_NOT_SPECIFIED ||	\
    514		    name == SKB_NOT_DROPPED_YET)		\
    515			SKB_DR_SET(name, reason);		\
    516	} while (0)
    517
    518/* To allow 64K frame to be packed as single skb without frag_list we
    519 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
    520 * buffers which do not start on a page boundary.
    521 *
    522 * Since GRO uses frags we allocate at least 16 regardless of page
    523 * size.
    524 */
    525#if (65536/PAGE_SIZE + 1) < 16
    526#define MAX_SKB_FRAGS 16UL
    527#else
    528#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
    529#endif
    530extern int sysctl_max_skb_frags;
    531
    532/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
    533 * segment using its current segmentation instead.
    534 */
    535#define GSO_BY_FRAGS	0xFFFF
    536
    537typedef struct bio_vec skb_frag_t;
    538
    539/**
    540 * skb_frag_size() - Returns the size of a skb fragment
    541 * @frag: skb fragment
    542 */
    543static inline unsigned int skb_frag_size(const skb_frag_t *frag)
    544{
    545	return frag->bv_len;
    546}
    547
    548/**
    549 * skb_frag_size_set() - Sets the size of a skb fragment
    550 * @frag: skb fragment
    551 * @size: size of fragment
    552 */
    553static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
    554{
    555	frag->bv_len = size;
    556}
    557
    558/**
    559 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
    560 * @frag: skb fragment
    561 * @delta: value to add
    562 */
    563static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
    564{
    565	frag->bv_len += delta;
    566}
    567
    568/**
    569 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
    570 * @frag: skb fragment
    571 * @delta: value to subtract
    572 */
    573static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
    574{
    575	frag->bv_len -= delta;
    576}
    577
    578/**
    579 * skb_frag_must_loop - Test if %p is a high memory page
    580 * @p: fragment's page
    581 */
    582static inline bool skb_frag_must_loop(struct page *p)
    583{
    584#if defined(CONFIG_HIGHMEM)
    585	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
    586		return true;
    587#endif
    588	return false;
    589}
    590
    591/**
    592 *	skb_frag_foreach_page - loop over pages in a fragment
    593 *
    594 *	@f:		skb frag to operate on
    595 *	@f_off:		offset from start of f->bv_page
    596 *	@f_len:		length from f_off to loop over
    597 *	@p:		(temp var) current page
    598 *	@p_off:		(temp var) offset from start of current page,
    599 *	                           non-zero only on first page.
    600 *	@p_len:		(temp var) length in current page,
    601 *				   < PAGE_SIZE only on first and last page.
    602 *	@copied:	(temp var) length so far, excluding current p_len.
    603 *
    604 *	A fragment can hold a compound page, in which case per-page
    605 *	operations, notably kmap_atomic, must be called for each
    606 *	regular page.
    607 */
    608#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
    609	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
    610	     p_off = (f_off) & (PAGE_SIZE - 1),				\
    611	     p_len = skb_frag_must_loop(p) ?				\
    612	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
    613	     copied = 0;						\
    614	     copied < f_len;						\
    615	     copied += p_len, p++, p_off = 0,				\
    616	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
    617
    618#define HAVE_HW_TIME_STAMP
    619
    620/**
    621 * struct skb_shared_hwtstamps - hardware time stamps
    622 * @hwtstamp:		hardware time stamp transformed into duration
    623 *			since arbitrary point in time
    624 * @netdev_data:	address/cookie of network device driver used as
    625 *			reference to actual hardware time stamp
    626 *
    627 * Software time stamps generated by ktime_get_real() are stored in
    628 * skb->tstamp.
    629 *
    630 * hwtstamps can only be compared against other hwtstamps from
    631 * the same device.
    632 *
    633 * This structure is attached to packets as part of the
    634 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
    635 */
    636struct skb_shared_hwtstamps {
    637	union {
    638		ktime_t	hwtstamp;
    639		void *netdev_data;
    640	};
    641};
    642
    643/* Definitions for tx_flags in struct skb_shared_info */
    644enum {
    645	/* generate hardware time stamp */
    646	SKBTX_HW_TSTAMP = 1 << 0,
    647
    648	/* generate software time stamp when queueing packet to NIC */
    649	SKBTX_SW_TSTAMP = 1 << 1,
    650
    651	/* device driver is going to provide hardware time stamp */
    652	SKBTX_IN_PROGRESS = 1 << 2,
    653
    654	/* generate hardware time stamp based on cycles if supported */
    655	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
    656
    657	/* generate wifi status information (where possible) */
    658	SKBTX_WIFI_STATUS = 1 << 4,
    659
    660	/* determine hardware time stamp based on time or cycles */
    661	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
    662
    663	/* generate software time stamp when entering packet scheduling */
    664	SKBTX_SCHED_TSTAMP = 1 << 6,
    665};
    666
    667#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
    668				 SKBTX_SCHED_TSTAMP)
    669#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
    670				 SKBTX_HW_TSTAMP_USE_CYCLES | \
    671				 SKBTX_ANY_SW_TSTAMP)
    672
    673/* Definitions for flags in struct skb_shared_info */
    674enum {
    675	/* use zcopy routines */
    676	SKBFL_ZEROCOPY_ENABLE = BIT(0),
    677
    678	/* This indicates at least one fragment might be overwritten
    679	 * (as in vmsplice(), sendfile() ...)
    680	 * If we need to compute a TX checksum, we'll need to copy
    681	 * all frags to avoid possible bad checksum
    682	 */
    683	SKBFL_SHARED_FRAG = BIT(1),
    684
    685	/* segment contains only zerocopy data and should not be
    686	 * charged to the kernel memory.
    687	 */
    688	SKBFL_PURE_ZEROCOPY = BIT(2),
    689};
    690
    691#define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
    692#define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
    693
    694/*
    695 * The callback notifies userspace to release buffers when skb DMA is done in
    696 * lower device, the skb last reference should be 0 when calling this.
    697 * The zerocopy_success argument is true if zero copy transmit occurred,
    698 * false on data copy or out of memory error caused by data copy attempt.
    699 * The ctx field is used to track device context.
    700 * The desc field is used to track userspace buffer index.
    701 */
    702struct ubuf_info {
    703	void (*callback)(struct sk_buff *, struct ubuf_info *,
    704			 bool zerocopy_success);
    705	union {
    706		struct {
    707			unsigned long desc;
    708			void *ctx;
    709		};
    710		struct {
    711			u32 id;
    712			u16 len;
    713			u16 zerocopy:1;
    714			u32 bytelen;
    715		};
    716	};
    717	refcount_t refcnt;
    718	u8 flags;
    719
    720	struct mmpin {
    721		struct user_struct *user;
    722		unsigned int num_pg;
    723	} mmp;
    724};
    725
    726#define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
    727
    728int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
    729void mm_unaccount_pinned_pages(struct mmpin *mmp);
    730
    731/* This data is invariant across clones and lives at
    732 * the end of the header data, ie. at skb->end.
    733 */
    734struct skb_shared_info {
    735	__u8		flags;
    736	__u8		meta_len;
    737	__u8		nr_frags;
    738	__u8		tx_flags;
    739	unsigned short	gso_size;
    740	/* Warning: this field is not always filled in (UFO)! */
    741	unsigned short	gso_segs;
    742	struct sk_buff	*frag_list;
    743	struct skb_shared_hwtstamps hwtstamps;
    744	unsigned int	gso_type;
    745	u32		tskey;
    746
    747	/*
    748	 * Warning : all fields before dataref are cleared in __alloc_skb()
    749	 */
    750	atomic_t	dataref;
    751	unsigned int	xdp_frags_size;
    752
    753	/* Intermediate layers must ensure that destructor_arg
    754	 * remains valid until skb destructor */
    755	void *		destructor_arg;
    756
    757	/* must be last field, see pskb_expand_head() */
    758	skb_frag_t	frags[MAX_SKB_FRAGS];
    759};
    760
    761/**
    762 * DOC: dataref and headerless skbs
    763 *
    764 * Transport layers send out clones of payload skbs they hold for
    765 * retransmissions. To allow lower layers of the stack to prepend their headers
    766 * we split &skb_shared_info.dataref into two halves.
    767 * The lower 16 bits count the overall number of references.
    768 * The higher 16 bits indicate how many of the references are payload-only.
    769 * skb_header_cloned() checks if skb is allowed to add / write the headers.
    770 *
    771 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
    772 * (via __skb_header_release()). Any clone created from marked skb will get
    773 * &sk_buff.hdr_len populated with the available headroom.
    774 * If there's the only clone in existence it's able to modify the headroom
    775 * at will. The sequence of calls inside the transport layer is::
    776 *
    777 *  <alloc skb>
    778 *  skb_reserve()
    779 *  __skb_header_release()
    780 *  skb_clone()
    781 *  // send the clone down the stack
    782 *
    783 * This is not a very generic construct and it depends on the transport layers
    784 * doing the right thing. In practice there's usually only one payload-only skb.
    785 * Having multiple payload-only skbs with different lengths of hdr_len is not
    786 * possible. The payload-only skbs should never leave their owner.
    787 */
    788#define SKB_DATAREF_SHIFT 16
    789#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
    790
    791
    792enum {
    793	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
    794	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
    795	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
    796};
    797
    798enum {
    799	SKB_GSO_TCPV4 = 1 << 0,
    800
    801	/* This indicates the skb is from an untrusted source. */
    802	SKB_GSO_DODGY = 1 << 1,
    803
    804	/* This indicates the tcp segment has CWR set. */
    805	SKB_GSO_TCP_ECN = 1 << 2,
    806
    807	SKB_GSO_TCP_FIXEDID = 1 << 3,
    808
    809	SKB_GSO_TCPV6 = 1 << 4,
    810
    811	SKB_GSO_FCOE = 1 << 5,
    812
    813	SKB_GSO_GRE = 1 << 6,
    814
    815	SKB_GSO_GRE_CSUM = 1 << 7,
    816
    817	SKB_GSO_IPXIP4 = 1 << 8,
    818
    819	SKB_GSO_IPXIP6 = 1 << 9,
    820
    821	SKB_GSO_UDP_TUNNEL = 1 << 10,
    822
    823	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
    824
    825	SKB_GSO_PARTIAL = 1 << 12,
    826
    827	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
    828
    829	SKB_GSO_SCTP = 1 << 14,
    830
    831	SKB_GSO_ESP = 1 << 15,
    832
    833	SKB_GSO_UDP = 1 << 16,
    834
    835	SKB_GSO_UDP_L4 = 1 << 17,
    836
    837	SKB_GSO_FRAGLIST = 1 << 18,
    838};
    839
    840#if BITS_PER_LONG > 32
    841#define NET_SKBUFF_DATA_USES_OFFSET 1
    842#endif
    843
    844#ifdef NET_SKBUFF_DATA_USES_OFFSET
    845typedef unsigned int sk_buff_data_t;
    846#else
    847typedef unsigned char *sk_buff_data_t;
    848#endif
    849
    850/**
    851 * DOC: Basic sk_buff geometry
    852 *
    853 * struct sk_buff itself is a metadata structure and does not hold any packet
    854 * data. All the data is held in associated buffers.
    855 *
    856 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
    857 * into two parts:
    858 *
    859 *  - data buffer, containing headers and sometimes payload;
    860 *    this is the part of the skb operated on by the common helpers
    861 *    such as skb_put() or skb_pull();
    862 *  - shared info (struct skb_shared_info) which holds an array of pointers
    863 *    to read-only data in the (page, offset, length) format.
    864 *
    865 * Optionally &skb_shared_info.frag_list may point to another skb.
    866 *
    867 * Basic diagram may look like this::
    868 *
    869 *                                  ---------------
    870 *                                 | sk_buff       |
    871 *                                  ---------------
    872 *     ,---------------------------  + head
    873 *    /          ,-----------------  + data
    874 *   /          /      ,-----------  + tail
    875 *  |          |      |            , + end
    876 *  |          |      |           |
    877 *  v          v      v           v
    878 *   -----------------------------------------------
    879 *  | headroom | data |  tailroom | skb_shared_info |
    880 *   -----------------------------------------------
    881 *                                 + [page frag]
    882 *                                 + [page frag]
    883 *                                 + [page frag]
    884 *                                 + [page frag]       ---------
    885 *                                 + frag_list    --> | sk_buff |
    886 *                                                     ---------
    887 *
    888 */
    889
    890/**
    891 *	struct sk_buff - socket buffer
    892 *	@next: Next buffer in list
    893 *	@prev: Previous buffer in list
    894 *	@tstamp: Time we arrived/left
    895 *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
    896 *		for retransmit timer
    897 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
    898 *	@list: queue head
    899 *	@ll_node: anchor in an llist (eg socket defer_list)
    900 *	@sk: Socket we are owned by
    901 *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
    902 *		fragmentation management
    903 *	@dev: Device we arrived on/are leaving by
    904 *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
    905 *	@cb: Control buffer. Free for use by every layer. Put private vars here
    906 *	@_skb_refdst: destination entry (with norefcount bit)
    907 *	@sp: the security path, used for xfrm
    908 *	@len: Length of actual data
    909 *	@data_len: Data length
    910 *	@mac_len: Length of link layer header
    911 *	@hdr_len: writable header length of cloned skb
    912 *	@csum: Checksum (must include start/offset pair)
    913 *	@csum_start: Offset from skb->head where checksumming should start
    914 *	@csum_offset: Offset from csum_start where checksum should be stored
    915 *	@priority: Packet queueing priority
    916 *	@ignore_df: allow local fragmentation
    917 *	@cloned: Head may be cloned (check refcnt to be sure)
    918 *	@ip_summed: Driver fed us an IP checksum
    919 *	@nohdr: Payload reference only, must not modify header
    920 *	@pkt_type: Packet class
    921 *	@fclone: skbuff clone status
    922 *	@ipvs_property: skbuff is owned by ipvs
    923 *	@inner_protocol_type: whether the inner protocol is
    924 *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
    925 *	@remcsum_offload: remote checksum offload is enabled
    926 *	@offload_fwd_mark: Packet was L2-forwarded in hardware
    927 *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
    928 *	@tc_skip_classify: do not classify packet. set by IFB device
    929 *	@tc_at_ingress: used within tc_classify to distinguish in/egress
    930 *	@redirected: packet was redirected by packet classifier
    931 *	@from_ingress: packet was redirected from the ingress path
    932 *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
    933 *	@peeked: this packet has been seen already, so stats have been
    934 *		done for it, don't do them again
    935 *	@nf_trace: netfilter packet trace flag
    936 *	@protocol: Packet protocol from driver
    937 *	@destructor: Destruct function
    938 *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
    939 *	@_sk_redir: socket redirection information for skmsg
    940 *	@_nfct: Associated connection, if any (with nfctinfo bits)
    941 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
    942 *	@skb_iif: ifindex of device we arrived on
    943 *	@tc_index: Traffic control index
    944 *	@hash: the packet hash
    945 *	@queue_mapping: Queue mapping for multiqueue devices
    946 *	@head_frag: skb was allocated from page fragments,
    947 *		not allocated by kmalloc() or vmalloc().
    948 *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
    949 *	@pp_recycle: mark the packet for recycling instead of freeing (implies
    950 *		page_pool support on driver)
    951 *	@active_extensions: active extensions (skb_ext_id types)
    952 *	@ndisc_nodetype: router type (from link layer)
    953 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
    954 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
    955 *		ports.
    956 *	@sw_hash: indicates hash was computed in software stack
    957 *	@wifi_acked_valid: wifi_acked was set
    958 *	@wifi_acked: whether frame was acked on wifi or not
    959 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
    960 *	@encapsulation: indicates the inner headers in the skbuff are valid
    961 *	@encap_hdr_csum: software checksum is needed
    962 *	@csum_valid: checksum is already valid
    963 *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
    964 *	@csum_complete_sw: checksum was completed by software
    965 *	@csum_level: indicates the number of consecutive checksums found in
    966 *		the packet minus one that have been verified as
    967 *		CHECKSUM_UNNECESSARY (max 3)
    968 *	@dst_pending_confirm: need to confirm neighbour
    969 *	@decrypted: Decrypted SKB
    970 *	@slow_gro: state present at GRO time, slower prepare step required
    971 *	@mono_delivery_time: When set, skb->tstamp has the
    972 *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
    973 *		skb->tstamp has the (rcv) timestamp at ingress and
    974 *		delivery_time at egress.
    975 *	@napi_id: id of the NAPI struct this skb came from
    976 *	@sender_cpu: (aka @napi_id) source CPU in XPS
    977 *	@alloc_cpu: CPU which did the skb allocation.
    978 *	@secmark: security marking
    979 *	@mark: Generic packet mark
    980 *	@reserved_tailroom: (aka @mark) number of bytes of free space available
    981 *		at the tail of an sk_buff
    982 *	@vlan_present: VLAN tag is present
    983 *	@vlan_proto: vlan encapsulation protocol
    984 *	@vlan_tci: vlan tag control information
    985 *	@inner_protocol: Protocol (encapsulation)
    986 *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
    987 *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
    988 *	@inner_transport_header: Inner transport layer header (encapsulation)
    989 *	@inner_network_header: Network layer header (encapsulation)
    990 *	@inner_mac_header: Link layer header (encapsulation)
    991 *	@transport_header: Transport layer header
    992 *	@network_header: Network layer header
    993 *	@mac_header: Link layer header
    994 *	@kcov_handle: KCOV remote handle for remote coverage collection
    995 *	@tail: Tail pointer
    996 *	@end: End pointer
    997 *	@head: Head of buffer
    998 *	@data: Data head pointer
    999 *	@truesize: Buffer size
   1000 *	@users: User count - see {datagram,tcp}.c
   1001 *	@extensions: allocated extensions, valid if active_extensions is nonzero
   1002 */
   1003
   1004struct sk_buff {
   1005	union {
   1006		struct {
   1007			/* These two members must be first to match sk_buff_head. */
   1008			struct sk_buff		*next;
   1009			struct sk_buff		*prev;
   1010
   1011			union {
   1012				struct net_device	*dev;
   1013				/* Some protocols might use this space to store information,
   1014				 * while device pointer would be NULL.
   1015				 * UDP receive path is one user.
   1016				 */
   1017				unsigned long		dev_scratch;
   1018			};
   1019		};
   1020		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
   1021		struct list_head	list;
   1022		struct llist_node	ll_node;
   1023	};
   1024
   1025	union {
   1026		struct sock		*sk;
   1027		int			ip_defrag_offset;
   1028	};
   1029
   1030	union {
   1031		ktime_t		tstamp;
   1032		u64		skb_mstamp_ns; /* earliest departure time */
   1033	};
   1034	/*
   1035	 * This is the control buffer. It is free to use for every
   1036	 * layer. Please put your private variables there. If you
   1037	 * want to keep them across layers you have to do a skb_clone()
   1038	 * first. This is owned by whoever has the skb queued ATM.
   1039	 */
   1040	char			cb[48] __aligned(8);
   1041
   1042	union {
   1043		struct {
   1044			unsigned long	_skb_refdst;
   1045			void		(*destructor)(struct sk_buff *skb);
   1046		};
   1047		struct list_head	tcp_tsorted_anchor;
   1048#ifdef CONFIG_NET_SOCK_MSG
   1049		unsigned long		_sk_redir;
   1050#endif
   1051	};
   1052
   1053#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
   1054	unsigned long		 _nfct;
   1055#endif
   1056	unsigned int		len,
   1057				data_len;
   1058	__u16			mac_len,
   1059				hdr_len;
   1060
   1061	/* Following fields are _not_ copied in __copy_skb_header()
   1062	 * Note that queue_mapping is here mostly to fill a hole.
   1063	 */
   1064	__u16			queue_mapping;
   1065
   1066/* if you move cloned around you also must adapt those constants */
   1067#ifdef __BIG_ENDIAN_BITFIELD
   1068#define CLONED_MASK	(1 << 7)
   1069#else
   1070#define CLONED_MASK	1
   1071#endif
   1072#define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
   1073
   1074	/* private: */
   1075	__u8			__cloned_offset[0];
   1076	/* public: */
   1077	__u8			cloned:1,
   1078				nohdr:1,
   1079				fclone:2,
   1080				peeked:1,
   1081				head_frag:1,
   1082				pfmemalloc:1,
   1083				pp_recycle:1; /* page_pool recycle indicator */
   1084#ifdef CONFIG_SKB_EXTENSIONS
   1085	__u8			active_extensions;
   1086#endif
   1087
   1088	/* Fields enclosed in headers group are copied
   1089	 * using a single memcpy() in __copy_skb_header()
   1090	 */
   1091	struct_group(headers,
   1092
   1093	/* private: */
   1094	__u8			__pkt_type_offset[0];
   1095	/* public: */
   1096	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
   1097	__u8			ignore_df:1;
   1098	__u8			nf_trace:1;
   1099	__u8			ip_summed:2;
   1100	__u8			ooo_okay:1;
   1101
   1102	__u8			l4_hash:1;
   1103	__u8			sw_hash:1;
   1104	__u8			wifi_acked_valid:1;
   1105	__u8			wifi_acked:1;
   1106	__u8			no_fcs:1;
   1107	/* Indicates the inner headers are valid in the skbuff. */
   1108	__u8			encapsulation:1;
   1109	__u8			encap_hdr_csum:1;
   1110	__u8			csum_valid:1;
   1111
   1112	/* private: */
   1113	__u8			__pkt_vlan_present_offset[0];
   1114	/* public: */
   1115	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
   1116	__u8			csum_complete_sw:1;
   1117	__u8			csum_level:2;
   1118	__u8			dst_pending_confirm:1;
   1119	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
   1120#ifdef CONFIG_NET_CLS_ACT
   1121	__u8			tc_skip_classify:1;
   1122	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
   1123#endif
   1124#ifdef CONFIG_IPV6_NDISC_NODETYPE
   1125	__u8			ndisc_nodetype:2;
   1126#endif
   1127
   1128	__u8			ipvs_property:1;
   1129	__u8			inner_protocol_type:1;
   1130	__u8			remcsum_offload:1;
   1131#ifdef CONFIG_NET_SWITCHDEV
   1132	__u8			offload_fwd_mark:1;
   1133	__u8			offload_l3_fwd_mark:1;
   1134#endif
   1135	__u8			redirected:1;
   1136#ifdef CONFIG_NET_REDIRECT
   1137	__u8			from_ingress:1;
   1138#endif
   1139#ifdef CONFIG_NETFILTER_SKIP_EGRESS
   1140	__u8			nf_skip_egress:1;
   1141#endif
   1142#ifdef CONFIG_TLS_DEVICE
   1143	__u8			decrypted:1;
   1144#endif
   1145	__u8			slow_gro:1;
   1146	__u8			csum_not_inet:1;
   1147
   1148#ifdef CONFIG_NET_SCHED
   1149	__u16			tc_index;	/* traffic control index */
   1150#endif
   1151
   1152	union {
   1153		__wsum		csum;
   1154		struct {
   1155			__u16	csum_start;
   1156			__u16	csum_offset;
   1157		};
   1158	};
   1159	__u32			priority;
   1160	int			skb_iif;
   1161	__u32			hash;
   1162	__be16			vlan_proto;
   1163	__u16			vlan_tci;
   1164#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
   1165	union {
   1166		unsigned int	napi_id;
   1167		unsigned int	sender_cpu;
   1168	};
   1169#endif
   1170	u16			alloc_cpu;
   1171#ifdef CONFIG_NETWORK_SECMARK
   1172	__u32		secmark;
   1173#endif
   1174
   1175	union {
   1176		__u32		mark;
   1177		__u32		reserved_tailroom;
   1178	};
   1179
   1180	union {
   1181		__be16		inner_protocol;
   1182		__u8		inner_ipproto;
   1183	};
   1184
   1185	__u16			inner_transport_header;
   1186	__u16			inner_network_header;
   1187	__u16			inner_mac_header;
   1188
   1189	__be16			protocol;
   1190	__u16			transport_header;
   1191	__u16			network_header;
   1192	__u16			mac_header;
   1193
   1194#ifdef CONFIG_KCOV
   1195	u64			kcov_handle;
   1196#endif
   1197
   1198	); /* end headers group */
   1199
   1200	/* These elements must be at the end, see alloc_skb() for details.  */
   1201	sk_buff_data_t		tail;
   1202	sk_buff_data_t		end;
   1203	unsigned char		*head,
   1204				*data;
   1205	unsigned int		truesize;
   1206	refcount_t		users;
   1207
   1208#ifdef CONFIG_SKB_EXTENSIONS
   1209	/* only useable after checking ->active_extensions != 0 */
   1210	struct skb_ext		*extensions;
   1211#endif
   1212};
   1213
   1214/* if you move pkt_type around you also must adapt those constants */
   1215#ifdef __BIG_ENDIAN_BITFIELD
   1216#define PKT_TYPE_MAX	(7 << 5)
   1217#else
   1218#define PKT_TYPE_MAX	7
   1219#endif
   1220#define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
   1221
   1222/* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
   1223 * around, you also must adapt these constants.
   1224 */
   1225#ifdef __BIG_ENDIAN_BITFIELD
   1226#define PKT_VLAN_PRESENT_BIT	7
   1227#define TC_AT_INGRESS_MASK		(1 << 0)
   1228#define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
   1229#else
   1230#define PKT_VLAN_PRESENT_BIT	0
   1231#define TC_AT_INGRESS_MASK		(1 << 7)
   1232#define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
   1233#endif
   1234#define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
   1235
   1236#ifdef __KERNEL__
   1237/*
   1238 *	Handling routines are only of interest to the kernel
   1239 */
   1240
   1241#define SKB_ALLOC_FCLONE	0x01
   1242#define SKB_ALLOC_RX		0x02
   1243#define SKB_ALLOC_NAPI		0x04
   1244
   1245/**
   1246 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
   1247 * @skb: buffer
   1248 */
   1249static inline bool skb_pfmemalloc(const struct sk_buff *skb)
   1250{
   1251	return unlikely(skb->pfmemalloc);
   1252}
   1253
   1254/*
   1255 * skb might have a dst pointer attached, refcounted or not.
   1256 * _skb_refdst low order bit is set if refcount was _not_ taken
   1257 */
   1258#define SKB_DST_NOREF	1UL
   1259#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
   1260
   1261/**
   1262 * skb_dst - returns skb dst_entry
   1263 * @skb: buffer
   1264 *
   1265 * Returns skb dst_entry, regardless of reference taken or not.
   1266 */
   1267static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
   1268{
   1269	/* If refdst was not refcounted, check we still are in a
   1270	 * rcu_read_lock section
   1271	 */
   1272	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
   1273		!rcu_read_lock_held() &&
   1274		!rcu_read_lock_bh_held());
   1275	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
   1276}
   1277
   1278/**
   1279 * skb_dst_set - sets skb dst
   1280 * @skb: buffer
   1281 * @dst: dst entry
   1282 *
   1283 * Sets skb dst, assuming a reference was taken on dst and should
   1284 * be released by skb_dst_drop()
   1285 */
   1286static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
   1287{
   1288	skb->slow_gro |= !!dst;
   1289	skb->_skb_refdst = (unsigned long)dst;
   1290}
   1291
   1292/**
   1293 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
   1294 * @skb: buffer
   1295 * @dst: dst entry
   1296 *
   1297 * Sets skb dst, assuming a reference was not taken on dst.
   1298 * If dst entry is cached, we do not take reference and dst_release
   1299 * will be avoided by refdst_drop. If dst entry is not cached, we take
   1300 * reference, so that last dst_release can destroy the dst immediately.
   1301 */
   1302static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
   1303{
   1304	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
   1305	skb->slow_gro |= !!dst;
   1306	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
   1307}
   1308
   1309/**
   1310 * skb_dst_is_noref - Test if skb dst isn't refcounted
   1311 * @skb: buffer
   1312 */
   1313static inline bool skb_dst_is_noref(const struct sk_buff *skb)
   1314{
   1315	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
   1316}
   1317
   1318/**
   1319 * skb_rtable - Returns the skb &rtable
   1320 * @skb: buffer
   1321 */
   1322static inline struct rtable *skb_rtable(const struct sk_buff *skb)
   1323{
   1324	return (struct rtable *)skb_dst(skb);
   1325}
   1326
   1327/* For mangling skb->pkt_type from user space side from applications
   1328 * such as nft, tc, etc, we only allow a conservative subset of
   1329 * possible pkt_types to be set.
   1330*/
   1331static inline bool skb_pkt_type_ok(u32 ptype)
   1332{
   1333	return ptype <= PACKET_OTHERHOST;
   1334}
   1335
   1336/**
   1337 * skb_napi_id - Returns the skb's NAPI id
   1338 * @skb: buffer
   1339 */
   1340static inline unsigned int skb_napi_id(const struct sk_buff *skb)
   1341{
   1342#ifdef CONFIG_NET_RX_BUSY_POLL
   1343	return skb->napi_id;
   1344#else
   1345	return 0;
   1346#endif
   1347}
   1348
   1349/**
   1350 * skb_unref - decrement the skb's reference count
   1351 * @skb: buffer
   1352 *
   1353 * Returns true if we can free the skb.
   1354 */
   1355static inline bool skb_unref(struct sk_buff *skb)
   1356{
   1357	if (unlikely(!skb))
   1358		return false;
   1359	if (likely(refcount_read(&skb->users) == 1))
   1360		smp_rmb();
   1361	else if (likely(!refcount_dec_and_test(&skb->users)))
   1362		return false;
   1363
   1364	return true;
   1365}
   1366
   1367void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
   1368
   1369/**
   1370 *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
   1371 *	@skb: buffer to free
   1372 */
   1373static inline void kfree_skb(struct sk_buff *skb)
   1374{
   1375	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
   1376}
   1377
   1378void skb_release_head_state(struct sk_buff *skb);
   1379void kfree_skb_list_reason(struct sk_buff *segs,
   1380			   enum skb_drop_reason reason);
   1381void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
   1382void skb_tx_error(struct sk_buff *skb);
   1383
   1384static inline void kfree_skb_list(struct sk_buff *segs)
   1385{
   1386	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
   1387}
   1388
   1389#ifdef CONFIG_TRACEPOINTS
   1390void consume_skb(struct sk_buff *skb);
   1391#else
   1392static inline void consume_skb(struct sk_buff *skb)
   1393{
   1394	return kfree_skb(skb);
   1395}
   1396#endif
   1397
   1398void __consume_stateless_skb(struct sk_buff *skb);
   1399void  __kfree_skb(struct sk_buff *skb);
   1400extern struct kmem_cache *skbuff_head_cache;
   1401
   1402void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
   1403bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
   1404		      bool *fragstolen, int *delta_truesize);
   1405
   1406struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
   1407			    int node);
   1408struct sk_buff *__build_skb(void *data, unsigned int frag_size);
   1409struct sk_buff *build_skb(void *data, unsigned int frag_size);
   1410struct sk_buff *build_skb_around(struct sk_buff *skb,
   1411				 void *data, unsigned int frag_size);
   1412void skb_attempt_defer_free(struct sk_buff *skb);
   1413
   1414struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
   1415
   1416/**
   1417 * alloc_skb - allocate a network buffer
   1418 * @size: size to allocate
   1419 * @priority: allocation mask
   1420 *
   1421 * This function is a convenient wrapper around __alloc_skb().
   1422 */
   1423static inline struct sk_buff *alloc_skb(unsigned int size,
   1424					gfp_t priority)
   1425{
   1426	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
   1427}
   1428
   1429struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
   1430				     unsigned long data_len,
   1431				     int max_page_order,
   1432				     int *errcode,
   1433				     gfp_t gfp_mask);
   1434struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
   1435
   1436/* Layout of fast clones : [skb1][skb2][fclone_ref] */
   1437struct sk_buff_fclones {
   1438	struct sk_buff	skb1;
   1439
   1440	struct sk_buff	skb2;
   1441
   1442	refcount_t	fclone_ref;
   1443};
   1444
   1445/**
   1446 *	skb_fclone_busy - check if fclone is busy
   1447 *	@sk: socket
   1448 *	@skb: buffer
   1449 *
   1450 * Returns true if skb is a fast clone, and its clone is not freed.
   1451 * Some drivers call skb_orphan() in their ndo_start_xmit(),
   1452 * so we also check that this didnt happen.
   1453 */
   1454static inline bool skb_fclone_busy(const struct sock *sk,
   1455				   const struct sk_buff *skb)
   1456{
   1457	const struct sk_buff_fclones *fclones;
   1458
   1459	fclones = container_of(skb, struct sk_buff_fclones, skb1);
   1460
   1461	return skb->fclone == SKB_FCLONE_ORIG &&
   1462	       refcount_read(&fclones->fclone_ref) > 1 &&
   1463	       READ_ONCE(fclones->skb2.sk) == sk;
   1464}
   1465
   1466/**
   1467 * alloc_skb_fclone - allocate a network buffer from fclone cache
   1468 * @size: size to allocate
   1469 * @priority: allocation mask
   1470 *
   1471 * This function is a convenient wrapper around __alloc_skb().
   1472 */
   1473static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
   1474					       gfp_t priority)
   1475{
   1476	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
   1477}
   1478
   1479struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
   1480void skb_headers_offset_update(struct sk_buff *skb, int off);
   1481int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
   1482struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
   1483void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
   1484struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
   1485struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
   1486				   gfp_t gfp_mask, bool fclone);
   1487static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
   1488					  gfp_t gfp_mask)
   1489{
   1490	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
   1491}
   1492
   1493int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
   1494struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
   1495				     unsigned int headroom);
   1496struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
   1497struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
   1498				int newtailroom, gfp_t priority);
   1499int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
   1500				     int offset, int len);
   1501int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
   1502			      int offset, int len);
   1503int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
   1504int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
   1505
   1506/**
   1507 *	skb_pad			-	zero pad the tail of an skb
   1508 *	@skb: buffer to pad
   1509 *	@pad: space to pad
   1510 *
   1511 *	Ensure that a buffer is followed by a padding area that is zero
   1512 *	filled. Used by network drivers which may DMA or transfer data
   1513 *	beyond the buffer end onto the wire.
   1514 *
   1515 *	May return error in out of memory cases. The skb is freed on error.
   1516 */
   1517static inline int skb_pad(struct sk_buff *skb, int pad)
   1518{
   1519	return __skb_pad(skb, pad, true);
   1520}
   1521#define dev_kfree_skb(a)	consume_skb(a)
   1522
   1523int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
   1524			 int offset, size_t size);
   1525
   1526struct skb_seq_state {
   1527	__u32		lower_offset;
   1528	__u32		upper_offset;
   1529	__u32		frag_idx;
   1530	__u32		stepped_offset;
   1531	struct sk_buff	*root_skb;
   1532	struct sk_buff	*cur_skb;
   1533	__u8		*frag_data;
   1534	__u32		frag_off;
   1535};
   1536
   1537void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
   1538			  unsigned int to, struct skb_seq_state *st);
   1539unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
   1540			  struct skb_seq_state *st);
   1541void skb_abort_seq_read(struct skb_seq_state *st);
   1542
   1543unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
   1544			   unsigned int to, struct ts_config *config);
   1545
   1546/*
   1547 * Packet hash types specify the type of hash in skb_set_hash.
   1548 *
   1549 * Hash types refer to the protocol layer addresses which are used to
   1550 * construct a packet's hash. The hashes are used to differentiate or identify
   1551 * flows of the protocol layer for the hash type. Hash types are either
   1552 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
   1553 *
   1554 * Properties of hashes:
   1555 *
   1556 * 1) Two packets in different flows have different hash values
   1557 * 2) Two packets in the same flow should have the same hash value
   1558 *
   1559 * A hash at a higher layer is considered to be more specific. A driver should
   1560 * set the most specific hash possible.
   1561 *
   1562 * A driver cannot indicate a more specific hash than the layer at which a hash
   1563 * was computed. For instance an L3 hash cannot be set as an L4 hash.
   1564 *
   1565 * A driver may indicate a hash level which is less specific than the
   1566 * actual layer the hash was computed on. For instance, a hash computed
   1567 * at L4 may be considered an L3 hash. This should only be done if the
   1568 * driver can't unambiguously determine that the HW computed the hash at
   1569 * the higher layer. Note that the "should" in the second property above
   1570 * permits this.
   1571 */
   1572enum pkt_hash_types {
   1573	PKT_HASH_TYPE_NONE,	/* Undefined type */
   1574	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
   1575	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
   1576	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
   1577};
   1578
   1579static inline void skb_clear_hash(struct sk_buff *skb)
   1580{
   1581	skb->hash = 0;
   1582	skb->sw_hash = 0;
   1583	skb->l4_hash = 0;
   1584}
   1585
   1586static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
   1587{
   1588	if (!skb->l4_hash)
   1589		skb_clear_hash(skb);
   1590}
   1591
   1592static inline void
   1593__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
   1594{
   1595	skb->l4_hash = is_l4;
   1596	skb->sw_hash = is_sw;
   1597	skb->hash = hash;
   1598}
   1599
   1600static inline void
   1601skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
   1602{
   1603	/* Used by drivers to set hash from HW */
   1604	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
   1605}
   1606
   1607static inline void
   1608__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
   1609{
   1610	__skb_set_hash(skb, hash, true, is_l4);
   1611}
   1612
   1613void __skb_get_hash(struct sk_buff *skb);
   1614u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
   1615u32 skb_get_poff(const struct sk_buff *skb);
   1616u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
   1617		   const struct flow_keys_basic *keys, int hlen);
   1618__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
   1619			    const void *data, int hlen_proto);
   1620
   1621static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
   1622					int thoff, u8 ip_proto)
   1623{
   1624	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
   1625}
   1626
   1627void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
   1628			     const struct flow_dissector_key *key,
   1629			     unsigned int key_count);
   1630
   1631struct bpf_flow_dissector;
   1632bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
   1633		      __be16 proto, int nhoff, int hlen, unsigned int flags);
   1634
   1635bool __skb_flow_dissect(const struct net *net,
   1636			const struct sk_buff *skb,
   1637			struct flow_dissector *flow_dissector,
   1638			void *target_container, const void *data,
   1639			__be16 proto, int nhoff, int hlen, unsigned int flags);
   1640
   1641static inline bool skb_flow_dissect(const struct sk_buff *skb,
   1642				    struct flow_dissector *flow_dissector,
   1643				    void *target_container, unsigned int flags)
   1644{
   1645	return __skb_flow_dissect(NULL, skb, flow_dissector,
   1646				  target_container, NULL, 0, 0, 0, flags);
   1647}
   1648
   1649static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
   1650					      struct flow_keys *flow,
   1651					      unsigned int flags)
   1652{
   1653	memset(flow, 0, sizeof(*flow));
   1654	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
   1655				  flow, NULL, 0, 0, 0, flags);
   1656}
   1657
   1658static inline bool
   1659skb_flow_dissect_flow_keys_basic(const struct net *net,
   1660				 const struct sk_buff *skb,
   1661				 struct flow_keys_basic *flow,
   1662				 const void *data, __be16 proto,
   1663				 int nhoff, int hlen, unsigned int flags)
   1664{
   1665	memset(flow, 0, sizeof(*flow));
   1666	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
   1667				  data, proto, nhoff, hlen, flags);
   1668}
   1669
   1670void skb_flow_dissect_meta(const struct sk_buff *skb,
   1671			   struct flow_dissector *flow_dissector,
   1672			   void *target_container);
   1673
   1674/* Gets a skb connection tracking info, ctinfo map should be a
   1675 * map of mapsize to translate enum ip_conntrack_info states
   1676 * to user states.
   1677 */
   1678void
   1679skb_flow_dissect_ct(const struct sk_buff *skb,
   1680		    struct flow_dissector *flow_dissector,
   1681		    void *target_container,
   1682		    u16 *ctinfo_map, size_t mapsize,
   1683		    bool post_ct, u16 zone);
   1684void
   1685skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
   1686			     struct flow_dissector *flow_dissector,
   1687			     void *target_container);
   1688
   1689void skb_flow_dissect_hash(const struct sk_buff *skb,
   1690			   struct flow_dissector *flow_dissector,
   1691			   void *target_container);
   1692
   1693static inline __u32 skb_get_hash(struct sk_buff *skb)
   1694{
   1695	if (!skb->l4_hash && !skb->sw_hash)
   1696		__skb_get_hash(skb);
   1697
   1698	return skb->hash;
   1699}
   1700
   1701static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
   1702{
   1703	if (!skb->l4_hash && !skb->sw_hash) {
   1704		struct flow_keys keys;
   1705		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
   1706
   1707		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
   1708	}
   1709
   1710	return skb->hash;
   1711}
   1712
   1713__u32 skb_get_hash_perturb(const struct sk_buff *skb,
   1714			   const siphash_key_t *perturb);
   1715
   1716static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
   1717{
   1718	return skb->hash;
   1719}
   1720
   1721static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
   1722{
   1723	to->hash = from->hash;
   1724	to->sw_hash = from->sw_hash;
   1725	to->l4_hash = from->l4_hash;
   1726};
   1727
   1728static inline void skb_copy_decrypted(struct sk_buff *to,
   1729				      const struct sk_buff *from)
   1730{
   1731#ifdef CONFIG_TLS_DEVICE
   1732	to->decrypted = from->decrypted;
   1733#endif
   1734}
   1735
   1736#ifdef NET_SKBUFF_DATA_USES_OFFSET
   1737static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
   1738{
   1739	return skb->head + skb->end;
   1740}
   1741
   1742static inline unsigned int skb_end_offset(const struct sk_buff *skb)
   1743{
   1744	return skb->end;
   1745}
   1746
   1747static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
   1748{
   1749	skb->end = offset;
   1750}
   1751#else
   1752static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
   1753{
   1754	return skb->end;
   1755}
   1756
   1757static inline unsigned int skb_end_offset(const struct sk_buff *skb)
   1758{
   1759	return skb->end - skb->head;
   1760}
   1761
   1762static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
   1763{
   1764	skb->end = skb->head + offset;
   1765}
   1766#endif
   1767
   1768struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
   1769				       struct ubuf_info *uarg);
   1770
   1771void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
   1772
   1773void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
   1774			   bool success);
   1775
   1776int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
   1777			    struct iov_iter *from, size_t length);
   1778
   1779static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
   1780					  struct msghdr *msg, int len)
   1781{
   1782	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
   1783}
   1784
   1785int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
   1786			     struct msghdr *msg, int len,
   1787			     struct ubuf_info *uarg);
   1788
   1789/* Internal */
   1790#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
   1791
   1792static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
   1793{
   1794	return &skb_shinfo(skb)->hwtstamps;
   1795}
   1796
   1797static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
   1798{
   1799	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
   1800
   1801	return is_zcopy ? skb_uarg(skb) : NULL;
   1802}
   1803
   1804static inline bool skb_zcopy_pure(const struct sk_buff *skb)
   1805{
   1806	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
   1807}
   1808
   1809static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
   1810				       const struct sk_buff *skb2)
   1811{
   1812	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
   1813}
   1814
   1815static inline void net_zcopy_get(struct ubuf_info *uarg)
   1816{
   1817	refcount_inc(&uarg->refcnt);
   1818}
   1819
   1820static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
   1821{
   1822	skb_shinfo(skb)->destructor_arg = uarg;
   1823	skb_shinfo(skb)->flags |= uarg->flags;
   1824}
   1825
   1826static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
   1827				 bool *have_ref)
   1828{
   1829	if (skb && uarg && !skb_zcopy(skb)) {
   1830		if (unlikely(have_ref && *have_ref))
   1831			*have_ref = false;
   1832		else
   1833			net_zcopy_get(uarg);
   1834		skb_zcopy_init(skb, uarg);
   1835	}
   1836}
   1837
   1838static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
   1839{
   1840	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
   1841	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
   1842}
   1843
   1844static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
   1845{
   1846	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
   1847}
   1848
   1849static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
   1850{
   1851	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
   1852}
   1853
   1854static inline void net_zcopy_put(struct ubuf_info *uarg)
   1855{
   1856	if (uarg)
   1857		uarg->callback(NULL, uarg, true);
   1858}
   1859
   1860static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
   1861{
   1862	if (uarg) {
   1863		if (uarg->callback == msg_zerocopy_callback)
   1864			msg_zerocopy_put_abort(uarg, have_uref);
   1865		else if (have_uref)
   1866			net_zcopy_put(uarg);
   1867	}
   1868}
   1869
   1870/* Release a reference on a zerocopy structure */
   1871static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
   1872{
   1873	struct ubuf_info *uarg = skb_zcopy(skb);
   1874
   1875	if (uarg) {
   1876		if (!skb_zcopy_is_nouarg(skb))
   1877			uarg->callback(skb, uarg, zerocopy_success);
   1878
   1879		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
   1880	}
   1881}
   1882
   1883static inline void skb_mark_not_on_list(struct sk_buff *skb)
   1884{
   1885	skb->next = NULL;
   1886}
   1887
   1888/* Iterate through singly-linked GSO fragments of an skb. */
   1889#define skb_list_walk_safe(first, skb, next_skb)                               \
   1890	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
   1891	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
   1892
   1893static inline void skb_list_del_init(struct sk_buff *skb)
   1894{
   1895	__list_del_entry(&skb->list);
   1896	skb_mark_not_on_list(skb);
   1897}
   1898
   1899/**
   1900 *	skb_queue_empty - check if a queue is empty
   1901 *	@list: queue head
   1902 *
   1903 *	Returns true if the queue is empty, false otherwise.
   1904 */
   1905static inline int skb_queue_empty(const struct sk_buff_head *list)
   1906{
   1907	return list->next == (const struct sk_buff *) list;
   1908}
   1909
   1910/**
   1911 *	skb_queue_empty_lockless - check if a queue is empty
   1912 *	@list: queue head
   1913 *
   1914 *	Returns true if the queue is empty, false otherwise.
   1915 *	This variant can be used in lockless contexts.
   1916 */
   1917static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
   1918{
   1919	return READ_ONCE(list->next) == (const struct sk_buff *) list;
   1920}
   1921
   1922
   1923/**
   1924 *	skb_queue_is_last - check if skb is the last entry in the queue
   1925 *	@list: queue head
   1926 *	@skb: buffer
   1927 *
   1928 *	Returns true if @skb is the last buffer on the list.
   1929 */
   1930static inline bool skb_queue_is_last(const struct sk_buff_head *list,
   1931				     const struct sk_buff *skb)
   1932{
   1933	return skb->next == (const struct sk_buff *) list;
   1934}
   1935
   1936/**
   1937 *	skb_queue_is_first - check if skb is the first entry in the queue
   1938 *	@list: queue head
   1939 *	@skb: buffer
   1940 *
   1941 *	Returns true if @skb is the first buffer on the list.
   1942 */
   1943static inline bool skb_queue_is_first(const struct sk_buff_head *list,
   1944				      const struct sk_buff *skb)
   1945{
   1946	return skb->prev == (const struct sk_buff *) list;
   1947}
   1948
   1949/**
   1950 *	skb_queue_next - return the next packet in the queue
   1951 *	@list: queue head
   1952 *	@skb: current buffer
   1953 *
   1954 *	Return the next packet in @list after @skb.  It is only valid to
   1955 *	call this if skb_queue_is_last() evaluates to false.
   1956 */
   1957static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
   1958					     const struct sk_buff *skb)
   1959{
   1960	/* This BUG_ON may seem severe, but if we just return then we
   1961	 * are going to dereference garbage.
   1962	 */
   1963	BUG_ON(skb_queue_is_last(list, skb));
   1964	return skb->next;
   1965}
   1966
   1967/**
   1968 *	skb_queue_prev - return the prev packet in the queue
   1969 *	@list: queue head
   1970 *	@skb: current buffer
   1971 *
   1972 *	Return the prev packet in @list before @skb.  It is only valid to
   1973 *	call this if skb_queue_is_first() evaluates to false.
   1974 */
   1975static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
   1976					     const struct sk_buff *skb)
   1977{
   1978	/* This BUG_ON may seem severe, but if we just return then we
   1979	 * are going to dereference garbage.
   1980	 */
   1981	BUG_ON(skb_queue_is_first(list, skb));
   1982	return skb->prev;
   1983}
   1984
   1985/**
   1986 *	skb_get - reference buffer
   1987 *	@skb: buffer to reference
   1988 *
   1989 *	Makes another reference to a socket buffer and returns a pointer
   1990 *	to the buffer.
   1991 */
   1992static inline struct sk_buff *skb_get(struct sk_buff *skb)
   1993{
   1994	refcount_inc(&skb->users);
   1995	return skb;
   1996}
   1997
   1998/*
   1999 * If users == 1, we are the only owner and can avoid redundant atomic changes.
   2000 */
   2001
   2002/**
   2003 *	skb_cloned - is the buffer a clone
   2004 *	@skb: buffer to check
   2005 *
   2006 *	Returns true if the buffer was generated with skb_clone() and is
   2007 *	one of multiple shared copies of the buffer. Cloned buffers are
   2008 *	shared data so must not be written to under normal circumstances.
   2009 */
   2010static inline int skb_cloned(const struct sk_buff *skb)
   2011{
   2012	return skb->cloned &&
   2013	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
   2014}
   2015
   2016static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
   2017{
   2018	might_sleep_if(gfpflags_allow_blocking(pri));
   2019
   2020	if (skb_cloned(skb))
   2021		return pskb_expand_head(skb, 0, 0, pri);
   2022
   2023	return 0;
   2024}
   2025
   2026/* This variant of skb_unclone() makes sure skb->truesize
   2027 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
   2028 *
   2029 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
   2030 * when various debugging features are in place.
   2031 */
   2032int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
   2033static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
   2034{
   2035	might_sleep_if(gfpflags_allow_blocking(pri));
   2036
   2037	if (skb_cloned(skb))
   2038		return __skb_unclone_keeptruesize(skb, pri);
   2039	return 0;
   2040}
   2041
   2042/**
   2043 *	skb_header_cloned - is the header a clone
   2044 *	@skb: buffer to check
   2045 *
   2046 *	Returns true if modifying the header part of the buffer requires
   2047 *	the data to be copied.
   2048 */
   2049static inline int skb_header_cloned(const struct sk_buff *skb)
   2050{
   2051	int dataref;
   2052
   2053	if (!skb->cloned)
   2054		return 0;
   2055
   2056	dataref = atomic_read(&skb_shinfo(skb)->dataref);
   2057	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
   2058	return dataref != 1;
   2059}
   2060
   2061static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
   2062{
   2063	might_sleep_if(gfpflags_allow_blocking(pri));
   2064
   2065	if (skb_header_cloned(skb))
   2066		return pskb_expand_head(skb, 0, 0, pri);
   2067
   2068	return 0;
   2069}
   2070
   2071/**
   2072 * __skb_header_release() - allow clones to use the headroom
   2073 * @skb: buffer to operate on
   2074 *
   2075 * See "DOC: dataref and headerless skbs".
   2076 */
   2077static inline void __skb_header_release(struct sk_buff *skb)
   2078{
   2079	skb->nohdr = 1;
   2080	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
   2081}
   2082
   2083
   2084/**
   2085 *	skb_shared - is the buffer shared
   2086 *	@skb: buffer to check
   2087 *
   2088 *	Returns true if more than one person has a reference to this
   2089 *	buffer.
   2090 */
   2091static inline int skb_shared(const struct sk_buff *skb)
   2092{
   2093	return refcount_read(&skb->users) != 1;
   2094}
   2095
   2096/**
   2097 *	skb_share_check - check if buffer is shared and if so clone it
   2098 *	@skb: buffer to check
   2099 *	@pri: priority for memory allocation
   2100 *
   2101 *	If the buffer is shared the buffer is cloned and the old copy
   2102 *	drops a reference. A new clone with a single reference is returned.
   2103 *	If the buffer is not shared the original buffer is returned. When
   2104 *	being called from interrupt status or with spinlocks held pri must
   2105 *	be GFP_ATOMIC.
   2106 *
   2107 *	NULL is returned on a memory allocation failure.
   2108 */
   2109static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
   2110{
   2111	might_sleep_if(gfpflags_allow_blocking(pri));
   2112	if (skb_shared(skb)) {
   2113		struct sk_buff *nskb = skb_clone(skb, pri);
   2114
   2115		if (likely(nskb))
   2116			consume_skb(skb);
   2117		else
   2118			kfree_skb(skb);
   2119		skb = nskb;
   2120	}
   2121	return skb;
   2122}
   2123
   2124/*
   2125 *	Copy shared buffers into a new sk_buff. We effectively do COW on
   2126 *	packets to handle cases where we have a local reader and forward
   2127 *	and a couple of other messy ones. The normal one is tcpdumping
   2128 *	a packet thats being forwarded.
   2129 */
   2130
   2131/**
   2132 *	skb_unshare - make a copy of a shared buffer
   2133 *	@skb: buffer to check
   2134 *	@pri: priority for memory allocation
   2135 *
   2136 *	If the socket buffer is a clone then this function creates a new
   2137 *	copy of the data, drops a reference count on the old copy and returns
   2138 *	the new copy with the reference count at 1. If the buffer is not a clone
   2139 *	the original buffer is returned. When called with a spinlock held or
   2140 *	from interrupt state @pri must be %GFP_ATOMIC
   2141 *
   2142 *	%NULL is returned on a memory allocation failure.
   2143 */
   2144static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
   2145					  gfp_t pri)
   2146{
   2147	might_sleep_if(gfpflags_allow_blocking(pri));
   2148	if (skb_cloned(skb)) {
   2149		struct sk_buff *nskb = skb_copy(skb, pri);
   2150
   2151		/* Free our shared copy */
   2152		if (likely(nskb))
   2153			consume_skb(skb);
   2154		else
   2155			kfree_skb(skb);
   2156		skb = nskb;
   2157	}
   2158	return skb;
   2159}
   2160
   2161/**
   2162 *	skb_peek - peek at the head of an &sk_buff_head
   2163 *	@list_: list to peek at
   2164 *
   2165 *	Peek an &sk_buff. Unlike most other operations you _MUST_
   2166 *	be careful with this one. A peek leaves the buffer on the
   2167 *	list and someone else may run off with it. You must hold
   2168 *	the appropriate locks or have a private queue to do this.
   2169 *
   2170 *	Returns %NULL for an empty list or a pointer to the head element.
   2171 *	The reference count is not incremented and the reference is therefore
   2172 *	volatile. Use with caution.
   2173 */
   2174static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
   2175{
   2176	struct sk_buff *skb = list_->next;
   2177
   2178	if (skb == (struct sk_buff *)list_)
   2179		skb = NULL;
   2180	return skb;
   2181}
   2182
   2183/**
   2184 *	__skb_peek - peek at the head of a non-empty &sk_buff_head
   2185 *	@list_: list to peek at
   2186 *
   2187 *	Like skb_peek(), but the caller knows that the list is not empty.
   2188 */
   2189static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
   2190{
   2191	return list_->next;
   2192}
   2193
   2194/**
   2195 *	skb_peek_next - peek skb following the given one from a queue
   2196 *	@skb: skb to start from
   2197 *	@list_: list to peek at
   2198 *
   2199 *	Returns %NULL when the end of the list is met or a pointer to the
   2200 *	next element. The reference count is not incremented and the
   2201 *	reference is therefore volatile. Use with caution.
   2202 */
   2203static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
   2204		const struct sk_buff_head *list_)
   2205{
   2206	struct sk_buff *next = skb->next;
   2207
   2208	if (next == (struct sk_buff *)list_)
   2209		next = NULL;
   2210	return next;
   2211}
   2212
   2213/**
   2214 *	skb_peek_tail - peek at the tail of an &sk_buff_head
   2215 *	@list_: list to peek at
   2216 *
   2217 *	Peek an &sk_buff. Unlike most other operations you _MUST_
   2218 *	be careful with this one. A peek leaves the buffer on the
   2219 *	list and someone else may run off with it. You must hold
   2220 *	the appropriate locks or have a private queue to do this.
   2221 *
   2222 *	Returns %NULL for an empty list or a pointer to the tail element.
   2223 *	The reference count is not incremented and the reference is therefore
   2224 *	volatile. Use with caution.
   2225 */
   2226static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
   2227{
   2228	struct sk_buff *skb = READ_ONCE(list_->prev);
   2229
   2230	if (skb == (struct sk_buff *)list_)
   2231		skb = NULL;
   2232	return skb;
   2233
   2234}
   2235
   2236/**
   2237 *	skb_queue_len	- get queue length
   2238 *	@list_: list to measure
   2239 *
   2240 *	Return the length of an &sk_buff queue.
   2241 */
   2242static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
   2243{
   2244	return list_->qlen;
   2245}
   2246
   2247/**
   2248 *	skb_queue_len_lockless	- get queue length
   2249 *	@list_: list to measure
   2250 *
   2251 *	Return the length of an &sk_buff queue.
   2252 *	This variant can be used in lockless contexts.
   2253 */
   2254static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
   2255{
   2256	return READ_ONCE(list_->qlen);
   2257}
   2258
   2259/**
   2260 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
   2261 *	@list: queue to initialize
   2262 *
   2263 *	This initializes only the list and queue length aspects of
   2264 *	an sk_buff_head object.  This allows to initialize the list
   2265 *	aspects of an sk_buff_head without reinitializing things like
   2266 *	the spinlock.  It can also be used for on-stack sk_buff_head
   2267 *	objects where the spinlock is known to not be used.
   2268 */
   2269static inline void __skb_queue_head_init(struct sk_buff_head *list)
   2270{
   2271	list->prev = list->next = (struct sk_buff *)list;
   2272	list->qlen = 0;
   2273}
   2274
   2275/*
   2276 * This function creates a split out lock class for each invocation;
   2277 * this is needed for now since a whole lot of users of the skb-queue
   2278 * infrastructure in drivers have different locking usage (in hardirq)
   2279 * than the networking core (in softirq only). In the long run either the
   2280 * network layer or drivers should need annotation to consolidate the
   2281 * main types of usage into 3 classes.
   2282 */
   2283static inline void skb_queue_head_init(struct sk_buff_head *list)
   2284{
   2285	spin_lock_init(&list->lock);
   2286	__skb_queue_head_init(list);
   2287}
   2288
   2289static inline void skb_queue_head_init_class(struct sk_buff_head *list,
   2290		struct lock_class_key *class)
   2291{
   2292	skb_queue_head_init(list);
   2293	lockdep_set_class(&list->lock, class);
   2294}
   2295
   2296/*
   2297 *	Insert an sk_buff on a list.
   2298 *
   2299 *	The "__skb_xxxx()" functions are the non-atomic ones that
   2300 *	can only be called with interrupts disabled.
   2301 */
   2302static inline void __skb_insert(struct sk_buff *newsk,
   2303				struct sk_buff *prev, struct sk_buff *next,
   2304				struct sk_buff_head *list)
   2305{
   2306	/* See skb_queue_empty_lockless() and skb_peek_tail()
   2307	 * for the opposite READ_ONCE()
   2308	 */
   2309	WRITE_ONCE(newsk->next, next);
   2310	WRITE_ONCE(newsk->prev, prev);
   2311	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
   2312	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
   2313	WRITE_ONCE(list->qlen, list->qlen + 1);
   2314}
   2315
   2316static inline void __skb_queue_splice(const struct sk_buff_head *list,
   2317				      struct sk_buff *prev,
   2318				      struct sk_buff *next)
   2319{
   2320	struct sk_buff *first = list->next;
   2321	struct sk_buff *last = list->prev;
   2322
   2323	WRITE_ONCE(first->prev, prev);
   2324	WRITE_ONCE(prev->next, first);
   2325
   2326	WRITE_ONCE(last->next, next);
   2327	WRITE_ONCE(next->prev, last);
   2328}
   2329
   2330/**
   2331 *	skb_queue_splice - join two skb lists, this is designed for stacks
   2332 *	@list: the new list to add
   2333 *	@head: the place to add it in the first list
   2334 */
   2335static inline void skb_queue_splice(const struct sk_buff_head *list,
   2336				    struct sk_buff_head *head)
   2337{
   2338	if (!skb_queue_empty(list)) {
   2339		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
   2340		head->qlen += list->qlen;
   2341	}
   2342}
   2343
   2344/**
   2345 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
   2346 *	@list: the new list to add
   2347 *	@head: the place to add it in the first list
   2348 *
   2349 *	The list at @list is reinitialised
   2350 */
   2351static inline void skb_queue_splice_init(struct sk_buff_head *list,
   2352					 struct sk_buff_head *head)
   2353{
   2354	if (!skb_queue_empty(list)) {
   2355		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
   2356		head->qlen += list->qlen;
   2357		__skb_queue_head_init(list);
   2358	}
   2359}
   2360
   2361/**
   2362 *	skb_queue_splice_tail - join two skb lists, each list being a queue
   2363 *	@list: the new list to add
   2364 *	@head: the place to add it in the first list
   2365 */
   2366static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
   2367					 struct sk_buff_head *head)
   2368{
   2369	if (!skb_queue_empty(list)) {
   2370		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
   2371		head->qlen += list->qlen;
   2372	}
   2373}
   2374
   2375/**
   2376 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
   2377 *	@list: the new list to add
   2378 *	@head: the place to add it in the first list
   2379 *
   2380 *	Each of the lists is a queue.
   2381 *	The list at @list is reinitialised
   2382 */
   2383static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
   2384					      struct sk_buff_head *head)
   2385{
   2386	if (!skb_queue_empty(list)) {
   2387		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
   2388		head->qlen += list->qlen;
   2389		__skb_queue_head_init(list);
   2390	}
   2391}
   2392
   2393/**
   2394 *	__skb_queue_after - queue a buffer at the list head
   2395 *	@list: list to use
   2396 *	@prev: place after this buffer
   2397 *	@newsk: buffer to queue
   2398 *
   2399 *	Queue a buffer int the middle of a list. This function takes no locks
   2400 *	and you must therefore hold required locks before calling it.
   2401 *
   2402 *	A buffer cannot be placed on two lists at the same time.
   2403 */
   2404static inline void __skb_queue_after(struct sk_buff_head *list,
   2405				     struct sk_buff *prev,
   2406				     struct sk_buff *newsk)
   2407{
   2408	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
   2409}
   2410
   2411void skb_append(struct sk_buff *old, struct sk_buff *newsk,
   2412		struct sk_buff_head *list);
   2413
   2414static inline void __skb_queue_before(struct sk_buff_head *list,
   2415				      struct sk_buff *next,
   2416				      struct sk_buff *newsk)
   2417{
   2418	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
   2419}
   2420
   2421/**
   2422 *	__skb_queue_head - queue a buffer at the list head
   2423 *	@list: list to use
   2424 *	@newsk: buffer to queue
   2425 *
   2426 *	Queue a buffer at the start of a list. This function takes no locks
   2427 *	and you must therefore hold required locks before calling it.
   2428 *
   2429 *	A buffer cannot be placed on two lists at the same time.
   2430 */
   2431static inline void __skb_queue_head(struct sk_buff_head *list,
   2432				    struct sk_buff *newsk)
   2433{
   2434	__skb_queue_after(list, (struct sk_buff *)list, newsk);
   2435}
   2436void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
   2437
   2438/**
   2439 *	__skb_queue_tail - queue a buffer at the list tail
   2440 *	@list: list to use
   2441 *	@newsk: buffer to queue
   2442 *
   2443 *	Queue a buffer at the end of a list. This function takes no locks
   2444 *	and you must therefore hold required locks before calling it.
   2445 *
   2446 *	A buffer cannot be placed on two lists at the same time.
   2447 */
   2448static inline void __skb_queue_tail(struct sk_buff_head *list,
   2449				   struct sk_buff *newsk)
   2450{
   2451	__skb_queue_before(list, (struct sk_buff *)list, newsk);
   2452}
   2453void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
   2454
   2455/*
   2456 * remove sk_buff from list. _Must_ be called atomically, and with
   2457 * the list known..
   2458 */
   2459void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
   2460static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
   2461{
   2462	struct sk_buff *next, *prev;
   2463
   2464	WRITE_ONCE(list->qlen, list->qlen - 1);
   2465	next	   = skb->next;
   2466	prev	   = skb->prev;
   2467	skb->next  = skb->prev = NULL;
   2468	WRITE_ONCE(next->prev, prev);
   2469	WRITE_ONCE(prev->next, next);
   2470}
   2471
   2472/**
   2473 *	__skb_dequeue - remove from the head of the queue
   2474 *	@list: list to dequeue from
   2475 *
   2476 *	Remove the head of the list. This function does not take any locks
   2477 *	so must be used with appropriate locks held only. The head item is
   2478 *	returned or %NULL if the list is empty.
   2479 */
   2480static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
   2481{
   2482	struct sk_buff *skb = skb_peek(list);
   2483	if (skb)
   2484		__skb_unlink(skb, list);
   2485	return skb;
   2486}
   2487struct sk_buff *skb_dequeue(struct sk_buff_head *list);
   2488
   2489/**
   2490 *	__skb_dequeue_tail - remove from the tail of the queue
   2491 *	@list: list to dequeue from
   2492 *
   2493 *	Remove the tail of the list. This function does not take any locks
   2494 *	so must be used with appropriate locks held only. The tail item is
   2495 *	returned or %NULL if the list is empty.
   2496 */
   2497static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
   2498{
   2499	struct sk_buff *skb = skb_peek_tail(list);
   2500	if (skb)
   2501		__skb_unlink(skb, list);
   2502	return skb;
   2503}
   2504struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
   2505
   2506
   2507static inline bool skb_is_nonlinear(const struct sk_buff *skb)
   2508{
   2509	return skb->data_len;
   2510}
   2511
   2512static inline unsigned int skb_headlen(const struct sk_buff *skb)
   2513{
   2514	return skb->len - skb->data_len;
   2515}
   2516
   2517static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
   2518{
   2519	unsigned int i, len = 0;
   2520
   2521	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
   2522		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
   2523	return len;
   2524}
   2525
   2526static inline unsigned int skb_pagelen(const struct sk_buff *skb)
   2527{
   2528	return skb_headlen(skb) + __skb_pagelen(skb);
   2529}
   2530
   2531/**
   2532 * __skb_fill_page_desc - initialise a paged fragment in an skb
   2533 * @skb: buffer containing fragment to be initialised
   2534 * @i: paged fragment index to initialise
   2535 * @page: the page to use for this fragment
   2536 * @off: the offset to the data with @page
   2537 * @size: the length of the data
   2538 *
   2539 * Initialises the @i'th fragment of @skb to point to &size bytes at
   2540 * offset @off within @page.
   2541 *
   2542 * Does not take any additional reference on the fragment.
   2543 */
   2544static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
   2545					struct page *page, int off, int size)
   2546{
   2547	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
   2548
   2549	/*
   2550	 * Propagate page pfmemalloc to the skb if we can. The problem is
   2551	 * that not all callers have unique ownership of the page but rely
   2552	 * on page_is_pfmemalloc doing the right thing(tm).
   2553	 */
   2554	frag->bv_page		  = page;
   2555	frag->bv_offset		  = off;
   2556	skb_frag_size_set(frag, size);
   2557
   2558	page = compound_head(page);
   2559	if (page_is_pfmemalloc(page))
   2560		skb->pfmemalloc	= true;
   2561}
   2562
   2563/**
   2564 * skb_fill_page_desc - initialise a paged fragment in an skb
   2565 * @skb: buffer containing fragment to be initialised
   2566 * @i: paged fragment index to initialise
   2567 * @page: the page to use for this fragment
   2568 * @off: the offset to the data with @page
   2569 * @size: the length of the data
   2570 *
   2571 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
   2572 * @skb to point to @size bytes at offset @off within @page. In
   2573 * addition updates @skb such that @i is the last fragment.
   2574 *
   2575 * Does not take any additional reference on the fragment.
   2576 */
   2577static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
   2578				      struct page *page, int off, int size)
   2579{
   2580	__skb_fill_page_desc(skb, i, page, off, size);
   2581	skb_shinfo(skb)->nr_frags = i + 1;
   2582}
   2583
   2584void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
   2585		     int size, unsigned int truesize);
   2586
   2587void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
   2588			  unsigned int truesize);
   2589
   2590#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
   2591
   2592#ifdef NET_SKBUFF_DATA_USES_OFFSET
   2593static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
   2594{
   2595	return skb->head + skb->tail;
   2596}
   2597
   2598static inline void skb_reset_tail_pointer(struct sk_buff *skb)
   2599{
   2600	skb->tail = skb->data - skb->head;
   2601}
   2602
   2603static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
   2604{
   2605	skb_reset_tail_pointer(skb);
   2606	skb->tail += offset;
   2607}
   2608
   2609#else /* NET_SKBUFF_DATA_USES_OFFSET */
   2610static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
   2611{
   2612	return skb->tail;
   2613}
   2614
   2615static inline void skb_reset_tail_pointer(struct sk_buff *skb)
   2616{
   2617	skb->tail = skb->data;
   2618}
   2619
   2620static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
   2621{
   2622	skb->tail = skb->data + offset;
   2623}
   2624
   2625#endif /* NET_SKBUFF_DATA_USES_OFFSET */
   2626
   2627/*
   2628 *	Add data to an sk_buff
   2629 */
   2630void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
   2631void *skb_put(struct sk_buff *skb, unsigned int len);
   2632static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
   2633{
   2634	void *tmp = skb_tail_pointer(skb);
   2635	SKB_LINEAR_ASSERT(skb);
   2636	skb->tail += len;
   2637	skb->len  += len;
   2638	return tmp;
   2639}
   2640
   2641static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
   2642{
   2643	void *tmp = __skb_put(skb, len);
   2644
   2645	memset(tmp, 0, len);
   2646	return tmp;
   2647}
   2648
   2649static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
   2650				   unsigned int len)
   2651{
   2652	void *tmp = __skb_put(skb, len);
   2653
   2654	memcpy(tmp, data, len);
   2655	return tmp;
   2656}
   2657
   2658static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
   2659{
   2660	*(u8 *)__skb_put(skb, 1) = val;
   2661}
   2662
   2663static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
   2664{
   2665	void *tmp = skb_put(skb, len);
   2666
   2667	memset(tmp, 0, len);
   2668
   2669	return tmp;
   2670}
   2671
   2672static inline void *skb_put_data(struct sk_buff *skb, const void *data,
   2673				 unsigned int len)
   2674{
   2675	void *tmp = skb_put(skb, len);
   2676
   2677	memcpy(tmp, data, len);
   2678
   2679	return tmp;
   2680}
   2681
   2682static inline void skb_put_u8(struct sk_buff *skb, u8 val)
   2683{
   2684	*(u8 *)skb_put(skb, 1) = val;
   2685}
   2686
   2687void *skb_push(struct sk_buff *skb, unsigned int len);
   2688static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
   2689{
   2690	skb->data -= len;
   2691	skb->len  += len;
   2692	return skb->data;
   2693}
   2694
   2695void *skb_pull(struct sk_buff *skb, unsigned int len);
   2696static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
   2697{
   2698	skb->len -= len;
   2699	if (unlikely(skb->len < skb->data_len)) {
   2700#if defined(CONFIG_DEBUG_NET)
   2701		skb->len += len;
   2702		pr_err("__skb_pull(len=%u)\n", len);
   2703		skb_dump(KERN_ERR, skb, false);
   2704#endif
   2705		BUG();
   2706	}
   2707	return skb->data += len;
   2708}
   2709
   2710static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
   2711{
   2712	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
   2713}
   2714
   2715void *skb_pull_data(struct sk_buff *skb, size_t len);
   2716
   2717void *__pskb_pull_tail(struct sk_buff *skb, int delta);
   2718
   2719static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
   2720{
   2721	if (len > skb_headlen(skb) &&
   2722	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
   2723		return NULL;
   2724	skb->len -= len;
   2725	return skb->data += len;
   2726}
   2727
   2728static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
   2729{
   2730	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
   2731}
   2732
   2733static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
   2734{
   2735	if (likely(len <= skb_headlen(skb)))
   2736		return true;
   2737	if (unlikely(len > skb->len))
   2738		return false;
   2739	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
   2740}
   2741
   2742void skb_condense(struct sk_buff *skb);
   2743
   2744/**
   2745 *	skb_headroom - bytes at buffer head
   2746 *	@skb: buffer to check
   2747 *
   2748 *	Return the number of bytes of free space at the head of an &sk_buff.
   2749 */
   2750static inline unsigned int skb_headroom(const struct sk_buff *skb)
   2751{
   2752	return skb->data - skb->head;
   2753}
   2754
   2755/**
   2756 *	skb_tailroom - bytes at buffer end
   2757 *	@skb: buffer to check
   2758 *
   2759 *	Return the number of bytes of free space at the tail of an sk_buff
   2760 */
   2761static inline int skb_tailroom(const struct sk_buff *skb)
   2762{
   2763	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
   2764}
   2765
   2766/**
   2767 *	skb_availroom - bytes at buffer end
   2768 *	@skb: buffer to check
   2769 *
   2770 *	Return the number of bytes of free space at the tail of an sk_buff
   2771 *	allocated by sk_stream_alloc()
   2772 */
   2773static inline int skb_availroom(const struct sk_buff *skb)
   2774{
   2775	if (skb_is_nonlinear(skb))
   2776		return 0;
   2777
   2778	return skb->end - skb->tail - skb->reserved_tailroom;
   2779}
   2780
   2781/**
   2782 *	skb_reserve - adjust headroom
   2783 *	@skb: buffer to alter
   2784 *	@len: bytes to move
   2785 *
   2786 *	Increase the headroom of an empty &sk_buff by reducing the tail
   2787 *	room. This is only allowed for an empty buffer.
   2788 */
   2789static inline void skb_reserve(struct sk_buff *skb, int len)
   2790{
   2791	skb->data += len;
   2792	skb->tail += len;
   2793}
   2794
   2795/**
   2796 *	skb_tailroom_reserve - adjust reserved_tailroom
   2797 *	@skb: buffer to alter
   2798 *	@mtu: maximum amount of headlen permitted
   2799 *	@needed_tailroom: minimum amount of reserved_tailroom
   2800 *
   2801 *	Set reserved_tailroom so that headlen can be as large as possible but
   2802 *	not larger than mtu and tailroom cannot be smaller than
   2803 *	needed_tailroom.
   2804 *	The required headroom should already have been reserved before using
   2805 *	this function.
   2806 */
   2807static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
   2808					unsigned int needed_tailroom)
   2809{
   2810	SKB_LINEAR_ASSERT(skb);
   2811	if (mtu < skb_tailroom(skb) - needed_tailroom)
   2812		/* use at most mtu */
   2813		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
   2814	else
   2815		/* use up to all available space */
   2816		skb->reserved_tailroom = needed_tailroom;
   2817}
   2818
   2819#define ENCAP_TYPE_ETHER	0
   2820#define ENCAP_TYPE_IPPROTO	1
   2821
   2822static inline void skb_set_inner_protocol(struct sk_buff *skb,
   2823					  __be16 protocol)
   2824{
   2825	skb->inner_protocol = protocol;
   2826	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
   2827}
   2828
   2829static inline void skb_set_inner_ipproto(struct sk_buff *skb,
   2830					 __u8 ipproto)
   2831{
   2832	skb->inner_ipproto = ipproto;
   2833	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
   2834}
   2835
   2836static inline void skb_reset_inner_headers(struct sk_buff *skb)
   2837{
   2838	skb->inner_mac_header = skb->mac_header;
   2839	skb->inner_network_header = skb->network_header;
   2840	skb->inner_transport_header = skb->transport_header;
   2841}
   2842
   2843static inline void skb_reset_mac_len(struct sk_buff *skb)
   2844{
   2845	skb->mac_len = skb->network_header - skb->mac_header;
   2846}
   2847
   2848static inline unsigned char *skb_inner_transport_header(const struct sk_buff
   2849							*skb)
   2850{
   2851	return skb->head + skb->inner_transport_header;
   2852}
   2853
   2854static inline int skb_inner_transport_offset(const struct sk_buff *skb)
   2855{
   2856	return skb_inner_transport_header(skb) - skb->data;
   2857}
   2858
   2859static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
   2860{
   2861	skb->inner_transport_header = skb->data - skb->head;
   2862}
   2863
   2864static inline void skb_set_inner_transport_header(struct sk_buff *skb,
   2865						   const int offset)
   2866{
   2867	skb_reset_inner_transport_header(skb);
   2868	skb->inner_transport_header += offset;
   2869}
   2870
   2871static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
   2872{
   2873	return skb->head + skb->inner_network_header;
   2874}
   2875
   2876static inline void skb_reset_inner_network_header(struct sk_buff *skb)
   2877{
   2878	skb->inner_network_header = skb->data - skb->head;
   2879}
   2880
   2881static inline void skb_set_inner_network_header(struct sk_buff *skb,
   2882						const int offset)
   2883{
   2884	skb_reset_inner_network_header(skb);
   2885	skb->inner_network_header += offset;
   2886}
   2887
   2888static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
   2889{
   2890	return skb->head + skb->inner_mac_header;
   2891}
   2892
   2893static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
   2894{
   2895	skb->inner_mac_header = skb->data - skb->head;
   2896}
   2897
   2898static inline void skb_set_inner_mac_header(struct sk_buff *skb,
   2899					    const int offset)
   2900{
   2901	skb_reset_inner_mac_header(skb);
   2902	skb->inner_mac_header += offset;
   2903}
   2904static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
   2905{
   2906	return skb->transport_header != (typeof(skb->transport_header))~0U;
   2907}
   2908
   2909static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
   2910{
   2911	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
   2912	return skb->head + skb->transport_header;
   2913}
   2914
   2915static inline void skb_reset_transport_header(struct sk_buff *skb)
   2916{
   2917	skb->transport_header = skb->data - skb->head;
   2918}
   2919
   2920static inline void skb_set_transport_header(struct sk_buff *skb,
   2921					    const int offset)
   2922{
   2923	skb_reset_transport_header(skb);
   2924	skb->transport_header += offset;
   2925}
   2926
   2927static inline unsigned char *skb_network_header(const struct sk_buff *skb)
   2928{
   2929	return skb->head + skb->network_header;
   2930}
   2931
   2932static inline void skb_reset_network_header(struct sk_buff *skb)
   2933{
   2934	skb->network_header = skb->data - skb->head;
   2935}
   2936
   2937static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
   2938{
   2939	skb_reset_network_header(skb);
   2940	skb->network_header += offset;
   2941}
   2942
   2943static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
   2944{
   2945	return skb->head + skb->mac_header;
   2946}
   2947
   2948static inline int skb_mac_offset(const struct sk_buff *skb)
   2949{
   2950	return skb_mac_header(skb) - skb->data;
   2951}
   2952
   2953static inline u32 skb_mac_header_len(const struct sk_buff *skb)
   2954{
   2955	return skb->network_header - skb->mac_header;
   2956}
   2957
   2958static inline int skb_mac_header_was_set(const struct sk_buff *skb)
   2959{
   2960	return skb->mac_header != (typeof(skb->mac_header))~0U;
   2961}
   2962
   2963static inline void skb_unset_mac_header(struct sk_buff *skb)
   2964{
   2965	skb->mac_header = (typeof(skb->mac_header))~0U;
   2966}
   2967
   2968static inline void skb_reset_mac_header(struct sk_buff *skb)
   2969{
   2970	skb->mac_header = skb->data - skb->head;
   2971}
   2972
   2973static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
   2974{
   2975	skb_reset_mac_header(skb);
   2976	skb->mac_header += offset;
   2977}
   2978
   2979static inline void skb_pop_mac_header(struct sk_buff *skb)
   2980{
   2981	skb->mac_header = skb->network_header;
   2982}
   2983
   2984static inline void skb_probe_transport_header(struct sk_buff *skb)
   2985{
   2986	struct flow_keys_basic keys;
   2987
   2988	if (skb_transport_header_was_set(skb))
   2989		return;
   2990
   2991	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
   2992					     NULL, 0, 0, 0, 0))
   2993		skb_set_transport_header(skb, keys.control.thoff);
   2994}
   2995
   2996static inline void skb_mac_header_rebuild(struct sk_buff *skb)
   2997{
   2998	if (skb_mac_header_was_set(skb)) {
   2999		const unsigned char *old_mac = skb_mac_header(skb);
   3000
   3001		skb_set_mac_header(skb, -skb->mac_len);
   3002		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
   3003	}
   3004}
   3005
   3006static inline int skb_checksum_start_offset(const struct sk_buff *skb)
   3007{
   3008	return skb->csum_start - skb_headroom(skb);
   3009}
   3010
   3011static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
   3012{
   3013	return skb->head + skb->csum_start;
   3014}
   3015
   3016static inline int skb_transport_offset(const struct sk_buff *skb)
   3017{
   3018	return skb_transport_header(skb) - skb->data;
   3019}
   3020
   3021static inline u32 skb_network_header_len(const struct sk_buff *skb)
   3022{
   3023	return skb->transport_header - skb->network_header;
   3024}
   3025
   3026static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
   3027{
   3028	return skb->inner_transport_header - skb->inner_network_header;
   3029}
   3030
   3031static inline int skb_network_offset(const struct sk_buff *skb)
   3032{
   3033	return skb_network_header(skb) - skb->data;
   3034}
   3035
   3036static inline int skb_inner_network_offset(const struct sk_buff *skb)
   3037{
   3038	return skb_inner_network_header(skb) - skb->data;
   3039}
   3040
   3041static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
   3042{
   3043	return pskb_may_pull(skb, skb_network_offset(skb) + len);
   3044}
   3045
   3046/*
   3047 * CPUs often take a performance hit when accessing unaligned memory
   3048 * locations. The actual performance hit varies, it can be small if the
   3049 * hardware handles it or large if we have to take an exception and fix it
   3050 * in software.
   3051 *
   3052 * Since an ethernet header is 14 bytes network drivers often end up with
   3053 * the IP header at an unaligned offset. The IP header can be aligned by
   3054 * shifting the start of the packet by 2 bytes. Drivers should do this
   3055 * with:
   3056 *
   3057 * skb_reserve(skb, NET_IP_ALIGN);
   3058 *
   3059 * The downside to this alignment of the IP header is that the DMA is now
   3060 * unaligned. On some architectures the cost of an unaligned DMA is high
   3061 * and this cost outweighs the gains made by aligning the IP header.
   3062 *
   3063 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
   3064 * to be overridden.
   3065 */
   3066#ifndef NET_IP_ALIGN
   3067#define NET_IP_ALIGN	2
   3068#endif
   3069
   3070/*
   3071 * The networking layer reserves some headroom in skb data (via
   3072 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
   3073 * the header has to grow. In the default case, if the header has to grow
   3074 * 32 bytes or less we avoid the reallocation.
   3075 *
   3076 * Unfortunately this headroom changes the DMA alignment of the resulting
   3077 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
   3078 * on some architectures. An architecture can override this value,
   3079 * perhaps setting it to a cacheline in size (since that will maintain
   3080 * cacheline alignment of the DMA). It must be a power of 2.
   3081 *
   3082 * Various parts of the networking layer expect at least 32 bytes of
   3083 * headroom, you should not reduce this.
   3084 *
   3085 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
   3086 * to reduce average number of cache lines per packet.
   3087 * get_rps_cpu() for example only access one 64 bytes aligned block :
   3088 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
   3089 */
   3090#ifndef NET_SKB_PAD
   3091#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
   3092#endif
   3093
   3094int ___pskb_trim(struct sk_buff *skb, unsigned int len);
   3095
   3096static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
   3097{
   3098	if (WARN_ON(skb_is_nonlinear(skb)))
   3099		return;
   3100	skb->len = len;
   3101	skb_set_tail_pointer(skb, len);
   3102}
   3103
   3104static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
   3105{
   3106	__skb_set_length(skb, len);
   3107}
   3108
   3109void skb_trim(struct sk_buff *skb, unsigned int len);
   3110
   3111static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
   3112{
   3113	if (skb->data_len)
   3114		return ___pskb_trim(skb, len);
   3115	__skb_trim(skb, len);
   3116	return 0;
   3117}
   3118
   3119static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
   3120{
   3121	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
   3122}
   3123
   3124/**
   3125 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
   3126 *	@skb: buffer to alter
   3127 *	@len: new length
   3128 *
   3129 *	This is identical to pskb_trim except that the caller knows that
   3130 *	the skb is not cloned so we should never get an error due to out-
   3131 *	of-memory.
   3132 */
   3133static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
   3134{
   3135	int err = pskb_trim(skb, len);
   3136	BUG_ON(err);
   3137}
   3138
   3139static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
   3140{
   3141	unsigned int diff = len - skb->len;
   3142
   3143	if (skb_tailroom(skb) < diff) {
   3144		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
   3145					   GFP_ATOMIC);
   3146		if (ret)
   3147			return ret;
   3148	}
   3149	__skb_set_length(skb, len);
   3150	return 0;
   3151}
   3152
   3153/**
   3154 *	skb_orphan - orphan a buffer
   3155 *	@skb: buffer to orphan
   3156 *
   3157 *	If a buffer currently has an owner then we call the owner's
   3158 *	destructor function and make the @skb unowned. The buffer continues
   3159 *	to exist but is no longer charged to its former owner.
   3160 */
   3161static inline void skb_orphan(struct sk_buff *skb)
   3162{
   3163	if (skb->destructor) {
   3164		skb->destructor(skb);
   3165		skb->destructor = NULL;
   3166		skb->sk		= NULL;
   3167	} else {
   3168		BUG_ON(skb->sk);
   3169	}
   3170}
   3171
   3172/**
   3173 *	skb_orphan_frags - orphan the frags contained in a buffer
   3174 *	@skb: buffer to orphan frags from
   3175 *	@gfp_mask: allocation mask for replacement pages
   3176 *
   3177 *	For each frag in the SKB which needs a destructor (i.e. has an
   3178 *	owner) create a copy of that frag and release the original
   3179 *	page by calling the destructor.
   3180 */
   3181static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
   3182{
   3183	if (likely(!skb_zcopy(skb)))
   3184		return 0;
   3185	if (!skb_zcopy_is_nouarg(skb) &&
   3186	    skb_uarg(skb)->callback == msg_zerocopy_callback)
   3187		return 0;
   3188	return skb_copy_ubufs(skb, gfp_mask);
   3189}
   3190
   3191/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
   3192static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
   3193{
   3194	if (likely(!skb_zcopy(skb)))
   3195		return 0;
   3196	return skb_copy_ubufs(skb, gfp_mask);
   3197}
   3198
   3199/**
   3200 *	__skb_queue_purge - empty a list
   3201 *	@list: list to empty
   3202 *
   3203 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
   3204 *	the list and one reference dropped. This function does not take the
   3205 *	list lock and the caller must hold the relevant locks to use it.
   3206 */
   3207static inline void __skb_queue_purge(struct sk_buff_head *list)
   3208{
   3209	struct sk_buff *skb;
   3210	while ((skb = __skb_dequeue(list)) != NULL)
   3211		kfree_skb(skb);
   3212}
   3213void skb_queue_purge(struct sk_buff_head *list);
   3214
   3215unsigned int skb_rbtree_purge(struct rb_root *root);
   3216
   3217void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
   3218
   3219/**
   3220 * netdev_alloc_frag - allocate a page fragment
   3221 * @fragsz: fragment size
   3222 *
   3223 * Allocates a frag from a page for receive buffer.
   3224 * Uses GFP_ATOMIC allocations.
   3225 */
   3226static inline void *netdev_alloc_frag(unsigned int fragsz)
   3227{
   3228	return __netdev_alloc_frag_align(fragsz, ~0u);
   3229}
   3230
   3231static inline void *netdev_alloc_frag_align(unsigned int fragsz,
   3232					    unsigned int align)
   3233{
   3234	WARN_ON_ONCE(!is_power_of_2(align));
   3235	return __netdev_alloc_frag_align(fragsz, -align);
   3236}
   3237
   3238struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
   3239				   gfp_t gfp_mask);
   3240
   3241/**
   3242 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
   3243 *	@dev: network device to receive on
   3244 *	@length: length to allocate
   3245 *
   3246 *	Allocate a new &sk_buff and assign it a usage count of one. The
   3247 *	buffer has unspecified headroom built in. Users should allocate
   3248 *	the headroom they think they need without accounting for the
   3249 *	built in space. The built in space is used for optimisations.
   3250 *
   3251 *	%NULL is returned if there is no free memory. Although this function
   3252 *	allocates memory it can be called from an interrupt.
   3253 */
   3254static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
   3255					       unsigned int length)
   3256{
   3257	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
   3258}
   3259
   3260/* legacy helper around __netdev_alloc_skb() */
   3261static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
   3262					      gfp_t gfp_mask)
   3263{
   3264	return __netdev_alloc_skb(NULL, length, gfp_mask);
   3265}
   3266
   3267/* legacy helper around netdev_alloc_skb() */
   3268static inline struct sk_buff *dev_alloc_skb(unsigned int length)
   3269{
   3270	return netdev_alloc_skb(NULL, length);
   3271}
   3272
   3273
   3274static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
   3275		unsigned int length, gfp_t gfp)
   3276{
   3277	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
   3278
   3279	if (NET_IP_ALIGN && skb)
   3280		skb_reserve(skb, NET_IP_ALIGN);
   3281	return skb;
   3282}
   3283
   3284static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
   3285		unsigned int length)
   3286{
   3287	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
   3288}
   3289
   3290static inline void skb_free_frag(void *addr)
   3291{
   3292	page_frag_free(addr);
   3293}
   3294
   3295void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
   3296
   3297static inline void *napi_alloc_frag(unsigned int fragsz)
   3298{
   3299	return __napi_alloc_frag_align(fragsz, ~0u);
   3300}
   3301
   3302static inline void *napi_alloc_frag_align(unsigned int fragsz,
   3303					  unsigned int align)
   3304{
   3305	WARN_ON_ONCE(!is_power_of_2(align));
   3306	return __napi_alloc_frag_align(fragsz, -align);
   3307}
   3308
   3309struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
   3310				 unsigned int length, gfp_t gfp_mask);
   3311static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
   3312					     unsigned int length)
   3313{
   3314	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
   3315}
   3316void napi_consume_skb(struct sk_buff *skb, int budget);
   3317
   3318void napi_skb_free_stolen_head(struct sk_buff *skb);
   3319void __kfree_skb_defer(struct sk_buff *skb);
   3320
   3321/**
   3322 * __dev_alloc_pages - allocate page for network Rx
   3323 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
   3324 * @order: size of the allocation
   3325 *
   3326 * Allocate a new page.
   3327 *
   3328 * %NULL is returned if there is no free memory.
   3329*/
   3330static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
   3331					     unsigned int order)
   3332{
   3333	/* This piece of code contains several assumptions.
   3334	 * 1.  This is for device Rx, therefor a cold page is preferred.
   3335	 * 2.  The expectation is the user wants a compound page.
   3336	 * 3.  If requesting a order 0 page it will not be compound
   3337	 *     due to the check to see if order has a value in prep_new_page
   3338	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
   3339	 *     code in gfp_to_alloc_flags that should be enforcing this.
   3340	 */
   3341	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
   3342
   3343	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
   3344}
   3345
   3346static inline struct page *dev_alloc_pages(unsigned int order)
   3347{
   3348	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
   3349}
   3350
   3351/**
   3352 * __dev_alloc_page - allocate a page for network Rx
   3353 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
   3354 *
   3355 * Allocate a new page.
   3356 *
   3357 * %NULL is returned if there is no free memory.
   3358 */
   3359static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
   3360{
   3361	return __dev_alloc_pages(gfp_mask, 0);
   3362}
   3363
   3364static inline struct page *dev_alloc_page(void)
   3365{
   3366	return dev_alloc_pages(0);
   3367}
   3368
   3369/**
   3370 * dev_page_is_reusable - check whether a page can be reused for network Rx
   3371 * @page: the page to test
   3372 *
   3373 * A page shouldn't be considered for reusing/recycling if it was allocated
   3374 * under memory pressure or at a distant memory node.
   3375 *
   3376 * Returns false if this page should be returned to page allocator, true
   3377 * otherwise.
   3378 */
   3379static inline bool dev_page_is_reusable(const struct page *page)
   3380{
   3381	return likely(page_to_nid(page) == numa_mem_id() &&
   3382		      !page_is_pfmemalloc(page));
   3383}
   3384
   3385/**
   3386 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
   3387 *	@page: The page that was allocated from skb_alloc_page
   3388 *	@skb: The skb that may need pfmemalloc set
   3389 */
   3390static inline void skb_propagate_pfmemalloc(const struct page *page,
   3391					    struct sk_buff *skb)
   3392{
   3393	if (page_is_pfmemalloc(page))
   3394		skb->pfmemalloc = true;
   3395}
   3396
   3397/**
   3398 * skb_frag_off() - Returns the offset of a skb fragment
   3399 * @frag: the paged fragment
   3400 */
   3401static inline unsigned int skb_frag_off(const skb_frag_t *frag)
   3402{
   3403	return frag->bv_offset;
   3404}
   3405
   3406/**
   3407 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
   3408 * @frag: skb fragment
   3409 * @delta: value to add
   3410 */
   3411static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
   3412{
   3413	frag->bv_offset += delta;
   3414}
   3415
   3416/**
   3417 * skb_frag_off_set() - Sets the offset of a skb fragment
   3418 * @frag: skb fragment
   3419 * @offset: offset of fragment
   3420 */
   3421static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
   3422{
   3423	frag->bv_offset = offset;
   3424}
   3425
   3426/**
   3427 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
   3428 * @fragto: skb fragment where offset is set
   3429 * @fragfrom: skb fragment offset is copied from
   3430 */
   3431static inline void skb_frag_off_copy(skb_frag_t *fragto,
   3432				     const skb_frag_t *fragfrom)
   3433{
   3434	fragto->bv_offset = fragfrom->bv_offset;
   3435}
   3436
   3437/**
   3438 * skb_frag_page - retrieve the page referred to by a paged fragment
   3439 * @frag: the paged fragment
   3440 *
   3441 * Returns the &struct page associated with @frag.
   3442 */
   3443static inline struct page *skb_frag_page(const skb_frag_t *frag)
   3444{
   3445	return frag->bv_page;
   3446}
   3447
   3448/**
   3449 * __skb_frag_ref - take an addition reference on a paged fragment.
   3450 * @frag: the paged fragment
   3451 *
   3452 * Takes an additional reference on the paged fragment @frag.
   3453 */
   3454static inline void __skb_frag_ref(skb_frag_t *frag)
   3455{
   3456	get_page(skb_frag_page(frag));
   3457}
   3458
   3459/**
   3460 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
   3461 * @skb: the buffer
   3462 * @f: the fragment offset.
   3463 *
   3464 * Takes an additional reference on the @f'th paged fragment of @skb.
   3465 */
   3466static inline void skb_frag_ref(struct sk_buff *skb, int f)
   3467{
   3468	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
   3469}
   3470
   3471/**
   3472 * __skb_frag_unref - release a reference on a paged fragment.
   3473 * @frag: the paged fragment
   3474 * @recycle: recycle the page if allocated via page_pool
   3475 *
   3476 * Releases a reference on the paged fragment @frag
   3477 * or recycles the page via the page_pool API.
   3478 */
   3479static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
   3480{
   3481	struct page *page = skb_frag_page(frag);
   3482
   3483#ifdef CONFIG_PAGE_POOL
   3484	if (recycle && page_pool_return_skb_page(page))
   3485		return;
   3486#endif
   3487	put_page(page);
   3488}
   3489
   3490/**
   3491 * skb_frag_unref - release a reference on a paged fragment of an skb.
   3492 * @skb: the buffer
   3493 * @f: the fragment offset
   3494 *
   3495 * Releases a reference on the @f'th paged fragment of @skb.
   3496 */
   3497static inline void skb_frag_unref(struct sk_buff *skb, int f)
   3498{
   3499	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
   3500}
   3501
   3502/**
   3503 * skb_frag_address - gets the address of the data contained in a paged fragment
   3504 * @frag: the paged fragment buffer
   3505 *
   3506 * Returns the address of the data within @frag. The page must already
   3507 * be mapped.
   3508 */
   3509static inline void *skb_frag_address(const skb_frag_t *frag)
   3510{
   3511	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
   3512}
   3513
   3514/**
   3515 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
   3516 * @frag: the paged fragment buffer
   3517 *
   3518 * Returns the address of the data within @frag. Checks that the page
   3519 * is mapped and returns %NULL otherwise.
   3520 */
   3521static inline void *skb_frag_address_safe(const skb_frag_t *frag)
   3522{
   3523	void *ptr = page_address(skb_frag_page(frag));
   3524	if (unlikely(!ptr))
   3525		return NULL;
   3526
   3527	return ptr + skb_frag_off(frag);
   3528}
   3529
   3530/**
   3531 * skb_frag_page_copy() - sets the page in a fragment from another fragment
   3532 * @fragto: skb fragment where page is set
   3533 * @fragfrom: skb fragment page is copied from
   3534 */
   3535static inline void skb_frag_page_copy(skb_frag_t *fragto,
   3536				      const skb_frag_t *fragfrom)
   3537{
   3538	fragto->bv_page = fragfrom->bv_page;
   3539}
   3540
   3541/**
   3542 * __skb_frag_set_page - sets the page contained in a paged fragment
   3543 * @frag: the paged fragment
   3544 * @page: the page to set
   3545 *
   3546 * Sets the fragment @frag to contain @page.
   3547 */
   3548static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
   3549{
   3550	frag->bv_page = page;
   3551}
   3552
   3553/**
   3554 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
   3555 * @skb: the buffer
   3556 * @f: the fragment offset
   3557 * @page: the page to set
   3558 *
   3559 * Sets the @f'th fragment of @skb to contain @page.
   3560 */
   3561static inline void skb_frag_set_page(struct sk_buff *skb, int f,
   3562				     struct page *page)
   3563{
   3564	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
   3565}
   3566
   3567bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
   3568
   3569/**
   3570 * skb_frag_dma_map - maps a paged fragment via the DMA API
   3571 * @dev: the device to map the fragment to
   3572 * @frag: the paged fragment to map
   3573 * @offset: the offset within the fragment (starting at the
   3574 *          fragment's own offset)
   3575 * @size: the number of bytes to map
   3576 * @dir: the direction of the mapping (``PCI_DMA_*``)
   3577 *
   3578 * Maps the page associated with @frag to @device.
   3579 */
   3580static inline dma_addr_t skb_frag_dma_map(struct device *dev,
   3581					  const skb_frag_t *frag,
   3582					  size_t offset, size_t size,
   3583					  enum dma_data_direction dir)
   3584{
   3585	return dma_map_page(dev, skb_frag_page(frag),
   3586			    skb_frag_off(frag) + offset, size, dir);
   3587}
   3588
   3589static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
   3590					gfp_t gfp_mask)
   3591{
   3592	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
   3593}
   3594
   3595
   3596static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
   3597						  gfp_t gfp_mask)
   3598{
   3599	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
   3600}
   3601
   3602
   3603/**
   3604 *	skb_clone_writable - is the header of a clone writable
   3605 *	@skb: buffer to check
   3606 *	@len: length up to which to write
   3607 *
   3608 *	Returns true if modifying the header part of the cloned buffer
   3609 *	does not requires the data to be copied.
   3610 */
   3611static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
   3612{
   3613	return !skb_header_cloned(skb) &&
   3614	       skb_headroom(skb) + len <= skb->hdr_len;
   3615}
   3616
   3617static inline int skb_try_make_writable(struct sk_buff *skb,
   3618					unsigned int write_len)
   3619{
   3620	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
   3621	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
   3622}
   3623
   3624static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
   3625			    int cloned)
   3626{
   3627	int delta = 0;
   3628
   3629	if (headroom > skb_headroom(skb))
   3630		delta = headroom - skb_headroom(skb);
   3631
   3632	if (delta || cloned)
   3633		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
   3634					GFP_ATOMIC);
   3635	return 0;
   3636}
   3637
   3638/**
   3639 *	skb_cow - copy header of skb when it is required
   3640 *	@skb: buffer to cow
   3641 *	@headroom: needed headroom
   3642 *
   3643 *	If the skb passed lacks sufficient headroom or its data part
   3644 *	is shared, data is reallocated. If reallocation fails, an error
   3645 *	is returned and original skb is not changed.
   3646 *
   3647 *	The result is skb with writable area skb->head...skb->tail
   3648 *	and at least @headroom of space at head.
   3649 */
   3650static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
   3651{
   3652	return __skb_cow(skb, headroom, skb_cloned(skb));
   3653}
   3654
   3655/**
   3656 *	skb_cow_head - skb_cow but only making the head writable
   3657 *	@skb: buffer to cow
   3658 *	@headroom: needed headroom
   3659 *
   3660 *	This function is identical to skb_cow except that we replace the
   3661 *	skb_cloned check by skb_header_cloned.  It should be used when
   3662 *	you only need to push on some header and do not need to modify
   3663 *	the data.
   3664 */
   3665static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
   3666{
   3667	return __skb_cow(skb, headroom, skb_header_cloned(skb));
   3668}
   3669
   3670/**
   3671 *	skb_padto	- pad an skbuff up to a minimal size
   3672 *	@skb: buffer to pad
   3673 *	@len: minimal length
   3674 *
   3675 *	Pads up a buffer to ensure the trailing bytes exist and are
   3676 *	blanked. If the buffer already contains sufficient data it
   3677 *	is untouched. Otherwise it is extended. Returns zero on
   3678 *	success. The skb is freed on error.
   3679 */
   3680static inline int skb_padto(struct sk_buff *skb, unsigned int len)
   3681{
   3682	unsigned int size = skb->len;
   3683	if (likely(size >= len))
   3684		return 0;
   3685	return skb_pad(skb, len - size);
   3686}
   3687
   3688/**
   3689 *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
   3690 *	@skb: buffer to pad
   3691 *	@len: minimal length
   3692 *	@free_on_error: free buffer on error
   3693 *
   3694 *	Pads up a buffer to ensure the trailing bytes exist and are
   3695 *	blanked. If the buffer already contains sufficient data it
   3696 *	is untouched. Otherwise it is extended. Returns zero on
   3697 *	success. The skb is freed on error if @free_on_error is true.
   3698 */
   3699static inline int __must_check __skb_put_padto(struct sk_buff *skb,
   3700					       unsigned int len,
   3701					       bool free_on_error)
   3702{
   3703	unsigned int size = skb->len;
   3704
   3705	if (unlikely(size < len)) {
   3706		len -= size;
   3707		if (__skb_pad(skb, len, free_on_error))
   3708			return -ENOMEM;
   3709		__skb_put(skb, len);
   3710	}
   3711	return 0;
   3712}
   3713
   3714/**
   3715 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
   3716 *	@skb: buffer to pad
   3717 *	@len: minimal length
   3718 *
   3719 *	Pads up a buffer to ensure the trailing bytes exist and are
   3720 *	blanked. If the buffer already contains sufficient data it
   3721 *	is untouched. Otherwise it is extended. Returns zero on
   3722 *	success. The skb is freed on error.
   3723 */
   3724static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
   3725{
   3726	return __skb_put_padto(skb, len, true);
   3727}
   3728
   3729static inline int skb_add_data(struct sk_buff *skb,
   3730			       struct iov_iter *from, int copy)
   3731{
   3732	const int off = skb->len;
   3733
   3734	if (skb->ip_summed == CHECKSUM_NONE) {
   3735		__wsum csum = 0;
   3736		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
   3737					         &csum, from)) {
   3738			skb->csum = csum_block_add(skb->csum, csum, off);
   3739			return 0;
   3740		}
   3741	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
   3742		return 0;
   3743
   3744	__skb_trim(skb, off);
   3745	return -EFAULT;
   3746}
   3747
   3748static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
   3749				    const struct page *page, int off)
   3750{
   3751	if (skb_zcopy(skb))
   3752		return false;
   3753	if (i) {
   3754		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
   3755
   3756		return page == skb_frag_page(frag) &&
   3757		       off == skb_frag_off(frag) + skb_frag_size(frag);
   3758	}
   3759	return false;
   3760}
   3761
   3762static inline int __skb_linearize(struct sk_buff *skb)
   3763{
   3764	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
   3765}
   3766
   3767/**
   3768 *	skb_linearize - convert paged skb to linear one
   3769 *	@skb: buffer to linarize
   3770 *
   3771 *	If there is no free memory -ENOMEM is returned, otherwise zero
   3772 *	is returned and the old skb data released.
   3773 */
   3774static inline int skb_linearize(struct sk_buff *skb)
   3775{
   3776	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
   3777}
   3778
   3779/**
   3780 * skb_has_shared_frag - can any frag be overwritten
   3781 * @skb: buffer to test
   3782 *
   3783 * Return true if the skb has at least one frag that might be modified
   3784 * by an external entity (as in vmsplice()/sendfile())
   3785 */
   3786static inline bool skb_has_shared_frag(const struct sk_buff *skb)
   3787{
   3788	return skb_is_nonlinear(skb) &&
   3789	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
   3790}
   3791
   3792/**
   3793 *	skb_linearize_cow - make sure skb is linear and writable
   3794 *	@skb: buffer to process
   3795 *
   3796 *	If there is no free memory -ENOMEM is returned, otherwise zero
   3797 *	is returned and the old skb data released.
   3798 */
   3799static inline int skb_linearize_cow(struct sk_buff *skb)
   3800{
   3801	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
   3802	       __skb_linearize(skb) : 0;
   3803}
   3804
   3805static __always_inline void
   3806__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
   3807		     unsigned int off)
   3808{
   3809	if (skb->ip_summed == CHECKSUM_COMPLETE)
   3810		skb->csum = csum_block_sub(skb->csum,
   3811					   csum_partial(start, len, 0), off);
   3812	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
   3813		 skb_checksum_start_offset(skb) < 0)
   3814		skb->ip_summed = CHECKSUM_NONE;
   3815}
   3816
   3817/**
   3818 *	skb_postpull_rcsum - update checksum for received skb after pull
   3819 *	@skb: buffer to update
   3820 *	@start: start of data before pull
   3821 *	@len: length of data pulled
   3822 *
   3823 *	After doing a pull on a received packet, you need to call this to
   3824 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
   3825 *	CHECKSUM_NONE so that it can be recomputed from scratch.
   3826 */
   3827static inline void skb_postpull_rcsum(struct sk_buff *skb,
   3828				      const void *start, unsigned int len)
   3829{
   3830	if (skb->ip_summed == CHECKSUM_COMPLETE)
   3831		skb->csum = wsum_negate(csum_partial(start, len,
   3832						     wsum_negate(skb->csum)));
   3833	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
   3834		 skb_checksum_start_offset(skb) < 0)
   3835		skb->ip_summed = CHECKSUM_NONE;
   3836}
   3837
   3838static __always_inline void
   3839__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
   3840		     unsigned int off)
   3841{
   3842	if (skb->ip_summed == CHECKSUM_COMPLETE)
   3843		skb->csum = csum_block_add(skb->csum,
   3844					   csum_partial(start, len, 0), off);
   3845}
   3846
   3847/**
   3848 *	skb_postpush_rcsum - update checksum for received skb after push
   3849 *	@skb: buffer to update
   3850 *	@start: start of data after push
   3851 *	@len: length of data pushed
   3852 *
   3853 *	After doing a push on a received packet, you need to call this to
   3854 *	update the CHECKSUM_COMPLETE checksum.
   3855 */
   3856static inline void skb_postpush_rcsum(struct sk_buff *skb,
   3857				      const void *start, unsigned int len)
   3858{
   3859	__skb_postpush_rcsum(skb, start, len, 0);
   3860}
   3861
   3862void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
   3863
   3864/**
   3865 *	skb_push_rcsum - push skb and update receive checksum
   3866 *	@skb: buffer to update
   3867 *	@len: length of data pulled
   3868 *
   3869 *	This function performs an skb_push on the packet and updates
   3870 *	the CHECKSUM_COMPLETE checksum.  It should be used on
   3871 *	receive path processing instead of skb_push unless you know
   3872 *	that the checksum difference is zero (e.g., a valid IP header)
   3873 *	or you are setting ip_summed to CHECKSUM_NONE.
   3874 */
   3875static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
   3876{
   3877	skb_push(skb, len);
   3878	skb_postpush_rcsum(skb, skb->data, len);
   3879	return skb->data;
   3880}
   3881
   3882int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
   3883/**
   3884 *	pskb_trim_rcsum - trim received skb and update checksum
   3885 *	@skb: buffer to trim
   3886 *	@len: new length
   3887 *
   3888 *	This is exactly the same as pskb_trim except that it ensures the
   3889 *	checksum of received packets are still valid after the operation.
   3890 *	It can change skb pointers.
   3891 */
   3892
   3893static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
   3894{
   3895	if (likely(len >= skb->len))
   3896		return 0;
   3897	return pskb_trim_rcsum_slow(skb, len);
   3898}
   3899
   3900static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
   3901{
   3902	if (skb->ip_summed == CHECKSUM_COMPLETE)
   3903		skb->ip_summed = CHECKSUM_NONE;
   3904	__skb_trim(skb, len);
   3905	return 0;
   3906}
   3907
   3908static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
   3909{
   3910	if (skb->ip_summed == CHECKSUM_COMPLETE)
   3911		skb->ip_summed = CHECKSUM_NONE;
   3912	return __skb_grow(skb, len);
   3913}
   3914
   3915#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
   3916#define skb_rb_first(root) rb_to_skb(rb_first(root))
   3917#define skb_rb_last(root)  rb_to_skb(rb_last(root))
   3918#define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
   3919#define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
   3920
   3921#define skb_queue_walk(queue, skb) \
   3922		for (skb = (queue)->next;					\
   3923		     skb != (struct sk_buff *)(queue);				\
   3924		     skb = skb->next)
   3925
   3926#define skb_queue_walk_safe(queue, skb, tmp)					\
   3927		for (skb = (queue)->next, tmp = skb->next;			\
   3928		     skb != (struct sk_buff *)(queue);				\
   3929		     skb = tmp, tmp = skb->next)
   3930
   3931#define skb_queue_walk_from(queue, skb)						\
   3932		for (; skb != (struct sk_buff *)(queue);			\
   3933		     skb = skb->next)
   3934
   3935#define skb_rbtree_walk(skb, root)						\
   3936		for (skb = skb_rb_first(root); skb != NULL;			\
   3937		     skb = skb_rb_next(skb))
   3938
   3939#define skb_rbtree_walk_from(skb)						\
   3940		for (; skb != NULL;						\
   3941		     skb = skb_rb_next(skb))
   3942
   3943#define skb_rbtree_walk_from_safe(skb, tmp)					\
   3944		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
   3945		     skb = tmp)
   3946
   3947#define skb_queue_walk_from_safe(queue, skb, tmp)				\
   3948		for (tmp = skb->next;						\
   3949		     skb != (struct sk_buff *)(queue);				\
   3950		     skb = tmp, tmp = skb->next)
   3951
   3952#define skb_queue_reverse_walk(queue, skb) \
   3953		for (skb = (queue)->prev;					\
   3954		     skb != (struct sk_buff *)(queue);				\
   3955		     skb = skb->prev)
   3956
   3957#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
   3958		for (skb = (queue)->prev, tmp = skb->prev;			\
   3959		     skb != (struct sk_buff *)(queue);				\
   3960		     skb = tmp, tmp = skb->prev)
   3961
   3962#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
   3963		for (tmp = skb->prev;						\
   3964		     skb != (struct sk_buff *)(queue);				\
   3965		     skb = tmp, tmp = skb->prev)
   3966
   3967static inline bool skb_has_frag_list(const struct sk_buff *skb)
   3968{
   3969	return skb_shinfo(skb)->frag_list != NULL;
   3970}
   3971
   3972static inline void skb_frag_list_init(struct sk_buff *skb)
   3973{
   3974	skb_shinfo(skb)->frag_list = NULL;
   3975}
   3976
   3977#define skb_walk_frags(skb, iter)	\
   3978	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
   3979
   3980
   3981int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
   3982				int *err, long *timeo_p,
   3983				const struct sk_buff *skb);
   3984struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
   3985					  struct sk_buff_head *queue,
   3986					  unsigned int flags,
   3987					  int *off, int *err,
   3988					  struct sk_buff **last);
   3989struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
   3990					struct sk_buff_head *queue,
   3991					unsigned int flags, int *off, int *err,
   3992					struct sk_buff **last);
   3993struct sk_buff *__skb_recv_datagram(struct sock *sk,
   3994				    struct sk_buff_head *sk_queue,
   3995				    unsigned int flags, int *off, int *err);
   3996struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
   3997__poll_t datagram_poll(struct file *file, struct socket *sock,
   3998			   struct poll_table_struct *wait);
   3999int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
   4000			   struct iov_iter *to, int size);
   4001static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
   4002					struct msghdr *msg, int size)
   4003{
   4004	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
   4005}
   4006int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
   4007				   struct msghdr *msg);
   4008int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
   4009			   struct iov_iter *to, int len,
   4010			   struct ahash_request *hash);
   4011int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
   4012				 struct iov_iter *from, int len);
   4013int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
   4014void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
   4015void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
   4016static inline void skb_free_datagram_locked(struct sock *sk,
   4017					    struct sk_buff *skb)
   4018{
   4019	__skb_free_datagram_locked(sk, skb, 0);
   4020}
   4021int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
   4022int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
   4023int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
   4024__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
   4025			      int len);
   4026int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
   4027		    struct pipe_inode_info *pipe, unsigned int len,
   4028		    unsigned int flags);
   4029int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
   4030			 int len);
   4031int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
   4032void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
   4033unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
   4034int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
   4035		 int len, int hlen);
   4036void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
   4037int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
   4038void skb_scrub_packet(struct sk_buff *skb, bool xnet);
   4039bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
   4040bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
   4041struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
   4042struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
   4043				 unsigned int offset);
   4044struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
   4045int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
   4046int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
   4047int skb_vlan_pop(struct sk_buff *skb);
   4048int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
   4049int skb_eth_pop(struct sk_buff *skb);
   4050int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
   4051		 const unsigned char *src);
   4052int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
   4053		  int mac_len, bool ethernet);
   4054int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
   4055		 bool ethernet);
   4056int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
   4057int skb_mpls_dec_ttl(struct sk_buff *skb);
   4058struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
   4059			     gfp_t gfp);
   4060
   4061static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
   4062{
   4063	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
   4064}
   4065
   4066static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
   4067{
   4068	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
   4069}
   4070
   4071struct skb_checksum_ops {
   4072	__wsum (*update)(const void *mem, int len, __wsum wsum);
   4073	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
   4074};
   4075
   4076extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
   4077
   4078__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
   4079		      __wsum csum, const struct skb_checksum_ops *ops);
   4080__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
   4081		    __wsum csum);
   4082
   4083static inline void * __must_check
   4084__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
   4085		     const void *data, int hlen, void *buffer)
   4086{
   4087	if (likely(hlen - offset >= len))
   4088		return (void *)data + offset;
   4089
   4090	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
   4091		return NULL;
   4092
   4093	return buffer;
   4094}
   4095
   4096static inline void * __must_check
   4097skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
   4098{
   4099	return __skb_header_pointer(skb, offset, len, skb->data,
   4100				    skb_headlen(skb), buffer);
   4101}
   4102
   4103/**
   4104 *	skb_needs_linearize - check if we need to linearize a given skb
   4105 *			      depending on the given device features.
   4106 *	@skb: socket buffer to check
   4107 *	@features: net device features
   4108 *
   4109 *	Returns true if either:
   4110 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
   4111 *	2. skb is fragmented and the device does not support SG.
   4112 */
   4113static inline bool skb_needs_linearize(struct sk_buff *skb,
   4114				       netdev_features_t features)
   4115{
   4116	return skb_is_nonlinear(skb) &&
   4117	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
   4118		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
   4119}
   4120
   4121static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
   4122					     void *to,
   4123					     const unsigned int len)
   4124{
   4125	memcpy(to, skb->data, len);
   4126}
   4127
   4128static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
   4129						    const int offset, void *to,
   4130						    const unsigned int len)
   4131{
   4132	memcpy(to, skb->data + offset, len);
   4133}
   4134
   4135static inline void skb_copy_to_linear_data(struct sk_buff *skb,
   4136					   const void *from,
   4137					   const unsigned int len)
   4138{
   4139	memcpy(skb->data, from, len);
   4140}
   4141
   4142static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
   4143						  const int offset,
   4144						  const void *from,
   4145						  const unsigned int len)
   4146{
   4147	memcpy(skb->data + offset, from, len);
   4148}
   4149
   4150void skb_init(void);
   4151
   4152static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
   4153{
   4154	return skb->tstamp;
   4155}
   4156
   4157/**
   4158 *	skb_get_timestamp - get timestamp from a skb
   4159 *	@skb: skb to get stamp from
   4160 *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
   4161 *
   4162 *	Timestamps are stored in the skb as offsets to a base timestamp.
   4163 *	This function converts the offset back to a struct timeval and stores
   4164 *	it in stamp.
   4165 */
   4166static inline void skb_get_timestamp(const struct sk_buff *skb,
   4167				     struct __kernel_old_timeval *stamp)
   4168{
   4169	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
   4170}
   4171
   4172static inline void skb_get_new_timestamp(const struct sk_buff *skb,
   4173					 struct __kernel_sock_timeval *stamp)
   4174{
   4175	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
   4176
   4177	stamp->tv_sec = ts.tv_sec;
   4178	stamp->tv_usec = ts.tv_nsec / 1000;
   4179}
   4180
   4181static inline void skb_get_timestampns(const struct sk_buff *skb,
   4182				       struct __kernel_old_timespec *stamp)
   4183{
   4184	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
   4185
   4186	stamp->tv_sec = ts.tv_sec;
   4187	stamp->tv_nsec = ts.tv_nsec;
   4188}
   4189
   4190static inline void skb_get_new_timestampns(const struct sk_buff *skb,
   4191					   struct __kernel_timespec *stamp)
   4192{
   4193	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
   4194
   4195	stamp->tv_sec = ts.tv_sec;
   4196	stamp->tv_nsec = ts.tv_nsec;
   4197}
   4198
   4199static inline void __net_timestamp(struct sk_buff *skb)
   4200{
   4201	skb->tstamp = ktime_get_real();
   4202	skb->mono_delivery_time = 0;
   4203}
   4204
   4205static inline ktime_t net_timedelta(ktime_t t)
   4206{
   4207	return ktime_sub(ktime_get_real(), t);
   4208}
   4209
   4210static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
   4211					 bool mono)
   4212{
   4213	skb->tstamp = kt;
   4214	skb->mono_delivery_time = kt && mono;
   4215}
   4216
   4217DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
   4218
   4219/* It is used in the ingress path to clear the delivery_time.
   4220 * If needed, set the skb->tstamp to the (rcv) timestamp.
   4221 */
   4222static inline void skb_clear_delivery_time(struct sk_buff *skb)
   4223{
   4224	if (skb->mono_delivery_time) {
   4225		skb->mono_delivery_time = 0;
   4226		if (static_branch_unlikely(&netstamp_needed_key))
   4227			skb->tstamp = ktime_get_real();
   4228		else
   4229			skb->tstamp = 0;
   4230	}
   4231}
   4232
   4233static inline void skb_clear_tstamp(struct sk_buff *skb)
   4234{
   4235	if (skb->mono_delivery_time)
   4236		return;
   4237
   4238	skb->tstamp = 0;
   4239}
   4240
   4241static inline ktime_t skb_tstamp(const struct sk_buff *skb)
   4242{
   4243	if (skb->mono_delivery_time)
   4244		return 0;
   4245
   4246	return skb->tstamp;
   4247}
   4248
   4249static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
   4250{
   4251	if (!skb->mono_delivery_time && skb->tstamp)
   4252		return skb->tstamp;
   4253
   4254	if (static_branch_unlikely(&netstamp_needed_key) || cond)
   4255		return ktime_get_real();
   4256
   4257	return 0;
   4258}
   4259
   4260static inline u8 skb_metadata_len(const struct sk_buff *skb)
   4261{
   4262	return skb_shinfo(skb)->meta_len;
   4263}
   4264
   4265static inline void *skb_metadata_end(const struct sk_buff *skb)
   4266{
   4267	return skb_mac_header(skb);
   4268}
   4269
   4270static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
   4271					  const struct sk_buff *skb_b,
   4272					  u8 meta_len)
   4273{
   4274	const void *a = skb_metadata_end(skb_a);
   4275	const void *b = skb_metadata_end(skb_b);
   4276	/* Using more efficient varaiant than plain call to memcmp(). */
   4277#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
   4278	u64 diffs = 0;
   4279
   4280	switch (meta_len) {
   4281#define __it(x, op) (x -= sizeof(u##op))
   4282#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
   4283	case 32: diffs |= __it_diff(a, b, 64);
   4284		fallthrough;
   4285	case 24: diffs |= __it_diff(a, b, 64);
   4286		fallthrough;
   4287	case 16: diffs |= __it_diff(a, b, 64);
   4288		fallthrough;
   4289	case  8: diffs |= __it_diff(a, b, 64);
   4290		break;
   4291	case 28: diffs |= __it_diff(a, b, 64);
   4292		fallthrough;
   4293	case 20: diffs |= __it_diff(a, b, 64);
   4294		fallthrough;
   4295	case 12: diffs |= __it_diff(a, b, 64);
   4296		fallthrough;
   4297	case  4: diffs |= __it_diff(a, b, 32);
   4298		break;
   4299	}
   4300	return diffs;
   4301#else
   4302	return memcmp(a - meta_len, b - meta_len, meta_len);
   4303#endif
   4304}
   4305
   4306static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
   4307					const struct sk_buff *skb_b)
   4308{
   4309	u8 len_a = skb_metadata_len(skb_a);
   4310	u8 len_b = skb_metadata_len(skb_b);
   4311
   4312	if (!(len_a | len_b))
   4313		return false;
   4314
   4315	return len_a != len_b ?
   4316	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
   4317}
   4318
   4319static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
   4320{
   4321	skb_shinfo(skb)->meta_len = meta_len;
   4322}
   4323
   4324static inline void skb_metadata_clear(struct sk_buff *skb)
   4325{
   4326	skb_metadata_set(skb, 0);
   4327}
   4328
   4329struct sk_buff *skb_clone_sk(struct sk_buff *skb);
   4330
   4331#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
   4332
   4333void skb_clone_tx_timestamp(struct sk_buff *skb);
   4334bool skb_defer_rx_timestamp(struct sk_buff *skb);
   4335
   4336#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
   4337
   4338static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
   4339{
   4340}
   4341
   4342static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
   4343{
   4344	return false;
   4345}
   4346
   4347#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
   4348
   4349/**
   4350 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
   4351 *
   4352 * PHY drivers may accept clones of transmitted packets for
   4353 * timestamping via their phy_driver.txtstamp method. These drivers
   4354 * must call this function to return the skb back to the stack with a
   4355 * timestamp.
   4356 *
   4357 * @skb: clone of the original outgoing packet
   4358 * @hwtstamps: hardware time stamps
   4359 *
   4360 */
   4361void skb_complete_tx_timestamp(struct sk_buff *skb,
   4362			       struct skb_shared_hwtstamps *hwtstamps);
   4363
   4364void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
   4365		     struct skb_shared_hwtstamps *hwtstamps,
   4366		     struct sock *sk, int tstype);
   4367
   4368/**
   4369 * skb_tstamp_tx - queue clone of skb with send time stamps
   4370 * @orig_skb:	the original outgoing packet
   4371 * @hwtstamps:	hardware time stamps, may be NULL if not available
   4372 *
   4373 * If the skb has a socket associated, then this function clones the
   4374 * skb (thus sharing the actual data and optional structures), stores
   4375 * the optional hardware time stamping information (if non NULL) or
   4376 * generates a software time stamp (otherwise), then queues the clone
   4377 * to the error queue of the socket.  Errors are silently ignored.
   4378 */
   4379void skb_tstamp_tx(struct sk_buff *orig_skb,
   4380		   struct skb_shared_hwtstamps *hwtstamps);
   4381
   4382/**
   4383 * skb_tx_timestamp() - Driver hook for transmit timestamping
   4384 *
   4385 * Ethernet MAC Drivers should call this function in their hard_xmit()
   4386 * function immediately before giving the sk_buff to the MAC hardware.
   4387 *
   4388 * Specifically, one should make absolutely sure that this function is
   4389 * called before TX completion of this packet can trigger.  Otherwise
   4390 * the packet could potentially already be freed.
   4391 *
   4392 * @skb: A socket buffer.
   4393 */
   4394static inline void skb_tx_timestamp(struct sk_buff *skb)
   4395{
   4396	skb_clone_tx_timestamp(skb);
   4397	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
   4398		skb_tstamp_tx(skb, NULL);
   4399}
   4400
   4401/**
   4402 * skb_complete_wifi_ack - deliver skb with wifi status
   4403 *
   4404 * @skb: the original outgoing packet
   4405 * @acked: ack status
   4406 *
   4407 */
   4408void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
   4409
   4410__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
   4411__sum16 __skb_checksum_complete(struct sk_buff *skb);
   4412
   4413static inline int skb_csum_unnecessary(const struct sk_buff *skb)
   4414{
   4415	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
   4416		skb->csum_valid ||
   4417		(skb->ip_summed == CHECKSUM_PARTIAL &&
   4418		 skb_checksum_start_offset(skb) >= 0));
   4419}
   4420
   4421/**
   4422 *	skb_checksum_complete - Calculate checksum of an entire packet
   4423 *	@skb: packet to process
   4424 *
   4425 *	This function calculates the checksum over the entire packet plus
   4426 *	the value of skb->csum.  The latter can be used to supply the
   4427 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
   4428 *	checksum.
   4429 *
   4430 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
   4431 *	this function can be used to verify that checksum on received
   4432 *	packets.  In that case the function should return zero if the
   4433 *	checksum is correct.  In particular, this function will return zero
   4434 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
   4435 *	hardware has already verified the correctness of the checksum.
   4436 */
   4437static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
   4438{
   4439	return skb_csum_unnecessary(skb) ?
   4440	       0 : __skb_checksum_complete(skb);
   4441}
   4442
   4443static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
   4444{
   4445	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
   4446		if (skb->csum_level == 0)
   4447			skb->ip_summed = CHECKSUM_NONE;
   4448		else
   4449			skb->csum_level--;
   4450	}
   4451}
   4452
   4453static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
   4454{
   4455	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
   4456		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
   4457			skb->csum_level++;
   4458	} else if (skb->ip_summed == CHECKSUM_NONE) {
   4459		skb->ip_summed = CHECKSUM_UNNECESSARY;
   4460		skb->csum_level = 0;
   4461	}
   4462}
   4463
   4464static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
   4465{
   4466	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
   4467		skb->ip_summed = CHECKSUM_NONE;
   4468		skb->csum_level = 0;
   4469	}
   4470}
   4471
   4472/* Check if we need to perform checksum complete validation.
   4473 *
   4474 * Returns true if checksum complete is needed, false otherwise
   4475 * (either checksum is unnecessary or zero checksum is allowed).
   4476 */
   4477static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
   4478						  bool zero_okay,
   4479						  __sum16 check)
   4480{
   4481	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
   4482		skb->csum_valid = 1;
   4483		__skb_decr_checksum_unnecessary(skb);
   4484		return false;
   4485	}
   4486
   4487	return true;
   4488}
   4489
   4490/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
   4491 * in checksum_init.
   4492 */
   4493#define CHECKSUM_BREAK 76
   4494
   4495/* Unset checksum-complete
   4496 *
   4497 * Unset checksum complete can be done when packet is being modified
   4498 * (uncompressed for instance) and checksum-complete value is
   4499 * invalidated.
   4500 */
   4501static inline void skb_checksum_complete_unset(struct sk_buff *skb)
   4502{
   4503	if (skb->ip_summed == CHECKSUM_COMPLETE)
   4504		skb->ip_summed = CHECKSUM_NONE;
   4505}
   4506
   4507/* Validate (init) checksum based on checksum complete.
   4508 *
   4509 * Return values:
   4510 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
   4511 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
   4512 *	checksum is stored in skb->csum for use in __skb_checksum_complete
   4513 *   non-zero: value of invalid checksum
   4514 *
   4515 */
   4516static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
   4517						       bool complete,
   4518						       __wsum psum)
   4519{
   4520	if (skb->ip_summed == CHECKSUM_COMPLETE) {
   4521		if (!csum_fold(csum_add(psum, skb->csum))) {
   4522			skb->csum_valid = 1;
   4523			return 0;
   4524		}
   4525	}
   4526
   4527	skb->csum = psum;
   4528
   4529	if (complete || skb->len <= CHECKSUM_BREAK) {
   4530		__sum16 csum;
   4531
   4532		csum = __skb_checksum_complete(skb);
   4533		skb->csum_valid = !csum;
   4534		return csum;
   4535	}
   4536
   4537	return 0;
   4538}
   4539
   4540static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
   4541{
   4542	return 0;
   4543}
   4544
   4545/* Perform checksum validate (init). Note that this is a macro since we only
   4546 * want to calculate the pseudo header which is an input function if necessary.
   4547 * First we try to validate without any computation (checksum unnecessary) and
   4548 * then calculate based on checksum complete calling the function to compute
   4549 * pseudo header.
   4550 *
   4551 * Return values:
   4552 *   0: checksum is validated or try to in skb_checksum_complete
   4553 *   non-zero: value of invalid checksum
   4554 */
   4555#define __skb_checksum_validate(skb, proto, complete,			\
   4556				zero_okay, check, compute_pseudo)	\
   4557({									\
   4558	__sum16 __ret = 0;						\
   4559	skb->csum_valid = 0;						\
   4560	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
   4561		__ret = __skb_checksum_validate_complete(skb,		\
   4562				complete, compute_pseudo(skb, proto));	\
   4563	__ret;								\
   4564})
   4565
   4566#define skb_checksum_init(skb, proto, compute_pseudo)			\
   4567	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
   4568
   4569#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
   4570	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
   4571
   4572#define skb_checksum_validate(skb, proto, compute_pseudo)		\
   4573	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
   4574
   4575#define skb_checksum_validate_zero_check(skb, proto, check,		\
   4576					 compute_pseudo)		\
   4577	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
   4578
   4579#define skb_checksum_simple_validate(skb)				\
   4580	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
   4581
   4582static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
   4583{
   4584	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
   4585}
   4586
   4587static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
   4588{
   4589	skb->csum = ~pseudo;
   4590	skb->ip_summed = CHECKSUM_COMPLETE;
   4591}
   4592
   4593#define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
   4594do {									\
   4595	if (__skb_checksum_convert_check(skb))				\
   4596		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
   4597} while (0)
   4598
   4599static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
   4600					      u16 start, u16 offset)
   4601{
   4602	skb->ip_summed = CHECKSUM_PARTIAL;
   4603	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
   4604	skb->csum_offset = offset - start;
   4605}
   4606
   4607/* Update skbuf and packet to reflect the remote checksum offload operation.
   4608 * When called, ptr indicates the starting point for skb->csum when
   4609 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
   4610 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
   4611 */
   4612static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
   4613				       int start, int offset, bool nopartial)
   4614{
   4615	__wsum delta;
   4616
   4617	if (!nopartial) {
   4618		skb_remcsum_adjust_partial(skb, ptr, start, offset);
   4619		return;
   4620	}
   4621
   4622	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
   4623		__skb_checksum_complete(skb);
   4624		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
   4625	}
   4626
   4627	delta = remcsum_adjust(ptr, skb->csum, start, offset);
   4628
   4629	/* Adjust skb->csum since we changed the packet */
   4630	skb->csum = csum_add(skb->csum, delta);
   4631}
   4632
   4633static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
   4634{
   4635#if IS_ENABLED(CONFIG_NF_CONNTRACK)
   4636	return (void *)(skb->_nfct & NFCT_PTRMASK);
   4637#else
   4638	return NULL;
   4639#endif
   4640}
   4641
   4642static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
   4643{
   4644#if IS_ENABLED(CONFIG_NF_CONNTRACK)
   4645	return skb->_nfct;
   4646#else
   4647	return 0UL;
   4648#endif
   4649}
   4650
   4651static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
   4652{
   4653#if IS_ENABLED(CONFIG_NF_CONNTRACK)
   4654	skb->slow_gro |= !!nfct;
   4655	skb->_nfct = nfct;
   4656#endif
   4657}
   4658
   4659#ifdef CONFIG_SKB_EXTENSIONS
   4660enum skb_ext_id {
   4661#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
   4662	SKB_EXT_BRIDGE_NF,
   4663#endif
   4664#ifdef CONFIG_XFRM
   4665	SKB_EXT_SEC_PATH,
   4666#endif
   4667#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
   4668	TC_SKB_EXT,
   4669#endif
   4670#if IS_ENABLED(CONFIG_MPTCP)
   4671	SKB_EXT_MPTCP,
   4672#endif
   4673#if IS_ENABLED(CONFIG_MCTP_FLOWS)
   4674	SKB_EXT_MCTP,
   4675#endif
   4676	SKB_EXT_NUM, /* must be last */
   4677};
   4678
   4679/**
   4680 *	struct skb_ext - sk_buff extensions
   4681 *	@refcnt: 1 on allocation, deallocated on 0
   4682 *	@offset: offset to add to @data to obtain extension address
   4683 *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
   4684 *	@data: start of extension data, variable sized
   4685 *
   4686 *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
   4687 *	to use 'u8' types while allowing up to 2kb worth of extension data.
   4688 */
   4689struct skb_ext {
   4690	refcount_t refcnt;
   4691	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
   4692	u8 chunks;		/* same */
   4693	char data[] __aligned(8);
   4694};
   4695
   4696struct skb_ext *__skb_ext_alloc(gfp_t flags);
   4697void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
   4698		    struct skb_ext *ext);
   4699void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
   4700void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
   4701void __skb_ext_put(struct skb_ext *ext);
   4702
   4703static inline void skb_ext_put(struct sk_buff *skb)
   4704{
   4705	if (skb->active_extensions)
   4706		__skb_ext_put(skb->extensions);
   4707}
   4708
   4709static inline void __skb_ext_copy(struct sk_buff *dst,
   4710				  const struct sk_buff *src)
   4711{
   4712	dst->active_extensions = src->active_extensions;
   4713
   4714	if (src->active_extensions) {
   4715		struct skb_ext *ext = src->extensions;
   4716
   4717		refcount_inc(&ext->refcnt);
   4718		dst->extensions = ext;
   4719	}
   4720}
   4721
   4722static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
   4723{
   4724	skb_ext_put(dst);
   4725	__skb_ext_copy(dst, src);
   4726}
   4727
   4728static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
   4729{
   4730	return !!ext->offset[i];
   4731}
   4732
   4733static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
   4734{
   4735	return skb->active_extensions & (1 << id);
   4736}
   4737
   4738static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
   4739{
   4740	if (skb_ext_exist(skb, id))
   4741		__skb_ext_del(skb, id);
   4742}
   4743
   4744static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
   4745{
   4746	if (skb_ext_exist(skb, id)) {
   4747		struct skb_ext *ext = skb->extensions;
   4748
   4749		return (void *)ext + (ext->offset[id] << 3);
   4750	}
   4751
   4752	return NULL;
   4753}
   4754
   4755static inline void skb_ext_reset(struct sk_buff *skb)
   4756{
   4757	if (unlikely(skb->active_extensions)) {
   4758		__skb_ext_put(skb->extensions);
   4759		skb->active_extensions = 0;
   4760	}
   4761}
   4762
   4763static inline bool skb_has_extensions(struct sk_buff *skb)
   4764{
   4765	return unlikely(skb->active_extensions);
   4766}
   4767#else
   4768static inline void skb_ext_put(struct sk_buff *skb) {}
   4769static inline void skb_ext_reset(struct sk_buff *skb) {}
   4770static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
   4771static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
   4772static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
   4773static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
   4774#endif /* CONFIG_SKB_EXTENSIONS */
   4775
   4776static inline void nf_reset_ct(struct sk_buff *skb)
   4777{
   4778#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
   4779	nf_conntrack_put(skb_nfct(skb));
   4780	skb->_nfct = 0;
   4781#endif
   4782}
   4783
   4784static inline void nf_reset_trace(struct sk_buff *skb)
   4785{
   4786#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
   4787	skb->nf_trace = 0;
   4788#endif
   4789}
   4790
   4791static inline void ipvs_reset(struct sk_buff *skb)
   4792{
   4793#if IS_ENABLED(CONFIG_IP_VS)
   4794	skb->ipvs_property = 0;
   4795#endif
   4796}
   4797
   4798/* Note: This doesn't put any conntrack info in dst. */
   4799static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
   4800			     bool copy)
   4801{
   4802#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
   4803	dst->_nfct = src->_nfct;
   4804	nf_conntrack_get(skb_nfct(src));
   4805#endif
   4806#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
   4807	if (copy)
   4808		dst->nf_trace = src->nf_trace;
   4809#endif
   4810}
   4811
   4812static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
   4813{
   4814#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
   4815	nf_conntrack_put(skb_nfct(dst));
   4816#endif
   4817	dst->slow_gro = src->slow_gro;
   4818	__nf_copy(dst, src, true);
   4819}
   4820
   4821#ifdef CONFIG_NETWORK_SECMARK
   4822static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
   4823{
   4824	to->secmark = from->secmark;
   4825}
   4826
   4827static inline void skb_init_secmark(struct sk_buff *skb)
   4828{
   4829	skb->secmark = 0;
   4830}
   4831#else
   4832static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
   4833{ }
   4834
   4835static inline void skb_init_secmark(struct sk_buff *skb)
   4836{ }
   4837#endif
   4838
   4839static inline int secpath_exists(const struct sk_buff *skb)
   4840{
   4841#ifdef CONFIG_XFRM
   4842	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
   4843#else
   4844	return 0;
   4845#endif
   4846}
   4847
   4848static inline bool skb_irq_freeable(const struct sk_buff *skb)
   4849{
   4850	return !skb->destructor &&
   4851		!secpath_exists(skb) &&
   4852		!skb_nfct(skb) &&
   4853		!skb->_skb_refdst &&
   4854		!skb_has_frag_list(skb);
   4855}
   4856
   4857static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
   4858{
   4859	skb->queue_mapping = queue_mapping;
   4860}
   4861
   4862static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
   4863{
   4864	return skb->queue_mapping;
   4865}
   4866
   4867static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
   4868{
   4869	to->queue_mapping = from->queue_mapping;
   4870}
   4871
   4872static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
   4873{
   4874	skb->queue_mapping = rx_queue + 1;
   4875}
   4876
   4877static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
   4878{
   4879	return skb->queue_mapping - 1;
   4880}
   4881
   4882static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
   4883{
   4884	return skb->queue_mapping != 0;
   4885}
   4886
   4887static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
   4888{
   4889	skb->dst_pending_confirm = val;
   4890}
   4891
   4892static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
   4893{
   4894	return skb->dst_pending_confirm != 0;
   4895}
   4896
   4897static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
   4898{
   4899#ifdef CONFIG_XFRM
   4900	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
   4901#else
   4902	return NULL;
   4903#endif
   4904}
   4905
   4906/* Keeps track of mac header offset relative to skb->head.
   4907 * It is useful for TSO of Tunneling protocol. e.g. GRE.
   4908 * For non-tunnel skb it points to skb_mac_header() and for
   4909 * tunnel skb it points to outer mac header.
   4910 * Keeps track of level of encapsulation of network headers.
   4911 */
   4912struct skb_gso_cb {
   4913	union {
   4914		int	mac_offset;
   4915		int	data_offset;
   4916	};
   4917	int	encap_level;
   4918	__wsum	csum;
   4919	__u16	csum_start;
   4920};
   4921#define SKB_GSO_CB_OFFSET	32
   4922#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
   4923
   4924static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
   4925{
   4926	return (skb_mac_header(inner_skb) - inner_skb->head) -
   4927		SKB_GSO_CB(inner_skb)->mac_offset;
   4928}
   4929
   4930static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
   4931{
   4932	int new_headroom, headroom;
   4933	int ret;
   4934
   4935	headroom = skb_headroom(skb);
   4936	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
   4937	if (ret)
   4938		return ret;
   4939
   4940	new_headroom = skb_headroom(skb);
   4941	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
   4942	return 0;
   4943}
   4944
   4945static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
   4946{
   4947	/* Do not update partial checksums if remote checksum is enabled. */
   4948	if (skb->remcsum_offload)
   4949		return;
   4950
   4951	SKB_GSO_CB(skb)->csum = res;
   4952	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
   4953}
   4954
   4955/* Compute the checksum for a gso segment. First compute the checksum value
   4956 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
   4957 * then add in skb->csum (checksum from csum_start to end of packet).
   4958 * skb->csum and csum_start are then updated to reflect the checksum of the
   4959 * resultant packet starting from the transport header-- the resultant checksum
   4960 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
   4961 * header.
   4962 */
   4963static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
   4964{
   4965	unsigned char *csum_start = skb_transport_header(skb);
   4966	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
   4967	__wsum partial = SKB_GSO_CB(skb)->csum;
   4968
   4969	SKB_GSO_CB(skb)->csum = res;
   4970	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
   4971
   4972	return csum_fold(csum_partial(csum_start, plen, partial));
   4973}
   4974
   4975static inline bool skb_is_gso(const struct sk_buff *skb)
   4976{
   4977	return skb_shinfo(skb)->gso_size;
   4978}
   4979
   4980/* Note: Should be called only if skb_is_gso(skb) is true */
   4981static inline bool skb_is_gso_v6(const struct sk_buff *skb)
   4982{
   4983	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
   4984}
   4985
   4986/* Note: Should be called only if skb_is_gso(skb) is true */
   4987static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
   4988{
   4989	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
   4990}
   4991
   4992/* Note: Should be called only if skb_is_gso(skb) is true */
   4993static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
   4994{
   4995	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
   4996}
   4997
   4998static inline void skb_gso_reset(struct sk_buff *skb)
   4999{
   5000	skb_shinfo(skb)->gso_size = 0;
   5001	skb_shinfo(skb)->gso_segs = 0;
   5002	skb_shinfo(skb)->gso_type = 0;
   5003}
   5004
   5005static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
   5006					 u16 increment)
   5007{
   5008	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
   5009		return;
   5010	shinfo->gso_size += increment;
   5011}
   5012
   5013static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
   5014					 u16 decrement)
   5015{
   5016	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
   5017		return;
   5018	shinfo->gso_size -= decrement;
   5019}
   5020
   5021void __skb_warn_lro_forwarding(const struct sk_buff *skb);
   5022
   5023static inline bool skb_warn_if_lro(const struct sk_buff *skb)
   5024{
   5025	/* LRO sets gso_size but not gso_type, whereas if GSO is really
   5026	 * wanted then gso_type will be set. */
   5027	const struct skb_shared_info *shinfo = skb_shinfo(skb);
   5028
   5029	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
   5030	    unlikely(shinfo->gso_type == 0)) {
   5031		__skb_warn_lro_forwarding(skb);
   5032		return true;
   5033	}
   5034	return false;
   5035}
   5036
   5037static inline void skb_forward_csum(struct sk_buff *skb)
   5038{
   5039	/* Unfortunately we don't support this one.  Any brave souls? */
   5040	if (skb->ip_summed == CHECKSUM_COMPLETE)
   5041		skb->ip_summed = CHECKSUM_NONE;
   5042}
   5043
   5044/**
   5045 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
   5046 * @skb: skb to check
   5047 *
   5048 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
   5049 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
   5050 * use this helper, to document places where we make this assertion.
   5051 */
   5052static inline void skb_checksum_none_assert(const struct sk_buff *skb)
   5053{
   5054	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
   5055}
   5056
   5057bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
   5058
   5059int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
   5060struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
   5061				     unsigned int transport_len,
   5062				     __sum16(*skb_chkf)(struct sk_buff *skb));
   5063
   5064/**
   5065 * skb_head_is_locked - Determine if the skb->head is locked down
   5066 * @skb: skb to check
   5067 *
   5068 * The head on skbs build around a head frag can be removed if they are
   5069 * not cloned.  This function returns true if the skb head is locked down
   5070 * due to either being allocated via kmalloc, or by being a clone with
   5071 * multiple references to the head.
   5072 */
   5073static inline bool skb_head_is_locked(const struct sk_buff *skb)
   5074{
   5075	return !skb->head_frag || skb_cloned(skb);
   5076}
   5077
   5078/* Local Checksum Offload.
   5079 * Compute outer checksum based on the assumption that the
   5080 * inner checksum will be offloaded later.
   5081 * See Documentation/networking/checksum-offloads.rst for
   5082 * explanation of how this works.
   5083 * Fill in outer checksum adjustment (e.g. with sum of outer
   5084 * pseudo-header) before calling.
   5085 * Also ensure that inner checksum is in linear data area.
   5086 */
   5087static inline __wsum lco_csum(struct sk_buff *skb)
   5088{
   5089	unsigned char *csum_start = skb_checksum_start(skb);
   5090	unsigned char *l4_hdr = skb_transport_header(skb);
   5091	__wsum partial;
   5092
   5093	/* Start with complement of inner checksum adjustment */
   5094	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
   5095						    skb->csum_offset));
   5096
   5097	/* Add in checksum of our headers (incl. outer checksum
   5098	 * adjustment filled in by caller) and return result.
   5099	 */
   5100	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
   5101}
   5102
   5103static inline bool skb_is_redirected(const struct sk_buff *skb)
   5104{
   5105	return skb->redirected;
   5106}
   5107
   5108static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
   5109{
   5110	skb->redirected = 1;
   5111#ifdef CONFIG_NET_REDIRECT
   5112	skb->from_ingress = from_ingress;
   5113	if (skb->from_ingress)
   5114		skb_clear_tstamp(skb);
   5115#endif
   5116}
   5117
   5118static inline void skb_reset_redirect(struct sk_buff *skb)
   5119{
   5120	skb->redirected = 0;
   5121}
   5122
   5123static inline bool skb_csum_is_sctp(struct sk_buff *skb)
   5124{
   5125	return skb->csum_not_inet;
   5126}
   5127
   5128static inline void skb_set_kcov_handle(struct sk_buff *skb,
   5129				       const u64 kcov_handle)
   5130{
   5131#ifdef CONFIG_KCOV
   5132	skb->kcov_handle = kcov_handle;
   5133#endif
   5134}
   5135
   5136static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
   5137{
   5138#ifdef CONFIG_KCOV
   5139	return skb->kcov_handle;
   5140#else
   5141	return 0;
   5142#endif
   5143}
   5144
   5145#ifdef CONFIG_PAGE_POOL
   5146static inline void skb_mark_for_recycle(struct sk_buff *skb)
   5147{
   5148	skb->pp_recycle = 1;
   5149}
   5150#endif
   5151
   5152static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
   5153{
   5154	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
   5155		return false;
   5156	return page_pool_return_skb_page(virt_to_page(data));
   5157}
   5158
   5159#endif	/* __KERNEL__ */
   5160#endif	/* _LINUX_SKBUFF_H */