ti_wilink_st.h (13781B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Shared Transport Header file 4 * To be included by the protocol stack drivers for 5 * Texas Instruments BT,FM and GPS combo chip drivers 6 * and also serves the sub-modules of the shared transport driver. 7 * 8 * Copyright (C) 2009-2010 Texas Instruments 9 * Author: Pavan Savoy <pavan_savoy@ti.com> 10 */ 11 12#ifndef TI_WILINK_ST_H 13#define TI_WILINK_ST_H 14 15#include <linux/skbuff.h> 16 17/** 18 * enum proto-type - The protocol on WiLink chips which share a 19 * common physical interface like UART. 20 */ 21enum proto_type { 22 ST_BT, 23 ST_FM, 24 ST_GPS, 25 ST_MAX_CHANNELS = 16, 26}; 27 28/** 29 * struct st_proto_s - Per Protocol structure from BT/FM/GPS to ST 30 * @type: type of the protocol being registered among the 31 * available proto_type(BT, FM, GPS the protocol which share TTY). 32 * @recv: the receiver callback pointing to a function in the 33 * protocol drivers called by the ST driver upon receiving 34 * relevant data. 35 * @match_packet: reserved for future use, to make ST more generic 36 * @reg_complete_cb: callback handler pointing to a function in protocol 37 * handler called by ST when the pending registrations are complete. 38 * The registrations are marked pending, in situations when fw 39 * download is in progress. 40 * @write: pointer to function in ST provided to protocol drivers from ST, 41 * to be made use when protocol drivers have data to send to TTY. 42 * @priv_data: privdate data holder for the protocol drivers, sent 43 * from the protocol drivers during registration, and sent back on 44 * reg_complete_cb and recv. 45 * @chnl_id: channel id the protocol driver is interested in, the channel 46 * id is nothing but the 1st byte of the packet in UART frame. 47 * @max_frame_size: size of the largest frame the protocol can receive. 48 * @hdr_len: length of the header structure of the protocol. 49 * @offset_len_in_hdr: this provides the offset of the length field in the 50 * header structure of the protocol header, to assist ST to know 51 * how much to receive, if the data is split across UART frames. 52 * @len_size: whether the length field inside the header is 2 bytes 53 * or 1 byte. 54 * @reserve: the number of bytes ST needs to reserve in the skb being 55 * prepared for the protocol driver. 56 */ 57struct st_proto_s { 58 enum proto_type type; 59 long (*recv) (void *, struct sk_buff *); 60 unsigned char (*match_packet) (const unsigned char *data); 61 void (*reg_complete_cb) (void *, int data); 62 long (*write) (struct sk_buff *skb); 63 void *priv_data; 64 65 unsigned char chnl_id; 66 unsigned short max_frame_size; 67 unsigned char hdr_len; 68 unsigned char offset_len_in_hdr; 69 unsigned char len_size; 70 unsigned char reserve; 71}; 72 73extern long st_register(struct st_proto_s *); 74extern long st_unregister(struct st_proto_s *); 75 76 77/* 78 * header information used by st_core.c 79 */ 80 81/* states of protocol list */ 82#define ST_NOTEMPTY 1 83#define ST_EMPTY 0 84 85/* 86 * possible st_states 87 */ 88#define ST_INITIALIZING 1 89#define ST_REG_IN_PROGRESS 2 90#define ST_REG_PENDING 3 91#define ST_WAITING_FOR_RESP 4 92 93/** 94 * struct st_data_s - ST core internal structure 95 * @st_state: different states of ST like initializing, registration 96 * in progress, this is mainly used to return relevant err codes 97 * when protocol drivers are registering. It is also used to track 98 * the recv function, as in during fw download only HCI events 99 * can occur , where as during other times other events CH8, CH9 100 * can occur. 101 * @tty: tty provided by the TTY core for line disciplines. 102 * @tx_skb: If for some reason the tty's write returns lesser bytes written 103 * then to maintain the rest of data to be written on next instance. 104 * This needs to be protected, hence the lock inside wakeup func. 105 * @tx_state: if the data is being written onto the TTY and protocol driver 106 * wants to send more, queue up data and mark that there is 107 * more data to send. 108 * @list: the list of protocols registered, only MAX can exist, one protocol 109 * can register only once. 110 * @rx_state: states to be maintained inside st's tty receive 111 * @rx_count: count to be maintained inside st's tty receieve 112 * @rx_skb: the skb where all data for a protocol gets accumulated, 113 * since tty might not call receive when a complete event packet 114 * is received, the states, count and the skb needs to be maintained. 115 * @rx_chnl: the channel ID for which the data is getting accumalated for. 116 * @txq: the list of skbs which needs to be sent onto the TTY. 117 * @tx_waitq: if the chip is not in AWAKE state, the skbs needs to be queued 118 * up in here, PM(WAKEUP_IND) data needs to be sent and then the skbs 119 * from waitq can be moved onto the txq. 120 * Needs locking too. 121 * @lock: the lock to protect skbs, queues, and ST states. 122 * @protos_registered: count of the protocols registered, also when 0 the 123 * chip enable gpio can be toggled, and when it changes to 1 the fw 124 * needs to be downloaded to initialize chip side ST. 125 * @ll_state: the various PM states the chip can be, the states are notified 126 * to us, when the chip sends relevant PM packets(SLEEP_IND, WAKE_IND). 127 * @kim_data: reference to the parent encapsulating structure. 128 * 129 */ 130struct st_data_s { 131 unsigned long st_state; 132 struct sk_buff *tx_skb; 133#define ST_TX_SENDING 1 134#define ST_TX_WAKEUP 2 135 unsigned long tx_state; 136 struct st_proto_s *list[ST_MAX_CHANNELS]; 137 bool is_registered[ST_MAX_CHANNELS]; 138 unsigned long rx_state; 139 unsigned long rx_count; 140 struct sk_buff *rx_skb; 141 unsigned char rx_chnl; 142 struct sk_buff_head txq, tx_waitq; 143 spinlock_t lock; 144 unsigned char protos_registered; 145 unsigned long ll_state; 146 void *kim_data; 147 struct tty_struct *tty; 148 struct work_struct work_write_wakeup; 149}; 150 151/* 152 * wrapper around tty->ops->write_room to check 153 * availability during firmware download 154 */ 155int st_get_uart_wr_room(struct st_data_s *st_gdata); 156/** 157 * st_int_write - 158 * point this to tty->driver->write or tty->ops->write 159 * depending upon the kernel version 160 */ 161int st_int_write(struct st_data_s*, const unsigned char*, int); 162 163/** 164 * st_write - 165 * internal write function, passed onto protocol drivers 166 * via the write function ptr of protocol struct 167 */ 168long st_write(struct sk_buff *); 169 170/* function to be called from ST-LL */ 171void st_ll_send_frame(enum proto_type, struct sk_buff *); 172 173/* internal wake up function */ 174void st_tx_wakeup(struct st_data_s *st_data); 175 176/* init, exit entry funcs called from KIM */ 177int st_core_init(struct st_data_s **); 178void st_core_exit(struct st_data_s *); 179 180/* ask for reference from KIM */ 181void st_kim_ref(struct st_data_s **, int); 182 183#define GPS_STUB_TEST 184#ifdef GPS_STUB_TEST 185int gps_chrdrv_stub_write(const unsigned char*, int); 186void gps_chrdrv_stub_init(void); 187#endif 188 189/* 190 * header information used by st_kim.c 191 */ 192 193/* time in msec to wait for 194 * line discipline to be installed 195 */ 196#define LDISC_TIME 1000 197#define CMD_RESP_TIME 800 198#define CMD_WR_TIME 5000 199#define MAKEWORD(a, b) ((unsigned short)(((unsigned char)(a)) \ 200 | ((unsigned short)((unsigned char)(b))) << 8)) 201 202#define GPIO_HIGH 1 203#define GPIO_LOW 0 204 205/* the Power-On-Reset logic, requires to attempt 206 * to download firmware onto chip more than once 207 * since the self-test for chip takes a while 208 */ 209#define POR_RETRY_COUNT 5 210 211/** 212 * struct chip_version - save the chip version 213 */ 214struct chip_version { 215 unsigned short full; 216 unsigned short chip; 217 unsigned short min_ver; 218 unsigned short maj_ver; 219}; 220 221#define UART_DEV_NAME_LEN 32 222/** 223 * struct kim_data_s - the KIM internal data, embedded as the 224 * platform's drv data. One for each ST device in the system. 225 * @uim_pid: KIM needs to communicate with UIM to request to install 226 * the ldisc by opening UART when protocol drivers register. 227 * @kim_pdev: the platform device added in one of the board-XX.c file 228 * in arch/XX/ directory, 1 for each ST device. 229 * @kim_rcvd: completion handler to notify when data was received, 230 * mainly used during fw download, which involves multiple send/wait 231 * for each of the HCI-VS commands. 232 * @ldisc_installed: completion handler to notify that the UIM accepted 233 * the request to install ldisc, notify from tty_open which suggests 234 * the ldisc was properly installed. 235 * @resp_buffer: data buffer for the .bts fw file name. 236 * @fw_entry: firmware class struct to request/release the fw. 237 * @rx_state: the rx state for kim's receive func during fw download. 238 * @rx_count: the rx count for the kim's receive func during fw download. 239 * @rx_skb: all of fw data might not come at once, and hence data storage for 240 * whole of the fw response, only HCI_EVENTs and hence diff from ST's 241 * response. 242 * @core_data: ST core's data, which mainly is the tty's disc_data 243 * @version: chip version available via a sysfs entry. 244 * 245 */ 246struct kim_data_s { 247 long uim_pid; 248 struct platform_device *kim_pdev; 249 struct completion kim_rcvd, ldisc_installed; 250 char resp_buffer[30]; 251 const struct firmware *fw_entry; 252 unsigned nshutdown; 253 unsigned long rx_state; 254 unsigned long rx_count; 255 struct sk_buff *rx_skb; 256 struct st_data_s *core_data; 257 struct chip_version version; 258 unsigned char ldisc_install; 259 unsigned char dev_name[UART_DEV_NAME_LEN + 1]; 260 unsigned flow_cntrl; 261 unsigned baud_rate; 262}; 263 264/** 265 * functions called when 1 of the protocol drivers gets 266 * registered, these need to communicate with UIM to request 267 * ldisc installed, read chip_version, download relevant fw 268 */ 269long st_kim_start(void *); 270long st_kim_stop(void *); 271 272void st_kim_complete(void *); 273void kim_st_list_protocols(struct st_data_s *, void *); 274void st_kim_recv(void *, const unsigned char *, long); 275 276 277/* 278 * BTS headers 279 */ 280#define ACTION_SEND_COMMAND 1 281#define ACTION_WAIT_EVENT 2 282#define ACTION_SERIAL 3 283#define ACTION_DELAY 4 284#define ACTION_RUN_SCRIPT 5 285#define ACTION_REMARKS 6 286 287/** 288 * struct bts_header - the fw file is NOT binary which can 289 * be sent onto TTY as is. The .bts is more a script 290 * file which has different types of actions. 291 * Each such action needs to be parsed by the KIM and 292 * relevant procedure to be called. 293 */ 294struct bts_header { 295 u32 magic; 296 u32 version; 297 u8 future[24]; 298 u8 actions[]; 299} __attribute__ ((packed)); 300 301/** 302 * struct bts_action - Each .bts action has its own type of 303 * data. 304 */ 305struct bts_action { 306 u16 type; 307 u16 size; 308 u8 data[]; 309} __attribute__ ((packed)); 310 311struct bts_action_send { 312 u8 data[0]; 313} __attribute__ ((packed)); 314 315struct bts_action_wait { 316 u32 msec; 317 u32 size; 318 u8 data[]; 319} __attribute__ ((packed)); 320 321struct bts_action_delay { 322 u32 msec; 323} __attribute__ ((packed)); 324 325struct bts_action_serial { 326 u32 baud; 327 u32 flow_control; 328} __attribute__ ((packed)); 329 330/** 331 * struct hci_command - the HCI-VS for intrepreting 332 * the change baud rate of host-side UART, which 333 * needs to be ignored, since UIM would do that 334 * when it receives request from KIM for ldisc installation. 335 */ 336struct hci_command { 337 u8 prefix; 338 u16 opcode; 339 u8 plen; 340 u32 speed; 341} __attribute__ ((packed)); 342 343/* 344 * header information used by st_ll.c 345 */ 346 347/* ST LL receiver states */ 348#define ST_W4_PACKET_TYPE 0 349#define ST_W4_HEADER 1 350#define ST_W4_DATA 2 351 352/* ST LL state machines */ 353#define ST_LL_ASLEEP 0 354#define ST_LL_ASLEEP_TO_AWAKE 1 355#define ST_LL_AWAKE 2 356#define ST_LL_AWAKE_TO_ASLEEP 3 357#define ST_LL_INVALID 4 358 359/* different PM notifications coming from chip */ 360#define LL_SLEEP_IND 0x30 361#define LL_SLEEP_ACK 0x31 362#define LL_WAKE_UP_IND 0x32 363#define LL_WAKE_UP_ACK 0x33 364 365/* initialize and de-init ST LL */ 366long st_ll_init(struct st_data_s *); 367long st_ll_deinit(struct st_data_s *); 368 369/** 370 * enable/disable ST LL along with KIM start/stop 371 * called by ST Core 372 */ 373void st_ll_enable(struct st_data_s *); 374void st_ll_disable(struct st_data_s *); 375 376/** 377 * various funcs used by ST core to set/get the various PM states 378 * of the chip. 379 */ 380unsigned long st_ll_getstate(struct st_data_s *); 381unsigned long st_ll_sleep_state(struct st_data_s *, unsigned char); 382void st_ll_wakeup(struct st_data_s *); 383 384/* 385 * header information used by st_core.c for FM and GPS 386 * packet parsing, the bluetooth headers are already available 387 * at net/bluetooth/ 388 */ 389 390struct fm_event_hdr { 391 u8 plen; 392} __attribute__ ((packed)); 393 394#define FM_MAX_FRAME_SIZE 0xFF /* TODO: */ 395#define FM_EVENT_HDR_SIZE 1 /* size of fm_event_hdr */ 396#define ST_FM_CH8_PKT 0x8 397 398/* gps stuff */ 399struct gps_event_hdr { 400 u8 opcode; 401 u16 plen; 402} __attribute__ ((packed)); 403 404/** 405 * struct ti_st_plat_data - platform data shared between ST driver and 406 * platform specific board file which adds the ST device. 407 * @nshutdown_gpio: Host's GPIO line to which chip's BT_EN is connected. 408 * @dev_name: The UART/TTY name to which chip is interfaced. (eg: /dev/ttyS1) 409 * @flow_cntrl: Should always be 1, since UART's CTS/RTS is used for PM 410 * purposes. 411 * @baud_rate: The baud rate supported by the Host UART controller, this will 412 * be shared across with the chip via a HCI VS command from User-Space Init 413 * Mgr application. 414 * @suspend: 415 * @resume: legacy PM routines hooked to platform specific board file, so as 416 * to take chip-host interface specific action. 417 * @chip_enable: 418 * @chip_disable: Platform/Interface specific mux mode setting, GPIO 419 * configuring, Host side PM disabling etc.. can be done here. 420 * @chip_asleep: 421 * @chip_awake: Chip specific deep sleep states is communicated to Host 422 * specific board-xx.c to take actions such as cut UART clocks when chip 423 * asleep or run host faster when chip awake etc.. 424 * 425 */ 426struct ti_st_plat_data { 427 u32 nshutdown_gpio; 428 unsigned char dev_name[UART_DEV_NAME_LEN]; /* uart name */ 429 u32 flow_cntrl; /* flow control flag */ 430 u32 baud_rate; 431 int (*suspend)(struct platform_device *, pm_message_t); 432 int (*resume)(struct platform_device *); 433 int (*chip_enable) (struct kim_data_s *); 434 int (*chip_disable) (struct kim_data_s *); 435 int (*chip_asleep) (struct kim_data_s *); 436 int (*chip_awake) (struct kim_data_s *); 437}; 438 439#endif /* TI_WILINK_ST_H */