usb.h (78873B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_USB_H 3#define __LINUX_USB_H 4 5#include <linux/mod_devicetable.h> 6#include <linux/usb/ch9.h> 7 8#define USB_MAJOR 180 9#define USB_DEVICE_MAJOR 189 10 11 12#ifdef __KERNEL__ 13 14#include <linux/errno.h> /* for -ENODEV */ 15#include <linux/delay.h> /* for mdelay() */ 16#include <linux/interrupt.h> /* for in_interrupt() */ 17#include <linux/list.h> /* for struct list_head */ 18#include <linux/kref.h> /* for struct kref */ 19#include <linux/device.h> /* for struct device */ 20#include <linux/fs.h> /* for struct file_operations */ 21#include <linux/completion.h> /* for struct completion */ 22#include <linux/sched.h> /* for current && schedule_timeout */ 23#include <linux/mutex.h> /* for struct mutex */ 24#include <linux/pm_runtime.h> /* for runtime PM */ 25 26struct usb_device; 27struct usb_driver; 28struct wusb_dev; 29 30/*-------------------------------------------------------------------------*/ 31 32/* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48struct ep_device; 49 50/** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79}; 80 81/* host-side wrapper for one interface setting's parsed descriptors */ 82struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94}; 95 96enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101}; 102 103int __must_check 104usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110int __must_check 111usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117static inline int __must_check 118usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120{ 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122} 123 124static inline int __must_check 125usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127{ 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129} 130 131static inline int __must_check 132usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134{ 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136} 137 138static inline int __must_check 139usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141{ 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143} 144 145static inline int __must_check 146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148{ 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150} 151 152static inline int __must_check 153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155{ 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157} 158 159static inline int __must_check 160usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162{ 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164} 165 166static inline int __must_check 167usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169{ 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171} 172 173/** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @reset_ws: Used for scheduling resets from atomic context. 204 * @resetting_device: USB core reset the device, so use alt setting 0 as 205 * current; needs bandwidth alloc after reset. 206 * 207 * USB device drivers attach to interfaces on a physical device. Each 208 * interface encapsulates a single high level function, such as feeding 209 * an audio stream to a speaker or reporting a change in a volume control. 210 * Many USB devices only have one interface. The protocol used to talk to 211 * an interface's endpoints can be defined in a usb "class" specification, 212 * or by a product's vendor. The (default) control endpoint is part of 213 * every interface, but is never listed among the interface's descriptors. 214 * 215 * The driver that is bound to the interface can use standard driver model 216 * calls such as dev_get_drvdata() on the dev member of this structure. 217 * 218 * Each interface may have alternate settings. The initial configuration 219 * of a device sets altsetting 0, but the device driver can change 220 * that setting using usb_set_interface(). Alternate settings are often 221 * used to control the use of periodic endpoints, such as by having 222 * different endpoints use different amounts of reserved USB bandwidth. 223 * All standards-conformant USB devices that use isochronous endpoints 224 * will use them in non-default settings. 225 * 226 * The USB specification says that alternate setting numbers must run from 227 * 0 to one less than the total number of alternate settings. But some 228 * devices manage to mess this up, and the structures aren't necessarily 229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 230 * look up an alternate setting in the altsetting array based on its number. 231 */ 232struct usb_interface { 233 /* array of alternate settings for this interface, 234 * stored in no particular order */ 235 struct usb_host_interface *altsetting; 236 237 struct usb_host_interface *cur_altsetting; /* the currently 238 * active alternate setting */ 239 unsigned num_altsetting; /* number of alternate settings */ 240 241 /* If there is an interface association descriptor then it will list 242 * the associated interfaces */ 243 struct usb_interface_assoc_descriptor *intf_assoc; 244 245 int minor; /* minor number this interface is 246 * bound to */ 247 enum usb_interface_condition condition; /* state of binding */ 248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 249 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 250 unsigned unregistering:1; /* unregistration is in progress */ 251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 253 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 255 unsigned authorized:1; /* used for interface authorization */ 256 257 struct device dev; /* interface specific device info */ 258 struct device *usb_dev; 259 struct work_struct reset_ws; /* for resets in atomic context */ 260}; 261#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 262 263static inline void *usb_get_intfdata(struct usb_interface *intf) 264{ 265 return dev_get_drvdata(&intf->dev); 266} 267 268static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 269{ 270 dev_set_drvdata(&intf->dev, data); 271} 272 273struct usb_interface *usb_get_intf(struct usb_interface *intf); 274void usb_put_intf(struct usb_interface *intf); 275 276/* Hard limit */ 277#define USB_MAXENDPOINTS 30 278/* this maximum is arbitrary */ 279#define USB_MAXINTERFACES 32 280#define USB_MAXIADS (USB_MAXINTERFACES/2) 281 282/* 283 * USB Resume Timer: Every Host controller driver should drive the resume 284 * signalling on the bus for the amount of time defined by this macro. 285 * 286 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 287 * 288 * Note that the USB Specification states we should drive resume for *at least* 289 * 20 ms, but it doesn't give an upper bound. This creates two possible 290 * situations which we want to avoid: 291 * 292 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 293 * us to fail USB Electrical Tests, thus failing Certification 294 * 295 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 296 * and while we can argue that's against the USB Specification, we don't have 297 * control over which devices a certification laboratory will be using for 298 * certification. If CertLab uses a device which was tested against Windows and 299 * that happens to have relaxed resume signalling rules, we might fall into 300 * situations where we fail interoperability and electrical tests. 301 * 302 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 303 * should cope with both LPJ calibration errors and devices not following every 304 * detail of the USB Specification. 305 */ 306#define USB_RESUME_TIMEOUT 40 /* ms */ 307 308/** 309 * struct usb_interface_cache - long-term representation of a device interface 310 * @num_altsetting: number of altsettings defined. 311 * @ref: reference counter. 312 * @altsetting: variable-length array of interface structures, one for 313 * each alternate setting that may be selected. Each one includes a 314 * set of endpoint configurations. They will be in no particular order. 315 * 316 * These structures persist for the lifetime of a usb_device, unlike 317 * struct usb_interface (which persists only as long as its configuration 318 * is installed). The altsetting arrays can be accessed through these 319 * structures at any time, permitting comparison of configurations and 320 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 321 */ 322struct usb_interface_cache { 323 unsigned num_altsetting; /* number of alternate settings */ 324 struct kref ref; /* reference counter */ 325 326 /* variable-length array of alternate settings for this interface, 327 * stored in no particular order */ 328 struct usb_host_interface altsetting[]; 329}; 330#define ref_to_usb_interface_cache(r) \ 331 container_of(r, struct usb_interface_cache, ref) 332#define altsetting_to_usb_interface_cache(a) \ 333 container_of(a, struct usb_interface_cache, altsetting[0]) 334 335/** 336 * struct usb_host_config - representation of a device's configuration 337 * @desc: the device's configuration descriptor. 338 * @string: pointer to the cached version of the iConfiguration string, if 339 * present for this configuration. 340 * @intf_assoc: list of any interface association descriptors in this config 341 * @interface: array of pointers to usb_interface structures, one for each 342 * interface in the configuration. The number of interfaces is stored 343 * in desc.bNumInterfaces. These pointers are valid only while the 344 * configuration is active. 345 * @intf_cache: array of pointers to usb_interface_cache structures, one 346 * for each interface in the configuration. These structures exist 347 * for the entire life of the device. 348 * @extra: pointer to buffer containing all extra descriptors associated 349 * with this configuration (those preceding the first interface 350 * descriptor). 351 * @extralen: length of the extra descriptors buffer. 352 * 353 * USB devices may have multiple configurations, but only one can be active 354 * at any time. Each encapsulates a different operational environment; 355 * for example, a dual-speed device would have separate configurations for 356 * full-speed and high-speed operation. The number of configurations 357 * available is stored in the device descriptor as bNumConfigurations. 358 * 359 * A configuration can contain multiple interfaces. Each corresponds to 360 * a different function of the USB device, and all are available whenever 361 * the configuration is active. The USB standard says that interfaces 362 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 363 * of devices get this wrong. In addition, the interface array is not 364 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 365 * look up an interface entry based on its number. 366 * 367 * Device drivers should not attempt to activate configurations. The choice 368 * of which configuration to install is a policy decision based on such 369 * considerations as available power, functionality provided, and the user's 370 * desires (expressed through userspace tools). However, drivers can call 371 * usb_reset_configuration() to reinitialize the current configuration and 372 * all its interfaces. 373 */ 374struct usb_host_config { 375 struct usb_config_descriptor desc; 376 377 char *string; /* iConfiguration string, if present */ 378 379 /* List of any Interface Association Descriptors in this 380 * configuration. */ 381 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 382 383 /* the interfaces associated with this configuration, 384 * stored in no particular order */ 385 struct usb_interface *interface[USB_MAXINTERFACES]; 386 387 /* Interface information available even when this is not the 388 * active configuration */ 389 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 390 391 unsigned char *extra; /* Extra descriptors */ 392 int extralen; 393}; 394 395/* USB2.0 and USB3.0 device BOS descriptor set */ 396struct usb_host_bos { 397 struct usb_bos_descriptor *desc; 398 399 /* wireless cap descriptor is handled by wusb */ 400 struct usb_ext_cap_descriptor *ext_cap; 401 struct usb_ss_cap_descriptor *ss_cap; 402 struct usb_ssp_cap_descriptor *ssp_cap; 403 struct usb_ss_container_id_descriptor *ss_id; 404 struct usb_ptm_cap_descriptor *ptm_cap; 405}; 406 407int __usb_get_extra_descriptor(char *buffer, unsigned size, 408 unsigned char type, void **ptr, size_t min); 409#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 410 __usb_get_extra_descriptor((ifpoint)->extra, \ 411 (ifpoint)->extralen, \ 412 type, (void **)ptr, sizeof(**(ptr))) 413 414/* ----------------------------------------------------------------------- */ 415 416/* USB device number allocation bitmap */ 417struct usb_devmap { 418 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 419}; 420 421/* 422 * Allocated per bus (tree of devices) we have: 423 */ 424struct usb_bus { 425 struct device *controller; /* host side hardware */ 426 struct device *sysdev; /* as seen from firmware or bus */ 427 int busnum; /* Bus number (in order of reg) */ 428 const char *bus_name; /* stable id (PCI slot_name etc) */ 429 u8 uses_pio_for_control; /* 430 * Does the host controller use PIO 431 * for control transfers? 432 */ 433 u8 otg_port; /* 0, or number of OTG/HNP port */ 434 unsigned is_b_host:1; /* true during some HNP roleswitches */ 435 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 436 unsigned no_stop_on_short:1; /* 437 * Quirk: some controllers don't stop 438 * the ep queue on a short transfer 439 * with the URB_SHORT_NOT_OK flag set. 440 */ 441 unsigned no_sg_constraint:1; /* no sg constraint */ 442 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 443 444 int devnum_next; /* Next open device number in 445 * round-robin allocation */ 446 struct mutex devnum_next_mutex; /* devnum_next mutex */ 447 448 struct usb_devmap devmap; /* device address allocation map */ 449 struct usb_device *root_hub; /* Root hub */ 450 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 451 452 int bandwidth_allocated; /* on this bus: how much of the time 453 * reserved for periodic (intr/iso) 454 * requests is used, on average? 455 * Units: microseconds/frame. 456 * Limits: Full/low speed reserve 90%, 457 * while high speed reserves 80%. 458 */ 459 int bandwidth_int_reqs; /* number of Interrupt requests */ 460 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 461 462 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 463 464#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 465 struct mon_bus *mon_bus; /* non-null when associated */ 466 int monitored; /* non-zero when monitored */ 467#endif 468}; 469 470struct usb_dev_state; 471 472/* ----------------------------------------------------------------------- */ 473 474struct usb_tt; 475 476enum usb_port_connect_type { 477 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 478 USB_PORT_CONNECT_TYPE_HOT_PLUG, 479 USB_PORT_CONNECT_TYPE_HARD_WIRED, 480 USB_PORT_NOT_USED, 481}; 482 483/* 484 * USB port quirks. 485 */ 486 487/* For the given port, prefer the old (faster) enumeration scheme. */ 488#define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 489 490/* Decrease TRSTRCY to 10ms during device enumeration. */ 491#define USB_PORT_QUIRK_FAST_ENUM BIT(1) 492 493/* 494 * USB 2.0 Link Power Management (LPM) parameters. 495 */ 496struct usb2_lpm_parameters { 497 /* Best effort service latency indicate how long the host will drive 498 * resume on an exit from L1. 499 */ 500 unsigned int besl; 501 502 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 503 * When the timer counts to zero, the parent hub will initiate a LPM 504 * transition to L1. 505 */ 506 int timeout; 507}; 508 509/* 510 * USB 3.0 Link Power Management (LPM) parameters. 511 * 512 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 513 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 514 * All three are stored in nanoseconds. 515 */ 516struct usb3_lpm_parameters { 517 /* 518 * Maximum exit latency (MEL) for the host to send a packet to the 519 * device (either a Ping for isoc endpoints, or a data packet for 520 * interrupt endpoints), the hubs to decode the packet, and for all hubs 521 * in the path to transition the links to U0. 522 */ 523 unsigned int mel; 524 /* 525 * Maximum exit latency for a device-initiated LPM transition to bring 526 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 527 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 528 */ 529 unsigned int pel; 530 531 /* 532 * The System Exit Latency (SEL) includes PEL, and three other 533 * latencies. After a device initiates a U0 transition, it will take 534 * some time from when the device sends the ERDY to when it will finally 535 * receive the data packet. Basically, SEL should be the worse-case 536 * latency from when a device starts initiating a U0 transition to when 537 * it will get data. 538 */ 539 unsigned int sel; 540 /* 541 * The idle timeout value that is currently programmed into the parent 542 * hub for this device. When the timer counts to zero, the parent hub 543 * will initiate an LPM transition to either U1 or U2. 544 */ 545 int timeout; 546}; 547 548/** 549 * struct usb_device - kernel's representation of a USB device 550 * @devnum: device number; address on a USB bus 551 * @devpath: device ID string for use in messages (e.g., /port/...) 552 * @route: tree topology hex string for use with xHCI 553 * @state: device state: configured, not attached, etc. 554 * @speed: device speed: high/full/low (or error) 555 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 556 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 557 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 558 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 559 * @ttport: device port on that tt hub 560 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 561 * @parent: our hub, unless we're the root 562 * @bus: bus we're part of 563 * @ep0: endpoint 0 data (default control pipe) 564 * @dev: generic device interface 565 * @descriptor: USB device descriptor 566 * @bos: USB device BOS descriptor set 567 * @config: all of the device's configs 568 * @actconfig: the active configuration 569 * @ep_in: array of IN endpoints 570 * @ep_out: array of OUT endpoints 571 * @rawdescriptors: raw descriptors for each config 572 * @bus_mA: Current available from the bus 573 * @portnum: parent port number (origin 1) 574 * @level: number of USB hub ancestors 575 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 576 * @can_submit: URBs may be submitted 577 * @persist_enabled: USB_PERSIST enabled for this device 578 * @have_langid: whether string_langid is valid 579 * @authorized: policy has said we can use it; 580 * (user space) policy determines if we authorize this device to be 581 * used or not. By default, wired USB devices are authorized. 582 * WUSB devices are not, until we authorize them from user space. 583 * FIXME -- complete doc 584 * @authenticated: Crypto authentication passed 585 * @wusb: device is Wireless USB 586 * @lpm_capable: device supports LPM 587 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 588 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 589 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 590 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 591 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 592 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 593 * @string_langid: language ID for strings 594 * @product: iProduct string, if present (static) 595 * @manufacturer: iManufacturer string, if present (static) 596 * @serial: iSerialNumber string, if present (static) 597 * @filelist: usbfs files that are open to this device 598 * @maxchild: number of ports if hub 599 * @quirks: quirks of the whole device 600 * @urbnum: number of URBs submitted for the whole device 601 * @active_duration: total time device is not suspended 602 * @connect_time: time device was first connected 603 * @do_remote_wakeup: remote wakeup should be enabled 604 * @reset_resume: needs reset instead of resume 605 * @port_is_suspended: the upstream port is suspended (L2 or U3) 606 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 607 * specific data for the device. 608 * @slot_id: Slot ID assigned by xHCI 609 * @removable: Device can be physically removed from this port 610 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 611 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 612 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 613 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 614 * to keep track of the number of functions that require USB 3.0 Link Power 615 * Management to be disabled for this usb_device. This count should only 616 * be manipulated by those functions, with the bandwidth_mutex is held. 617 * @hub_delay: cached value consisting of: 618 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 619 * Will be used as wValue for SetIsochDelay requests. 620 * @use_generic_driver: ask driver core to reprobe using the generic driver. 621 * 622 * Notes: 623 * Usbcore drivers should not set usbdev->state directly. Instead use 624 * usb_set_device_state(). 625 */ 626struct usb_device { 627 int devnum; 628 char devpath[16]; 629 u32 route; 630 enum usb_device_state state; 631 enum usb_device_speed speed; 632 unsigned int rx_lanes; 633 unsigned int tx_lanes; 634 enum usb_ssp_rate ssp_rate; 635 636 struct usb_tt *tt; 637 int ttport; 638 639 unsigned int toggle[2]; 640 641 struct usb_device *parent; 642 struct usb_bus *bus; 643 struct usb_host_endpoint ep0; 644 645 struct device dev; 646 647 struct usb_device_descriptor descriptor; 648 struct usb_host_bos *bos; 649 struct usb_host_config *config; 650 651 struct usb_host_config *actconfig; 652 struct usb_host_endpoint *ep_in[16]; 653 struct usb_host_endpoint *ep_out[16]; 654 655 char **rawdescriptors; 656 657 unsigned short bus_mA; 658 u8 portnum; 659 u8 level; 660 u8 devaddr; 661 662 unsigned can_submit:1; 663 unsigned persist_enabled:1; 664 unsigned have_langid:1; 665 unsigned authorized:1; 666 unsigned authenticated:1; 667 unsigned wusb:1; 668 unsigned lpm_capable:1; 669 unsigned usb2_hw_lpm_capable:1; 670 unsigned usb2_hw_lpm_besl_capable:1; 671 unsigned usb2_hw_lpm_enabled:1; 672 unsigned usb2_hw_lpm_allowed:1; 673 unsigned usb3_lpm_u1_enabled:1; 674 unsigned usb3_lpm_u2_enabled:1; 675 int string_langid; 676 677 /* static strings from the device */ 678 char *product; 679 char *manufacturer; 680 char *serial; 681 682 struct list_head filelist; 683 684 int maxchild; 685 686 u32 quirks; 687 atomic_t urbnum; 688 689 unsigned long active_duration; 690 691#ifdef CONFIG_PM 692 unsigned long connect_time; 693 694 unsigned do_remote_wakeup:1; 695 unsigned reset_resume:1; 696 unsigned port_is_suspended:1; 697#endif 698 struct wusb_dev *wusb_dev; 699 int slot_id; 700 struct usb2_lpm_parameters l1_params; 701 struct usb3_lpm_parameters u1_params; 702 struct usb3_lpm_parameters u2_params; 703 unsigned lpm_disable_count; 704 705 u16 hub_delay; 706 unsigned use_generic_driver:1; 707}; 708#define to_usb_device(d) container_of(d, struct usb_device, dev) 709 710static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 711{ 712 return to_usb_device(intf->dev.parent); 713} 714 715extern struct usb_device *usb_get_dev(struct usb_device *dev); 716extern void usb_put_dev(struct usb_device *dev); 717extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 718 int port1); 719 720/** 721 * usb_hub_for_each_child - iterate over all child devices on the hub 722 * @hdev: USB device belonging to the usb hub 723 * @port1: portnum associated with child device 724 * @child: child device pointer 725 */ 726#define usb_hub_for_each_child(hdev, port1, child) \ 727 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 728 port1 <= hdev->maxchild; \ 729 child = usb_hub_find_child(hdev, ++port1)) \ 730 if (!child) continue; else 731 732/* USB device locking */ 733#define usb_lock_device(udev) device_lock(&(udev)->dev) 734#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 735#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 736#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 737extern int usb_lock_device_for_reset(struct usb_device *udev, 738 const struct usb_interface *iface); 739 740/* USB port reset for device reinitialization */ 741extern int usb_reset_device(struct usb_device *dev); 742extern void usb_queue_reset_device(struct usb_interface *dev); 743 744extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 745 746#ifdef CONFIG_ACPI 747extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 748 bool enable); 749extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 750#else 751static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 752 bool enable) { return 0; } 753static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 754 { return true; } 755#endif 756 757/* USB autosuspend and autoresume */ 758#ifdef CONFIG_PM 759extern void usb_enable_autosuspend(struct usb_device *udev); 760extern void usb_disable_autosuspend(struct usb_device *udev); 761 762extern int usb_autopm_get_interface(struct usb_interface *intf); 763extern void usb_autopm_put_interface(struct usb_interface *intf); 764extern int usb_autopm_get_interface_async(struct usb_interface *intf); 765extern void usb_autopm_put_interface_async(struct usb_interface *intf); 766extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 767extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 768 769static inline void usb_mark_last_busy(struct usb_device *udev) 770{ 771 pm_runtime_mark_last_busy(&udev->dev); 772} 773 774#else 775 776static inline int usb_enable_autosuspend(struct usb_device *udev) 777{ return 0; } 778static inline int usb_disable_autosuspend(struct usb_device *udev) 779{ return 0; } 780 781static inline int usb_autopm_get_interface(struct usb_interface *intf) 782{ return 0; } 783static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 784{ return 0; } 785 786static inline void usb_autopm_put_interface(struct usb_interface *intf) 787{ } 788static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 789{ } 790static inline void usb_autopm_get_interface_no_resume( 791 struct usb_interface *intf) 792{ } 793static inline void usb_autopm_put_interface_no_suspend( 794 struct usb_interface *intf) 795{ } 796static inline void usb_mark_last_busy(struct usb_device *udev) 797{ } 798#endif 799 800extern int usb_disable_lpm(struct usb_device *udev); 801extern void usb_enable_lpm(struct usb_device *udev); 802/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 803extern int usb_unlocked_disable_lpm(struct usb_device *udev); 804extern void usb_unlocked_enable_lpm(struct usb_device *udev); 805 806extern int usb_disable_ltm(struct usb_device *udev); 807extern void usb_enable_ltm(struct usb_device *udev); 808 809static inline bool usb_device_supports_ltm(struct usb_device *udev) 810{ 811 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 812 return false; 813 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 814} 815 816static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 817{ 818 return udev && udev->bus && udev->bus->no_sg_constraint; 819} 820 821 822/*-------------------------------------------------------------------------*/ 823 824/* for drivers using iso endpoints */ 825extern int usb_get_current_frame_number(struct usb_device *usb_dev); 826 827/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 828extern int usb_alloc_streams(struct usb_interface *interface, 829 struct usb_host_endpoint **eps, unsigned int num_eps, 830 unsigned int num_streams, gfp_t mem_flags); 831 832/* Reverts a group of bulk endpoints back to not using stream IDs. */ 833extern int usb_free_streams(struct usb_interface *interface, 834 struct usb_host_endpoint **eps, unsigned int num_eps, 835 gfp_t mem_flags); 836 837/* used these for multi-interface device registration */ 838extern int usb_driver_claim_interface(struct usb_driver *driver, 839 struct usb_interface *iface, void *data); 840 841/** 842 * usb_interface_claimed - returns true iff an interface is claimed 843 * @iface: the interface being checked 844 * 845 * Return: %true (nonzero) iff the interface is claimed, else %false 846 * (zero). 847 * 848 * Note: 849 * Callers must own the driver model's usb bus readlock. So driver 850 * probe() entries don't need extra locking, but other call contexts 851 * may need to explicitly claim that lock. 852 * 853 */ 854static inline int usb_interface_claimed(struct usb_interface *iface) 855{ 856 return (iface->dev.driver != NULL); 857} 858 859extern void usb_driver_release_interface(struct usb_driver *driver, 860 struct usb_interface *iface); 861const struct usb_device_id *usb_match_id(struct usb_interface *interface, 862 const struct usb_device_id *id); 863extern int usb_match_one_id(struct usb_interface *interface, 864 const struct usb_device_id *id); 865 866extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 867extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 868 int minor); 869extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 870 unsigned ifnum); 871extern struct usb_host_interface *usb_altnum_to_altsetting( 872 const struct usb_interface *intf, unsigned int altnum); 873extern struct usb_host_interface *usb_find_alt_setting( 874 struct usb_host_config *config, 875 unsigned int iface_num, 876 unsigned int alt_num); 877 878/* port claiming functions */ 879int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 880 struct usb_dev_state *owner); 881int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 882 struct usb_dev_state *owner); 883 884/** 885 * usb_make_path - returns stable device path in the usb tree 886 * @dev: the device whose path is being constructed 887 * @buf: where to put the string 888 * @size: how big is "buf"? 889 * 890 * Return: Length of the string (> 0) or negative if size was too small. 891 * 892 * Note: 893 * This identifier is intended to be "stable", reflecting physical paths in 894 * hardware such as physical bus addresses for host controllers or ports on 895 * USB hubs. That makes it stay the same until systems are physically 896 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 897 * controllers. Adding and removing devices, including virtual root hubs 898 * in host controller driver modules, does not change these path identifiers; 899 * neither does rebooting or re-enumerating. These are more useful identifiers 900 * than changeable ("unstable") ones like bus numbers or device addresses. 901 * 902 * With a partial exception for devices connected to USB 2.0 root hubs, these 903 * identifiers are also predictable. So long as the device tree isn't changed, 904 * plugging any USB device into a given hub port always gives it the same path. 905 * Because of the use of "companion" controllers, devices connected to ports on 906 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 907 * high speed, and a different one if they are full or low speed. 908 */ 909static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 910{ 911 int actual; 912 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 913 dev->devpath); 914 return (actual >= (int)size) ? -1 : actual; 915} 916 917/*-------------------------------------------------------------------------*/ 918 919#define USB_DEVICE_ID_MATCH_DEVICE \ 920 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 921#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 922 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 923#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 924 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 925#define USB_DEVICE_ID_MATCH_DEV_INFO \ 926 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 927 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 928 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 929#define USB_DEVICE_ID_MATCH_INT_INFO \ 930 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 931 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 932 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 933 934/** 935 * USB_DEVICE - macro used to describe a specific usb device 936 * @vend: the 16 bit USB Vendor ID 937 * @prod: the 16 bit USB Product ID 938 * 939 * This macro is used to create a struct usb_device_id that matches a 940 * specific device. 941 */ 942#define USB_DEVICE(vend, prod) \ 943 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 944 .idVendor = (vend), \ 945 .idProduct = (prod) 946/** 947 * USB_DEVICE_VER - describe a specific usb device with a version range 948 * @vend: the 16 bit USB Vendor ID 949 * @prod: the 16 bit USB Product ID 950 * @lo: the bcdDevice_lo value 951 * @hi: the bcdDevice_hi value 952 * 953 * This macro is used to create a struct usb_device_id that matches a 954 * specific device, with a version range. 955 */ 956#define USB_DEVICE_VER(vend, prod, lo, hi) \ 957 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 958 .idVendor = (vend), \ 959 .idProduct = (prod), \ 960 .bcdDevice_lo = (lo), \ 961 .bcdDevice_hi = (hi) 962 963/** 964 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 965 * @vend: the 16 bit USB Vendor ID 966 * @prod: the 16 bit USB Product ID 967 * @cl: bInterfaceClass value 968 * 969 * This macro is used to create a struct usb_device_id that matches a 970 * specific interface class of devices. 971 */ 972#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 973 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 974 USB_DEVICE_ID_MATCH_INT_CLASS, \ 975 .idVendor = (vend), \ 976 .idProduct = (prod), \ 977 .bInterfaceClass = (cl) 978 979/** 980 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 981 * @vend: the 16 bit USB Vendor ID 982 * @prod: the 16 bit USB Product ID 983 * @pr: bInterfaceProtocol value 984 * 985 * This macro is used to create a struct usb_device_id that matches a 986 * specific interface protocol of devices. 987 */ 988#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 989 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 990 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 991 .idVendor = (vend), \ 992 .idProduct = (prod), \ 993 .bInterfaceProtocol = (pr) 994 995/** 996 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 997 * @vend: the 16 bit USB Vendor ID 998 * @prod: the 16 bit USB Product ID 999 * @num: bInterfaceNumber value 1000 * 1001 * This macro is used to create a struct usb_device_id that matches a 1002 * specific interface number of devices. 1003 */ 1004#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1005 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1006 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1007 .idVendor = (vend), \ 1008 .idProduct = (prod), \ 1009 .bInterfaceNumber = (num) 1010 1011/** 1012 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1013 * @cl: bDeviceClass value 1014 * @sc: bDeviceSubClass value 1015 * @pr: bDeviceProtocol value 1016 * 1017 * This macro is used to create a struct usb_device_id that matches a 1018 * specific class of devices. 1019 */ 1020#define USB_DEVICE_INFO(cl, sc, pr) \ 1021 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1022 .bDeviceClass = (cl), \ 1023 .bDeviceSubClass = (sc), \ 1024 .bDeviceProtocol = (pr) 1025 1026/** 1027 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1028 * @cl: bInterfaceClass value 1029 * @sc: bInterfaceSubClass value 1030 * @pr: bInterfaceProtocol value 1031 * 1032 * This macro is used to create a struct usb_device_id that matches a 1033 * specific class of interfaces. 1034 */ 1035#define USB_INTERFACE_INFO(cl, sc, pr) \ 1036 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1037 .bInterfaceClass = (cl), \ 1038 .bInterfaceSubClass = (sc), \ 1039 .bInterfaceProtocol = (pr) 1040 1041/** 1042 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1043 * @vend: the 16 bit USB Vendor ID 1044 * @prod: the 16 bit USB Product ID 1045 * @cl: bInterfaceClass value 1046 * @sc: bInterfaceSubClass value 1047 * @pr: bInterfaceProtocol value 1048 * 1049 * This macro is used to create a struct usb_device_id that matches a 1050 * specific device with a specific class of interfaces. 1051 * 1052 * This is especially useful when explicitly matching devices that have 1053 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1054 */ 1055#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1056 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1057 | USB_DEVICE_ID_MATCH_DEVICE, \ 1058 .idVendor = (vend), \ 1059 .idProduct = (prod), \ 1060 .bInterfaceClass = (cl), \ 1061 .bInterfaceSubClass = (sc), \ 1062 .bInterfaceProtocol = (pr) 1063 1064/** 1065 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1066 * @vend: the 16 bit USB Vendor ID 1067 * @cl: bInterfaceClass value 1068 * @sc: bInterfaceSubClass value 1069 * @pr: bInterfaceProtocol value 1070 * 1071 * This macro is used to create a struct usb_device_id that matches a 1072 * specific vendor with a specific class of interfaces. 1073 * 1074 * This is especially useful when explicitly matching devices that have 1075 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1076 */ 1077#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1078 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1079 | USB_DEVICE_ID_MATCH_VENDOR, \ 1080 .idVendor = (vend), \ 1081 .bInterfaceClass = (cl), \ 1082 .bInterfaceSubClass = (sc), \ 1083 .bInterfaceProtocol = (pr) 1084 1085/* ----------------------------------------------------------------------- */ 1086 1087/* Stuff for dynamic usb ids */ 1088struct usb_dynids { 1089 spinlock_t lock; 1090 struct list_head list; 1091}; 1092 1093struct usb_dynid { 1094 struct list_head node; 1095 struct usb_device_id id; 1096}; 1097 1098extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1099 const struct usb_device_id *id_table, 1100 struct device_driver *driver, 1101 const char *buf, size_t count); 1102 1103extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1104 1105/** 1106 * struct usbdrv_wrap - wrapper for driver-model structure 1107 * @driver: The driver-model core driver structure. 1108 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1109 */ 1110struct usbdrv_wrap { 1111 struct device_driver driver; 1112 int for_devices; 1113}; 1114 1115/** 1116 * struct usb_driver - identifies USB interface driver to usbcore 1117 * @name: The driver name should be unique among USB drivers, 1118 * and should normally be the same as the module name. 1119 * @probe: Called to see if the driver is willing to manage a particular 1120 * interface on a device. If it is, probe returns zero and uses 1121 * usb_set_intfdata() to associate driver-specific data with the 1122 * interface. It may also use usb_set_interface() to specify the 1123 * appropriate altsetting. If unwilling to manage the interface, 1124 * return -ENODEV, if genuine IO errors occurred, an appropriate 1125 * negative errno value. 1126 * @disconnect: Called when the interface is no longer accessible, usually 1127 * because its device has been (or is being) disconnected or the 1128 * driver module is being unloaded. 1129 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1130 * the "usbfs" filesystem. This lets devices provide ways to 1131 * expose information to user space regardless of where they 1132 * do (or don't) show up otherwise in the filesystem. 1133 * @suspend: Called when the device is going to be suspended by the 1134 * system either from system sleep or runtime suspend context. The 1135 * return value will be ignored in system sleep context, so do NOT 1136 * try to continue using the device if suspend fails in this case. 1137 * Instead, let the resume or reset-resume routine recover from 1138 * the failure. 1139 * @resume: Called when the device is being resumed by the system. 1140 * @reset_resume: Called when the suspended device has been reset instead 1141 * of being resumed. 1142 * @pre_reset: Called by usb_reset_device() when the device is about to be 1143 * reset. This routine must not return until the driver has no active 1144 * URBs for the device, and no more URBs may be submitted until the 1145 * post_reset method is called. 1146 * @post_reset: Called by usb_reset_device() after the device 1147 * has been reset 1148 * @id_table: USB drivers use ID table to support hotplugging. 1149 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1150 * or your driver's probe function will never get called. 1151 * @dev_groups: Attributes attached to the device that will be created once it 1152 * is bound to the driver. 1153 * @dynids: used internally to hold the list of dynamically added device 1154 * ids for this driver. 1155 * @drvwrap: Driver-model core structure wrapper. 1156 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1157 * added to this driver by preventing the sysfs file from being created. 1158 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1159 * for interfaces bound to this driver. 1160 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1161 * endpoints before calling the driver's disconnect method. 1162 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1163 * to initiate lower power link state transitions when an idle timeout 1164 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1165 * 1166 * USB interface drivers must provide a name, probe() and disconnect() 1167 * methods, and an id_table. Other driver fields are optional. 1168 * 1169 * The id_table is used in hotplugging. It holds a set of descriptors, 1170 * and specialized data may be associated with each entry. That table 1171 * is used by both user and kernel mode hotplugging support. 1172 * 1173 * The probe() and disconnect() methods are called in a context where 1174 * they can sleep, but they should avoid abusing the privilege. Most 1175 * work to connect to a device should be done when the device is opened, 1176 * and undone at the last close. The disconnect code needs to address 1177 * concurrency issues with respect to open() and close() methods, as 1178 * well as forcing all pending I/O requests to complete (by unlinking 1179 * them as necessary, and blocking until the unlinks complete). 1180 */ 1181struct usb_driver { 1182 const char *name; 1183 1184 int (*probe) (struct usb_interface *intf, 1185 const struct usb_device_id *id); 1186 1187 void (*disconnect) (struct usb_interface *intf); 1188 1189 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1190 void *buf); 1191 1192 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1193 int (*resume) (struct usb_interface *intf); 1194 int (*reset_resume)(struct usb_interface *intf); 1195 1196 int (*pre_reset)(struct usb_interface *intf); 1197 int (*post_reset)(struct usb_interface *intf); 1198 1199 const struct usb_device_id *id_table; 1200 const struct attribute_group **dev_groups; 1201 1202 struct usb_dynids dynids; 1203 struct usbdrv_wrap drvwrap; 1204 unsigned int no_dynamic_id:1; 1205 unsigned int supports_autosuspend:1; 1206 unsigned int disable_hub_initiated_lpm:1; 1207 unsigned int soft_unbind:1; 1208}; 1209#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1210 1211/** 1212 * struct usb_device_driver - identifies USB device driver to usbcore 1213 * @name: The driver name should be unique among USB drivers, 1214 * and should normally be the same as the module name. 1215 * @match: If set, used for better device/driver matching. 1216 * @probe: Called to see if the driver is willing to manage a particular 1217 * device. If it is, probe returns zero and uses dev_set_drvdata() 1218 * to associate driver-specific data with the device. If unwilling 1219 * to manage the device, return a negative errno value. 1220 * @disconnect: Called when the device is no longer accessible, usually 1221 * because it has been (or is being) disconnected or the driver's 1222 * module is being unloaded. 1223 * @suspend: Called when the device is going to be suspended by the system. 1224 * @resume: Called when the device is being resumed by the system. 1225 * @dev_groups: Attributes attached to the device that will be created once it 1226 * is bound to the driver. 1227 * @drvwrap: Driver-model core structure wrapper. 1228 * @id_table: used with @match() to select better matching driver at 1229 * probe() time. 1230 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1231 * for devices bound to this driver. 1232 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1233 * resume and suspend functions will be called in addition to the driver's 1234 * own, so this part of the setup does not need to be replicated. 1235 * 1236 * USB drivers must provide all the fields listed above except drvwrap, 1237 * match, and id_table. 1238 */ 1239struct usb_device_driver { 1240 const char *name; 1241 1242 bool (*match) (struct usb_device *udev); 1243 int (*probe) (struct usb_device *udev); 1244 void (*disconnect) (struct usb_device *udev); 1245 1246 int (*suspend) (struct usb_device *udev, pm_message_t message); 1247 int (*resume) (struct usb_device *udev, pm_message_t message); 1248 const struct attribute_group **dev_groups; 1249 struct usbdrv_wrap drvwrap; 1250 const struct usb_device_id *id_table; 1251 unsigned int supports_autosuspend:1; 1252 unsigned int generic_subclass:1; 1253}; 1254#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1255 drvwrap.driver) 1256 1257/** 1258 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1259 * @name: the usb class device name for this driver. Will show up in sysfs. 1260 * @devnode: Callback to provide a naming hint for a possible 1261 * device node to create. 1262 * @fops: pointer to the struct file_operations of this driver. 1263 * @minor_base: the start of the minor range for this driver. 1264 * 1265 * This structure is used for the usb_register_dev() and 1266 * usb_deregister_dev() functions, to consolidate a number of the 1267 * parameters used for them. 1268 */ 1269struct usb_class_driver { 1270 char *name; 1271 char *(*devnode)(struct device *dev, umode_t *mode); 1272 const struct file_operations *fops; 1273 int minor_base; 1274}; 1275 1276/* 1277 * use these in module_init()/module_exit() 1278 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1279 */ 1280extern int usb_register_driver(struct usb_driver *, struct module *, 1281 const char *); 1282 1283/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1284#define usb_register(driver) \ 1285 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1286 1287extern void usb_deregister(struct usb_driver *); 1288 1289/** 1290 * module_usb_driver() - Helper macro for registering a USB driver 1291 * @__usb_driver: usb_driver struct 1292 * 1293 * Helper macro for USB drivers which do not do anything special in module 1294 * init/exit. This eliminates a lot of boilerplate. Each module may only 1295 * use this macro once, and calling it replaces module_init() and module_exit() 1296 */ 1297#define module_usb_driver(__usb_driver) \ 1298 module_driver(__usb_driver, usb_register, \ 1299 usb_deregister) 1300 1301extern int usb_register_device_driver(struct usb_device_driver *, 1302 struct module *); 1303extern void usb_deregister_device_driver(struct usb_device_driver *); 1304 1305extern int usb_register_dev(struct usb_interface *intf, 1306 struct usb_class_driver *class_driver); 1307extern void usb_deregister_dev(struct usb_interface *intf, 1308 struct usb_class_driver *class_driver); 1309 1310extern int usb_disabled(void); 1311 1312/* ----------------------------------------------------------------------- */ 1313 1314/* 1315 * URB support, for asynchronous request completions 1316 */ 1317 1318/* 1319 * urb->transfer_flags: 1320 * 1321 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1322 */ 1323#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1324#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1325 * slot in the schedule */ 1326#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1327#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1328#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1329 * needed */ 1330#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1331 1332/* The following flags are used internally by usbcore and HCDs */ 1333#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1334#define URB_DIR_OUT 0 1335#define URB_DIR_MASK URB_DIR_IN 1336 1337#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1338#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1339#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1340#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1341#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1342#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1343#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1344#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1345 1346struct usb_iso_packet_descriptor { 1347 unsigned int offset; 1348 unsigned int length; /* expected length */ 1349 unsigned int actual_length; 1350 int status; 1351}; 1352 1353struct urb; 1354 1355struct usb_anchor { 1356 struct list_head urb_list; 1357 wait_queue_head_t wait; 1358 spinlock_t lock; 1359 atomic_t suspend_wakeups; 1360 unsigned int poisoned:1; 1361}; 1362 1363static inline void init_usb_anchor(struct usb_anchor *anchor) 1364{ 1365 memset(anchor, 0, sizeof(*anchor)); 1366 INIT_LIST_HEAD(&anchor->urb_list); 1367 init_waitqueue_head(&anchor->wait); 1368 spin_lock_init(&anchor->lock); 1369} 1370 1371typedef void (*usb_complete_t)(struct urb *); 1372 1373/** 1374 * struct urb - USB Request Block 1375 * @urb_list: For use by current owner of the URB. 1376 * @anchor_list: membership in the list of an anchor 1377 * @anchor: to anchor URBs to a common mooring 1378 * @ep: Points to the endpoint's data structure. Will eventually 1379 * replace @pipe. 1380 * @pipe: Holds endpoint number, direction, type, and more. 1381 * Create these values with the eight macros available; 1382 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1383 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1384 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1385 * numbers range from zero to fifteen. Note that "in" endpoint two 1386 * is a different endpoint (and pipe) from "out" endpoint two. 1387 * The current configuration controls the existence, type, and 1388 * maximum packet size of any given endpoint. 1389 * @stream_id: the endpoint's stream ID for bulk streams 1390 * @dev: Identifies the USB device to perform the request. 1391 * @status: This is read in non-iso completion functions to get the 1392 * status of the particular request. ISO requests only use it 1393 * to tell whether the URB was unlinked; detailed status for 1394 * each frame is in the fields of the iso_frame-desc. 1395 * @transfer_flags: A variety of flags may be used to affect how URB 1396 * submission, unlinking, or operation are handled. Different 1397 * kinds of URB can use different flags. 1398 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1399 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1400 * (however, do not leave garbage in transfer_buffer even then). 1401 * This buffer must be suitable for DMA; allocate it with 1402 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1403 * of this buffer will be modified. This buffer is used for the data 1404 * stage of control transfers. 1405 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1406 * the device driver is saying that it provided this DMA address, 1407 * which the host controller driver should use in preference to the 1408 * transfer_buffer. 1409 * @sg: scatter gather buffer list, the buffer size of each element in 1410 * the list (except the last) must be divisible by the endpoint's 1411 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1412 * @num_mapped_sgs: (internal) number of mapped sg entries 1413 * @num_sgs: number of entries in the sg list 1414 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1415 * be broken up into chunks according to the current maximum packet 1416 * size for the endpoint, which is a function of the configuration 1417 * and is encoded in the pipe. When the length is zero, neither 1418 * transfer_buffer nor transfer_dma is used. 1419 * @actual_length: This is read in non-iso completion functions, and 1420 * it tells how many bytes (out of transfer_buffer_length) were 1421 * transferred. It will normally be the same as requested, unless 1422 * either an error was reported or a short read was performed. 1423 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1424 * short reads be reported as errors. 1425 * @setup_packet: Only used for control transfers, this points to eight bytes 1426 * of setup data. Control transfers always start by sending this data 1427 * to the device. Then transfer_buffer is read or written, if needed. 1428 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1429 * this field; setup_packet must point to a valid buffer. 1430 * @start_frame: Returns the initial frame for isochronous transfers. 1431 * @number_of_packets: Lists the number of ISO transfer buffers. 1432 * @interval: Specifies the polling interval for interrupt or isochronous 1433 * transfers. The units are frames (milliseconds) for full and low 1434 * speed devices, and microframes (1/8 millisecond) for highspeed 1435 * and SuperSpeed devices. 1436 * @error_count: Returns the number of ISO transfers that reported errors. 1437 * @context: For use in completion functions. This normally points to 1438 * request-specific driver context. 1439 * @complete: Completion handler. This URB is passed as the parameter to the 1440 * completion function. The completion function may then do what 1441 * it likes with the URB, including resubmitting or freeing it. 1442 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1443 * collect the transfer status for each buffer. 1444 * 1445 * This structure identifies USB transfer requests. URBs must be allocated by 1446 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1447 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1448 * are submitted using usb_submit_urb(), and pending requests may be canceled 1449 * using usb_unlink_urb() or usb_kill_urb(). 1450 * 1451 * Data Transfer Buffers: 1452 * 1453 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1454 * taken from the general page pool. That is provided by transfer_buffer 1455 * (control requests also use setup_packet), and host controller drivers 1456 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1457 * mapping operations can be expensive on some platforms (perhaps using a dma 1458 * bounce buffer or talking to an IOMMU), 1459 * although they're cheap on commodity x86 and ppc hardware. 1460 * 1461 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1462 * which tells the host controller driver that no such mapping is needed for 1463 * the transfer_buffer since 1464 * the device driver is DMA-aware. For example, a device driver might 1465 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1466 * When this transfer flag is provided, host controller drivers will 1467 * attempt to use the dma address found in the transfer_dma 1468 * field rather than determining a dma address themselves. 1469 * 1470 * Note that transfer_buffer must still be set if the controller 1471 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1472 * to root hub. If you have to transfer between highmem zone and the device 1473 * on such controller, create a bounce buffer or bail out with an error. 1474 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1475 * capable, assign NULL to it, so that usbmon knows not to use the value. 1476 * The setup_packet must always be set, so it cannot be located in highmem. 1477 * 1478 * Initialization: 1479 * 1480 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1481 * zero), and complete fields. All URBs must also initialize 1482 * transfer_buffer and transfer_buffer_length. They may provide the 1483 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1484 * to be treated as errors; that flag is invalid for write requests. 1485 * 1486 * Bulk URBs may 1487 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1488 * should always terminate with a short packet, even if it means adding an 1489 * extra zero length packet. 1490 * 1491 * Control URBs must provide a valid pointer in the setup_packet field. 1492 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1493 * beforehand. 1494 * 1495 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1496 * or, for highspeed devices, 125 microsecond units) 1497 * to poll for transfers. After the URB has been submitted, the interval 1498 * field reflects how the transfer was actually scheduled. 1499 * The polling interval may be more frequent than requested. 1500 * For example, some controllers have a maximum interval of 32 milliseconds, 1501 * while others support intervals of up to 1024 milliseconds. 1502 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1503 * endpoints, as well as high speed interrupt endpoints, the encoding of 1504 * the transfer interval in the endpoint descriptor is logarithmic. 1505 * Device drivers must convert that value to linear units themselves.) 1506 * 1507 * If an isochronous endpoint queue isn't already running, the host 1508 * controller will schedule a new URB to start as soon as bandwidth 1509 * utilization allows. If the queue is running then a new URB will be 1510 * scheduled to start in the first transfer slot following the end of the 1511 * preceding URB, if that slot has not already expired. If the slot has 1512 * expired (which can happen when IRQ delivery is delayed for a long time), 1513 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1514 * is clear then the URB will be scheduled to start in the expired slot, 1515 * implying that some of its packets will not be transferred; if the flag 1516 * is set then the URB will be scheduled in the first unexpired slot, 1517 * breaking the queue's synchronization. Upon URB completion, the 1518 * start_frame field will be set to the (micro)frame number in which the 1519 * transfer was scheduled. Ranges for frame counter values are HC-specific 1520 * and can go from as low as 256 to as high as 65536 frames. 1521 * 1522 * Isochronous URBs have a different data transfer model, in part because 1523 * the quality of service is only "best effort". Callers provide specially 1524 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1525 * at the end. Each such packet is an individual ISO transfer. Isochronous 1526 * URBs are normally queued, submitted by drivers to arrange that 1527 * transfers are at least double buffered, and then explicitly resubmitted 1528 * in completion handlers, so 1529 * that data (such as audio or video) streams at as constant a rate as the 1530 * host controller scheduler can support. 1531 * 1532 * Completion Callbacks: 1533 * 1534 * The completion callback is made in_interrupt(), and one of the first 1535 * things that a completion handler should do is check the status field. 1536 * The status field is provided for all URBs. It is used to report 1537 * unlinked URBs, and status for all non-ISO transfers. It should not 1538 * be examined before the URB is returned to the completion handler. 1539 * 1540 * The context field is normally used to link URBs back to the relevant 1541 * driver or request state. 1542 * 1543 * When the completion callback is invoked for non-isochronous URBs, the 1544 * actual_length field tells how many bytes were transferred. This field 1545 * is updated even when the URB terminated with an error or was unlinked. 1546 * 1547 * ISO transfer status is reported in the status and actual_length fields 1548 * of the iso_frame_desc array, and the number of errors is reported in 1549 * error_count. Completion callbacks for ISO transfers will normally 1550 * (re)submit URBs to ensure a constant transfer rate. 1551 * 1552 * Note that even fields marked "public" should not be touched by the driver 1553 * when the urb is owned by the hcd, that is, since the call to 1554 * usb_submit_urb() till the entry into the completion routine. 1555 */ 1556struct urb { 1557 /* private: usb core and host controller only fields in the urb */ 1558 struct kref kref; /* reference count of the URB */ 1559 int unlinked; /* unlink error code */ 1560 void *hcpriv; /* private data for host controller */ 1561 atomic_t use_count; /* concurrent submissions counter */ 1562 atomic_t reject; /* submissions will fail */ 1563 1564 /* public: documented fields in the urb that can be used by drivers */ 1565 struct list_head urb_list; /* list head for use by the urb's 1566 * current owner */ 1567 struct list_head anchor_list; /* the URB may be anchored */ 1568 struct usb_anchor *anchor; 1569 struct usb_device *dev; /* (in) pointer to associated device */ 1570 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1571 unsigned int pipe; /* (in) pipe information */ 1572 unsigned int stream_id; /* (in) stream ID */ 1573 int status; /* (return) non-ISO status */ 1574 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1575 void *transfer_buffer; /* (in) associated data buffer */ 1576 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1577 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1578 int num_mapped_sgs; /* (internal) mapped sg entries */ 1579 int num_sgs; /* (in) number of entries in the sg list */ 1580 u32 transfer_buffer_length; /* (in) data buffer length */ 1581 u32 actual_length; /* (return) actual transfer length */ 1582 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1583 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1584 int start_frame; /* (modify) start frame (ISO) */ 1585 int number_of_packets; /* (in) number of ISO packets */ 1586 int interval; /* (modify) transfer interval 1587 * (INT/ISO) */ 1588 int error_count; /* (return) number of ISO errors */ 1589 void *context; /* (in) context for completion */ 1590 usb_complete_t complete; /* (in) completion routine */ 1591 struct usb_iso_packet_descriptor iso_frame_desc[]; 1592 /* (in) ISO ONLY */ 1593}; 1594 1595/* ----------------------------------------------------------------------- */ 1596 1597/** 1598 * usb_fill_control_urb - initializes a control urb 1599 * @urb: pointer to the urb to initialize. 1600 * @dev: pointer to the struct usb_device for this urb. 1601 * @pipe: the endpoint pipe 1602 * @setup_packet: pointer to the setup_packet buffer 1603 * @transfer_buffer: pointer to the transfer buffer 1604 * @buffer_length: length of the transfer buffer 1605 * @complete_fn: pointer to the usb_complete_t function 1606 * @context: what to set the urb context to. 1607 * 1608 * Initializes a control urb with the proper information needed to submit 1609 * it to a device. 1610 */ 1611static inline void usb_fill_control_urb(struct urb *urb, 1612 struct usb_device *dev, 1613 unsigned int pipe, 1614 unsigned char *setup_packet, 1615 void *transfer_buffer, 1616 int buffer_length, 1617 usb_complete_t complete_fn, 1618 void *context) 1619{ 1620 urb->dev = dev; 1621 urb->pipe = pipe; 1622 urb->setup_packet = setup_packet; 1623 urb->transfer_buffer = transfer_buffer; 1624 urb->transfer_buffer_length = buffer_length; 1625 urb->complete = complete_fn; 1626 urb->context = context; 1627} 1628 1629/** 1630 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1631 * @urb: pointer to the urb to initialize. 1632 * @dev: pointer to the struct usb_device for this urb. 1633 * @pipe: the endpoint pipe 1634 * @transfer_buffer: pointer to the transfer buffer 1635 * @buffer_length: length of the transfer buffer 1636 * @complete_fn: pointer to the usb_complete_t function 1637 * @context: what to set the urb context to. 1638 * 1639 * Initializes a bulk urb with the proper information needed to submit it 1640 * to a device. 1641 */ 1642static inline void usb_fill_bulk_urb(struct urb *urb, 1643 struct usb_device *dev, 1644 unsigned int pipe, 1645 void *transfer_buffer, 1646 int buffer_length, 1647 usb_complete_t complete_fn, 1648 void *context) 1649{ 1650 urb->dev = dev; 1651 urb->pipe = pipe; 1652 urb->transfer_buffer = transfer_buffer; 1653 urb->transfer_buffer_length = buffer_length; 1654 urb->complete = complete_fn; 1655 urb->context = context; 1656} 1657 1658/** 1659 * usb_fill_int_urb - macro to help initialize a interrupt urb 1660 * @urb: pointer to the urb to initialize. 1661 * @dev: pointer to the struct usb_device for this urb. 1662 * @pipe: the endpoint pipe 1663 * @transfer_buffer: pointer to the transfer buffer 1664 * @buffer_length: length of the transfer buffer 1665 * @complete_fn: pointer to the usb_complete_t function 1666 * @context: what to set the urb context to. 1667 * @interval: what to set the urb interval to, encoded like 1668 * the endpoint descriptor's bInterval value. 1669 * 1670 * Initializes a interrupt urb with the proper information needed to submit 1671 * it to a device. 1672 * 1673 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1674 * encoding of the endpoint interval, and express polling intervals in 1675 * microframes (eight per millisecond) rather than in frames (one per 1676 * millisecond). 1677 * 1678 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1679 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1680 * through to the host controller, rather than being translated into microframe 1681 * units. 1682 */ 1683static inline void usb_fill_int_urb(struct urb *urb, 1684 struct usb_device *dev, 1685 unsigned int pipe, 1686 void *transfer_buffer, 1687 int buffer_length, 1688 usb_complete_t complete_fn, 1689 void *context, 1690 int interval) 1691{ 1692 urb->dev = dev; 1693 urb->pipe = pipe; 1694 urb->transfer_buffer = transfer_buffer; 1695 urb->transfer_buffer_length = buffer_length; 1696 urb->complete = complete_fn; 1697 urb->context = context; 1698 1699 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1700 /* make sure interval is within allowed range */ 1701 interval = clamp(interval, 1, 16); 1702 1703 urb->interval = 1 << (interval - 1); 1704 } else { 1705 urb->interval = interval; 1706 } 1707 1708 urb->start_frame = -1; 1709} 1710 1711extern void usb_init_urb(struct urb *urb); 1712extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1713extern void usb_free_urb(struct urb *urb); 1714#define usb_put_urb usb_free_urb 1715extern struct urb *usb_get_urb(struct urb *urb); 1716extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1717extern int usb_unlink_urb(struct urb *urb); 1718extern void usb_kill_urb(struct urb *urb); 1719extern void usb_poison_urb(struct urb *urb); 1720extern void usb_unpoison_urb(struct urb *urb); 1721extern void usb_block_urb(struct urb *urb); 1722extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1723extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1724extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1725extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1726extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1727extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1728extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1729extern void usb_unanchor_urb(struct urb *urb); 1730extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1731 unsigned int timeout); 1732extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1733extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1734extern int usb_anchor_empty(struct usb_anchor *anchor); 1735 1736#define usb_unblock_urb usb_unpoison_urb 1737 1738/** 1739 * usb_urb_dir_in - check if an URB describes an IN transfer 1740 * @urb: URB to be checked 1741 * 1742 * Return: 1 if @urb describes an IN transfer (device-to-host), 1743 * otherwise 0. 1744 */ 1745static inline int usb_urb_dir_in(struct urb *urb) 1746{ 1747 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1748} 1749 1750/** 1751 * usb_urb_dir_out - check if an URB describes an OUT transfer 1752 * @urb: URB to be checked 1753 * 1754 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1755 * otherwise 0. 1756 */ 1757static inline int usb_urb_dir_out(struct urb *urb) 1758{ 1759 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1760} 1761 1762int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1763int usb_urb_ep_type_check(const struct urb *urb); 1764 1765void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1766 gfp_t mem_flags, dma_addr_t *dma); 1767void usb_free_coherent(struct usb_device *dev, size_t size, 1768 void *addr, dma_addr_t dma); 1769 1770#if 0 1771struct urb *usb_buffer_map(struct urb *urb); 1772void usb_buffer_dmasync(struct urb *urb); 1773void usb_buffer_unmap(struct urb *urb); 1774#endif 1775 1776struct scatterlist; 1777int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1778 struct scatterlist *sg, int nents); 1779#if 0 1780void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1781 struct scatterlist *sg, int n_hw_ents); 1782#endif 1783void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1784 struct scatterlist *sg, int n_hw_ents); 1785 1786/*-------------------------------------------------------------------* 1787 * SYNCHRONOUS CALL SUPPORT * 1788 *-------------------------------------------------------------------*/ 1789 1790extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1791 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1792 void *data, __u16 size, int timeout); 1793extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1794 void *data, int len, int *actual_length, int timeout); 1795extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1796 void *data, int len, int *actual_length, 1797 int timeout); 1798 1799/* wrappers around usb_control_msg() for the most common standard requests */ 1800int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1801 __u8 requesttype, __u16 value, __u16 index, 1802 const void *data, __u16 size, int timeout, 1803 gfp_t memflags); 1804int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1805 __u8 requesttype, __u16 value, __u16 index, 1806 void *data, __u16 size, int timeout, 1807 gfp_t memflags); 1808extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1809 unsigned char descindex, void *buf, int size); 1810extern int usb_get_status(struct usb_device *dev, 1811 int recip, int type, int target, void *data); 1812 1813static inline int usb_get_std_status(struct usb_device *dev, 1814 int recip, int target, void *data) 1815{ 1816 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1817 data); 1818} 1819 1820static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1821{ 1822 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1823 0, data); 1824} 1825 1826extern int usb_string(struct usb_device *dev, int index, 1827 char *buf, size_t size); 1828 1829/* wrappers that also update important state inside usbcore */ 1830extern int usb_clear_halt(struct usb_device *dev, int pipe); 1831extern int usb_reset_configuration(struct usb_device *dev); 1832extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1833extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1834 1835/* this request isn't really synchronous, but it belongs with the others */ 1836extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1837 1838/* choose and set configuration for device */ 1839extern int usb_choose_configuration(struct usb_device *udev); 1840extern int usb_set_configuration(struct usb_device *dev, int configuration); 1841 1842/* 1843 * timeouts, in milliseconds, used for sending/receiving control messages 1844 * they typically complete within a few frames (msec) after they're issued 1845 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1846 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1847 */ 1848#define USB_CTRL_GET_TIMEOUT 5000 1849#define USB_CTRL_SET_TIMEOUT 5000 1850 1851 1852/** 1853 * struct usb_sg_request - support for scatter/gather I/O 1854 * @status: zero indicates success, else negative errno 1855 * @bytes: counts bytes transferred. 1856 * 1857 * These requests are initialized using usb_sg_init(), and then are used 1858 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1859 * members of the request object aren't for driver access. 1860 * 1861 * The status and bytecount values are valid only after usb_sg_wait() 1862 * returns. If the status is zero, then the bytecount matches the total 1863 * from the request. 1864 * 1865 * After an error completion, drivers may need to clear a halt condition 1866 * on the endpoint. 1867 */ 1868struct usb_sg_request { 1869 int status; 1870 size_t bytes; 1871 1872 /* private: 1873 * members below are private to usbcore, 1874 * and are not provided for driver access! 1875 */ 1876 spinlock_t lock; 1877 1878 struct usb_device *dev; 1879 int pipe; 1880 1881 int entries; 1882 struct urb **urbs; 1883 1884 int count; 1885 struct completion complete; 1886}; 1887 1888int usb_sg_init( 1889 struct usb_sg_request *io, 1890 struct usb_device *dev, 1891 unsigned pipe, 1892 unsigned period, 1893 struct scatterlist *sg, 1894 int nents, 1895 size_t length, 1896 gfp_t mem_flags 1897); 1898void usb_sg_cancel(struct usb_sg_request *io); 1899void usb_sg_wait(struct usb_sg_request *io); 1900 1901 1902/* ----------------------------------------------------------------------- */ 1903 1904/* 1905 * For various legacy reasons, Linux has a small cookie that's paired with 1906 * a struct usb_device to identify an endpoint queue. Queue characteristics 1907 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1908 * an unsigned int encoded as: 1909 * 1910 * - direction: bit 7 (0 = Host-to-Device [Out], 1911 * 1 = Device-to-Host [In] ... 1912 * like endpoint bEndpointAddress) 1913 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1914 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1915 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1916 * 10 = control, 11 = bulk) 1917 * 1918 * Given the device address and endpoint descriptor, pipes are redundant. 1919 */ 1920 1921/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1922/* (yet ... they're the values used by usbfs) */ 1923#define PIPE_ISOCHRONOUS 0 1924#define PIPE_INTERRUPT 1 1925#define PIPE_CONTROL 2 1926#define PIPE_BULK 3 1927 1928#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1929#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1930 1931#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1932#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1933 1934#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1935#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1936#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1937#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1938#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1939 1940static inline unsigned int __create_pipe(struct usb_device *dev, 1941 unsigned int endpoint) 1942{ 1943 return (dev->devnum << 8) | (endpoint << 15); 1944} 1945 1946/* Create various pipes... */ 1947#define usb_sndctrlpipe(dev, endpoint) \ 1948 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1949#define usb_rcvctrlpipe(dev, endpoint) \ 1950 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1951#define usb_sndisocpipe(dev, endpoint) \ 1952 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1953#define usb_rcvisocpipe(dev, endpoint) \ 1954 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1955#define usb_sndbulkpipe(dev, endpoint) \ 1956 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1957#define usb_rcvbulkpipe(dev, endpoint) \ 1958 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1959#define usb_sndintpipe(dev, endpoint) \ 1960 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1961#define usb_rcvintpipe(dev, endpoint) \ 1962 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1963 1964static inline struct usb_host_endpoint * 1965usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1966{ 1967 struct usb_host_endpoint **eps; 1968 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1969 return eps[usb_pipeendpoint(pipe)]; 1970} 1971 1972static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 1973{ 1974 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 1975 1976 if (!ep) 1977 return 0; 1978 1979 /* NOTE: only 0x07ff bits are for packet size... */ 1980 return usb_endpoint_maxp(&ep->desc); 1981} 1982 1983/* translate USB error codes to codes user space understands */ 1984static inline int usb_translate_errors(int error_code) 1985{ 1986 switch (error_code) { 1987 case 0: 1988 case -ENOMEM: 1989 case -ENODEV: 1990 case -EOPNOTSUPP: 1991 return error_code; 1992 default: 1993 return -EIO; 1994 } 1995} 1996 1997/* Events from the usb core */ 1998#define USB_DEVICE_ADD 0x0001 1999#define USB_DEVICE_REMOVE 0x0002 2000#define USB_BUS_ADD 0x0003 2001#define USB_BUS_REMOVE 0x0004 2002extern void usb_register_notify(struct notifier_block *nb); 2003extern void usb_unregister_notify(struct notifier_block *nb); 2004 2005/* debugfs stuff */ 2006extern struct dentry *usb_debug_root; 2007 2008/* LED triggers */ 2009enum usb_led_event { 2010 USB_LED_EVENT_HOST = 0, 2011 USB_LED_EVENT_GADGET = 1, 2012}; 2013 2014#ifdef CONFIG_USB_LED_TRIG 2015extern void usb_led_activity(enum usb_led_event ev); 2016#else 2017static inline void usb_led_activity(enum usb_led_event ev) {} 2018#endif 2019 2020#endif /* __KERNEL__ */ 2021 2022#endif