cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

usb.h (78873B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef __LINUX_USB_H
      3#define __LINUX_USB_H
      4
      5#include <linux/mod_devicetable.h>
      6#include <linux/usb/ch9.h>
      7
      8#define USB_MAJOR			180
      9#define USB_DEVICE_MAJOR		189
     10
     11
     12#ifdef __KERNEL__
     13
     14#include <linux/errno.h>        /* for -ENODEV */
     15#include <linux/delay.h>	/* for mdelay() */
     16#include <linux/interrupt.h>	/* for in_interrupt() */
     17#include <linux/list.h>		/* for struct list_head */
     18#include <linux/kref.h>		/* for struct kref */
     19#include <linux/device.h>	/* for struct device */
     20#include <linux/fs.h>		/* for struct file_operations */
     21#include <linux/completion.h>	/* for struct completion */
     22#include <linux/sched.h>	/* for current && schedule_timeout */
     23#include <linux/mutex.h>	/* for struct mutex */
     24#include <linux/pm_runtime.h>	/* for runtime PM */
     25
     26struct usb_device;
     27struct usb_driver;
     28struct wusb_dev;
     29
     30/*-------------------------------------------------------------------------*/
     31
     32/*
     33 * Host-side wrappers for standard USB descriptors ... these are parsed
     34 * from the data provided by devices.  Parsing turns them from a flat
     35 * sequence of descriptors into a hierarchy:
     36 *
     37 *  - devices have one (usually) or more configs;
     38 *  - configs have one (often) or more interfaces;
     39 *  - interfaces have one (usually) or more settings;
     40 *  - each interface setting has zero or (usually) more endpoints.
     41 *  - a SuperSpeed endpoint has a companion descriptor
     42 *
     43 * And there might be other descriptors mixed in with those.
     44 *
     45 * Devices may also have class-specific or vendor-specific descriptors.
     46 */
     47
     48struct ep_device;
     49
     50/**
     51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
     52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
     53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
     54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
     55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
     56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
     57 *	with one or more transfer descriptors (TDs) per urb
     58 * @ep_dev: ep_device for sysfs info
     59 * @extra: descriptors following this endpoint in the configuration
     60 * @extralen: how many bytes of "extra" are valid
     61 * @enabled: URBs may be submitted to this endpoint
     62 * @streams: number of USB-3 streams allocated on the endpoint
     63 *
     64 * USB requests are always queued to a given endpoint, identified by a
     65 * descriptor within an active interface in a given USB configuration.
     66 */
     67struct usb_host_endpoint {
     68	struct usb_endpoint_descriptor		desc;
     69	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
     70	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
     71	struct list_head		urb_list;
     72	void				*hcpriv;
     73	struct ep_device		*ep_dev;	/* For sysfs info */
     74
     75	unsigned char *extra;   /* Extra descriptors */
     76	int extralen;
     77	int enabled;
     78	int streams;
     79};
     80
     81/* host-side wrapper for one interface setting's parsed descriptors */
     82struct usb_host_interface {
     83	struct usb_interface_descriptor	desc;
     84
     85	int extralen;
     86	unsigned char *extra;   /* Extra descriptors */
     87
     88	/* array of desc.bNumEndpoints endpoints associated with this
     89	 * interface setting.  these will be in no particular order.
     90	 */
     91	struct usb_host_endpoint *endpoint;
     92
     93	char *string;		/* iInterface string, if present */
     94};
     95
     96enum usb_interface_condition {
     97	USB_INTERFACE_UNBOUND = 0,
     98	USB_INTERFACE_BINDING,
     99	USB_INTERFACE_BOUND,
    100	USB_INTERFACE_UNBINDING,
    101};
    102
    103int __must_check
    104usb_find_common_endpoints(struct usb_host_interface *alt,
    105		struct usb_endpoint_descriptor **bulk_in,
    106		struct usb_endpoint_descriptor **bulk_out,
    107		struct usb_endpoint_descriptor **int_in,
    108		struct usb_endpoint_descriptor **int_out);
    109
    110int __must_check
    111usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
    112		struct usb_endpoint_descriptor **bulk_in,
    113		struct usb_endpoint_descriptor **bulk_out,
    114		struct usb_endpoint_descriptor **int_in,
    115		struct usb_endpoint_descriptor **int_out);
    116
    117static inline int __must_check
    118usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
    119		struct usb_endpoint_descriptor **bulk_in)
    120{
    121	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
    122}
    123
    124static inline int __must_check
    125usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
    126		struct usb_endpoint_descriptor **bulk_out)
    127{
    128	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
    129}
    130
    131static inline int __must_check
    132usb_find_int_in_endpoint(struct usb_host_interface *alt,
    133		struct usb_endpoint_descriptor **int_in)
    134{
    135	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
    136}
    137
    138static inline int __must_check
    139usb_find_int_out_endpoint(struct usb_host_interface *alt,
    140		struct usb_endpoint_descriptor **int_out)
    141{
    142	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
    143}
    144
    145static inline int __must_check
    146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
    147		struct usb_endpoint_descriptor **bulk_in)
    148{
    149	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
    150}
    151
    152static inline int __must_check
    153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
    154		struct usb_endpoint_descriptor **bulk_out)
    155{
    156	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
    157}
    158
    159static inline int __must_check
    160usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
    161		struct usb_endpoint_descriptor **int_in)
    162{
    163	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
    164}
    165
    166static inline int __must_check
    167usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
    168		struct usb_endpoint_descriptor **int_out)
    169{
    170	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
    171}
    172
    173/**
    174 * struct usb_interface - what usb device drivers talk to
    175 * @altsetting: array of interface structures, one for each alternate
    176 *	setting that may be selected.  Each one includes a set of
    177 *	endpoint configurations.  They will be in no particular order.
    178 * @cur_altsetting: the current altsetting.
    179 * @num_altsetting: number of altsettings defined.
    180 * @intf_assoc: interface association descriptor
    181 * @minor: the minor number assigned to this interface, if this
    182 *	interface is bound to a driver that uses the USB major number.
    183 *	If this interface does not use the USB major, this field should
    184 *	be unused.  The driver should set this value in the probe()
    185 *	function of the driver, after it has been assigned a minor
    186 *	number from the USB core by calling usb_register_dev().
    187 * @condition: binding state of the interface: not bound, binding
    188 *	(in probe()), bound to a driver, or unbinding (in disconnect())
    189 * @sysfs_files_created: sysfs attributes exist
    190 * @ep_devs_created: endpoint child pseudo-devices exist
    191 * @unregistering: flag set when the interface is being unregistered
    192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
    193 *	capability during autosuspend.
    194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
    195 *	has been deferred.
    196 * @needs_binding: flag set when the driver should be re-probed or unbound
    197 *	following a reset or suspend operation it doesn't support.
    198 * @authorized: This allows to (de)authorize individual interfaces instead
    199 *	a whole device in contrast to the device authorization.
    200 * @dev: driver model's view of this device
    201 * @usb_dev: if an interface is bound to the USB major, this will point
    202 *	to the sysfs representation for that device.
    203 * @reset_ws: Used for scheduling resets from atomic context.
    204 * @resetting_device: USB core reset the device, so use alt setting 0 as
    205 *	current; needs bandwidth alloc after reset.
    206 *
    207 * USB device drivers attach to interfaces on a physical device.  Each
    208 * interface encapsulates a single high level function, such as feeding
    209 * an audio stream to a speaker or reporting a change in a volume control.
    210 * Many USB devices only have one interface.  The protocol used to talk to
    211 * an interface's endpoints can be defined in a usb "class" specification,
    212 * or by a product's vendor.  The (default) control endpoint is part of
    213 * every interface, but is never listed among the interface's descriptors.
    214 *
    215 * The driver that is bound to the interface can use standard driver model
    216 * calls such as dev_get_drvdata() on the dev member of this structure.
    217 *
    218 * Each interface may have alternate settings.  The initial configuration
    219 * of a device sets altsetting 0, but the device driver can change
    220 * that setting using usb_set_interface().  Alternate settings are often
    221 * used to control the use of periodic endpoints, such as by having
    222 * different endpoints use different amounts of reserved USB bandwidth.
    223 * All standards-conformant USB devices that use isochronous endpoints
    224 * will use them in non-default settings.
    225 *
    226 * The USB specification says that alternate setting numbers must run from
    227 * 0 to one less than the total number of alternate settings.  But some
    228 * devices manage to mess this up, and the structures aren't necessarily
    229 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
    230 * look up an alternate setting in the altsetting array based on its number.
    231 */
    232struct usb_interface {
    233	/* array of alternate settings for this interface,
    234	 * stored in no particular order */
    235	struct usb_host_interface *altsetting;
    236
    237	struct usb_host_interface *cur_altsetting;	/* the currently
    238					 * active alternate setting */
    239	unsigned num_altsetting;	/* number of alternate settings */
    240
    241	/* If there is an interface association descriptor then it will list
    242	 * the associated interfaces */
    243	struct usb_interface_assoc_descriptor *intf_assoc;
    244
    245	int minor;			/* minor number this interface is
    246					 * bound to */
    247	enum usb_interface_condition condition;		/* state of binding */
    248	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
    249	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
    250	unsigned unregistering:1;	/* unregistration is in progress */
    251	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
    252	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
    253	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
    254	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
    255	unsigned authorized:1;		/* used for interface authorization */
    256
    257	struct device dev;		/* interface specific device info */
    258	struct device *usb_dev;
    259	struct work_struct reset_ws;	/* for resets in atomic context */
    260};
    261#define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
    262
    263static inline void *usb_get_intfdata(struct usb_interface *intf)
    264{
    265	return dev_get_drvdata(&intf->dev);
    266}
    267
    268static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
    269{
    270	dev_set_drvdata(&intf->dev, data);
    271}
    272
    273struct usb_interface *usb_get_intf(struct usb_interface *intf);
    274void usb_put_intf(struct usb_interface *intf);
    275
    276/* Hard limit */
    277#define USB_MAXENDPOINTS	30
    278/* this maximum is arbitrary */
    279#define USB_MAXINTERFACES	32
    280#define USB_MAXIADS		(USB_MAXINTERFACES/2)
    281
    282/*
    283 * USB Resume Timer: Every Host controller driver should drive the resume
    284 * signalling on the bus for the amount of time defined by this macro.
    285 *
    286 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
    287 *
    288 * Note that the USB Specification states we should drive resume for *at least*
    289 * 20 ms, but it doesn't give an upper bound. This creates two possible
    290 * situations which we want to avoid:
    291 *
    292 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
    293 * us to fail USB Electrical Tests, thus failing Certification
    294 *
    295 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
    296 * and while we can argue that's against the USB Specification, we don't have
    297 * control over which devices a certification laboratory will be using for
    298 * certification. If CertLab uses a device which was tested against Windows and
    299 * that happens to have relaxed resume signalling rules, we might fall into
    300 * situations where we fail interoperability and electrical tests.
    301 *
    302 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
    303 * should cope with both LPJ calibration errors and devices not following every
    304 * detail of the USB Specification.
    305 */
    306#define USB_RESUME_TIMEOUT	40 /* ms */
    307
    308/**
    309 * struct usb_interface_cache - long-term representation of a device interface
    310 * @num_altsetting: number of altsettings defined.
    311 * @ref: reference counter.
    312 * @altsetting: variable-length array of interface structures, one for
    313 *	each alternate setting that may be selected.  Each one includes a
    314 *	set of endpoint configurations.  They will be in no particular order.
    315 *
    316 * These structures persist for the lifetime of a usb_device, unlike
    317 * struct usb_interface (which persists only as long as its configuration
    318 * is installed).  The altsetting arrays can be accessed through these
    319 * structures at any time, permitting comparison of configurations and
    320 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
    321 */
    322struct usb_interface_cache {
    323	unsigned num_altsetting;	/* number of alternate settings */
    324	struct kref ref;		/* reference counter */
    325
    326	/* variable-length array of alternate settings for this interface,
    327	 * stored in no particular order */
    328	struct usb_host_interface altsetting[];
    329};
    330#define	ref_to_usb_interface_cache(r) \
    331		container_of(r, struct usb_interface_cache, ref)
    332#define	altsetting_to_usb_interface_cache(a) \
    333		container_of(a, struct usb_interface_cache, altsetting[0])
    334
    335/**
    336 * struct usb_host_config - representation of a device's configuration
    337 * @desc: the device's configuration descriptor.
    338 * @string: pointer to the cached version of the iConfiguration string, if
    339 *	present for this configuration.
    340 * @intf_assoc: list of any interface association descriptors in this config
    341 * @interface: array of pointers to usb_interface structures, one for each
    342 *	interface in the configuration.  The number of interfaces is stored
    343 *	in desc.bNumInterfaces.  These pointers are valid only while the
    344 *	configuration is active.
    345 * @intf_cache: array of pointers to usb_interface_cache structures, one
    346 *	for each interface in the configuration.  These structures exist
    347 *	for the entire life of the device.
    348 * @extra: pointer to buffer containing all extra descriptors associated
    349 *	with this configuration (those preceding the first interface
    350 *	descriptor).
    351 * @extralen: length of the extra descriptors buffer.
    352 *
    353 * USB devices may have multiple configurations, but only one can be active
    354 * at any time.  Each encapsulates a different operational environment;
    355 * for example, a dual-speed device would have separate configurations for
    356 * full-speed and high-speed operation.  The number of configurations
    357 * available is stored in the device descriptor as bNumConfigurations.
    358 *
    359 * A configuration can contain multiple interfaces.  Each corresponds to
    360 * a different function of the USB device, and all are available whenever
    361 * the configuration is active.  The USB standard says that interfaces
    362 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
    363 * of devices get this wrong.  In addition, the interface array is not
    364 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
    365 * look up an interface entry based on its number.
    366 *
    367 * Device drivers should not attempt to activate configurations.  The choice
    368 * of which configuration to install is a policy decision based on such
    369 * considerations as available power, functionality provided, and the user's
    370 * desires (expressed through userspace tools).  However, drivers can call
    371 * usb_reset_configuration() to reinitialize the current configuration and
    372 * all its interfaces.
    373 */
    374struct usb_host_config {
    375	struct usb_config_descriptor	desc;
    376
    377	char *string;		/* iConfiguration string, if present */
    378
    379	/* List of any Interface Association Descriptors in this
    380	 * configuration. */
    381	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
    382
    383	/* the interfaces associated with this configuration,
    384	 * stored in no particular order */
    385	struct usb_interface *interface[USB_MAXINTERFACES];
    386
    387	/* Interface information available even when this is not the
    388	 * active configuration */
    389	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
    390
    391	unsigned char *extra;   /* Extra descriptors */
    392	int extralen;
    393};
    394
    395/* USB2.0 and USB3.0 device BOS descriptor set */
    396struct usb_host_bos {
    397	struct usb_bos_descriptor	*desc;
    398
    399	/* wireless cap descriptor is handled by wusb */
    400	struct usb_ext_cap_descriptor	*ext_cap;
    401	struct usb_ss_cap_descriptor	*ss_cap;
    402	struct usb_ssp_cap_descriptor	*ssp_cap;
    403	struct usb_ss_container_id_descriptor	*ss_id;
    404	struct usb_ptm_cap_descriptor	*ptm_cap;
    405};
    406
    407int __usb_get_extra_descriptor(char *buffer, unsigned size,
    408	unsigned char type, void **ptr, size_t min);
    409#define usb_get_extra_descriptor(ifpoint, type, ptr) \
    410				__usb_get_extra_descriptor((ifpoint)->extra, \
    411				(ifpoint)->extralen, \
    412				type, (void **)ptr, sizeof(**(ptr)))
    413
    414/* ----------------------------------------------------------------------- */
    415
    416/* USB device number allocation bitmap */
    417struct usb_devmap {
    418	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
    419};
    420
    421/*
    422 * Allocated per bus (tree of devices) we have:
    423 */
    424struct usb_bus {
    425	struct device *controller;	/* host side hardware */
    426	struct device *sysdev;		/* as seen from firmware or bus */
    427	int busnum;			/* Bus number (in order of reg) */
    428	const char *bus_name;		/* stable id (PCI slot_name etc) */
    429	u8 uses_pio_for_control;	/*
    430					 * Does the host controller use PIO
    431					 * for control transfers?
    432					 */
    433	u8 otg_port;			/* 0, or number of OTG/HNP port */
    434	unsigned is_b_host:1;		/* true during some HNP roleswitches */
    435	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
    436	unsigned no_stop_on_short:1;    /*
    437					 * Quirk: some controllers don't stop
    438					 * the ep queue on a short transfer
    439					 * with the URB_SHORT_NOT_OK flag set.
    440					 */
    441	unsigned no_sg_constraint:1;	/* no sg constraint */
    442	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
    443
    444	int devnum_next;		/* Next open device number in
    445					 * round-robin allocation */
    446	struct mutex devnum_next_mutex; /* devnum_next mutex */
    447
    448	struct usb_devmap devmap;	/* device address allocation map */
    449	struct usb_device *root_hub;	/* Root hub */
    450	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
    451
    452	int bandwidth_allocated;	/* on this bus: how much of the time
    453					 * reserved for periodic (intr/iso)
    454					 * requests is used, on average?
    455					 * Units: microseconds/frame.
    456					 * Limits: Full/low speed reserve 90%,
    457					 * while high speed reserves 80%.
    458					 */
    459	int bandwidth_int_reqs;		/* number of Interrupt requests */
    460	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
    461
    462	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
    463
    464#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
    465	struct mon_bus *mon_bus;	/* non-null when associated */
    466	int monitored;			/* non-zero when monitored */
    467#endif
    468};
    469
    470struct usb_dev_state;
    471
    472/* ----------------------------------------------------------------------- */
    473
    474struct usb_tt;
    475
    476enum usb_port_connect_type {
    477	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
    478	USB_PORT_CONNECT_TYPE_HOT_PLUG,
    479	USB_PORT_CONNECT_TYPE_HARD_WIRED,
    480	USB_PORT_NOT_USED,
    481};
    482
    483/*
    484 * USB port quirks.
    485 */
    486
    487/* For the given port, prefer the old (faster) enumeration scheme. */
    488#define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
    489
    490/* Decrease TRSTRCY to 10ms during device enumeration. */
    491#define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
    492
    493/*
    494 * USB 2.0 Link Power Management (LPM) parameters.
    495 */
    496struct usb2_lpm_parameters {
    497	/* Best effort service latency indicate how long the host will drive
    498	 * resume on an exit from L1.
    499	 */
    500	unsigned int besl;
    501
    502	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
    503	 * When the timer counts to zero, the parent hub will initiate a LPM
    504	 * transition to L1.
    505	 */
    506	int timeout;
    507};
    508
    509/*
    510 * USB 3.0 Link Power Management (LPM) parameters.
    511 *
    512 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
    513 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
    514 * All three are stored in nanoseconds.
    515 */
    516struct usb3_lpm_parameters {
    517	/*
    518	 * Maximum exit latency (MEL) for the host to send a packet to the
    519	 * device (either a Ping for isoc endpoints, or a data packet for
    520	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
    521	 * in the path to transition the links to U0.
    522	 */
    523	unsigned int mel;
    524	/*
    525	 * Maximum exit latency for a device-initiated LPM transition to bring
    526	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
    527	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
    528	 */
    529	unsigned int pel;
    530
    531	/*
    532	 * The System Exit Latency (SEL) includes PEL, and three other
    533	 * latencies.  After a device initiates a U0 transition, it will take
    534	 * some time from when the device sends the ERDY to when it will finally
    535	 * receive the data packet.  Basically, SEL should be the worse-case
    536	 * latency from when a device starts initiating a U0 transition to when
    537	 * it will get data.
    538	 */
    539	unsigned int sel;
    540	/*
    541	 * The idle timeout value that is currently programmed into the parent
    542	 * hub for this device.  When the timer counts to zero, the parent hub
    543	 * will initiate an LPM transition to either U1 or U2.
    544	 */
    545	int timeout;
    546};
    547
    548/**
    549 * struct usb_device - kernel's representation of a USB device
    550 * @devnum: device number; address on a USB bus
    551 * @devpath: device ID string for use in messages (e.g., /port/...)
    552 * @route: tree topology hex string for use with xHCI
    553 * @state: device state: configured, not attached, etc.
    554 * @speed: device speed: high/full/low (or error)
    555 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
    556 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
    557 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
    558 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
    559 * @ttport: device port on that tt hub
    560 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
    561 * @parent: our hub, unless we're the root
    562 * @bus: bus we're part of
    563 * @ep0: endpoint 0 data (default control pipe)
    564 * @dev: generic device interface
    565 * @descriptor: USB device descriptor
    566 * @bos: USB device BOS descriptor set
    567 * @config: all of the device's configs
    568 * @actconfig: the active configuration
    569 * @ep_in: array of IN endpoints
    570 * @ep_out: array of OUT endpoints
    571 * @rawdescriptors: raw descriptors for each config
    572 * @bus_mA: Current available from the bus
    573 * @portnum: parent port number (origin 1)
    574 * @level: number of USB hub ancestors
    575 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
    576 * @can_submit: URBs may be submitted
    577 * @persist_enabled:  USB_PERSIST enabled for this device
    578 * @have_langid: whether string_langid is valid
    579 * @authorized: policy has said we can use it;
    580 *	(user space) policy determines if we authorize this device to be
    581 *	used or not. By default, wired USB devices are authorized.
    582 *	WUSB devices are not, until we authorize them from user space.
    583 *	FIXME -- complete doc
    584 * @authenticated: Crypto authentication passed
    585 * @wusb: device is Wireless USB
    586 * @lpm_capable: device supports LPM
    587 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
    588 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
    589 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
    590 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
    591 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
    592 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
    593 * @string_langid: language ID for strings
    594 * @product: iProduct string, if present (static)
    595 * @manufacturer: iManufacturer string, if present (static)
    596 * @serial: iSerialNumber string, if present (static)
    597 * @filelist: usbfs files that are open to this device
    598 * @maxchild: number of ports if hub
    599 * @quirks: quirks of the whole device
    600 * @urbnum: number of URBs submitted for the whole device
    601 * @active_duration: total time device is not suspended
    602 * @connect_time: time device was first connected
    603 * @do_remote_wakeup:  remote wakeup should be enabled
    604 * @reset_resume: needs reset instead of resume
    605 * @port_is_suspended: the upstream port is suspended (L2 or U3)
    606 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
    607 *	specific data for the device.
    608 * @slot_id: Slot ID assigned by xHCI
    609 * @removable: Device can be physically removed from this port
    610 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
    611 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
    612 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
    613 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
    614 *	to keep track of the number of functions that require USB 3.0 Link Power
    615 *	Management to be disabled for this usb_device.  This count should only
    616 *	be manipulated by those functions, with the bandwidth_mutex is held.
    617 * @hub_delay: cached value consisting of:
    618 *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
    619 *	Will be used as wValue for SetIsochDelay requests.
    620 * @use_generic_driver: ask driver core to reprobe using the generic driver.
    621 *
    622 * Notes:
    623 * Usbcore drivers should not set usbdev->state directly.  Instead use
    624 * usb_set_device_state().
    625 */
    626struct usb_device {
    627	int		devnum;
    628	char		devpath[16];
    629	u32		route;
    630	enum usb_device_state	state;
    631	enum usb_device_speed	speed;
    632	unsigned int		rx_lanes;
    633	unsigned int		tx_lanes;
    634	enum usb_ssp_rate	ssp_rate;
    635
    636	struct usb_tt	*tt;
    637	int		ttport;
    638
    639	unsigned int toggle[2];
    640
    641	struct usb_device *parent;
    642	struct usb_bus *bus;
    643	struct usb_host_endpoint ep0;
    644
    645	struct device dev;
    646
    647	struct usb_device_descriptor descriptor;
    648	struct usb_host_bos *bos;
    649	struct usb_host_config *config;
    650
    651	struct usb_host_config *actconfig;
    652	struct usb_host_endpoint *ep_in[16];
    653	struct usb_host_endpoint *ep_out[16];
    654
    655	char **rawdescriptors;
    656
    657	unsigned short bus_mA;
    658	u8 portnum;
    659	u8 level;
    660	u8 devaddr;
    661
    662	unsigned can_submit:1;
    663	unsigned persist_enabled:1;
    664	unsigned have_langid:1;
    665	unsigned authorized:1;
    666	unsigned authenticated:1;
    667	unsigned wusb:1;
    668	unsigned lpm_capable:1;
    669	unsigned usb2_hw_lpm_capable:1;
    670	unsigned usb2_hw_lpm_besl_capable:1;
    671	unsigned usb2_hw_lpm_enabled:1;
    672	unsigned usb2_hw_lpm_allowed:1;
    673	unsigned usb3_lpm_u1_enabled:1;
    674	unsigned usb3_lpm_u2_enabled:1;
    675	int string_langid;
    676
    677	/* static strings from the device */
    678	char *product;
    679	char *manufacturer;
    680	char *serial;
    681
    682	struct list_head filelist;
    683
    684	int maxchild;
    685
    686	u32 quirks;
    687	atomic_t urbnum;
    688
    689	unsigned long active_duration;
    690
    691#ifdef CONFIG_PM
    692	unsigned long connect_time;
    693
    694	unsigned do_remote_wakeup:1;
    695	unsigned reset_resume:1;
    696	unsigned port_is_suspended:1;
    697#endif
    698	struct wusb_dev *wusb_dev;
    699	int slot_id;
    700	struct usb2_lpm_parameters l1_params;
    701	struct usb3_lpm_parameters u1_params;
    702	struct usb3_lpm_parameters u2_params;
    703	unsigned lpm_disable_count;
    704
    705	u16 hub_delay;
    706	unsigned use_generic_driver:1;
    707};
    708#define	to_usb_device(d) container_of(d, struct usb_device, dev)
    709
    710static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
    711{
    712	return to_usb_device(intf->dev.parent);
    713}
    714
    715extern struct usb_device *usb_get_dev(struct usb_device *dev);
    716extern void usb_put_dev(struct usb_device *dev);
    717extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
    718	int port1);
    719
    720/**
    721 * usb_hub_for_each_child - iterate over all child devices on the hub
    722 * @hdev:  USB device belonging to the usb hub
    723 * @port1: portnum associated with child device
    724 * @child: child device pointer
    725 */
    726#define usb_hub_for_each_child(hdev, port1, child) \
    727	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
    728			port1 <= hdev->maxchild; \
    729			child = usb_hub_find_child(hdev, ++port1)) \
    730		if (!child) continue; else
    731
    732/* USB device locking */
    733#define usb_lock_device(udev)			device_lock(&(udev)->dev)
    734#define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
    735#define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
    736#define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
    737extern int usb_lock_device_for_reset(struct usb_device *udev,
    738				     const struct usb_interface *iface);
    739
    740/* USB port reset for device reinitialization */
    741extern int usb_reset_device(struct usb_device *dev);
    742extern void usb_queue_reset_device(struct usb_interface *dev);
    743
    744extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
    745
    746#ifdef CONFIG_ACPI
    747extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
    748	bool enable);
    749extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
    750#else
    751static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
    752	bool enable) { return 0; }
    753static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
    754	{ return true; }
    755#endif
    756
    757/* USB autosuspend and autoresume */
    758#ifdef CONFIG_PM
    759extern void usb_enable_autosuspend(struct usb_device *udev);
    760extern void usb_disable_autosuspend(struct usb_device *udev);
    761
    762extern int usb_autopm_get_interface(struct usb_interface *intf);
    763extern void usb_autopm_put_interface(struct usb_interface *intf);
    764extern int usb_autopm_get_interface_async(struct usb_interface *intf);
    765extern void usb_autopm_put_interface_async(struct usb_interface *intf);
    766extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
    767extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
    768
    769static inline void usb_mark_last_busy(struct usb_device *udev)
    770{
    771	pm_runtime_mark_last_busy(&udev->dev);
    772}
    773
    774#else
    775
    776static inline int usb_enable_autosuspend(struct usb_device *udev)
    777{ return 0; }
    778static inline int usb_disable_autosuspend(struct usb_device *udev)
    779{ return 0; }
    780
    781static inline int usb_autopm_get_interface(struct usb_interface *intf)
    782{ return 0; }
    783static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
    784{ return 0; }
    785
    786static inline void usb_autopm_put_interface(struct usb_interface *intf)
    787{ }
    788static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
    789{ }
    790static inline void usb_autopm_get_interface_no_resume(
    791		struct usb_interface *intf)
    792{ }
    793static inline void usb_autopm_put_interface_no_suspend(
    794		struct usb_interface *intf)
    795{ }
    796static inline void usb_mark_last_busy(struct usb_device *udev)
    797{ }
    798#endif
    799
    800extern int usb_disable_lpm(struct usb_device *udev);
    801extern void usb_enable_lpm(struct usb_device *udev);
    802/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
    803extern int usb_unlocked_disable_lpm(struct usb_device *udev);
    804extern void usb_unlocked_enable_lpm(struct usb_device *udev);
    805
    806extern int usb_disable_ltm(struct usb_device *udev);
    807extern void usb_enable_ltm(struct usb_device *udev);
    808
    809static inline bool usb_device_supports_ltm(struct usb_device *udev)
    810{
    811	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
    812		return false;
    813	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
    814}
    815
    816static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
    817{
    818	return udev && udev->bus && udev->bus->no_sg_constraint;
    819}
    820
    821
    822/*-------------------------------------------------------------------------*/
    823
    824/* for drivers using iso endpoints */
    825extern int usb_get_current_frame_number(struct usb_device *usb_dev);
    826
    827/* Sets up a group of bulk endpoints to support multiple stream IDs. */
    828extern int usb_alloc_streams(struct usb_interface *interface,
    829		struct usb_host_endpoint **eps, unsigned int num_eps,
    830		unsigned int num_streams, gfp_t mem_flags);
    831
    832/* Reverts a group of bulk endpoints back to not using stream IDs. */
    833extern int usb_free_streams(struct usb_interface *interface,
    834		struct usb_host_endpoint **eps, unsigned int num_eps,
    835		gfp_t mem_flags);
    836
    837/* used these for multi-interface device registration */
    838extern int usb_driver_claim_interface(struct usb_driver *driver,
    839			struct usb_interface *iface, void *data);
    840
    841/**
    842 * usb_interface_claimed - returns true iff an interface is claimed
    843 * @iface: the interface being checked
    844 *
    845 * Return: %true (nonzero) iff the interface is claimed, else %false
    846 * (zero).
    847 *
    848 * Note:
    849 * Callers must own the driver model's usb bus readlock.  So driver
    850 * probe() entries don't need extra locking, but other call contexts
    851 * may need to explicitly claim that lock.
    852 *
    853 */
    854static inline int usb_interface_claimed(struct usb_interface *iface)
    855{
    856	return (iface->dev.driver != NULL);
    857}
    858
    859extern void usb_driver_release_interface(struct usb_driver *driver,
    860			struct usb_interface *iface);
    861const struct usb_device_id *usb_match_id(struct usb_interface *interface,
    862					 const struct usb_device_id *id);
    863extern int usb_match_one_id(struct usb_interface *interface,
    864			    const struct usb_device_id *id);
    865
    866extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
    867extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
    868		int minor);
    869extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
    870		unsigned ifnum);
    871extern struct usb_host_interface *usb_altnum_to_altsetting(
    872		const struct usb_interface *intf, unsigned int altnum);
    873extern struct usb_host_interface *usb_find_alt_setting(
    874		struct usb_host_config *config,
    875		unsigned int iface_num,
    876		unsigned int alt_num);
    877
    878/* port claiming functions */
    879int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
    880		struct usb_dev_state *owner);
    881int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
    882		struct usb_dev_state *owner);
    883
    884/**
    885 * usb_make_path - returns stable device path in the usb tree
    886 * @dev: the device whose path is being constructed
    887 * @buf: where to put the string
    888 * @size: how big is "buf"?
    889 *
    890 * Return: Length of the string (> 0) or negative if size was too small.
    891 *
    892 * Note:
    893 * This identifier is intended to be "stable", reflecting physical paths in
    894 * hardware such as physical bus addresses for host controllers or ports on
    895 * USB hubs.  That makes it stay the same until systems are physically
    896 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
    897 * controllers.  Adding and removing devices, including virtual root hubs
    898 * in host controller driver modules, does not change these path identifiers;
    899 * neither does rebooting or re-enumerating.  These are more useful identifiers
    900 * than changeable ("unstable") ones like bus numbers or device addresses.
    901 *
    902 * With a partial exception for devices connected to USB 2.0 root hubs, these
    903 * identifiers are also predictable.  So long as the device tree isn't changed,
    904 * plugging any USB device into a given hub port always gives it the same path.
    905 * Because of the use of "companion" controllers, devices connected to ports on
    906 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
    907 * high speed, and a different one if they are full or low speed.
    908 */
    909static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
    910{
    911	int actual;
    912	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
    913			  dev->devpath);
    914	return (actual >= (int)size) ? -1 : actual;
    915}
    916
    917/*-------------------------------------------------------------------------*/
    918
    919#define USB_DEVICE_ID_MATCH_DEVICE \
    920		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
    921#define USB_DEVICE_ID_MATCH_DEV_RANGE \
    922		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
    923#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
    924		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
    925#define USB_DEVICE_ID_MATCH_DEV_INFO \
    926		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
    927		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
    928		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
    929#define USB_DEVICE_ID_MATCH_INT_INFO \
    930		(USB_DEVICE_ID_MATCH_INT_CLASS | \
    931		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
    932		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
    933
    934/**
    935 * USB_DEVICE - macro used to describe a specific usb device
    936 * @vend: the 16 bit USB Vendor ID
    937 * @prod: the 16 bit USB Product ID
    938 *
    939 * This macro is used to create a struct usb_device_id that matches a
    940 * specific device.
    941 */
    942#define USB_DEVICE(vend, prod) \
    943	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
    944	.idVendor = (vend), \
    945	.idProduct = (prod)
    946/**
    947 * USB_DEVICE_VER - describe a specific usb device with a version range
    948 * @vend: the 16 bit USB Vendor ID
    949 * @prod: the 16 bit USB Product ID
    950 * @lo: the bcdDevice_lo value
    951 * @hi: the bcdDevice_hi value
    952 *
    953 * This macro is used to create a struct usb_device_id that matches a
    954 * specific device, with a version range.
    955 */
    956#define USB_DEVICE_VER(vend, prod, lo, hi) \
    957	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
    958	.idVendor = (vend), \
    959	.idProduct = (prod), \
    960	.bcdDevice_lo = (lo), \
    961	.bcdDevice_hi = (hi)
    962
    963/**
    964 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
    965 * @vend: the 16 bit USB Vendor ID
    966 * @prod: the 16 bit USB Product ID
    967 * @cl: bInterfaceClass value
    968 *
    969 * This macro is used to create a struct usb_device_id that matches a
    970 * specific interface class of devices.
    971 */
    972#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
    973	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
    974		       USB_DEVICE_ID_MATCH_INT_CLASS, \
    975	.idVendor = (vend), \
    976	.idProduct = (prod), \
    977	.bInterfaceClass = (cl)
    978
    979/**
    980 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
    981 * @vend: the 16 bit USB Vendor ID
    982 * @prod: the 16 bit USB Product ID
    983 * @pr: bInterfaceProtocol value
    984 *
    985 * This macro is used to create a struct usb_device_id that matches a
    986 * specific interface protocol of devices.
    987 */
    988#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
    989	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
    990		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
    991	.idVendor = (vend), \
    992	.idProduct = (prod), \
    993	.bInterfaceProtocol = (pr)
    994
    995/**
    996 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
    997 * @vend: the 16 bit USB Vendor ID
    998 * @prod: the 16 bit USB Product ID
    999 * @num: bInterfaceNumber value
   1000 *
   1001 * This macro is used to create a struct usb_device_id that matches a
   1002 * specific interface number of devices.
   1003 */
   1004#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
   1005	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
   1006		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
   1007	.idVendor = (vend), \
   1008	.idProduct = (prod), \
   1009	.bInterfaceNumber = (num)
   1010
   1011/**
   1012 * USB_DEVICE_INFO - macro used to describe a class of usb devices
   1013 * @cl: bDeviceClass value
   1014 * @sc: bDeviceSubClass value
   1015 * @pr: bDeviceProtocol value
   1016 *
   1017 * This macro is used to create a struct usb_device_id that matches a
   1018 * specific class of devices.
   1019 */
   1020#define USB_DEVICE_INFO(cl, sc, pr) \
   1021	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
   1022	.bDeviceClass = (cl), \
   1023	.bDeviceSubClass = (sc), \
   1024	.bDeviceProtocol = (pr)
   1025
   1026/**
   1027 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
   1028 * @cl: bInterfaceClass value
   1029 * @sc: bInterfaceSubClass value
   1030 * @pr: bInterfaceProtocol value
   1031 *
   1032 * This macro is used to create a struct usb_device_id that matches a
   1033 * specific class of interfaces.
   1034 */
   1035#define USB_INTERFACE_INFO(cl, sc, pr) \
   1036	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
   1037	.bInterfaceClass = (cl), \
   1038	.bInterfaceSubClass = (sc), \
   1039	.bInterfaceProtocol = (pr)
   1040
   1041/**
   1042 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
   1043 * @vend: the 16 bit USB Vendor ID
   1044 * @prod: the 16 bit USB Product ID
   1045 * @cl: bInterfaceClass value
   1046 * @sc: bInterfaceSubClass value
   1047 * @pr: bInterfaceProtocol value
   1048 *
   1049 * This macro is used to create a struct usb_device_id that matches a
   1050 * specific device with a specific class of interfaces.
   1051 *
   1052 * This is especially useful when explicitly matching devices that have
   1053 * vendor specific bDeviceClass values, but standards-compliant interfaces.
   1054 */
   1055#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
   1056	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
   1057		| USB_DEVICE_ID_MATCH_DEVICE, \
   1058	.idVendor = (vend), \
   1059	.idProduct = (prod), \
   1060	.bInterfaceClass = (cl), \
   1061	.bInterfaceSubClass = (sc), \
   1062	.bInterfaceProtocol = (pr)
   1063
   1064/**
   1065 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
   1066 * @vend: the 16 bit USB Vendor ID
   1067 * @cl: bInterfaceClass value
   1068 * @sc: bInterfaceSubClass value
   1069 * @pr: bInterfaceProtocol value
   1070 *
   1071 * This macro is used to create a struct usb_device_id that matches a
   1072 * specific vendor with a specific class of interfaces.
   1073 *
   1074 * This is especially useful when explicitly matching devices that have
   1075 * vendor specific bDeviceClass values, but standards-compliant interfaces.
   1076 */
   1077#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
   1078	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
   1079		| USB_DEVICE_ID_MATCH_VENDOR, \
   1080	.idVendor = (vend), \
   1081	.bInterfaceClass = (cl), \
   1082	.bInterfaceSubClass = (sc), \
   1083	.bInterfaceProtocol = (pr)
   1084
   1085/* ----------------------------------------------------------------------- */
   1086
   1087/* Stuff for dynamic usb ids */
   1088struct usb_dynids {
   1089	spinlock_t lock;
   1090	struct list_head list;
   1091};
   1092
   1093struct usb_dynid {
   1094	struct list_head node;
   1095	struct usb_device_id id;
   1096};
   1097
   1098extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
   1099				const struct usb_device_id *id_table,
   1100				struct device_driver *driver,
   1101				const char *buf, size_t count);
   1102
   1103extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
   1104
   1105/**
   1106 * struct usbdrv_wrap - wrapper for driver-model structure
   1107 * @driver: The driver-model core driver structure.
   1108 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
   1109 */
   1110struct usbdrv_wrap {
   1111	struct device_driver driver;
   1112	int for_devices;
   1113};
   1114
   1115/**
   1116 * struct usb_driver - identifies USB interface driver to usbcore
   1117 * @name: The driver name should be unique among USB drivers,
   1118 *	and should normally be the same as the module name.
   1119 * @probe: Called to see if the driver is willing to manage a particular
   1120 *	interface on a device.  If it is, probe returns zero and uses
   1121 *	usb_set_intfdata() to associate driver-specific data with the
   1122 *	interface.  It may also use usb_set_interface() to specify the
   1123 *	appropriate altsetting.  If unwilling to manage the interface,
   1124 *	return -ENODEV, if genuine IO errors occurred, an appropriate
   1125 *	negative errno value.
   1126 * @disconnect: Called when the interface is no longer accessible, usually
   1127 *	because its device has been (or is being) disconnected or the
   1128 *	driver module is being unloaded.
   1129 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
   1130 *	the "usbfs" filesystem.  This lets devices provide ways to
   1131 *	expose information to user space regardless of where they
   1132 *	do (or don't) show up otherwise in the filesystem.
   1133 * @suspend: Called when the device is going to be suspended by the
   1134 *	system either from system sleep or runtime suspend context. The
   1135 *	return value will be ignored in system sleep context, so do NOT
   1136 *	try to continue using the device if suspend fails in this case.
   1137 *	Instead, let the resume or reset-resume routine recover from
   1138 *	the failure.
   1139 * @resume: Called when the device is being resumed by the system.
   1140 * @reset_resume: Called when the suspended device has been reset instead
   1141 *	of being resumed.
   1142 * @pre_reset: Called by usb_reset_device() when the device is about to be
   1143 *	reset.  This routine must not return until the driver has no active
   1144 *	URBs for the device, and no more URBs may be submitted until the
   1145 *	post_reset method is called.
   1146 * @post_reset: Called by usb_reset_device() after the device
   1147 *	has been reset
   1148 * @id_table: USB drivers use ID table to support hotplugging.
   1149 *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
   1150 *	or your driver's probe function will never get called.
   1151 * @dev_groups: Attributes attached to the device that will be created once it
   1152 *	is bound to the driver.
   1153 * @dynids: used internally to hold the list of dynamically added device
   1154 *	ids for this driver.
   1155 * @drvwrap: Driver-model core structure wrapper.
   1156 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
   1157 *	added to this driver by preventing the sysfs file from being created.
   1158 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
   1159 *	for interfaces bound to this driver.
   1160 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
   1161 *	endpoints before calling the driver's disconnect method.
   1162 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
   1163 *	to initiate lower power link state transitions when an idle timeout
   1164 *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
   1165 *
   1166 * USB interface drivers must provide a name, probe() and disconnect()
   1167 * methods, and an id_table.  Other driver fields are optional.
   1168 *
   1169 * The id_table is used in hotplugging.  It holds a set of descriptors,
   1170 * and specialized data may be associated with each entry.  That table
   1171 * is used by both user and kernel mode hotplugging support.
   1172 *
   1173 * The probe() and disconnect() methods are called in a context where
   1174 * they can sleep, but they should avoid abusing the privilege.  Most
   1175 * work to connect to a device should be done when the device is opened,
   1176 * and undone at the last close.  The disconnect code needs to address
   1177 * concurrency issues with respect to open() and close() methods, as
   1178 * well as forcing all pending I/O requests to complete (by unlinking
   1179 * them as necessary, and blocking until the unlinks complete).
   1180 */
   1181struct usb_driver {
   1182	const char *name;
   1183
   1184	int (*probe) (struct usb_interface *intf,
   1185		      const struct usb_device_id *id);
   1186
   1187	void (*disconnect) (struct usb_interface *intf);
   1188
   1189	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
   1190			void *buf);
   1191
   1192	int (*suspend) (struct usb_interface *intf, pm_message_t message);
   1193	int (*resume) (struct usb_interface *intf);
   1194	int (*reset_resume)(struct usb_interface *intf);
   1195
   1196	int (*pre_reset)(struct usb_interface *intf);
   1197	int (*post_reset)(struct usb_interface *intf);
   1198
   1199	const struct usb_device_id *id_table;
   1200	const struct attribute_group **dev_groups;
   1201
   1202	struct usb_dynids dynids;
   1203	struct usbdrv_wrap drvwrap;
   1204	unsigned int no_dynamic_id:1;
   1205	unsigned int supports_autosuspend:1;
   1206	unsigned int disable_hub_initiated_lpm:1;
   1207	unsigned int soft_unbind:1;
   1208};
   1209#define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
   1210
   1211/**
   1212 * struct usb_device_driver - identifies USB device driver to usbcore
   1213 * @name: The driver name should be unique among USB drivers,
   1214 *	and should normally be the same as the module name.
   1215 * @match: If set, used for better device/driver matching.
   1216 * @probe: Called to see if the driver is willing to manage a particular
   1217 *	device.  If it is, probe returns zero and uses dev_set_drvdata()
   1218 *	to associate driver-specific data with the device.  If unwilling
   1219 *	to manage the device, return a negative errno value.
   1220 * @disconnect: Called when the device is no longer accessible, usually
   1221 *	because it has been (or is being) disconnected or the driver's
   1222 *	module is being unloaded.
   1223 * @suspend: Called when the device is going to be suspended by the system.
   1224 * @resume: Called when the device is being resumed by the system.
   1225 * @dev_groups: Attributes attached to the device that will be created once it
   1226 *	is bound to the driver.
   1227 * @drvwrap: Driver-model core structure wrapper.
   1228 * @id_table: used with @match() to select better matching driver at
   1229 * 	probe() time.
   1230 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
   1231 *	for devices bound to this driver.
   1232 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
   1233 *	resume and suspend functions will be called in addition to the driver's
   1234 *	own, so this part of the setup does not need to be replicated.
   1235 *
   1236 * USB drivers must provide all the fields listed above except drvwrap,
   1237 * match, and id_table.
   1238 */
   1239struct usb_device_driver {
   1240	const char *name;
   1241
   1242	bool (*match) (struct usb_device *udev);
   1243	int (*probe) (struct usb_device *udev);
   1244	void (*disconnect) (struct usb_device *udev);
   1245
   1246	int (*suspend) (struct usb_device *udev, pm_message_t message);
   1247	int (*resume) (struct usb_device *udev, pm_message_t message);
   1248	const struct attribute_group **dev_groups;
   1249	struct usbdrv_wrap drvwrap;
   1250	const struct usb_device_id *id_table;
   1251	unsigned int supports_autosuspend:1;
   1252	unsigned int generic_subclass:1;
   1253};
   1254#define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
   1255		drvwrap.driver)
   1256
   1257/**
   1258 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
   1259 * @name: the usb class device name for this driver.  Will show up in sysfs.
   1260 * @devnode: Callback to provide a naming hint for a possible
   1261 *	device node to create.
   1262 * @fops: pointer to the struct file_operations of this driver.
   1263 * @minor_base: the start of the minor range for this driver.
   1264 *
   1265 * This structure is used for the usb_register_dev() and
   1266 * usb_deregister_dev() functions, to consolidate a number of the
   1267 * parameters used for them.
   1268 */
   1269struct usb_class_driver {
   1270	char *name;
   1271	char *(*devnode)(struct device *dev, umode_t *mode);
   1272	const struct file_operations *fops;
   1273	int minor_base;
   1274};
   1275
   1276/*
   1277 * use these in module_init()/module_exit()
   1278 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
   1279 */
   1280extern int usb_register_driver(struct usb_driver *, struct module *,
   1281			       const char *);
   1282
   1283/* use a define to avoid include chaining to get THIS_MODULE & friends */
   1284#define usb_register(driver) \
   1285	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
   1286
   1287extern void usb_deregister(struct usb_driver *);
   1288
   1289/**
   1290 * module_usb_driver() - Helper macro for registering a USB driver
   1291 * @__usb_driver: usb_driver struct
   1292 *
   1293 * Helper macro for USB drivers which do not do anything special in module
   1294 * init/exit. This eliminates a lot of boilerplate. Each module may only
   1295 * use this macro once, and calling it replaces module_init() and module_exit()
   1296 */
   1297#define module_usb_driver(__usb_driver) \
   1298	module_driver(__usb_driver, usb_register, \
   1299		       usb_deregister)
   1300
   1301extern int usb_register_device_driver(struct usb_device_driver *,
   1302			struct module *);
   1303extern void usb_deregister_device_driver(struct usb_device_driver *);
   1304
   1305extern int usb_register_dev(struct usb_interface *intf,
   1306			    struct usb_class_driver *class_driver);
   1307extern void usb_deregister_dev(struct usb_interface *intf,
   1308			       struct usb_class_driver *class_driver);
   1309
   1310extern int usb_disabled(void);
   1311
   1312/* ----------------------------------------------------------------------- */
   1313
   1314/*
   1315 * URB support, for asynchronous request completions
   1316 */
   1317
   1318/*
   1319 * urb->transfer_flags:
   1320 *
   1321 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
   1322 */
   1323#define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
   1324#define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
   1325					 * slot in the schedule */
   1326#define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
   1327#define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
   1328#define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
   1329					 * needed */
   1330#define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
   1331
   1332/* The following flags are used internally by usbcore and HCDs */
   1333#define URB_DIR_IN		0x0200	/* Transfer from device to host */
   1334#define URB_DIR_OUT		0
   1335#define URB_DIR_MASK		URB_DIR_IN
   1336
   1337#define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
   1338#define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
   1339#define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
   1340#define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
   1341#define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
   1342#define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
   1343#define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
   1344#define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
   1345
   1346struct usb_iso_packet_descriptor {
   1347	unsigned int offset;
   1348	unsigned int length;		/* expected length */
   1349	unsigned int actual_length;
   1350	int status;
   1351};
   1352
   1353struct urb;
   1354
   1355struct usb_anchor {
   1356	struct list_head urb_list;
   1357	wait_queue_head_t wait;
   1358	spinlock_t lock;
   1359	atomic_t suspend_wakeups;
   1360	unsigned int poisoned:1;
   1361};
   1362
   1363static inline void init_usb_anchor(struct usb_anchor *anchor)
   1364{
   1365	memset(anchor, 0, sizeof(*anchor));
   1366	INIT_LIST_HEAD(&anchor->urb_list);
   1367	init_waitqueue_head(&anchor->wait);
   1368	spin_lock_init(&anchor->lock);
   1369}
   1370
   1371typedef void (*usb_complete_t)(struct urb *);
   1372
   1373/**
   1374 * struct urb - USB Request Block
   1375 * @urb_list: For use by current owner of the URB.
   1376 * @anchor_list: membership in the list of an anchor
   1377 * @anchor: to anchor URBs to a common mooring
   1378 * @ep: Points to the endpoint's data structure.  Will eventually
   1379 *	replace @pipe.
   1380 * @pipe: Holds endpoint number, direction, type, and more.
   1381 *	Create these values with the eight macros available;
   1382 *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
   1383 *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
   1384 *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
   1385 *	numbers range from zero to fifteen.  Note that "in" endpoint two
   1386 *	is a different endpoint (and pipe) from "out" endpoint two.
   1387 *	The current configuration controls the existence, type, and
   1388 *	maximum packet size of any given endpoint.
   1389 * @stream_id: the endpoint's stream ID for bulk streams
   1390 * @dev: Identifies the USB device to perform the request.
   1391 * @status: This is read in non-iso completion functions to get the
   1392 *	status of the particular request.  ISO requests only use it
   1393 *	to tell whether the URB was unlinked; detailed status for
   1394 *	each frame is in the fields of the iso_frame-desc.
   1395 * @transfer_flags: A variety of flags may be used to affect how URB
   1396 *	submission, unlinking, or operation are handled.  Different
   1397 *	kinds of URB can use different flags.
   1398 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
   1399 *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
   1400 *	(however, do not leave garbage in transfer_buffer even then).
   1401 *	This buffer must be suitable for DMA; allocate it with
   1402 *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
   1403 *	of this buffer will be modified.  This buffer is used for the data
   1404 *	stage of control transfers.
   1405 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
   1406 *	the device driver is saying that it provided this DMA address,
   1407 *	which the host controller driver should use in preference to the
   1408 *	transfer_buffer.
   1409 * @sg: scatter gather buffer list, the buffer size of each element in
   1410 * 	the list (except the last) must be divisible by the endpoint's
   1411 * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
   1412 * @num_mapped_sgs: (internal) number of mapped sg entries
   1413 * @num_sgs: number of entries in the sg list
   1414 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
   1415 *	be broken up into chunks according to the current maximum packet
   1416 *	size for the endpoint, which is a function of the configuration
   1417 *	and is encoded in the pipe.  When the length is zero, neither
   1418 *	transfer_buffer nor transfer_dma is used.
   1419 * @actual_length: This is read in non-iso completion functions, and
   1420 *	it tells how many bytes (out of transfer_buffer_length) were
   1421 *	transferred.  It will normally be the same as requested, unless
   1422 *	either an error was reported or a short read was performed.
   1423 *	The URB_SHORT_NOT_OK transfer flag may be used to make such
   1424 *	short reads be reported as errors.
   1425 * @setup_packet: Only used for control transfers, this points to eight bytes
   1426 *	of setup data.  Control transfers always start by sending this data
   1427 *	to the device.  Then transfer_buffer is read or written, if needed.
   1428 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
   1429 *	this field; setup_packet must point to a valid buffer.
   1430 * @start_frame: Returns the initial frame for isochronous transfers.
   1431 * @number_of_packets: Lists the number of ISO transfer buffers.
   1432 * @interval: Specifies the polling interval for interrupt or isochronous
   1433 *	transfers.  The units are frames (milliseconds) for full and low
   1434 *	speed devices, and microframes (1/8 millisecond) for highspeed
   1435 *	and SuperSpeed devices.
   1436 * @error_count: Returns the number of ISO transfers that reported errors.
   1437 * @context: For use in completion functions.  This normally points to
   1438 *	request-specific driver context.
   1439 * @complete: Completion handler. This URB is passed as the parameter to the
   1440 *	completion function.  The completion function may then do what
   1441 *	it likes with the URB, including resubmitting or freeing it.
   1442 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
   1443 *	collect the transfer status for each buffer.
   1444 *
   1445 * This structure identifies USB transfer requests.  URBs must be allocated by
   1446 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
   1447 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
   1448 * are submitted using usb_submit_urb(), and pending requests may be canceled
   1449 * using usb_unlink_urb() or usb_kill_urb().
   1450 *
   1451 * Data Transfer Buffers:
   1452 *
   1453 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
   1454 * taken from the general page pool.  That is provided by transfer_buffer
   1455 * (control requests also use setup_packet), and host controller drivers
   1456 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
   1457 * mapping operations can be expensive on some platforms (perhaps using a dma
   1458 * bounce buffer or talking to an IOMMU),
   1459 * although they're cheap on commodity x86 and ppc hardware.
   1460 *
   1461 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
   1462 * which tells the host controller driver that no such mapping is needed for
   1463 * the transfer_buffer since
   1464 * the device driver is DMA-aware.  For example, a device driver might
   1465 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
   1466 * When this transfer flag is provided, host controller drivers will
   1467 * attempt to use the dma address found in the transfer_dma
   1468 * field rather than determining a dma address themselves.
   1469 *
   1470 * Note that transfer_buffer must still be set if the controller
   1471 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
   1472 * to root hub. If you have to transfer between highmem zone and the device
   1473 * on such controller, create a bounce buffer or bail out with an error.
   1474 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
   1475 * capable, assign NULL to it, so that usbmon knows not to use the value.
   1476 * The setup_packet must always be set, so it cannot be located in highmem.
   1477 *
   1478 * Initialization:
   1479 *
   1480 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
   1481 * zero), and complete fields.  All URBs must also initialize
   1482 * transfer_buffer and transfer_buffer_length.  They may provide the
   1483 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
   1484 * to be treated as errors; that flag is invalid for write requests.
   1485 *
   1486 * Bulk URBs may
   1487 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
   1488 * should always terminate with a short packet, even if it means adding an
   1489 * extra zero length packet.
   1490 *
   1491 * Control URBs must provide a valid pointer in the setup_packet field.
   1492 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
   1493 * beforehand.
   1494 *
   1495 * Interrupt URBs must provide an interval, saying how often (in milliseconds
   1496 * or, for highspeed devices, 125 microsecond units)
   1497 * to poll for transfers.  After the URB has been submitted, the interval
   1498 * field reflects how the transfer was actually scheduled.
   1499 * The polling interval may be more frequent than requested.
   1500 * For example, some controllers have a maximum interval of 32 milliseconds,
   1501 * while others support intervals of up to 1024 milliseconds.
   1502 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
   1503 * endpoints, as well as high speed interrupt endpoints, the encoding of
   1504 * the transfer interval in the endpoint descriptor is logarithmic.
   1505 * Device drivers must convert that value to linear units themselves.)
   1506 *
   1507 * If an isochronous endpoint queue isn't already running, the host
   1508 * controller will schedule a new URB to start as soon as bandwidth
   1509 * utilization allows.  If the queue is running then a new URB will be
   1510 * scheduled to start in the first transfer slot following the end of the
   1511 * preceding URB, if that slot has not already expired.  If the slot has
   1512 * expired (which can happen when IRQ delivery is delayed for a long time),
   1513 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
   1514 * is clear then the URB will be scheduled to start in the expired slot,
   1515 * implying that some of its packets will not be transferred; if the flag
   1516 * is set then the URB will be scheduled in the first unexpired slot,
   1517 * breaking the queue's synchronization.  Upon URB completion, the
   1518 * start_frame field will be set to the (micro)frame number in which the
   1519 * transfer was scheduled.  Ranges for frame counter values are HC-specific
   1520 * and can go from as low as 256 to as high as 65536 frames.
   1521 *
   1522 * Isochronous URBs have a different data transfer model, in part because
   1523 * the quality of service is only "best effort".  Callers provide specially
   1524 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
   1525 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
   1526 * URBs are normally queued, submitted by drivers to arrange that
   1527 * transfers are at least double buffered, and then explicitly resubmitted
   1528 * in completion handlers, so
   1529 * that data (such as audio or video) streams at as constant a rate as the
   1530 * host controller scheduler can support.
   1531 *
   1532 * Completion Callbacks:
   1533 *
   1534 * The completion callback is made in_interrupt(), and one of the first
   1535 * things that a completion handler should do is check the status field.
   1536 * The status field is provided for all URBs.  It is used to report
   1537 * unlinked URBs, and status for all non-ISO transfers.  It should not
   1538 * be examined before the URB is returned to the completion handler.
   1539 *
   1540 * The context field is normally used to link URBs back to the relevant
   1541 * driver or request state.
   1542 *
   1543 * When the completion callback is invoked for non-isochronous URBs, the
   1544 * actual_length field tells how many bytes were transferred.  This field
   1545 * is updated even when the URB terminated with an error or was unlinked.
   1546 *
   1547 * ISO transfer status is reported in the status and actual_length fields
   1548 * of the iso_frame_desc array, and the number of errors is reported in
   1549 * error_count.  Completion callbacks for ISO transfers will normally
   1550 * (re)submit URBs to ensure a constant transfer rate.
   1551 *
   1552 * Note that even fields marked "public" should not be touched by the driver
   1553 * when the urb is owned by the hcd, that is, since the call to
   1554 * usb_submit_urb() till the entry into the completion routine.
   1555 */
   1556struct urb {
   1557	/* private: usb core and host controller only fields in the urb */
   1558	struct kref kref;		/* reference count of the URB */
   1559	int unlinked;			/* unlink error code */
   1560	void *hcpriv;			/* private data for host controller */
   1561	atomic_t use_count;		/* concurrent submissions counter */
   1562	atomic_t reject;		/* submissions will fail */
   1563
   1564	/* public: documented fields in the urb that can be used by drivers */
   1565	struct list_head urb_list;	/* list head for use by the urb's
   1566					 * current owner */
   1567	struct list_head anchor_list;	/* the URB may be anchored */
   1568	struct usb_anchor *anchor;
   1569	struct usb_device *dev;		/* (in) pointer to associated device */
   1570	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
   1571	unsigned int pipe;		/* (in) pipe information */
   1572	unsigned int stream_id;		/* (in) stream ID */
   1573	int status;			/* (return) non-ISO status */
   1574	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
   1575	void *transfer_buffer;		/* (in) associated data buffer */
   1576	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
   1577	struct scatterlist *sg;		/* (in) scatter gather buffer list */
   1578	int num_mapped_sgs;		/* (internal) mapped sg entries */
   1579	int num_sgs;			/* (in) number of entries in the sg list */
   1580	u32 transfer_buffer_length;	/* (in) data buffer length */
   1581	u32 actual_length;		/* (return) actual transfer length */
   1582	unsigned char *setup_packet;	/* (in) setup packet (control only) */
   1583	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
   1584	int start_frame;		/* (modify) start frame (ISO) */
   1585	int number_of_packets;		/* (in) number of ISO packets */
   1586	int interval;			/* (modify) transfer interval
   1587					 * (INT/ISO) */
   1588	int error_count;		/* (return) number of ISO errors */
   1589	void *context;			/* (in) context for completion */
   1590	usb_complete_t complete;	/* (in) completion routine */
   1591	struct usb_iso_packet_descriptor iso_frame_desc[];
   1592					/* (in) ISO ONLY */
   1593};
   1594
   1595/* ----------------------------------------------------------------------- */
   1596
   1597/**
   1598 * usb_fill_control_urb - initializes a control urb
   1599 * @urb: pointer to the urb to initialize.
   1600 * @dev: pointer to the struct usb_device for this urb.
   1601 * @pipe: the endpoint pipe
   1602 * @setup_packet: pointer to the setup_packet buffer
   1603 * @transfer_buffer: pointer to the transfer buffer
   1604 * @buffer_length: length of the transfer buffer
   1605 * @complete_fn: pointer to the usb_complete_t function
   1606 * @context: what to set the urb context to.
   1607 *
   1608 * Initializes a control urb with the proper information needed to submit
   1609 * it to a device.
   1610 */
   1611static inline void usb_fill_control_urb(struct urb *urb,
   1612					struct usb_device *dev,
   1613					unsigned int pipe,
   1614					unsigned char *setup_packet,
   1615					void *transfer_buffer,
   1616					int buffer_length,
   1617					usb_complete_t complete_fn,
   1618					void *context)
   1619{
   1620	urb->dev = dev;
   1621	urb->pipe = pipe;
   1622	urb->setup_packet = setup_packet;
   1623	urb->transfer_buffer = transfer_buffer;
   1624	urb->transfer_buffer_length = buffer_length;
   1625	urb->complete = complete_fn;
   1626	urb->context = context;
   1627}
   1628
   1629/**
   1630 * usb_fill_bulk_urb - macro to help initialize a bulk urb
   1631 * @urb: pointer to the urb to initialize.
   1632 * @dev: pointer to the struct usb_device for this urb.
   1633 * @pipe: the endpoint pipe
   1634 * @transfer_buffer: pointer to the transfer buffer
   1635 * @buffer_length: length of the transfer buffer
   1636 * @complete_fn: pointer to the usb_complete_t function
   1637 * @context: what to set the urb context to.
   1638 *
   1639 * Initializes a bulk urb with the proper information needed to submit it
   1640 * to a device.
   1641 */
   1642static inline void usb_fill_bulk_urb(struct urb *urb,
   1643				     struct usb_device *dev,
   1644				     unsigned int pipe,
   1645				     void *transfer_buffer,
   1646				     int buffer_length,
   1647				     usb_complete_t complete_fn,
   1648				     void *context)
   1649{
   1650	urb->dev = dev;
   1651	urb->pipe = pipe;
   1652	urb->transfer_buffer = transfer_buffer;
   1653	urb->transfer_buffer_length = buffer_length;
   1654	urb->complete = complete_fn;
   1655	urb->context = context;
   1656}
   1657
   1658/**
   1659 * usb_fill_int_urb - macro to help initialize a interrupt urb
   1660 * @urb: pointer to the urb to initialize.
   1661 * @dev: pointer to the struct usb_device for this urb.
   1662 * @pipe: the endpoint pipe
   1663 * @transfer_buffer: pointer to the transfer buffer
   1664 * @buffer_length: length of the transfer buffer
   1665 * @complete_fn: pointer to the usb_complete_t function
   1666 * @context: what to set the urb context to.
   1667 * @interval: what to set the urb interval to, encoded like
   1668 *	the endpoint descriptor's bInterval value.
   1669 *
   1670 * Initializes a interrupt urb with the proper information needed to submit
   1671 * it to a device.
   1672 *
   1673 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
   1674 * encoding of the endpoint interval, and express polling intervals in
   1675 * microframes (eight per millisecond) rather than in frames (one per
   1676 * millisecond).
   1677 *
   1678 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
   1679 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
   1680 * through to the host controller, rather than being translated into microframe
   1681 * units.
   1682 */
   1683static inline void usb_fill_int_urb(struct urb *urb,
   1684				    struct usb_device *dev,
   1685				    unsigned int pipe,
   1686				    void *transfer_buffer,
   1687				    int buffer_length,
   1688				    usb_complete_t complete_fn,
   1689				    void *context,
   1690				    int interval)
   1691{
   1692	urb->dev = dev;
   1693	urb->pipe = pipe;
   1694	urb->transfer_buffer = transfer_buffer;
   1695	urb->transfer_buffer_length = buffer_length;
   1696	urb->complete = complete_fn;
   1697	urb->context = context;
   1698
   1699	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
   1700		/* make sure interval is within allowed range */
   1701		interval = clamp(interval, 1, 16);
   1702
   1703		urb->interval = 1 << (interval - 1);
   1704	} else {
   1705		urb->interval = interval;
   1706	}
   1707
   1708	urb->start_frame = -1;
   1709}
   1710
   1711extern void usb_init_urb(struct urb *urb);
   1712extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
   1713extern void usb_free_urb(struct urb *urb);
   1714#define usb_put_urb usb_free_urb
   1715extern struct urb *usb_get_urb(struct urb *urb);
   1716extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
   1717extern int usb_unlink_urb(struct urb *urb);
   1718extern void usb_kill_urb(struct urb *urb);
   1719extern void usb_poison_urb(struct urb *urb);
   1720extern void usb_unpoison_urb(struct urb *urb);
   1721extern void usb_block_urb(struct urb *urb);
   1722extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
   1723extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
   1724extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
   1725extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
   1726extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
   1727extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
   1728extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
   1729extern void usb_unanchor_urb(struct urb *urb);
   1730extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
   1731					 unsigned int timeout);
   1732extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
   1733extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
   1734extern int usb_anchor_empty(struct usb_anchor *anchor);
   1735
   1736#define usb_unblock_urb	usb_unpoison_urb
   1737
   1738/**
   1739 * usb_urb_dir_in - check if an URB describes an IN transfer
   1740 * @urb: URB to be checked
   1741 *
   1742 * Return: 1 if @urb describes an IN transfer (device-to-host),
   1743 * otherwise 0.
   1744 */
   1745static inline int usb_urb_dir_in(struct urb *urb)
   1746{
   1747	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
   1748}
   1749
   1750/**
   1751 * usb_urb_dir_out - check if an URB describes an OUT transfer
   1752 * @urb: URB to be checked
   1753 *
   1754 * Return: 1 if @urb describes an OUT transfer (host-to-device),
   1755 * otherwise 0.
   1756 */
   1757static inline int usb_urb_dir_out(struct urb *urb)
   1758{
   1759	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
   1760}
   1761
   1762int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
   1763int usb_urb_ep_type_check(const struct urb *urb);
   1764
   1765void *usb_alloc_coherent(struct usb_device *dev, size_t size,
   1766	gfp_t mem_flags, dma_addr_t *dma);
   1767void usb_free_coherent(struct usb_device *dev, size_t size,
   1768	void *addr, dma_addr_t dma);
   1769
   1770#if 0
   1771struct urb *usb_buffer_map(struct urb *urb);
   1772void usb_buffer_dmasync(struct urb *urb);
   1773void usb_buffer_unmap(struct urb *urb);
   1774#endif
   1775
   1776struct scatterlist;
   1777int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
   1778		      struct scatterlist *sg, int nents);
   1779#if 0
   1780void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
   1781			   struct scatterlist *sg, int n_hw_ents);
   1782#endif
   1783void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
   1784			 struct scatterlist *sg, int n_hw_ents);
   1785
   1786/*-------------------------------------------------------------------*
   1787 *                         SYNCHRONOUS CALL SUPPORT                  *
   1788 *-------------------------------------------------------------------*/
   1789
   1790extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
   1791	__u8 request, __u8 requesttype, __u16 value, __u16 index,
   1792	void *data, __u16 size, int timeout);
   1793extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
   1794	void *data, int len, int *actual_length, int timeout);
   1795extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
   1796	void *data, int len, int *actual_length,
   1797	int timeout);
   1798
   1799/* wrappers around usb_control_msg() for the most common standard requests */
   1800int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
   1801			 __u8 requesttype, __u16 value, __u16 index,
   1802			 const void *data, __u16 size, int timeout,
   1803			 gfp_t memflags);
   1804int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
   1805			 __u8 requesttype, __u16 value, __u16 index,
   1806			 void *data, __u16 size, int timeout,
   1807			 gfp_t memflags);
   1808extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
   1809	unsigned char descindex, void *buf, int size);
   1810extern int usb_get_status(struct usb_device *dev,
   1811	int recip, int type, int target, void *data);
   1812
   1813static inline int usb_get_std_status(struct usb_device *dev,
   1814	int recip, int target, void *data)
   1815{
   1816	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
   1817		data);
   1818}
   1819
   1820static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
   1821{
   1822	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
   1823		0, data);
   1824}
   1825
   1826extern int usb_string(struct usb_device *dev, int index,
   1827	char *buf, size_t size);
   1828
   1829/* wrappers that also update important state inside usbcore */
   1830extern int usb_clear_halt(struct usb_device *dev, int pipe);
   1831extern int usb_reset_configuration(struct usb_device *dev);
   1832extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
   1833extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
   1834
   1835/* this request isn't really synchronous, but it belongs with the others */
   1836extern int usb_driver_set_configuration(struct usb_device *udev, int config);
   1837
   1838/* choose and set configuration for device */
   1839extern int usb_choose_configuration(struct usb_device *udev);
   1840extern int usb_set_configuration(struct usb_device *dev, int configuration);
   1841
   1842/*
   1843 * timeouts, in milliseconds, used for sending/receiving control messages
   1844 * they typically complete within a few frames (msec) after they're issued
   1845 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
   1846 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
   1847 */
   1848#define USB_CTRL_GET_TIMEOUT	5000
   1849#define USB_CTRL_SET_TIMEOUT	5000
   1850
   1851
   1852/**
   1853 * struct usb_sg_request - support for scatter/gather I/O
   1854 * @status: zero indicates success, else negative errno
   1855 * @bytes: counts bytes transferred.
   1856 *
   1857 * These requests are initialized using usb_sg_init(), and then are used
   1858 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
   1859 * members of the request object aren't for driver access.
   1860 *
   1861 * The status and bytecount values are valid only after usb_sg_wait()
   1862 * returns.  If the status is zero, then the bytecount matches the total
   1863 * from the request.
   1864 *
   1865 * After an error completion, drivers may need to clear a halt condition
   1866 * on the endpoint.
   1867 */
   1868struct usb_sg_request {
   1869	int			status;
   1870	size_t			bytes;
   1871
   1872	/* private:
   1873	 * members below are private to usbcore,
   1874	 * and are not provided for driver access!
   1875	 */
   1876	spinlock_t		lock;
   1877
   1878	struct usb_device	*dev;
   1879	int			pipe;
   1880
   1881	int			entries;
   1882	struct urb		**urbs;
   1883
   1884	int			count;
   1885	struct completion	complete;
   1886};
   1887
   1888int usb_sg_init(
   1889	struct usb_sg_request	*io,
   1890	struct usb_device	*dev,
   1891	unsigned		pipe,
   1892	unsigned		period,
   1893	struct scatterlist	*sg,
   1894	int			nents,
   1895	size_t			length,
   1896	gfp_t			mem_flags
   1897);
   1898void usb_sg_cancel(struct usb_sg_request *io);
   1899void usb_sg_wait(struct usb_sg_request *io);
   1900
   1901
   1902/* ----------------------------------------------------------------------- */
   1903
   1904/*
   1905 * For various legacy reasons, Linux has a small cookie that's paired with
   1906 * a struct usb_device to identify an endpoint queue.  Queue characteristics
   1907 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
   1908 * an unsigned int encoded as:
   1909 *
   1910 *  - direction:	bit 7		(0 = Host-to-Device [Out],
   1911 *					 1 = Device-to-Host [In] ...
   1912 *					like endpoint bEndpointAddress)
   1913 *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
   1914 *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
   1915 *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
   1916 *					 10 = control, 11 = bulk)
   1917 *
   1918 * Given the device address and endpoint descriptor, pipes are redundant.
   1919 */
   1920
   1921/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
   1922/* (yet ... they're the values used by usbfs) */
   1923#define PIPE_ISOCHRONOUS		0
   1924#define PIPE_INTERRUPT			1
   1925#define PIPE_CONTROL			2
   1926#define PIPE_BULK			3
   1927
   1928#define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
   1929#define usb_pipeout(pipe)	(!usb_pipein(pipe))
   1930
   1931#define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
   1932#define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
   1933
   1934#define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
   1935#define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
   1936#define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
   1937#define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
   1938#define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
   1939
   1940static inline unsigned int __create_pipe(struct usb_device *dev,
   1941		unsigned int endpoint)
   1942{
   1943	return (dev->devnum << 8) | (endpoint << 15);
   1944}
   1945
   1946/* Create various pipes... */
   1947#define usb_sndctrlpipe(dev, endpoint)	\
   1948	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
   1949#define usb_rcvctrlpipe(dev, endpoint)	\
   1950	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
   1951#define usb_sndisocpipe(dev, endpoint)	\
   1952	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
   1953#define usb_rcvisocpipe(dev, endpoint)	\
   1954	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
   1955#define usb_sndbulkpipe(dev, endpoint)	\
   1956	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
   1957#define usb_rcvbulkpipe(dev, endpoint)	\
   1958	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
   1959#define usb_sndintpipe(dev, endpoint)	\
   1960	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
   1961#define usb_rcvintpipe(dev, endpoint)	\
   1962	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
   1963
   1964static inline struct usb_host_endpoint *
   1965usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
   1966{
   1967	struct usb_host_endpoint **eps;
   1968	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
   1969	return eps[usb_pipeendpoint(pipe)];
   1970}
   1971
   1972static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
   1973{
   1974	struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
   1975
   1976	if (!ep)
   1977		return 0;
   1978
   1979	/* NOTE:  only 0x07ff bits are for packet size... */
   1980	return usb_endpoint_maxp(&ep->desc);
   1981}
   1982
   1983/* translate USB error codes to codes user space understands */
   1984static inline int usb_translate_errors(int error_code)
   1985{
   1986	switch (error_code) {
   1987	case 0:
   1988	case -ENOMEM:
   1989	case -ENODEV:
   1990	case -EOPNOTSUPP:
   1991		return error_code;
   1992	default:
   1993		return -EIO;
   1994	}
   1995}
   1996
   1997/* Events from the usb core */
   1998#define USB_DEVICE_ADD		0x0001
   1999#define USB_DEVICE_REMOVE	0x0002
   2000#define USB_BUS_ADD		0x0003
   2001#define USB_BUS_REMOVE		0x0004
   2002extern void usb_register_notify(struct notifier_block *nb);
   2003extern void usb_unregister_notify(struct notifier_block *nb);
   2004
   2005/* debugfs stuff */
   2006extern struct dentry *usb_debug_root;
   2007
   2008/* LED triggers */
   2009enum usb_led_event {
   2010	USB_LED_EVENT_HOST = 0,
   2011	USB_LED_EVENT_GADGET = 1,
   2012};
   2013
   2014#ifdef CONFIG_USB_LED_TRIG
   2015extern void usb_led_activity(enum usb_led_event ev);
   2016#else
   2017static inline void usb_led_activity(enum usb_led_event ev) {}
   2018#endif
   2019
   2020#endif  /* __KERNEL__ */
   2021
   2022#endif