cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

writeback.h (13059B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * include/linux/writeback.h
      4 */
      5#ifndef WRITEBACK_H
      6#define WRITEBACK_H
      7
      8#include <linux/sched.h>
      9#include <linux/workqueue.h>
     10#include <linux/fs.h>
     11#include <linux/flex_proportions.h>
     12#include <linux/backing-dev-defs.h>
     13#include <linux/blk_types.h>
     14
     15struct bio;
     16
     17DECLARE_PER_CPU(int, dirty_throttle_leaks);
     18
     19/*
     20 * The 1/4 region under the global dirty thresh is for smooth dirty throttling:
     21 *
     22 *	(thresh - thresh/DIRTY_FULL_SCOPE, thresh)
     23 *
     24 * Further beyond, all dirtier tasks will enter a loop waiting (possibly long
     25 * time) for the dirty pages to drop, unless written enough pages.
     26 *
     27 * The global dirty threshold is normally equal to the global dirty limit,
     28 * except when the system suddenly allocates a lot of anonymous memory and
     29 * knocks down the global dirty threshold quickly, in which case the global
     30 * dirty limit will follow down slowly to prevent livelocking all dirtier tasks.
     31 */
     32#define DIRTY_SCOPE		8
     33#define DIRTY_FULL_SCOPE	(DIRTY_SCOPE / 2)
     34
     35struct backing_dev_info;
     36
     37/*
     38 * fs/fs-writeback.c
     39 */
     40enum writeback_sync_modes {
     41	WB_SYNC_NONE,	/* Don't wait on anything */
     42	WB_SYNC_ALL,	/* Wait on every mapping */
     43};
     44
     45/*
     46 * A control structure which tells the writeback code what to do.  These are
     47 * always on the stack, and hence need no locking.  They are always initialised
     48 * in a manner such that unspecified fields are set to zero.
     49 */
     50struct writeback_control {
     51	long nr_to_write;		/* Write this many pages, and decrement
     52					   this for each page written */
     53	long pages_skipped;		/* Pages which were not written */
     54
     55	/*
     56	 * For a_ops->writepages(): if start or end are non-zero then this is
     57	 * a hint that the filesystem need only write out the pages inside that
     58	 * byterange.  The byte at `end' is included in the writeout request.
     59	 */
     60	loff_t range_start;
     61	loff_t range_end;
     62
     63	enum writeback_sync_modes sync_mode;
     64
     65	unsigned for_kupdate:1;		/* A kupdate writeback */
     66	unsigned for_background:1;	/* A background writeback */
     67	unsigned tagged_writepages:1;	/* tag-and-write to avoid livelock */
     68	unsigned for_reclaim:1;		/* Invoked from the page allocator */
     69	unsigned range_cyclic:1;	/* range_start is cyclic */
     70	unsigned for_sync:1;		/* sync(2) WB_SYNC_ALL writeback */
     71	unsigned unpinned_fscache_wb:1;	/* Cleared I_PINNING_FSCACHE_WB */
     72
     73	/*
     74	 * When writeback IOs are bounced through async layers, only the
     75	 * initial synchronous phase should be accounted towards inode
     76	 * cgroup ownership arbitration to avoid confusion.  Later stages
     77	 * can set the following flag to disable the accounting.
     78	 */
     79	unsigned no_cgroup_owner:1;
     80
     81	unsigned punt_to_cgroup:1;	/* cgrp punting, see __REQ_CGROUP_PUNT */
     82
     83	/* To enable batching of swap writes to non-block-device backends,
     84	 * "plug" can be set point to a 'struct swap_iocb *'.  When all swap
     85	 * writes have been submitted, if with swap_iocb is not NULL,
     86	 * swap_write_unplug() should be called.
     87	 */
     88	struct swap_iocb **swap_plug;
     89
     90#ifdef CONFIG_CGROUP_WRITEBACK
     91	struct bdi_writeback *wb;	/* wb this writeback is issued under */
     92	struct inode *inode;		/* inode being written out */
     93
     94	/* foreign inode detection, see wbc_detach_inode() */
     95	int wb_id;			/* current wb id */
     96	int wb_lcand_id;		/* last foreign candidate wb id */
     97	int wb_tcand_id;		/* this foreign candidate wb id */
     98	size_t wb_bytes;		/* bytes written by current wb */
     99	size_t wb_lcand_bytes;		/* bytes written by last candidate */
    100	size_t wb_tcand_bytes;		/* bytes written by this candidate */
    101#endif
    102};
    103
    104static inline int wbc_to_write_flags(struct writeback_control *wbc)
    105{
    106	int flags = 0;
    107
    108	if (wbc->punt_to_cgroup)
    109		flags = REQ_CGROUP_PUNT;
    110
    111	if (wbc->sync_mode == WB_SYNC_ALL)
    112		flags |= REQ_SYNC;
    113	else if (wbc->for_kupdate || wbc->for_background)
    114		flags |= REQ_BACKGROUND;
    115
    116	return flags;
    117}
    118
    119#ifdef CONFIG_CGROUP_WRITEBACK
    120#define wbc_blkcg_css(wbc) \
    121	((wbc)->wb ? (wbc)->wb->blkcg_css : blkcg_root_css)
    122#else
    123#define wbc_blkcg_css(wbc)		(blkcg_root_css)
    124#endif /* CONFIG_CGROUP_WRITEBACK */
    125
    126/*
    127 * A wb_domain represents a domain that wb's (bdi_writeback's) belong to
    128 * and are measured against each other in.  There always is one global
    129 * domain, global_wb_domain, that every wb in the system is a member of.
    130 * This allows measuring the relative bandwidth of each wb to distribute
    131 * dirtyable memory accordingly.
    132 */
    133struct wb_domain {
    134	spinlock_t lock;
    135
    136	/*
    137	 * Scale the writeback cache size proportional to the relative
    138	 * writeout speed.
    139	 *
    140	 * We do this by keeping a floating proportion between BDIs, based
    141	 * on page writeback completions [end_page_writeback()]. Those
    142	 * devices that write out pages fastest will get the larger share,
    143	 * while the slower will get a smaller share.
    144	 *
    145	 * We use page writeout completions because we are interested in
    146	 * getting rid of dirty pages. Having them written out is the
    147	 * primary goal.
    148	 *
    149	 * We introduce a concept of time, a period over which we measure
    150	 * these events, because demand can/will vary over time. The length
    151	 * of this period itself is measured in page writeback completions.
    152	 */
    153	struct fprop_global completions;
    154	struct timer_list period_timer;	/* timer for aging of completions */
    155	unsigned long period_time;
    156
    157	/*
    158	 * The dirtyable memory and dirty threshold could be suddenly
    159	 * knocked down by a large amount (eg. on the startup of KVM in a
    160	 * swapless system). This may throw the system into deep dirty
    161	 * exceeded state and throttle heavy/light dirtiers alike. To
    162	 * retain good responsiveness, maintain global_dirty_limit for
    163	 * tracking slowly down to the knocked down dirty threshold.
    164	 *
    165	 * Both fields are protected by ->lock.
    166	 */
    167	unsigned long dirty_limit_tstamp;
    168	unsigned long dirty_limit;
    169};
    170
    171/**
    172 * wb_domain_size_changed - memory available to a wb_domain has changed
    173 * @dom: wb_domain of interest
    174 *
    175 * This function should be called when the amount of memory available to
    176 * @dom has changed.  It resets @dom's dirty limit parameters to prevent
    177 * the past values which don't match the current configuration from skewing
    178 * dirty throttling.  Without this, when memory size of a wb_domain is
    179 * greatly reduced, the dirty throttling logic may allow too many pages to
    180 * be dirtied leading to consecutive unnecessary OOMs and may get stuck in
    181 * that situation.
    182 */
    183static inline void wb_domain_size_changed(struct wb_domain *dom)
    184{
    185	spin_lock(&dom->lock);
    186	dom->dirty_limit_tstamp = jiffies;
    187	dom->dirty_limit = 0;
    188	spin_unlock(&dom->lock);
    189}
    190
    191/*
    192 * fs/fs-writeback.c
    193 */	
    194struct bdi_writeback;
    195void writeback_inodes_sb(struct super_block *, enum wb_reason reason);
    196void writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
    197							enum wb_reason reason);
    198void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason);
    199void sync_inodes_sb(struct super_block *);
    200void wakeup_flusher_threads(enum wb_reason reason);
    201void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
    202				enum wb_reason reason);
    203void inode_wait_for_writeback(struct inode *inode);
    204void inode_io_list_del(struct inode *inode);
    205
    206/* writeback.h requires fs.h; it, too, is not included from here. */
    207static inline void wait_on_inode(struct inode *inode)
    208{
    209	might_sleep();
    210	wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE);
    211}
    212
    213#ifdef CONFIG_CGROUP_WRITEBACK
    214
    215#include <linux/cgroup.h>
    216#include <linux/bio.h>
    217
    218void __inode_attach_wb(struct inode *inode, struct page *page);
    219void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
    220				 struct inode *inode)
    221	__releases(&inode->i_lock);
    222void wbc_detach_inode(struct writeback_control *wbc);
    223void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
    224			      size_t bytes);
    225int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
    226			   enum wb_reason reason, struct wb_completion *done);
    227void cgroup_writeback_umount(void);
    228bool cleanup_offline_cgwb(struct bdi_writeback *wb);
    229
    230/**
    231 * inode_attach_wb - associate an inode with its wb
    232 * @inode: inode of interest
    233 * @page: page being dirtied (may be NULL)
    234 *
    235 * If @inode doesn't have its wb, associate it with the wb matching the
    236 * memcg of @page or, if @page is NULL, %current.  May be called w/ or w/o
    237 * @inode->i_lock.
    238 */
    239static inline void inode_attach_wb(struct inode *inode, struct page *page)
    240{
    241	if (!inode->i_wb)
    242		__inode_attach_wb(inode, page);
    243}
    244
    245/**
    246 * inode_detach_wb - disassociate an inode from its wb
    247 * @inode: inode of interest
    248 *
    249 * @inode is being freed.  Detach from its wb.
    250 */
    251static inline void inode_detach_wb(struct inode *inode)
    252{
    253	if (inode->i_wb) {
    254		WARN_ON_ONCE(!(inode->i_state & I_CLEAR));
    255		wb_put(inode->i_wb);
    256		inode->i_wb = NULL;
    257	}
    258}
    259
    260/**
    261 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
    262 * @wbc: writeback_control of interest
    263 * @inode: target inode
    264 *
    265 * This function is to be used by __filemap_fdatawrite_range(), which is an
    266 * alternative entry point into writeback code, and first ensures @inode is
    267 * associated with a bdi_writeback and attaches it to @wbc.
    268 */
    269static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
    270					       struct inode *inode)
    271{
    272	spin_lock(&inode->i_lock);
    273	inode_attach_wb(inode, NULL);
    274	wbc_attach_and_unlock_inode(wbc, inode);
    275}
    276
    277/**
    278 * wbc_init_bio - writeback specific initializtion of bio
    279 * @wbc: writeback_control for the writeback in progress
    280 * @bio: bio to be initialized
    281 *
    282 * @bio is a part of the writeback in progress controlled by @wbc.  Perform
    283 * writeback specific initialization.  This is used to apply the cgroup
    284 * writeback context.  Must be called after the bio has been associated with
    285 * a device.
    286 */
    287static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
    288{
    289	/*
    290	 * pageout() path doesn't attach @wbc to the inode being written
    291	 * out.  This is intentional as we don't want the function to block
    292	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
    293	 * regular writeback instead of writing things out itself.
    294	 */
    295	if (wbc->wb)
    296		bio_associate_blkg_from_css(bio, wbc->wb->blkcg_css);
    297}
    298
    299#else	/* CONFIG_CGROUP_WRITEBACK */
    300
    301static inline void inode_attach_wb(struct inode *inode, struct page *page)
    302{
    303}
    304
    305static inline void inode_detach_wb(struct inode *inode)
    306{
    307}
    308
    309static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
    310					       struct inode *inode)
    311	__releases(&inode->i_lock)
    312{
    313	spin_unlock(&inode->i_lock);
    314}
    315
    316static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
    317					       struct inode *inode)
    318{
    319}
    320
    321static inline void wbc_detach_inode(struct writeback_control *wbc)
    322{
    323}
    324
    325static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
    326{
    327}
    328
    329static inline void wbc_account_cgroup_owner(struct writeback_control *wbc,
    330					    struct page *page, size_t bytes)
    331{
    332}
    333
    334static inline void cgroup_writeback_umount(void)
    335{
    336}
    337
    338#endif	/* CONFIG_CGROUP_WRITEBACK */
    339
    340/*
    341 * mm/page-writeback.c
    342 */
    343void laptop_io_completion(struct backing_dev_info *info);
    344void laptop_sync_completion(void);
    345void laptop_mode_timer_fn(struct timer_list *t);
    346bool node_dirty_ok(struct pglist_data *pgdat);
    347int wb_domain_init(struct wb_domain *dom, gfp_t gfp);
    348#ifdef CONFIG_CGROUP_WRITEBACK
    349void wb_domain_exit(struct wb_domain *dom);
    350#endif
    351
    352extern struct wb_domain global_wb_domain;
    353
    354/* These are exported to sysctl. */
    355extern unsigned int dirty_writeback_interval;
    356extern unsigned int dirty_expire_interval;
    357extern unsigned int dirtytime_expire_interval;
    358extern int laptop_mode;
    359
    360int dirtytime_interval_handler(struct ctl_table *table, int write,
    361		void *buffer, size_t *lenp, loff_t *ppos);
    362
    363void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty);
    364unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh);
    365
    366void wb_update_bandwidth(struct bdi_writeback *wb);
    367void balance_dirty_pages_ratelimited(struct address_space *mapping);
    368bool wb_over_bg_thresh(struct bdi_writeback *wb);
    369
    370typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
    371				void *data);
    372
    373int generic_writepages(struct address_space *mapping,
    374		       struct writeback_control *wbc);
    375void tag_pages_for_writeback(struct address_space *mapping,
    376			     pgoff_t start, pgoff_t end);
    377int write_cache_pages(struct address_space *mapping,
    378		      struct writeback_control *wbc, writepage_t writepage,
    379		      void *data);
    380int do_writepages(struct address_space *mapping, struct writeback_control *wbc);
    381void writeback_set_ratelimit(void);
    382void tag_pages_for_writeback(struct address_space *mapping,
    383			     pgoff_t start, pgoff_t end);
    384
    385bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio);
    386void folio_account_redirty(struct folio *folio);
    387static inline void account_page_redirty(struct page *page)
    388{
    389	folio_account_redirty(page_folio(page));
    390}
    391bool folio_redirty_for_writepage(struct writeback_control *, struct folio *);
    392bool redirty_page_for_writepage(struct writeback_control *, struct page *);
    393
    394void sb_mark_inode_writeback(struct inode *inode);
    395void sb_clear_inode_writeback(struct inode *inode);
    396
    397#endif		/* WRITEBACK_H */