cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vmw_vmci_defs.h (30751B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * VMware VMCI Driver
      4 *
      5 * Copyright (C) 2012 VMware, Inc. All rights reserved.
      6 */
      7
      8#ifndef _VMW_VMCI_DEF_H_
      9#define _VMW_VMCI_DEF_H_
     10
     11#include <linux/atomic.h>
     12#include <linux/bits.h>
     13
     14/* Register offsets. */
     15#define VMCI_STATUS_ADDR        0x00
     16#define VMCI_CONTROL_ADDR       0x04
     17#define VMCI_ICR_ADDR           0x08
     18#define VMCI_IMR_ADDR           0x0c
     19#define VMCI_DATA_OUT_ADDR      0x10
     20#define VMCI_DATA_IN_ADDR       0x14
     21#define VMCI_CAPS_ADDR          0x18
     22#define VMCI_RESULT_LOW_ADDR    0x1c
     23#define VMCI_RESULT_HIGH_ADDR   0x20
     24#define VMCI_DATA_OUT_LOW_ADDR  0x24
     25#define VMCI_DATA_OUT_HIGH_ADDR 0x28
     26#define VMCI_DATA_IN_LOW_ADDR   0x2c
     27#define VMCI_DATA_IN_HIGH_ADDR  0x30
     28#define VMCI_GUEST_PAGE_SHIFT   0x34
     29
     30/* Max number of devices. */
     31#define VMCI_MAX_DEVICES 1
     32
     33/* Status register bits. */
     34#define VMCI_STATUS_INT_ON     BIT(0)
     35
     36/* Control register bits. */
     37#define VMCI_CONTROL_RESET        BIT(0)
     38#define VMCI_CONTROL_INT_ENABLE   BIT(1)
     39#define VMCI_CONTROL_INT_DISABLE  BIT(2)
     40
     41/* Capabilities register bits. */
     42#define VMCI_CAPS_HYPERCALL     BIT(0)
     43#define VMCI_CAPS_GUESTCALL     BIT(1)
     44#define VMCI_CAPS_DATAGRAM      BIT(2)
     45#define VMCI_CAPS_NOTIFICATIONS BIT(3)
     46#define VMCI_CAPS_PPN64         BIT(4)
     47#define VMCI_CAPS_DMA_DATAGRAM  BIT(5)
     48
     49/* Interrupt Cause register bits. */
     50#define VMCI_ICR_DATAGRAM      BIT(0)
     51#define VMCI_ICR_NOTIFICATION  BIT(1)
     52#define VMCI_ICR_DMA_DATAGRAM  BIT(2)
     53
     54/* Interrupt Mask register bits. */
     55#define VMCI_IMR_DATAGRAM      BIT(0)
     56#define VMCI_IMR_NOTIFICATION  BIT(1)
     57#define VMCI_IMR_DMA_DATAGRAM  BIT(2)
     58
     59/*
     60 * Maximum MSI/MSI-X interrupt vectors in the device.
     61 * If VMCI_CAPS_DMA_DATAGRAM is supported by the device,
     62 * VMCI_MAX_INTRS_DMA_DATAGRAM vectors are available,
     63 * otherwise only VMCI_MAX_INTRS_NOTIFICATION.
     64 */
     65#define VMCI_MAX_INTRS_NOTIFICATION 2
     66#define VMCI_MAX_INTRS_DMA_DATAGRAM 3
     67#define VMCI_MAX_INTRS              VMCI_MAX_INTRS_DMA_DATAGRAM
     68
     69/*
     70 * Supported interrupt vectors.  There is one for each ICR value above,
     71 * but here they indicate the position in the vector array/message ID.
     72 */
     73enum {
     74	VMCI_INTR_DATAGRAM = 0,
     75	VMCI_INTR_NOTIFICATION = 1,
     76	VMCI_INTR_DMA_DATAGRAM = 2,
     77};
     78
     79/*
     80 * A single VMCI device has an upper limit of 128MB on the amount of
     81 * memory that can be used for queue pairs. Since each queue pair
     82 * consists of at least two pages, the memory limit also dictates the
     83 * number of queue pairs a guest can create.
     84 */
     85#define VMCI_MAX_GUEST_QP_MEMORY ((size_t)(128 * 1024 * 1024))
     86#define VMCI_MAX_GUEST_QP_COUNT  (VMCI_MAX_GUEST_QP_MEMORY / PAGE_SIZE / 2)
     87
     88/*
     89 * There can be at most PAGE_SIZE doorbells since there is one doorbell
     90 * per byte in the doorbell bitmap page.
     91 */
     92#define VMCI_MAX_GUEST_DOORBELL_COUNT PAGE_SIZE
     93
     94/*
     95 * Queues with pre-mapped data pages must be small, so that we don't pin
     96 * too much kernel memory (especially on vmkernel).  We limit a queuepair to
     97 * 32 KB, or 16 KB per queue for symmetrical pairs.
     98 */
     99#define VMCI_MAX_PINNED_QP_MEMORY ((size_t)(32 * 1024))
    100
    101/*
    102 * The version of the VMCI device that supports MMIO access to registers
    103 * requests 256KB for BAR1 whereas the version of VMCI that supports
    104 * MSI/MSI-X only requests 8KB. The layout of the larger 256KB region is:
    105 * - the first 128KB are used for MSI/MSI-X.
    106 * - the following 64KB are used for MMIO register access.
    107 * - the remaining 64KB are unused.
    108 */
    109#define VMCI_WITH_MMIO_ACCESS_BAR_SIZE ((size_t)(256 * 1024))
    110#define VMCI_MMIO_ACCESS_OFFSET        ((size_t)(128 * 1024))
    111#define VMCI_MMIO_ACCESS_SIZE          ((size_t)(64 * 1024))
    112
    113/*
    114 * For VMCI devices supporting the VMCI_CAPS_DMA_DATAGRAM capability, the
    115 * sending and receiving of datagrams can be performed using DMA to/from
    116 * a driver allocated buffer.
    117 * Sending and receiving will be handled as follows:
    118 * - when sending datagrams, the driver initializes the buffer where the
    119 *   data part will refer to the outgoing VMCI datagram, sets the busy flag
    120 *   to 1 and writes the address of the buffer to VMCI_DATA_OUT_HIGH_ADDR
    121 *   and VMCI_DATA_OUT_LOW_ADDR. Writing to VMCI_DATA_OUT_LOW_ADDR triggers
    122 *   the device processing of the buffer. When the device has processed the
    123 *   buffer, it will write the result value to the buffer and then clear the
    124 *   busy flag.
    125 * - when receiving datagrams, the driver initializes the buffer where the
    126 *   data part will describe the receive buffer, clears the busy flag and
    127 *   writes the address of the buffer to VMCI_DATA_IN_HIGH_ADDR and
    128 *   VMCI_DATA_IN_LOW_ADDR. Writing to VMCI_DATA_IN_LOW_ADDR triggers the
    129 *   device processing of the buffer. The device will copy as many available
    130 *   datagrams into the buffer as possible, and then sets the busy flag.
    131 *   When the busy flag is set, the driver will process the datagrams in the
    132 *   buffer.
    133 */
    134struct vmci_data_in_out_header {
    135	uint32_t busy;
    136	uint32_t opcode;
    137	uint32_t size;
    138	uint32_t rsvd;
    139	uint64_t result;
    140};
    141
    142struct vmci_sg_elem {
    143	uint64_t addr;
    144	uint64_t size;
    145};
    146
    147/*
    148 * We have a fixed set of resource IDs available in the VMX.
    149 * This allows us to have a very simple implementation since we statically
    150 * know how many will create datagram handles. If a new caller arrives and
    151 * we have run out of slots we can manually increment the maximum size of
    152 * available resource IDs.
    153 *
    154 * VMCI reserved hypervisor datagram resource IDs.
    155 */
    156enum {
    157	VMCI_RESOURCES_QUERY = 0,
    158	VMCI_GET_CONTEXT_ID = 1,
    159	VMCI_SET_NOTIFY_BITMAP = 2,
    160	VMCI_DOORBELL_LINK = 3,
    161	VMCI_DOORBELL_UNLINK = 4,
    162	VMCI_DOORBELL_NOTIFY = 5,
    163	/*
    164	 * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are
    165	 * obsoleted by the removal of VM to VM communication.
    166	 */
    167	VMCI_DATAGRAM_REQUEST_MAP = 6,
    168	VMCI_DATAGRAM_REMOVE_MAP = 7,
    169	VMCI_EVENT_SUBSCRIBE = 8,
    170	VMCI_EVENT_UNSUBSCRIBE = 9,
    171	VMCI_QUEUEPAIR_ALLOC = 10,
    172	VMCI_QUEUEPAIR_DETACH = 11,
    173
    174	/*
    175	 * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1,
    176	 * WS 7.0/7.1 and ESX 4.1
    177	 */
    178	VMCI_HGFS_TRANSPORT = 13,
    179	VMCI_UNITY_PBRPC_REGISTER = 14,
    180	VMCI_RPC_PRIVILEGED = 15,
    181	VMCI_RPC_UNPRIVILEGED = 16,
    182	VMCI_RESOURCE_MAX = 17,
    183};
    184
    185/*
    186 * struct vmci_handle - Ownership information structure
    187 * @context:    The VMX context ID.
    188 * @resource:   The resource ID (used for locating in resource hash).
    189 *
    190 * The vmci_handle structure is used to track resources used within
    191 * vmw_vmci.
    192 */
    193struct vmci_handle {
    194	u32 context;
    195	u32 resource;
    196};
    197
    198#define vmci_make_handle(_cid, _rid) \
    199	(struct vmci_handle){ .context = _cid, .resource = _rid }
    200
    201static inline bool vmci_handle_is_equal(struct vmci_handle h1,
    202					struct vmci_handle h2)
    203{
    204	return h1.context == h2.context && h1.resource == h2.resource;
    205}
    206
    207#define VMCI_INVALID_ID ~0
    208static const struct vmci_handle VMCI_INVALID_HANDLE = {
    209	.context = VMCI_INVALID_ID,
    210	.resource = VMCI_INVALID_ID
    211};
    212
    213static inline bool vmci_handle_is_invalid(struct vmci_handle h)
    214{
    215	return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE);
    216}
    217
    218/*
    219 * The below defines can be used to send anonymous requests.
    220 * This also indicates that no response is expected.
    221 */
    222#define VMCI_ANON_SRC_CONTEXT_ID   VMCI_INVALID_ID
    223#define VMCI_ANON_SRC_RESOURCE_ID  VMCI_INVALID_ID
    224static const struct vmci_handle __maybe_unused VMCI_ANON_SRC_HANDLE = {
    225	.context = VMCI_ANON_SRC_CONTEXT_ID,
    226	.resource = VMCI_ANON_SRC_RESOURCE_ID
    227};
    228
    229/* The lowest 16 context ids are reserved for internal use. */
    230#define VMCI_RESERVED_CID_LIMIT ((u32) 16)
    231
    232/*
    233 * Hypervisor context id, used for calling into hypervisor
    234 * supplied services from the VM.
    235 */
    236#define VMCI_HYPERVISOR_CONTEXT_ID 0
    237
    238/*
    239 * Well-known context id, a logical context that contains a set of
    240 * well-known services. This context ID is now obsolete.
    241 */
    242#define VMCI_WELL_KNOWN_CONTEXT_ID 1
    243
    244/*
    245 * Context ID used by host endpoints.
    246 */
    247#define VMCI_HOST_CONTEXT_ID  2
    248
    249#define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) &&		\
    250				  (_cid) > VMCI_HOST_CONTEXT_ID)
    251
    252/*
    253 * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make
    254 * handles that refer to a specific context.
    255 */
    256#define VMCI_CONTEXT_RESOURCE_ID 0
    257
    258/*
    259 * VMCI error codes.
    260 */
    261enum {
    262	VMCI_SUCCESS_QUEUEPAIR_ATTACH	= 5,
    263	VMCI_SUCCESS_QUEUEPAIR_CREATE	= 4,
    264	VMCI_SUCCESS_LAST_DETACH	= 3,
    265	VMCI_SUCCESS_ACCESS_GRANTED	= 2,
    266	VMCI_SUCCESS_ENTRY_DEAD		= 1,
    267	VMCI_SUCCESS			 = 0,
    268	VMCI_ERROR_INVALID_RESOURCE	 = (-1),
    269	VMCI_ERROR_INVALID_ARGS		 = (-2),
    270	VMCI_ERROR_NO_MEM		 = (-3),
    271	VMCI_ERROR_DATAGRAM_FAILED	 = (-4),
    272	VMCI_ERROR_MORE_DATA		 = (-5),
    273	VMCI_ERROR_NO_MORE_DATAGRAMS	 = (-6),
    274	VMCI_ERROR_NO_ACCESS		 = (-7),
    275	VMCI_ERROR_NO_HANDLE		 = (-8),
    276	VMCI_ERROR_DUPLICATE_ENTRY	 = (-9),
    277	VMCI_ERROR_DST_UNREACHABLE	 = (-10),
    278	VMCI_ERROR_PAYLOAD_TOO_LARGE	 = (-11),
    279	VMCI_ERROR_INVALID_PRIV		 = (-12),
    280	VMCI_ERROR_GENERIC		 = (-13),
    281	VMCI_ERROR_PAGE_ALREADY_SHARED	 = (-14),
    282	VMCI_ERROR_CANNOT_SHARE_PAGE	 = (-15),
    283	VMCI_ERROR_CANNOT_UNSHARE_PAGE	 = (-16),
    284	VMCI_ERROR_NO_PROCESS		 = (-17),
    285	VMCI_ERROR_NO_DATAGRAM		 = (-18),
    286	VMCI_ERROR_NO_RESOURCES		 = (-19),
    287	VMCI_ERROR_UNAVAILABLE		 = (-20),
    288	VMCI_ERROR_NOT_FOUND		 = (-21),
    289	VMCI_ERROR_ALREADY_EXISTS	 = (-22),
    290	VMCI_ERROR_NOT_PAGE_ALIGNED	 = (-23),
    291	VMCI_ERROR_INVALID_SIZE		 = (-24),
    292	VMCI_ERROR_REGION_ALREADY_SHARED = (-25),
    293	VMCI_ERROR_TIMEOUT		 = (-26),
    294	VMCI_ERROR_DATAGRAM_INCOMPLETE	 = (-27),
    295	VMCI_ERROR_INCORRECT_IRQL	 = (-28),
    296	VMCI_ERROR_EVENT_UNKNOWN	 = (-29),
    297	VMCI_ERROR_OBSOLETE		 = (-30),
    298	VMCI_ERROR_QUEUEPAIR_MISMATCH	 = (-31),
    299	VMCI_ERROR_QUEUEPAIR_NOTSET	 = (-32),
    300	VMCI_ERROR_QUEUEPAIR_NOTOWNER	 = (-33),
    301	VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34),
    302	VMCI_ERROR_QUEUEPAIR_NOSPACE	 = (-35),
    303	VMCI_ERROR_QUEUEPAIR_NODATA	 = (-36),
    304	VMCI_ERROR_BUSMEM_INVALIDATION	 = (-37),
    305	VMCI_ERROR_MODULE_NOT_LOADED	 = (-38),
    306	VMCI_ERROR_DEVICE_NOT_FOUND	 = (-39),
    307	VMCI_ERROR_QUEUEPAIR_NOT_READY	 = (-40),
    308	VMCI_ERROR_WOULD_BLOCK		 = (-41),
    309
    310	/* VMCI clients should return error code within this range */
    311	VMCI_ERROR_CLIENT_MIN		 = (-500),
    312	VMCI_ERROR_CLIENT_MAX		 = (-550),
    313
    314	/* Internal error codes. */
    315	VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000),
    316};
    317
    318/* VMCI reserved events. */
    319enum {
    320	/* Only applicable to guest endpoints */
    321	VMCI_EVENT_CTX_ID_UPDATE  = 0,
    322
    323	/* Applicable to guest and host */
    324	VMCI_EVENT_CTX_REMOVED	  = 1,
    325
    326	/* Only applicable to guest endpoints */
    327	VMCI_EVENT_QP_RESUMED	  = 2,
    328
    329	/* Applicable to guest and host */
    330	VMCI_EVENT_QP_PEER_ATTACH = 3,
    331
    332	/* Applicable to guest and host */
    333	VMCI_EVENT_QP_PEER_DETACH = 4,
    334
    335	/*
    336	 * Applicable to VMX and vmk.  On vmk,
    337	 * this event has the Context payload type.
    338	 */
    339	VMCI_EVENT_MEM_ACCESS_ON  = 5,
    340
    341	/*
    342	 * Applicable to VMX and vmk.  Same as
    343	 * above for the payload type.
    344	 */
    345	VMCI_EVENT_MEM_ACCESS_OFF = 6,
    346	VMCI_EVENT_MAX		  = 7,
    347};
    348
    349/*
    350 * Of the above events, a few are reserved for use in the VMX, and
    351 * other endpoints (guest and host kernel) should not use them. For
    352 * the rest of the events, we allow both host and guest endpoints to
    353 * subscribe to them, to maintain the same API for host and guest
    354 * endpoints.
    355 */
    356#define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \
    357				      (_event) == VMCI_EVENT_MEM_ACCESS_OFF)
    358
    359#define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX &&		\
    360				  !VMCI_EVENT_VALID_VMX(_event))
    361
    362/* Reserved guest datagram resource ids. */
    363#define VMCI_EVENT_HANDLER 0
    364
    365/*
    366 * VMCI coarse-grained privileges (per context or host
    367 * process/endpoint. An entity with the restricted flag is only
    368 * allowed to interact with the hypervisor and trusted entities.
    369 */
    370enum {
    371	VMCI_NO_PRIVILEGE_FLAGS = 0,
    372	VMCI_PRIVILEGE_FLAG_RESTRICTED = 1,
    373	VMCI_PRIVILEGE_FLAG_TRUSTED = 2,
    374	VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED |
    375				    VMCI_PRIVILEGE_FLAG_TRUSTED),
    376	VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS,
    377	VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED,
    378	VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED,
    379};
    380
    381/* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */
    382#define VMCI_RESERVED_RESOURCE_ID_MAX 1023
    383
    384/*
    385 * Driver version.
    386 *
    387 * Increment major version when you make an incompatible change.
    388 * Compatibility goes both ways (old driver with new executable
    389 * as well as new driver with old executable).
    390 */
    391
    392/* Never change VMCI_VERSION_SHIFT_WIDTH */
    393#define VMCI_VERSION_SHIFT_WIDTH 16
    394#define VMCI_MAKE_VERSION(_major, _minor)			\
    395	((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor))
    396
    397#define VMCI_VERSION_MAJOR(v)  ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH)
    398#define VMCI_VERSION_MINOR(v)  ((u16) (v))
    399
    400/*
    401 * VMCI_VERSION is always the current version.  Subsequently listed
    402 * versions are ways of detecting previous versions of the connecting
    403 * application (i.e., VMX).
    404 *
    405 * VMCI_VERSION_NOVMVM: This version removed support for VM to VM
    406 * communication.
    407 *
    408 * VMCI_VERSION_NOTIFY: This version introduced doorbell notification
    409 * support.
    410 *
    411 * VMCI_VERSION_HOSTQP: This version introduced host end point support
    412 * for hosted products.
    413 *
    414 * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of
    415 * support for host end-points.
    416 *
    417 * VMCI_VERSION_PREVERS2: This fictional version number is intended to
    418 * represent the version of a VMX which doesn't call into the driver
    419 * with ioctl VERSION2 and thus doesn't establish its version with the
    420 * driver.
    421 */
    422
    423#define VMCI_VERSION                VMCI_VERSION_NOVMVM
    424#define VMCI_VERSION_NOVMVM         VMCI_MAKE_VERSION(11, 0)
    425#define VMCI_VERSION_NOTIFY         VMCI_MAKE_VERSION(10, 0)
    426#define VMCI_VERSION_HOSTQP         VMCI_MAKE_VERSION(9, 0)
    427#define VMCI_VERSION_PREHOSTQP      VMCI_MAKE_VERSION(8, 0)
    428#define VMCI_VERSION_PREVERS2       VMCI_MAKE_VERSION(1, 0)
    429
    430#define VMCI_SOCKETS_MAKE_VERSION(_p)					\
    431	((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2]))
    432
    433/*
    434 * The VMCI IOCTLs.  We use identity code 7, as noted in ioctl-number.h, and
    435 * we start at sequence 9f.  This gives us the same values that our shipping
    436 * products use, starting at 1951, provided we leave out the direction and
    437 * structure size.  Note that VMMon occupies the block following us, starting
    438 * at 2001.
    439 */
    440#define IOCTL_VMCI_VERSION			_IO(7, 0x9f)	/* 1951 */
    441#define IOCTL_VMCI_INIT_CONTEXT			_IO(7, 0xa0)
    442#define IOCTL_VMCI_QUEUEPAIR_SETVA		_IO(7, 0xa4)
    443#define IOCTL_VMCI_NOTIFY_RESOURCE		_IO(7, 0xa5)
    444#define IOCTL_VMCI_NOTIFICATIONS_RECEIVE	_IO(7, 0xa6)
    445#define IOCTL_VMCI_VERSION2			_IO(7, 0xa7)
    446#define IOCTL_VMCI_QUEUEPAIR_ALLOC		_IO(7, 0xa8)
    447#define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE	_IO(7, 0xa9)
    448#define IOCTL_VMCI_QUEUEPAIR_DETACH		_IO(7, 0xaa)
    449#define IOCTL_VMCI_DATAGRAM_SEND		_IO(7, 0xab)
    450#define IOCTL_VMCI_DATAGRAM_RECEIVE		_IO(7, 0xac)
    451#define IOCTL_VMCI_CTX_ADD_NOTIFICATION		_IO(7, 0xaf)
    452#define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION	_IO(7, 0xb0)
    453#define IOCTL_VMCI_CTX_GET_CPT_STATE		_IO(7, 0xb1)
    454#define IOCTL_VMCI_CTX_SET_CPT_STATE		_IO(7, 0xb2)
    455#define IOCTL_VMCI_GET_CONTEXT_ID		_IO(7, 0xb3)
    456#define IOCTL_VMCI_SOCKETS_VERSION		_IO(7, 0xb4)
    457#define IOCTL_VMCI_SOCKETS_GET_AF_VALUE		_IO(7, 0xb8)
    458#define IOCTL_VMCI_SOCKETS_GET_LOCAL_CID	_IO(7, 0xb9)
    459#define IOCTL_VMCI_SET_NOTIFY			_IO(7, 0xcb)	/* 1995 */
    460/*IOCTL_VMMON_START				_IO(7, 0xd1)*/	/* 2001 */
    461
    462/*
    463 * struct vmci_queue_header - VMCI Queue Header information.
    464 *
    465 * A Queue cannot stand by itself as designed.  Each Queue's header
    466 * contains a pointer into itself (the producer_tail) and into its peer
    467 * (consumer_head).  The reason for the separation is one of
    468 * accessibility: Each end-point can modify two things: where the next
    469 * location to enqueue is within its produce_q (producer_tail); and
    470 * where the next dequeue location is in its consume_q (consumer_head).
    471 *
    472 * An end-point cannot modify the pointers of its peer (guest to
    473 * guest; NOTE that in the host both queue headers are mapped r/w).
    474 * But, each end-point needs read access to both Queue header
    475 * structures in order to determine how much space is used (or left)
    476 * in the Queue.  This is because for an end-point to know how full
    477 * its produce_q is, it needs to use the consumer_head that points into
    478 * the produce_q but -that- consumer_head is in the Queue header for
    479 * that end-points consume_q.
    480 *
    481 * Thoroughly confused?  Sorry.
    482 *
    483 * producer_tail: the point to enqueue new entrants.  When you approach
    484 * a line in a store, for example, you walk up to the tail.
    485 *
    486 * consumer_head: the point in the queue from which the next element is
    487 * dequeued.  In other words, who is next in line is he who is at the
    488 * head of the line.
    489 *
    490 * Also, producer_tail points to an empty byte in the Queue, whereas
    491 * consumer_head points to a valid byte of data (unless producer_tail ==
    492 * consumer_head in which case consumer_head does not point to a valid
    493 * byte of data).
    494 *
    495 * For a queue of buffer 'size' bytes, the tail and head pointers will be in
    496 * the range [0, size-1].
    497 *
    498 * If produce_q_header->producer_tail == consume_q_header->consumer_head
    499 * then the produce_q is empty.
    500 */
    501struct vmci_queue_header {
    502	/* All fields are 64bit and aligned. */
    503	struct vmci_handle handle;	/* Identifier. */
    504	u64 producer_tail;	/* Offset in this queue. */
    505	u64 consumer_head;	/* Offset in peer queue. */
    506};
    507
    508/*
    509 * struct vmci_datagram - Base struct for vmci datagrams.
    510 * @dst:        A vmci_handle that tracks the destination of the datagram.
    511 * @src:        A vmci_handle that tracks the source of the datagram.
    512 * @payload_size:       The size of the payload.
    513 *
    514 * vmci_datagram structs are used when sending vmci datagrams.  They include
    515 * the necessary source and destination information to properly route
    516 * the information along with the size of the package.
    517 */
    518struct vmci_datagram {
    519	struct vmci_handle dst;
    520	struct vmci_handle src;
    521	u64 payload_size;
    522};
    523
    524/*
    525 * Second flag is for creating a well-known handle instead of a per context
    526 * handle.  Next flag is for deferring datagram delivery, so that the
    527 * datagram callback is invoked in a delayed context (not interrupt context).
    528 */
    529#define VMCI_FLAG_DG_NONE          0
    530#define VMCI_FLAG_WELLKNOWN_DG_HND BIT(0)
    531#define VMCI_FLAG_ANYCID_DG_HND    BIT(1)
    532#define VMCI_FLAG_DG_DELAYED_CB    BIT(2)
    533
    534/*
    535 * Maximum supported size of a VMCI datagram for routable datagrams.
    536 * Datagrams going to the hypervisor are allowed to be larger.
    537 */
    538#define VMCI_MAX_DG_SIZE (17 * 4096)
    539#define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \
    540				  sizeof(struct vmci_datagram))
    541#define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) +			\
    542				      sizeof(struct vmci_datagram))
    543#define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram)
    544#define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
    545#define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7)))
    546#define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2)
    547
    548struct vmci_event_payload_qp {
    549	struct vmci_handle handle;  /* queue_pair handle. */
    550	u32 peer_id;		    /* Context id of attaching/detaching VM. */
    551	u32 _pad;
    552};
    553
    554/* Flags for VMCI queue_pair API. */
    555enum {
    556	/* Fail alloc if QP not created by peer. */
    557	VMCI_QPFLAG_ATTACH_ONLY = 1 << 0,
    558
    559	/* Only allow attaches from local context. */
    560	VMCI_QPFLAG_LOCAL = 1 << 1,
    561
    562	/* Host won't block when guest is quiesced. */
    563	VMCI_QPFLAG_NONBLOCK = 1 << 2,
    564
    565	/* Pin data pages in ESX.  Used with NONBLOCK */
    566	VMCI_QPFLAG_PINNED = 1 << 3,
    567
    568	/* Update the following flag when adding new flags. */
    569	VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL |
    570			     VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
    571
    572	/* Convenience flags */
    573	VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
    574	VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM),
    575};
    576
    577/*
    578 * We allow at least 1024 more event datagrams from the hypervisor past the
    579 * normally allowed datagrams pending for a given context.  We define this
    580 * limit on event datagrams from the hypervisor to guard against DoS attack
    581 * from a malicious VM which could repeatedly attach to and detach from a queue
    582 * pair, causing events to be queued at the destination VM.  However, the rate
    583 * at which such events can be generated is small since it requires a VM exit
    584 * and handling of queue pair attach/detach call at the hypervisor.  Event
    585 * datagrams may be queued up at the destination VM if it has interrupts
    586 * disabled or if it is not draining events for some other reason.  1024
    587 * datagrams is a grossly conservative estimate of the time for which
    588 * interrupts may be disabled in the destination VM, but at the same time does
    589 * not exacerbate the memory pressure problem on the host by much (size of each
    590 * event datagram is small).
    591 */
    592#define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE				\
    593	(VMCI_MAX_DATAGRAM_QUEUE_SIZE +					\
    594	 1024 * (sizeof(struct vmci_datagram) +				\
    595		 sizeof(struct vmci_event_data_max)))
    596
    597/*
    598 * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of
    599 * hypervisor resources.  Struct size is 16 bytes. All fields in struct are
    600 * aligned to their natural alignment.
    601 */
    602struct vmci_resource_query_hdr {
    603	struct vmci_datagram hdr;
    604	u32 num_resources;
    605	u32 _padding;
    606};
    607
    608/*
    609 * Convenience struct for negotiating vectors. Must match layout of
    610 * VMCIResourceQueryHdr minus the struct vmci_datagram header.
    611 */
    612struct vmci_resource_query_msg {
    613	u32 num_resources;
    614	u32 _padding;
    615	u32 resources[1];
    616};
    617
    618/*
    619 * The maximum number of resources that can be queried using
    620 * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31
    621 * bits of a positive return value. Negative values are reserved for
    622 * errors.
    623 */
    624#define VMCI_RESOURCE_QUERY_MAX_NUM 31
    625
    626/* Maximum size for the VMCI_RESOURCE_QUERY request. */
    627#define VMCI_RESOURCE_QUERY_MAX_SIZE				\
    628	(sizeof(struct vmci_resource_query_hdr) +		\
    629	 sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM)
    630
    631/*
    632 * Struct used for setting the notification bitmap.  All fields in
    633 * struct are aligned to their natural alignment.
    634 */
    635struct vmci_notify_bm_set_msg {
    636	struct vmci_datagram hdr;
    637	union {
    638		u32 bitmap_ppn32;
    639		u64 bitmap_ppn64;
    640	};
    641};
    642
    643/*
    644 * Struct used for linking a doorbell handle with an index in the
    645 * notify bitmap. All fields in struct are aligned to their natural
    646 * alignment.
    647 */
    648struct vmci_doorbell_link_msg {
    649	struct vmci_datagram hdr;
    650	struct vmci_handle handle;
    651	u64 notify_idx;
    652};
    653
    654/*
    655 * Struct used for unlinking a doorbell handle from an index in the
    656 * notify bitmap. All fields in struct are aligned to their natural
    657 * alignment.
    658 */
    659struct vmci_doorbell_unlink_msg {
    660	struct vmci_datagram hdr;
    661	struct vmci_handle handle;
    662};
    663
    664/*
    665 * Struct used for generating a notification on a doorbell handle. All
    666 * fields in struct are aligned to their natural alignment.
    667 */
    668struct vmci_doorbell_notify_msg {
    669	struct vmci_datagram hdr;
    670	struct vmci_handle handle;
    671};
    672
    673/*
    674 * This struct is used to contain data for events.  Size of this struct is a
    675 * multiple of 8 bytes, and all fields are aligned to their natural alignment.
    676 */
    677struct vmci_event_data {
    678	u32 event;		/* 4 bytes. */
    679	u32 _pad;
    680	/* Event payload is put here. */
    681};
    682
    683/*
    684 * Define the different VMCI_EVENT payload data types here.  All structs must
    685 * be a multiple of 8 bytes, and fields must be aligned to their natural
    686 * alignment.
    687 */
    688struct vmci_event_payld_ctx {
    689	u32 context_id;	/* 4 bytes. */
    690	u32 _pad;
    691};
    692
    693struct vmci_event_payld_qp {
    694	struct vmci_handle handle;  /* queue_pair handle. */
    695	u32 peer_id;	    /* Context id of attaching/detaching VM. */
    696	u32 _pad;
    697};
    698
    699/*
    700 * We define the following struct to get the size of the maximum event
    701 * data the hypervisor may send to the guest.  If adding a new event
    702 * payload type above, add it to the following struct too (inside the
    703 * union).
    704 */
    705struct vmci_event_data_max {
    706	struct vmci_event_data event_data;
    707	union {
    708		struct vmci_event_payld_ctx context_payload;
    709		struct vmci_event_payld_qp qp_payload;
    710	} ev_data_payload;
    711};
    712
    713/*
    714 * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and
    715 * VMCI_EVENT_HANDLER messages.  Struct size is 32 bytes.  All fields
    716 * in struct are aligned to their natural alignment.
    717 */
    718struct vmci_event_msg {
    719	struct vmci_datagram hdr;
    720
    721	/* Has event type and payload. */
    722	struct vmci_event_data event_data;
    723
    724	/* Payload gets put here. */
    725};
    726
    727/* Event with context payload. */
    728struct vmci_event_ctx {
    729	struct vmci_event_msg msg;
    730	struct vmci_event_payld_ctx payload;
    731};
    732
    733/* Event with QP payload. */
    734struct vmci_event_qp {
    735	struct vmci_event_msg msg;
    736	struct vmci_event_payld_qp payload;
    737};
    738
    739/*
    740 * Structs used for queue_pair alloc and detach messages.  We align fields of
    741 * these structs to 64bit boundaries.
    742 */
    743struct vmci_qp_alloc_msg {
    744	struct vmci_datagram hdr;
    745	struct vmci_handle handle;
    746	u32 peer;
    747	u32 flags;
    748	u64 produce_size;
    749	u64 consume_size;
    750	u64 num_ppns;
    751
    752	/* List of PPNs placed here. */
    753};
    754
    755struct vmci_qp_detach_msg {
    756	struct vmci_datagram hdr;
    757	struct vmci_handle handle;
    758};
    759
    760/* VMCI Doorbell API. */
    761#define VMCI_FLAG_DELAYED_CB BIT(0)
    762
    763typedef void (*vmci_callback) (void *client_data);
    764
    765/*
    766 * struct vmci_qp - A vmw_vmci queue pair handle.
    767 *
    768 * This structure is used as a handle to a queue pair created by
    769 * VMCI.  It is intentionally left opaque to clients.
    770 */
    771struct vmci_qp;
    772
    773/* Callback needed for correctly waiting on events. */
    774typedef int (*vmci_datagram_recv_cb) (void *client_data,
    775				      struct vmci_datagram *msg);
    776
    777/* VMCI Event API. */
    778typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed,
    779			       void *client_data);
    780
    781/*
    782 * We use the following inline function to access the payload data
    783 * associated with an event data.
    784 */
    785static inline const void *
    786vmci_event_data_const_payload(const struct vmci_event_data *ev_data)
    787{
    788	return (const char *)ev_data + sizeof(*ev_data);
    789}
    790
    791static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data)
    792{
    793	return (void *)vmci_event_data_const_payload(ev_data);
    794}
    795
    796/*
    797 * Helper to read a value from a head or tail pointer. For X86_32, the
    798 * pointer is treated as a 32bit value, since the pointer value
    799 * never exceeds a 32bit value in this case. Also, doing an
    800 * atomic64_read on X86_32 uniprocessor systems may be implemented
    801 * as a non locked cmpxchg8b, that may end up overwriting updates done
    802 * by the VMCI device to the memory location. On 32bit SMP, the lock
    803 * prefix will be used, so correctness isn't an issue, but using a
    804 * 64bit operation still adds unnecessary overhead.
    805 */
    806static inline u64 vmci_q_read_pointer(u64 *var)
    807{
    808	return READ_ONCE(*(unsigned long *)var);
    809}
    810
    811/*
    812 * Helper to set the value of a head or tail pointer. For X86_32, the
    813 * pointer is treated as a 32bit value, since the pointer value
    814 * never exceeds a 32bit value in this case. On 32bit SMP, using a
    815 * locked cmpxchg8b adds unnecessary overhead.
    816 */
    817static inline void vmci_q_set_pointer(u64 *var, u64 new_val)
    818{
    819	/* XXX buggered on big-endian */
    820	WRITE_ONCE(*(unsigned long *)var, (unsigned long)new_val);
    821}
    822
    823/*
    824 * Helper to add a given offset to a head or tail pointer. Wraps the
    825 * value of the pointer around the max size of the queue.
    826 */
    827static inline void vmci_qp_add_pointer(u64 *var, size_t add, u64 size)
    828{
    829	u64 new_val = vmci_q_read_pointer(var);
    830
    831	if (new_val >= size - add)
    832		new_val -= size;
    833
    834	new_val += add;
    835
    836	vmci_q_set_pointer(var, new_val);
    837}
    838
    839/*
    840 * Helper routine to get the Producer Tail from the supplied queue.
    841 */
    842static inline u64
    843vmci_q_header_producer_tail(const struct vmci_queue_header *q_header)
    844{
    845	struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
    846	return vmci_q_read_pointer(&qh->producer_tail);
    847}
    848
    849/*
    850 * Helper routine to get the Consumer Head from the supplied queue.
    851 */
    852static inline u64
    853vmci_q_header_consumer_head(const struct vmci_queue_header *q_header)
    854{
    855	struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
    856	return vmci_q_read_pointer(&qh->consumer_head);
    857}
    858
    859/*
    860 * Helper routine to increment the Producer Tail.  Fundamentally,
    861 * vmci_qp_add_pointer() is used to manipulate the tail itself.
    862 */
    863static inline void
    864vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header,
    865				size_t add,
    866				u64 queue_size)
    867{
    868	vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size);
    869}
    870
    871/*
    872 * Helper routine to increment the Consumer Head.  Fundamentally,
    873 * vmci_qp_add_pointer() is used to manipulate the head itself.
    874 */
    875static inline void
    876vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header,
    877				size_t add,
    878				u64 queue_size)
    879{
    880	vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size);
    881}
    882
    883/*
    884 * Helper routine for getting the head and the tail pointer for a queue.
    885 * Both the VMCIQueues are needed to get both the pointers for one queue.
    886 */
    887static inline void
    888vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header,
    889			   const struct vmci_queue_header *consume_q_header,
    890			   u64 *producer_tail,
    891			   u64 *consumer_head)
    892{
    893	if (producer_tail)
    894		*producer_tail = vmci_q_header_producer_tail(produce_q_header);
    895
    896	if (consumer_head)
    897		*consumer_head = vmci_q_header_consumer_head(consume_q_header);
    898}
    899
    900static inline void vmci_q_header_init(struct vmci_queue_header *q_header,
    901				      const struct vmci_handle handle)
    902{
    903	q_header->handle = handle;
    904	q_header->producer_tail = 0;
    905	q_header->consumer_head = 0;
    906}
    907
    908/*
    909 * Finds available free space in a produce queue to enqueue more
    910 * data or reports an error if queue pair corruption is detected.
    911 */
    912static s64
    913vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header,
    914			 const struct vmci_queue_header *consume_q_header,
    915			 const u64 produce_q_size)
    916{
    917	u64 tail;
    918	u64 head;
    919	u64 free_space;
    920
    921	tail = vmci_q_header_producer_tail(produce_q_header);
    922	head = vmci_q_header_consumer_head(consume_q_header);
    923
    924	if (tail >= produce_q_size || head >= produce_q_size)
    925		return VMCI_ERROR_INVALID_SIZE;
    926
    927	/*
    928	 * Deduct 1 to avoid tail becoming equal to head which causes
    929	 * ambiguity. If head and tail are equal it means that the
    930	 * queue is empty.
    931	 */
    932	if (tail >= head)
    933		free_space = produce_q_size - (tail - head) - 1;
    934	else
    935		free_space = head - tail - 1;
    936
    937	return free_space;
    938}
    939
    940/*
    941 * vmci_q_header_free_space() does all the heavy lifting of
    942 * determing the number of free bytes in a Queue.  This routine,
    943 * then subtracts that size from the full size of the Queue so
    944 * the caller knows how many bytes are ready to be dequeued.
    945 * Results:
    946 * On success, available data size in bytes (up to MAX_INT64).
    947 * On failure, appropriate error code.
    948 */
    949static inline s64
    950vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header,
    951			const struct vmci_queue_header *produce_q_header,
    952			const u64 consume_q_size)
    953{
    954	s64 free_space;
    955
    956	free_space = vmci_q_header_free_space(consume_q_header,
    957					      produce_q_header, consume_q_size);
    958	if (free_space < VMCI_SUCCESS)
    959		return free_space;
    960
    961	return consume_q_size - free_space - 1;
    962}
    963
    964
    965#endif /* _VMW_VMCI_DEF_H_ */