cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

swait.h (9678B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _LINUX_SWAIT_H
      3#define _LINUX_SWAIT_H
      4
      5#include <linux/list.h>
      6#include <linux/stddef.h>
      7#include <linux/spinlock.h>
      8#include <linux/wait.h>
      9#include <asm/current.h>
     10
     11/*
     12 * Simple waitqueues are semantically very different to regular wait queues
     13 * (wait.h). The most important difference is that the simple waitqueue allows
     14 * for deterministic behaviour -- IOW it has strictly bounded IRQ and lock hold
     15 * times.
     16 *
     17 * Mainly, this is accomplished by two things. Firstly not allowing swake_up_all
     18 * from IRQ disabled, and dropping the lock upon every wakeup, giving a higher
     19 * priority task a chance to run.
     20 *
     21 * Secondly, we had to drop a fair number of features of the other waitqueue
     22 * code; notably:
     23 *
     24 *  - mixing INTERRUPTIBLE and UNINTERRUPTIBLE sleeps on the same waitqueue;
     25 *    all wakeups are TASK_NORMAL in order to avoid O(n) lookups for the right
     26 *    sleeper state.
     27 *
     28 *  - the !exclusive mode; because that leads to O(n) wakeups, everything is
     29 *    exclusive. As such swake_up_one will only ever awake _one_ waiter.
     30 *
     31 *  - custom wake callback functions; because you cannot give any guarantees
     32 *    about random code. This also allows swait to be used in RT, such that
     33 *    raw spinlock can be used for the swait queue head.
     34 *
     35 * As a side effect of these; the data structures are slimmer albeit more ad-hoc.
     36 * For all the above, note that simple wait queues should _only_ be used under
     37 * very specific realtime constraints -- it is best to stick with the regular
     38 * wait queues in most cases.
     39 */
     40
     41struct task_struct;
     42
     43struct swait_queue_head {
     44	raw_spinlock_t		lock;
     45	struct list_head	task_list;
     46};
     47
     48struct swait_queue {
     49	struct task_struct	*task;
     50	struct list_head	task_list;
     51};
     52
     53#define __SWAITQUEUE_INITIALIZER(name) {				\
     54	.task		= current,					\
     55	.task_list	= LIST_HEAD_INIT((name).task_list),		\
     56}
     57
     58#define DECLARE_SWAITQUEUE(name)					\
     59	struct swait_queue name = __SWAITQUEUE_INITIALIZER(name)
     60
     61#define __SWAIT_QUEUE_HEAD_INITIALIZER(name) {				\
     62	.lock		= __RAW_SPIN_LOCK_UNLOCKED(name.lock),		\
     63	.task_list	= LIST_HEAD_INIT((name).task_list),		\
     64}
     65
     66#define DECLARE_SWAIT_QUEUE_HEAD(name)					\
     67	struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INITIALIZER(name)
     68
     69extern void __init_swait_queue_head(struct swait_queue_head *q, const char *name,
     70				    struct lock_class_key *key);
     71
     72#define init_swait_queue_head(q)				\
     73	do {							\
     74		static struct lock_class_key __key;		\
     75		__init_swait_queue_head((q), #q, &__key);	\
     76	} while (0)
     77
     78#ifdef CONFIG_LOCKDEP
     79# define __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name)			\
     80	({ init_swait_queue_head(&name); name; })
     81# define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name)			\
     82	struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name)
     83#else
     84# define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name)			\
     85	DECLARE_SWAIT_QUEUE_HEAD(name)
     86#endif
     87
     88/**
     89 * swait_active -- locklessly test for waiters on the queue
     90 * @wq: the waitqueue to test for waiters
     91 *
     92 * returns true if the wait list is not empty
     93 *
     94 * NOTE: this function is lockless and requires care, incorrect usage _will_
     95 * lead to sporadic and non-obvious failure.
     96 *
     97 * NOTE2: this function has the same above implications as regular waitqueues.
     98 *
     99 * Use either while holding swait_queue_head::lock or when used for wakeups
    100 * with an extra smp_mb() like:
    101 *
    102 *      CPU0 - waker                    CPU1 - waiter
    103 *
    104 *                                      for (;;) {
    105 *      @cond = true;                     prepare_to_swait_exclusive(&wq_head, &wait, state);
    106 *      smp_mb();                         // smp_mb() from set_current_state()
    107 *      if (swait_active(wq_head))        if (@cond)
    108 *        wake_up(wq_head);                      break;
    109 *                                        schedule();
    110 *                                      }
    111 *                                      finish_swait(&wq_head, &wait);
    112 *
    113 * Because without the explicit smp_mb() it's possible for the
    114 * swait_active() load to get hoisted over the @cond store such that we'll
    115 * observe an empty wait list while the waiter might not observe @cond.
    116 * This, in turn, can trigger missing wakeups.
    117 *
    118 * Also note that this 'optimization' trades a spin_lock() for an smp_mb(),
    119 * which (when the lock is uncontended) are of roughly equal cost.
    120 */
    121static inline int swait_active(struct swait_queue_head *wq)
    122{
    123	return !list_empty(&wq->task_list);
    124}
    125
    126/**
    127 * swq_has_sleeper - check if there are any waiting processes
    128 * @wq: the waitqueue to test for waiters
    129 *
    130 * Returns true if @wq has waiting processes
    131 *
    132 * Please refer to the comment for swait_active.
    133 */
    134static inline bool swq_has_sleeper(struct swait_queue_head *wq)
    135{
    136	/*
    137	 * We need to be sure we are in sync with the list_add()
    138	 * modifications to the wait queue (task_list).
    139	 *
    140	 * This memory barrier should be paired with one on the
    141	 * waiting side.
    142	 */
    143	smp_mb();
    144	return swait_active(wq);
    145}
    146
    147extern void swake_up_one(struct swait_queue_head *q);
    148extern void swake_up_all(struct swait_queue_head *q);
    149extern void swake_up_locked(struct swait_queue_head *q);
    150
    151extern void prepare_to_swait_exclusive(struct swait_queue_head *q, struct swait_queue *wait, int state);
    152extern long prepare_to_swait_event(struct swait_queue_head *q, struct swait_queue *wait, int state);
    153
    154extern void __finish_swait(struct swait_queue_head *q, struct swait_queue *wait);
    155extern void finish_swait(struct swait_queue_head *q, struct swait_queue *wait);
    156
    157/* as per ___wait_event() but for swait, therefore "exclusive == 1" */
    158#define ___swait_event(wq, condition, state, ret, cmd)			\
    159({									\
    160	__label__ __out;						\
    161	struct swait_queue __wait;					\
    162	long __ret = ret;						\
    163									\
    164	INIT_LIST_HEAD(&__wait.task_list);				\
    165	for (;;) {							\
    166		long __int = prepare_to_swait_event(&wq, &__wait, state);\
    167									\
    168		if (condition)						\
    169			break;						\
    170									\
    171		if (___wait_is_interruptible(state) && __int) {		\
    172			__ret = __int;					\
    173			goto __out;					\
    174		}							\
    175									\
    176		cmd;							\
    177	}								\
    178	finish_swait(&wq, &__wait);					\
    179__out:	__ret;								\
    180})
    181
    182#define __swait_event(wq, condition)					\
    183	(void)___swait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0,	\
    184			    schedule())
    185
    186#define swait_event_exclusive(wq, condition)				\
    187do {									\
    188	if (condition)							\
    189		break;							\
    190	__swait_event(wq, condition);					\
    191} while (0)
    192
    193#define __swait_event_timeout(wq, condition, timeout)			\
    194	___swait_event(wq, ___wait_cond_timeout(condition),		\
    195		      TASK_UNINTERRUPTIBLE, timeout,			\
    196		      __ret = schedule_timeout(__ret))
    197
    198#define swait_event_timeout_exclusive(wq, condition, timeout)		\
    199({									\
    200	long __ret = timeout;						\
    201	if (!___wait_cond_timeout(condition))				\
    202		__ret = __swait_event_timeout(wq, condition, timeout);	\
    203	__ret;								\
    204})
    205
    206#define __swait_event_interruptible(wq, condition)			\
    207	___swait_event(wq, condition, TASK_INTERRUPTIBLE, 0,		\
    208		      schedule())
    209
    210#define swait_event_interruptible_exclusive(wq, condition)		\
    211({									\
    212	int __ret = 0;							\
    213	if (!(condition))						\
    214		__ret = __swait_event_interruptible(wq, condition);	\
    215	__ret;								\
    216})
    217
    218#define __swait_event_interruptible_timeout(wq, condition, timeout)	\
    219	___swait_event(wq, ___wait_cond_timeout(condition),		\
    220		      TASK_INTERRUPTIBLE, timeout,			\
    221		      __ret = schedule_timeout(__ret))
    222
    223#define swait_event_interruptible_timeout_exclusive(wq, condition, timeout)\
    224({									\
    225	long __ret = timeout;						\
    226	if (!___wait_cond_timeout(condition))				\
    227		__ret = __swait_event_interruptible_timeout(wq,		\
    228						condition, timeout);	\
    229	__ret;								\
    230})
    231
    232#define __swait_event_idle(wq, condition)				\
    233	(void)___swait_event(wq, condition, TASK_IDLE, 0, schedule())
    234
    235/**
    236 * swait_event_idle_exclusive - wait without system load contribution
    237 * @wq: the waitqueue to wait on
    238 * @condition: a C expression for the event to wait for
    239 *
    240 * The process is put to sleep (TASK_IDLE) until the @condition evaluates to
    241 * true. The @condition is checked each time the waitqueue @wq is woken up.
    242 *
    243 * This function is mostly used when a kthread or workqueue waits for some
    244 * condition and doesn't want to contribute to system load. Signals are
    245 * ignored.
    246 */
    247#define swait_event_idle_exclusive(wq, condition)			\
    248do {									\
    249	if (condition)							\
    250		break;							\
    251	__swait_event_idle(wq, condition);				\
    252} while (0)
    253
    254#define __swait_event_idle_timeout(wq, condition, timeout)		\
    255	___swait_event(wq, ___wait_cond_timeout(condition),		\
    256		       TASK_IDLE, timeout,				\
    257		       __ret = schedule_timeout(__ret))
    258
    259/**
    260 * swait_event_idle_timeout_exclusive - wait up to timeout without load contribution
    261 * @wq: the waitqueue to wait on
    262 * @condition: a C expression for the event to wait for
    263 * @timeout: timeout at which we'll give up in jiffies
    264 *
    265 * The process is put to sleep (TASK_IDLE) until the @condition evaluates to
    266 * true. The @condition is checked each time the waitqueue @wq is woken up.
    267 *
    268 * This function is mostly used when a kthread or workqueue waits for some
    269 * condition and doesn't want to contribute to system load. Signals are
    270 * ignored.
    271 *
    272 * Returns:
    273 * 0 if the @condition evaluated to %false after the @timeout elapsed,
    274 * 1 if the @condition evaluated to %true after the @timeout elapsed,
    275 * or the remaining jiffies (at least 1) if the @condition evaluated
    276 * to %true before the @timeout elapsed.
    277 */
    278#define swait_event_idle_timeout_exclusive(wq, condition, timeout)	\
    279({									\
    280	long __ret = timeout;						\
    281	if (!___wait_cond_timeout(condition))				\
    282		__ret = __swait_event_idle_timeout(wq,			\
    283						   condition, timeout);	\
    284	__ret;								\
    285})
    286
    287#endif /* _LINUX_SWAIT_H */