cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spi-mem.h (13534B)


      1/* SPDX-License-Identifier: GPL-2.0+ */
      2/*
      3 * Copyright (C) 2018 Exceet Electronics GmbH
      4 * Copyright (C) 2018 Bootlin
      5 *
      6 * Author:
      7 *	Peter Pan <peterpandong@micron.com>
      8 *	Boris Brezillon <boris.brezillon@bootlin.com>
      9 */
     10
     11#ifndef __LINUX_SPI_MEM_H
     12#define __LINUX_SPI_MEM_H
     13
     14#include <linux/spi/spi.h>
     15
     16#define SPI_MEM_OP_CMD(__opcode, __buswidth)			\
     17	{							\
     18		.buswidth = __buswidth,				\
     19		.opcode = __opcode,				\
     20		.nbytes = 1,					\
     21	}
     22
     23#define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth)		\
     24	{							\
     25		.nbytes = __nbytes,				\
     26		.val = __val,					\
     27		.buswidth = __buswidth,				\
     28	}
     29
     30#define SPI_MEM_OP_NO_ADDR	{ }
     31
     32#define SPI_MEM_OP_DUMMY(__nbytes, __buswidth)			\
     33	{							\
     34		.nbytes = __nbytes,				\
     35		.buswidth = __buswidth,				\
     36	}
     37
     38#define SPI_MEM_OP_NO_DUMMY	{ }
     39
     40#define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth)		\
     41	{							\
     42		.dir = SPI_MEM_DATA_IN,				\
     43		.nbytes = __nbytes,				\
     44		.buf.in = __buf,				\
     45		.buswidth = __buswidth,				\
     46	}
     47
     48#define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth)	\
     49	{							\
     50		.dir = SPI_MEM_DATA_OUT,			\
     51		.nbytes = __nbytes,				\
     52		.buf.out = __buf,				\
     53		.buswidth = __buswidth,				\
     54	}
     55
     56#define SPI_MEM_OP_NO_DATA	{ }
     57
     58/**
     59 * enum spi_mem_data_dir - describes the direction of a SPI memory data
     60 *			   transfer from the controller perspective
     61 * @SPI_MEM_NO_DATA: no data transferred
     62 * @SPI_MEM_DATA_IN: data coming from the SPI memory
     63 * @SPI_MEM_DATA_OUT: data sent to the SPI memory
     64 */
     65enum spi_mem_data_dir {
     66	SPI_MEM_NO_DATA,
     67	SPI_MEM_DATA_IN,
     68	SPI_MEM_DATA_OUT,
     69};
     70
     71/**
     72 * struct spi_mem_op - describes a SPI memory operation
     73 * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
     74 *		sent MSB-first.
     75 * @cmd.buswidth: number of IO lines used to transmit the command
     76 * @cmd.opcode: operation opcode
     77 * @cmd.dtr: whether the command opcode should be sent in DTR mode or not
     78 * @addr.nbytes: number of address bytes to send. Can be zero if the operation
     79 *		 does not need to send an address
     80 * @addr.buswidth: number of IO lines used to transmit the address cycles
     81 * @addr.dtr: whether the address should be sent in DTR mode or not
     82 * @addr.val: address value. This value is always sent MSB first on the bus.
     83 *	      Note that only @addr.nbytes are taken into account in this
     84 *	      address value, so users should make sure the value fits in the
     85 *	      assigned number of bytes.
     86 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
     87 *		  be zero if the operation does not require dummy bytes
     88 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
     89 * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
     90 * @data.buswidth: number of IO lanes used to send/receive the data
     91 * @data.dtr: whether the data should be sent in DTR mode or not
     92 * @data.ecc: whether error correction is required or not
     93 * @data.dir: direction of the transfer
     94 * @data.nbytes: number of data bytes to send/receive. Can be zero if the
     95 *		 operation does not involve transferring data
     96 * @data.buf.in: input buffer (must be DMA-able)
     97 * @data.buf.out: output buffer (must be DMA-able)
     98 */
     99struct spi_mem_op {
    100	struct {
    101		u8 nbytes;
    102		u8 buswidth;
    103		u8 dtr : 1;
    104		u16 opcode;
    105	} cmd;
    106
    107	struct {
    108		u8 nbytes;
    109		u8 buswidth;
    110		u8 dtr : 1;
    111		u64 val;
    112	} addr;
    113
    114	struct {
    115		u8 nbytes;
    116		u8 buswidth;
    117		u8 dtr : 1;
    118	} dummy;
    119
    120	struct {
    121		u8 buswidth;
    122		u8 dtr : 1;
    123		u8 ecc : 1;
    124		enum spi_mem_data_dir dir;
    125		unsigned int nbytes;
    126		union {
    127			void *in;
    128			const void *out;
    129		} buf;
    130	} data;
    131};
    132
    133#define SPI_MEM_OP(__cmd, __addr, __dummy, __data)		\
    134	{							\
    135		.cmd = __cmd,					\
    136		.addr = __addr,					\
    137		.dummy = __dummy,				\
    138		.data = __data,					\
    139	}
    140
    141/**
    142 * struct spi_mem_dirmap_info - Direct mapping information
    143 * @op_tmpl: operation template that should be used by the direct mapping when
    144 *	     the memory device is accessed
    145 * @offset: absolute offset this direct mapping is pointing to
    146 * @length: length in byte of this direct mapping
    147 *
    148 * These information are used by the controller specific implementation to know
    149 * the portion of memory that is directly mapped and the spi_mem_op that should
    150 * be used to access the device.
    151 * A direct mapping is only valid for one direction (read or write) and this
    152 * direction is directly encoded in the ->op_tmpl.data.dir field.
    153 */
    154struct spi_mem_dirmap_info {
    155	struct spi_mem_op op_tmpl;
    156	u64 offset;
    157	u64 length;
    158};
    159
    160/**
    161 * struct spi_mem_dirmap_desc - Direct mapping descriptor
    162 * @mem: the SPI memory device this direct mapping is attached to
    163 * @info: information passed at direct mapping creation time
    164 * @nodirmap: set to 1 if the SPI controller does not implement
    165 *	      ->mem_ops->dirmap_create() or when this function returned an
    166 *	      error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
    167 *	      calls will use spi_mem_exec_op() to access the memory. This is a
    168 *	      degraded mode that allows spi_mem drivers to use the same code
    169 *	      no matter whether the controller supports direct mapping or not
    170 * @priv: field pointing to controller specific data
    171 *
    172 * Common part of a direct mapping descriptor. This object is created by
    173 * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
    174 * can create/attach direct mapping resources to the descriptor in the ->priv
    175 * field.
    176 */
    177struct spi_mem_dirmap_desc {
    178	struct spi_mem *mem;
    179	struct spi_mem_dirmap_info info;
    180	unsigned int nodirmap;
    181	void *priv;
    182};
    183
    184/**
    185 * struct spi_mem - describes a SPI memory device
    186 * @spi: the underlying SPI device
    187 * @drvpriv: spi_mem_driver private data
    188 * @name: name of the SPI memory device
    189 *
    190 * Extra information that describe the SPI memory device and may be needed by
    191 * the controller to properly handle this device should be placed here.
    192 *
    193 * One example would be the device size since some controller expose their SPI
    194 * mem devices through a io-mapped region.
    195 */
    196struct spi_mem {
    197	struct spi_device *spi;
    198	void *drvpriv;
    199	const char *name;
    200};
    201
    202/**
    203 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
    204 *				  device
    205 * @mem: memory device
    206 * @data: data to attach to the memory device
    207 */
    208static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
    209{
    210	mem->drvpriv = data;
    211}
    212
    213/**
    214 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
    215 *				  device
    216 * @mem: memory device
    217 *
    218 * Return: the data attached to the mem device.
    219 */
    220static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
    221{
    222	return mem->drvpriv;
    223}
    224
    225/**
    226 * struct spi_controller_mem_ops - SPI memory operations
    227 * @adjust_op_size: shrink the data xfer of an operation to match controller's
    228 *		    limitations (can be alignment of max RX/TX size
    229 *		    limitations)
    230 * @supports_op: check if an operation is supported by the controller
    231 * @exec_op: execute a SPI memory operation
    232 * @get_name: get a custom name for the SPI mem device from the controller.
    233 *	      This might be needed if the controller driver has been ported
    234 *	      to use the SPI mem layer and a custom name is used to keep
    235 *	      mtdparts compatible.
    236 *	      Note that if the implementation of this function allocates memory
    237 *	      dynamically, then it should do so with devm_xxx(), as we don't
    238 *	      have a ->free_name() function.
    239 * @dirmap_create: create a direct mapping descriptor that can later be used to
    240 *		   access the memory device. This method is optional
    241 * @dirmap_destroy: destroy a memory descriptor previous created by
    242 *		    ->dirmap_create()
    243 * @dirmap_read: read data from the memory device using the direct mapping
    244 *		 created by ->dirmap_create(). The function can return less
    245 *		 data than requested (for example when the request is crossing
    246 *		 the currently mapped area), and the caller of
    247 *		 spi_mem_dirmap_read() is responsible for calling it again in
    248 *		 this case.
    249 * @dirmap_write: write data to the memory device using the direct mapping
    250 *		  created by ->dirmap_create(). The function can return less
    251 *		  data than requested (for example when the request is crossing
    252 *		  the currently mapped area), and the caller of
    253 *		  spi_mem_dirmap_write() is responsible for calling it again in
    254 *		  this case.
    255 * @poll_status: poll memory device status until (status & mask) == match or
    256 *               when the timeout has expired. It fills the data buffer with
    257 *               the last status value.
    258 *
    259 * This interface should be implemented by SPI controllers providing an
    260 * high-level interface to execute SPI memory operation, which is usually the
    261 * case for QSPI controllers.
    262 *
    263 * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
    264 * mapping from the CPU because doing that can stall the CPU waiting for the
    265 * SPI mem transaction to finish, and this will make real-time maintainers
    266 * unhappy and might make your system less reactive. Instead, drivers should
    267 * use DMA to access this direct mapping.
    268 */
    269struct spi_controller_mem_ops {
    270	int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
    271	bool (*supports_op)(struct spi_mem *mem,
    272			    const struct spi_mem_op *op);
    273	int (*exec_op)(struct spi_mem *mem,
    274		       const struct spi_mem_op *op);
    275	const char *(*get_name)(struct spi_mem *mem);
    276	int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
    277	void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
    278	ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
    279			       u64 offs, size_t len, void *buf);
    280	ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
    281				u64 offs, size_t len, const void *buf);
    282	int (*poll_status)(struct spi_mem *mem,
    283			   const struct spi_mem_op *op,
    284			   u16 mask, u16 match,
    285			   unsigned long initial_delay_us,
    286			   unsigned long polling_rate_us,
    287			   unsigned long timeout_ms);
    288};
    289
    290/**
    291 * struct spi_controller_mem_caps - SPI memory controller capabilities
    292 * @dtr: Supports DTR operations
    293 * @ecc: Supports operations with error correction
    294 */
    295struct spi_controller_mem_caps {
    296	bool dtr;
    297	bool ecc;
    298};
    299
    300#define spi_mem_controller_is_capable(ctlr, cap)	\
    301	((ctlr)->mem_caps && (ctlr)->mem_caps->cap)
    302
    303/**
    304 * struct spi_mem_driver - SPI memory driver
    305 * @spidrv: inherit from a SPI driver
    306 * @probe: probe a SPI memory. Usually where detection/initialization takes
    307 *	   place
    308 * @remove: remove a SPI memory
    309 * @shutdown: take appropriate action when the system is shutdown
    310 *
    311 * This is just a thin wrapper around a spi_driver. The core takes care of
    312 * allocating the spi_mem object and forwarding the probe/remove/shutdown
    313 * request to the spi_mem_driver. The reason we use this wrapper is because
    314 * we might have to stuff more information into the spi_mem struct to let
    315 * SPI controllers know more about the SPI memory they interact with, and
    316 * having this intermediate layer allows us to do that without adding more
    317 * useless fields to the spi_device object.
    318 */
    319struct spi_mem_driver {
    320	struct spi_driver spidrv;
    321	int (*probe)(struct spi_mem *mem);
    322	int (*remove)(struct spi_mem *mem);
    323	void (*shutdown)(struct spi_mem *mem);
    324};
    325
    326#if IS_ENABLED(CONFIG_SPI_MEM)
    327int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
    328				       const struct spi_mem_op *op,
    329				       struct sg_table *sg);
    330
    331void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
    332					  const struct spi_mem_op *op,
    333					  struct sg_table *sg);
    334
    335bool spi_mem_default_supports_op(struct spi_mem *mem,
    336				 const struct spi_mem_op *op);
    337#else
    338static inline int
    339spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
    340				   const struct spi_mem_op *op,
    341				   struct sg_table *sg)
    342{
    343	return -ENOTSUPP;
    344}
    345
    346static inline void
    347spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
    348				     const struct spi_mem_op *op,
    349				     struct sg_table *sg)
    350{
    351}
    352
    353static inline
    354bool spi_mem_default_supports_op(struct spi_mem *mem,
    355				 const struct spi_mem_op *op)
    356{
    357	return false;
    358}
    359#endif /* CONFIG_SPI_MEM */
    360
    361int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
    362
    363bool spi_mem_supports_op(struct spi_mem *mem,
    364			 const struct spi_mem_op *op);
    365
    366int spi_mem_exec_op(struct spi_mem *mem,
    367		    const struct spi_mem_op *op);
    368
    369const char *spi_mem_get_name(struct spi_mem *mem);
    370
    371struct spi_mem_dirmap_desc *
    372spi_mem_dirmap_create(struct spi_mem *mem,
    373		      const struct spi_mem_dirmap_info *info);
    374void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
    375ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
    376			    u64 offs, size_t len, void *buf);
    377ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
    378			     u64 offs, size_t len, const void *buf);
    379struct spi_mem_dirmap_desc *
    380devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
    381			   const struct spi_mem_dirmap_info *info);
    382void devm_spi_mem_dirmap_destroy(struct device *dev,
    383				 struct spi_mem_dirmap_desc *desc);
    384
    385int spi_mem_poll_status(struct spi_mem *mem,
    386			const struct spi_mem_op *op,
    387			u16 mask, u16 match,
    388			unsigned long initial_delay_us,
    389			unsigned long polling_delay_us,
    390			u16 timeout_ms);
    391
    392int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
    393				       struct module *owner);
    394
    395void spi_mem_driver_unregister(struct spi_mem_driver *drv);
    396
    397#define spi_mem_driver_register(__drv)                                  \
    398	spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
    399
    400#define module_spi_mem_driver(__drv)                                    \
    401	module_driver(__drv, spi_mem_driver_register,                   \
    402		      spi_mem_driver_unregister)
    403
    404#endif /* __LINUX_SPI_MEM_H */