cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

op-common.h (26792B)


      1/* Software floating-point emulation. Common operations.
      2   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
      3   This file is part of the GNU C Library.
      4   Contributed by Richard Henderson (rth@cygnus.com),
      5		  Jakub Jelinek (jj@ultra.linux.cz),
      6		  David S. Miller (davem@redhat.com) and
      7		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
      8
      9   The GNU C Library is free software; you can redistribute it and/or
     10   modify it under the terms of the GNU Library General Public License as
     11   published by the Free Software Foundation; either version 2 of the
     12   License, or (at your option) any later version.
     13
     14   The GNU C Library is distributed in the hope that it will be useful,
     15   but WITHOUT ANY WARRANTY; without even the implied warranty of
     16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     17   Library General Public License for more details.
     18
     19   You should have received a copy of the GNU Library General Public
     20   License along with the GNU C Library; see the file COPYING.LIB.  If
     21   not, write to the Free Software Foundation, Inc.,
     22   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
     23
     24#ifndef __MATH_EMU_OP_COMMON_H__
     25#define __MATH_EMU_OP_COMMON_H__
     26
     27#define _FP_DECL(wc, X)			\
     28  _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0;	\
     29  _FP_FRAC_DECL_##wc(X)
     30
     31/*
     32 * Finish truly unpacking a native fp value by classifying the kind
     33 * of fp value and normalizing both the exponent and the fraction.
     34 */
     35
     36#define _FP_UNPACK_CANONICAL(fs, wc, X)					\
     37do {									\
     38  switch (X##_e)							\
     39  {									\
     40  default:								\
     41    _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs;			\
     42    _FP_FRAC_SLL_##wc(X, _FP_WORKBITS);					\
     43    X##_e -= _FP_EXPBIAS_##fs;						\
     44    X##_c = FP_CLS_NORMAL;						\
     45    break;								\
     46									\
     47  case 0:								\
     48    if (_FP_FRAC_ZEROP_##wc(X))						\
     49      X##_c = FP_CLS_ZERO;						\
     50    else								\
     51      {									\
     52	/* a denormalized number */					\
     53	_FP_I_TYPE _shift;						\
     54	_FP_FRAC_CLZ_##wc(_shift, X);					\
     55	_shift -= _FP_FRACXBITS_##fs;					\
     56	_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS));			\
     57	X##_e -= _FP_EXPBIAS_##fs - 1 + _shift;				\
     58	X##_c = FP_CLS_NORMAL;						\
     59	FP_SET_EXCEPTION(FP_EX_DENORM);					\
     60	if (FP_DENORM_ZERO)						\
     61	  {								\
     62	    FP_SET_EXCEPTION(FP_EX_INEXACT);				\
     63	    X##_c = FP_CLS_ZERO;					\
     64	  }								\
     65      }									\
     66    break;								\
     67									\
     68  case _FP_EXPMAX_##fs:							\
     69    if (_FP_FRAC_ZEROP_##wc(X))						\
     70      X##_c = FP_CLS_INF;						\
     71    else								\
     72      {									\
     73	X##_c = FP_CLS_NAN;						\
     74	/* Check for signaling NaN */					\
     75	if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))		\
     76	  FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_SNAN);		\
     77      }									\
     78    break;								\
     79  }									\
     80} while (0)
     81
     82/*
     83 * Before packing the bits back into the native fp result, take care
     84 * of such mundane things as rounding and overflow.  Also, for some
     85 * kinds of fp values, the original parts may not have been fully
     86 * extracted -- but that is ok, we can regenerate them now.
     87 */
     88
     89#define _FP_PACK_CANONICAL(fs, wc, X)				\
     90do {								\
     91  switch (X##_c)						\
     92  {								\
     93  case FP_CLS_NORMAL:						\
     94    X##_e += _FP_EXPBIAS_##fs;					\
     95    if (X##_e > 0)						\
     96      {								\
     97	_FP_ROUND(wc, X);					\
     98	if (_FP_FRAC_OVERP_##wc(fs, X))				\
     99	  {							\
    100	    _FP_FRAC_CLEAR_OVERP_##wc(fs, X);			\
    101	    X##_e++;						\
    102	  }							\
    103	_FP_FRAC_SRL_##wc(X, _FP_WORKBITS);			\
    104	if (X##_e >= _FP_EXPMAX_##fs)				\
    105	  {							\
    106	    /* overflow */					\
    107	    switch (FP_ROUNDMODE)				\
    108	      {							\
    109	      case FP_RND_NEAREST:				\
    110		X##_c = FP_CLS_INF;				\
    111		break;						\
    112	      case FP_RND_PINF:					\
    113		if (!X##_s) X##_c = FP_CLS_INF;			\
    114		break;						\
    115	      case FP_RND_MINF:					\
    116		if (X##_s) X##_c = FP_CLS_INF;			\
    117		break;						\
    118	      }							\
    119	    if (X##_c == FP_CLS_INF)				\
    120	      {							\
    121		/* Overflow to infinity */			\
    122		X##_e = _FP_EXPMAX_##fs;			\
    123		_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
    124	      }							\
    125	    else						\
    126	      {							\
    127		/* Overflow to maximum normal */		\
    128		X##_e = _FP_EXPMAX_##fs - 1;			\
    129		_FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc);		\
    130	      }							\
    131	    FP_SET_EXCEPTION(FP_EX_OVERFLOW);			\
    132            FP_SET_EXCEPTION(FP_EX_INEXACT);			\
    133	  }							\
    134      }								\
    135    else							\
    136      {								\
    137	/* we've got a denormalized number */			\
    138	X##_e = -X##_e + 1;					\
    139	if (X##_e <= _FP_WFRACBITS_##fs)			\
    140	  {							\
    141	    _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs);	\
    142	    if (_FP_FRAC_HIGH_##fs(X)				\
    143		& (_FP_OVERFLOW_##fs >> 1))			\
    144	      {							\
    145	        X##_e = 1;					\
    146	        _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
    147	      }							\
    148	    else						\
    149	      {							\
    150		_FP_ROUND(wc, X);				\
    151		if (_FP_FRAC_HIGH_##fs(X)			\
    152		   & (_FP_OVERFLOW_##fs >> 1))			\
    153		  {						\
    154		    X##_e = 1;					\
    155		    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
    156		    FP_SET_EXCEPTION(FP_EX_INEXACT);		\
    157		  }						\
    158		else						\
    159		  {						\
    160		    X##_e = 0;					\
    161		    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);		\
    162		  }						\
    163	      }							\
    164	    if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) ||		\
    165		(FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW))	\
    166		FP_SET_EXCEPTION(FP_EX_UNDERFLOW);		\
    167	  }							\
    168	else							\
    169	  {							\
    170	    /* underflow to zero */				\
    171	    X##_e = 0;						\
    172	    if (!_FP_FRAC_ZEROP_##wc(X))			\
    173	      {							\
    174	        _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);		\
    175	        _FP_ROUND(wc, X);				\
    176	        _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS);	\
    177	      }							\
    178	    FP_SET_EXCEPTION(FP_EX_UNDERFLOW);			\
    179	  }							\
    180      }								\
    181    break;							\
    182								\
    183  case FP_CLS_ZERO:						\
    184    X##_e = 0;							\
    185    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
    186    break;							\
    187								\
    188  case FP_CLS_INF:						\
    189    X##_e = _FP_EXPMAX_##fs;					\
    190    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
    191    break;							\
    192								\
    193  case FP_CLS_NAN:						\
    194    X##_e = _FP_EXPMAX_##fs;					\
    195    if (!_FP_KEEPNANFRACP)					\
    196      {								\
    197	_FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs);			\
    198	X##_s = _FP_NANSIGN_##fs;				\
    199      }								\
    200    else							\
    201      _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs;		\
    202    break;							\
    203  }								\
    204} while (0)
    205
    206/* This one accepts raw argument and not cooked,  returns
    207 * 1 if X is a signaling NaN.
    208 */
    209#define _FP_ISSIGNAN(fs, wc, X)					\
    210({								\
    211  int __ret = 0;						\
    212  if (X##_e == _FP_EXPMAX_##fs)					\
    213    {								\
    214      if (!_FP_FRAC_ZEROP_##wc(X)				\
    215	  && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))	\
    216	__ret = 1;						\
    217    }								\
    218  __ret;							\
    219})
    220
    221
    222
    223
    224
    225/*
    226 * Main addition routine.  The input values should be cooked.
    227 */
    228
    229#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP)				     \
    230do {									     \
    231  switch (_FP_CLS_COMBINE(X##_c, Y##_c))				     \
    232  {									     \
    233  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):			     \
    234    {									     \
    235      /* shift the smaller number so that its exponent matches the larger */ \
    236      _FP_I_TYPE diff = X##_e - Y##_e;					     \
    237									     \
    238      if (diff < 0)							     \
    239	{								     \
    240	  diff = -diff;							     \
    241	  if (diff <= _FP_WFRACBITS_##fs)				     \
    242	    _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs);		     \
    243	  else if (!_FP_FRAC_ZEROP_##wc(X))				     \
    244	    _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);			     \
    245	  R##_e = Y##_e;						     \
    246	}								     \
    247      else								     \
    248	{								     \
    249	  if (diff > 0)							     \
    250	    {								     \
    251	      if (diff <= _FP_WFRACBITS_##fs)				     \
    252	        _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs);		     \
    253	      else if (!_FP_FRAC_ZEROP_##wc(Y))				     \
    254	        _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc);			     \
    255	    }								     \
    256	  R##_e = X##_e;						     \
    257	}								     \
    258									     \
    259      R##_c = FP_CLS_NORMAL;						     \
    260									     \
    261      if (X##_s == Y##_s)						     \
    262	{								     \
    263	  R##_s = X##_s;						     \
    264	  _FP_FRAC_ADD_##wc(R, X, Y);					     \
    265	  if (_FP_FRAC_OVERP_##wc(fs, R))				     \
    266	    {								     \
    267	      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);		     \
    268	      R##_e++;							     \
    269	    }								     \
    270	}								     \
    271      else								     \
    272	{								     \
    273	  R##_s = X##_s;						     \
    274	  _FP_FRAC_SUB_##wc(R, X, Y);					     \
    275	  if (_FP_FRAC_ZEROP_##wc(R))					     \
    276	    {								     \
    277	      /* return an exact zero */				     \
    278	      if (FP_ROUNDMODE == FP_RND_MINF)				     \
    279		R##_s |= Y##_s;						     \
    280	      else							     \
    281		R##_s &= Y##_s;						     \
    282	      R##_c = FP_CLS_ZERO;					     \
    283	    }								     \
    284	  else								     \
    285	    {								     \
    286	      if (_FP_FRAC_NEGP_##wc(R))				     \
    287		{							     \
    288		  _FP_FRAC_SUB_##wc(R, Y, X);				     \
    289		  R##_s = Y##_s;					     \
    290		}							     \
    291									     \
    292	      /* renormalize after subtraction */			     \
    293	      _FP_FRAC_CLZ_##wc(diff, R);				     \
    294	      diff -= _FP_WFRACXBITS_##fs;				     \
    295	      if (diff)							     \
    296		{							     \
    297		  R##_e -= diff;					     \
    298		  _FP_FRAC_SLL_##wc(R, diff);				     \
    299		}							     \
    300	    }								     \
    301	}								     \
    302      break;								     \
    303    }									     \
    304									     \
    305  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):				     \
    306    _FP_CHOOSENAN(fs, wc, R, X, Y, OP);					     \
    307    break;								     \
    308									     \
    309  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):			     \
    310    R##_e = X##_e;							     \
    311	fallthrough;							     \
    312  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):			     \
    313  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):				     \
    314  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):				     \
    315    _FP_FRAC_COPY_##wc(R, X);						     \
    316    R##_s = X##_s;							     \
    317    R##_c = X##_c;							     \
    318    break;								     \
    319									     \
    320  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):			     \
    321    R##_e = Y##_e;							     \
    322	fallthrough;							     \
    323  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):			     \
    324  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):				     \
    325  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):				     \
    326    _FP_FRAC_COPY_##wc(R, Y);						     \
    327    R##_s = Y##_s;							     \
    328    R##_c = Y##_c;							     \
    329    break;								     \
    330									     \
    331  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):				     \
    332    if (X##_s != Y##_s)							     \
    333      {									     \
    334	/* +INF + -INF => NAN */					     \
    335	_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);				     \
    336	R##_s = _FP_NANSIGN_##fs;					     \
    337	R##_c = FP_CLS_NAN;						     \
    338	FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ISI);		     \
    339	break;								     \
    340      }									     \
    341    fallthrough;							     \
    342									     \
    343  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):			     \
    344  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):				     \
    345    R##_s = X##_s;							     \
    346    R##_c = FP_CLS_INF;							     \
    347    break;								     \
    348									     \
    349  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):			     \
    350  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):				     \
    351    R##_s = Y##_s;							     \
    352    R##_c = FP_CLS_INF;							     \
    353    break;								     \
    354									     \
    355  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):			     \
    356    /* make sure the sign is correct */					     \
    357    if (FP_ROUNDMODE == FP_RND_MINF)					     \
    358      R##_s = X##_s | Y##_s;						     \
    359    else								     \
    360      R##_s = X##_s & Y##_s;						     \
    361    R##_c = FP_CLS_ZERO;						     \
    362    break;								     \
    363									     \
    364  default:								     \
    365    abort();								     \
    366  }									     \
    367} while (0)
    368
    369#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
    370#define _FP_SUB(fs, wc, R, X, Y)					     \
    371  do {									     \
    372    if (Y##_c != FP_CLS_NAN) Y##_s ^= 1;				     \
    373    _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-');				     \
    374  } while (0)
    375
    376
    377/*
    378 * Main negation routine.  FIXME -- when we care about setting exception
    379 * bits reliably, this will not do.  We should examine all of the fp classes.
    380 */
    381
    382#define _FP_NEG(fs, wc, R, X)		\
    383  do {					\
    384    _FP_FRAC_COPY_##wc(R, X);		\
    385    R##_c = X##_c;			\
    386    R##_e = X##_e;			\
    387    R##_s = 1 ^ X##_s;			\
    388  } while (0)
    389
    390
    391/*
    392 * Main multiplication routine.  The input values should be cooked.
    393 */
    394
    395#define _FP_MUL(fs, wc, R, X, Y)			\
    396do {							\
    397  R##_s = X##_s ^ Y##_s;				\
    398  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
    399  {							\
    400  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
    401    R##_c = FP_CLS_NORMAL;				\
    402    R##_e = X##_e + Y##_e + 1;				\
    403							\
    404    _FP_MUL_MEAT_##fs(R,X,Y);				\
    405							\
    406    if (_FP_FRAC_OVERP_##wc(fs, R))			\
    407      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);	\
    408    else						\
    409      R##_e--;						\
    410    break;						\
    411							\
    412  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
    413    _FP_CHOOSENAN(fs, wc, R, X, Y, '*');		\
    414    break;						\
    415							\
    416  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
    417  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
    418  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
    419    R##_s = X##_s;					\
    420	  fallthrough;					\
    421							\
    422  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
    423  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
    424  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
    425  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
    426    _FP_FRAC_COPY_##wc(R, X);				\
    427    R##_c = X##_c;					\
    428    break;						\
    429							\
    430  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
    431  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
    432  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
    433    R##_s = Y##_s;					\
    434	  fallthrough;					\
    435							\
    436  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
    437  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
    438    _FP_FRAC_COPY_##wc(R, Y);				\
    439    R##_c = Y##_c;					\
    440    break;						\
    441							\
    442  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
    443  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
    444    R##_s = _FP_NANSIGN_##fs;				\
    445    R##_c = FP_CLS_NAN;					\
    446    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
    447    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IMZ);\
    448    break;						\
    449							\
    450  default:						\
    451    abort();						\
    452  }							\
    453} while (0)
    454
    455
    456/*
    457 * Main division routine.  The input values should be cooked.
    458 */
    459
    460#define _FP_DIV(fs, wc, R, X, Y)			\
    461do {							\
    462  R##_s = X##_s ^ Y##_s;				\
    463  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
    464  {							\
    465  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
    466    R##_c = FP_CLS_NORMAL;				\
    467    R##_e = X##_e - Y##_e;				\
    468							\
    469    _FP_DIV_MEAT_##fs(R,X,Y);				\
    470    break;						\
    471							\
    472  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
    473    _FP_CHOOSENAN(fs, wc, R, X, Y, '/');		\
    474    break;						\
    475							\
    476  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
    477  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
    478  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
    479    R##_s = X##_s;					\
    480    _FP_FRAC_COPY_##wc(R, X);				\
    481    R##_c = X##_c;					\
    482    break;						\
    483							\
    484  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
    485  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
    486  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
    487    R##_s = Y##_s;					\
    488    _FP_FRAC_COPY_##wc(R, Y);				\
    489    R##_c = Y##_c;					\
    490    break;						\
    491							\
    492  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
    493  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
    494  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
    495    R##_c = FP_CLS_ZERO;				\
    496    break;						\
    497							\
    498  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
    499    FP_SET_EXCEPTION(FP_EX_DIVZERO);			\
    500	fallthrough;					\
    501  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
    502  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
    503    R##_c = FP_CLS_INF;					\
    504    break;						\
    505							\
    506  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
    507    R##_s = _FP_NANSIGN_##fs;				\
    508    R##_c = FP_CLS_NAN;					\
    509    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
    510    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IDI);\
    511    break;						\
    512							\
    513  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
    514    R##_s = _FP_NANSIGN_##fs;				\
    515    R##_c = FP_CLS_NAN;					\
    516    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
    517    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ZDZ);\
    518    break;						\
    519							\
    520  default:						\
    521    abort();						\
    522  }							\
    523} while (0)
    524
    525
    526/*
    527 * Main differential comparison routine.  The inputs should be raw not
    528 * cooked.  The return is -1,0,1 for normal values, 2 otherwise.
    529 */
    530
    531#define _FP_CMP(fs, wc, ret, X, Y, un)					\
    532  do {									\
    533    /* NANs are unordered */						\
    534    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		\
    535	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	\
    536      {									\
    537	ret = un;							\
    538      }									\
    539    else								\
    540      {									\
    541	int __is_zero_x;						\
    542	int __is_zero_y;						\
    543									\
    544	__is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0;	\
    545	__is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0;	\
    546									\
    547	if (__is_zero_x && __is_zero_y)					\
    548		ret = 0;						\
    549	else if (__is_zero_x)						\
    550		ret = Y##_s ? 1 : -1;					\
    551	else if (__is_zero_y)						\
    552		ret = X##_s ? -1 : 1;					\
    553	else if (X##_s != Y##_s)					\
    554	  ret = X##_s ? -1 : 1;						\
    555	else if (X##_e > Y##_e)						\
    556	  ret = X##_s ? -1 : 1;						\
    557	else if (X##_e < Y##_e)						\
    558	  ret = X##_s ? 1 : -1;						\
    559	else if (_FP_FRAC_GT_##wc(X, Y))				\
    560	  ret = X##_s ? -1 : 1;						\
    561	else if (_FP_FRAC_GT_##wc(Y, X))				\
    562	  ret = X##_s ? 1 : -1;						\
    563	else								\
    564	  ret = 0;							\
    565      }									\
    566  } while (0)
    567
    568
    569/* Simplification for strict equality.  */
    570
    571#define _FP_CMP_EQ(fs, wc, ret, X, Y)					  \
    572  do {									  \
    573    /* NANs are unordered */						  \
    574    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		  \
    575	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	  \
    576      {									  \
    577	ret = 1;							  \
    578      }									  \
    579    else								  \
    580      {									  \
    581	ret = !(X##_e == Y##_e						  \
    582		&& _FP_FRAC_EQ_##wc(X, Y)				  \
    583		&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
    584      }									  \
    585  } while (0)
    586
    587/*
    588 * Main square root routine.  The input value should be cooked.
    589 */
    590
    591#define _FP_SQRT(fs, wc, R, X)						\
    592do {									\
    593    _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S);			\
    594    _FP_W_TYPE q;							\
    595    switch (X##_c)							\
    596    {									\
    597    case FP_CLS_NAN:							\
    598	_FP_FRAC_COPY_##wc(R, X);					\
    599	R##_s = X##_s;							\
    600    	R##_c = FP_CLS_NAN;						\
    601    	break;								\
    602    case FP_CLS_INF:							\
    603    	if (X##_s)							\
    604    	  {								\
    605    	    R##_s = _FP_NANSIGN_##fs;					\
    606	    R##_c = FP_CLS_NAN; /* NAN */				\
    607	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
    608	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
    609    	  }								\
    610    	else								\
    611    	  {								\
    612    	    R##_s = 0;							\
    613    	    R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */			\
    614    	  }								\
    615    	break;								\
    616    case FP_CLS_ZERO:							\
    617	R##_s = X##_s;							\
    618	R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */			\
    619	break;								\
    620    case FP_CLS_NORMAL:							\
    621    	R##_s = 0;							\
    622        if (X##_s)							\
    623          {								\
    624	    R##_c = FP_CLS_NAN; /* sNAN */				\
    625	    R##_s = _FP_NANSIGN_##fs;					\
    626	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
    627	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
    628	    break;							\
    629          }								\
    630    	R##_c = FP_CLS_NORMAL;						\
    631        if (X##_e & 1)							\
    632          _FP_FRAC_SLL_##wc(X, 1);					\
    633        R##_e = X##_e >> 1;						\
    634        _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc);			\
    635        _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc);			\
    636        q = _FP_OVERFLOW_##fs >> 1;					\
    637        _FP_SQRT_MEAT_##wc(R, S, T, X, q);				\
    638    }									\
    639  } while (0)
    640
    641/*
    642 * Convert from FP to integer
    643 */
    644
    645/* RSIGNED can have following values:
    646 * 0:  the number is required to be 0..(2^rsize)-1, if not, NV is set plus
    647 *     the result is either 0 or (2^rsize)-1 depending on the sign in such case.
    648 * 1:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
    649 *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
    650 *     on the sign in such case.
    651 * 2:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
    652 *     set plus the result is truncated to fit into destination.
    653 * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
    654 *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
    655 *     on the sign in such case.
    656 */
    657#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned)				\
    658  do {										\
    659    switch (X##_c)								\
    660      {										\
    661      case FP_CLS_NORMAL:							\
    662	if (X##_e < 0)								\
    663	  {									\
    664	    FP_SET_EXCEPTION(FP_EX_INEXACT);					\
    665	  case FP_CLS_ZERO:							\
    666	    r = 0;								\
    667	  }									\
    668	else if (X##_e >= rsize - (rsigned > 0 || X##_s)			\
    669		 || (!rsigned && X##_s))					\
    670	  {	/* overflow */							\
    671	  case FP_CLS_NAN:                                                      \
    672	  case FP_CLS_INF:							\
    673	    if (rsigned == 2)							\
    674	      {									\
    675		if (X##_c != FP_CLS_NORMAL					\
    676		    || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs)			\
    677		  r = 0;							\
    678		else								\
    679		  {								\
    680		    _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
    681		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
    682		  }								\
    683	      }									\
    684	    else if (rsigned)							\
    685	      {									\
    686		r = 1;								\
    687		r <<= rsize - 1;						\
    688		r -= 1 - X##_s;							\
    689	      }									\
    690	    else								\
    691	      {									\
    692		r = 0;								\
    693		if (!X##_s)							\
    694		  r = ~r;							\
    695	      }									\
    696	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
    697	  }									\
    698	else									\
    699	  {									\
    700	    if (_FP_W_TYPE_SIZE*wc < rsize)					\
    701	      {									\
    702		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
    703		r <<= X##_e - _FP_WFRACBITS_##fs;				\
    704	      }									\
    705	    else								\
    706	      {									\
    707		if (X##_e >= _FP_WFRACBITS_##fs)				\
    708		  _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
    709		else if (X##_e < _FP_WFRACBITS_##fs - 1)			\
    710		  {								\
    711		    _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2),	\
    712				      _FP_WFRACBITS_##fs);			\
    713		    if (_FP_FRAC_LOW_##wc(X) & 1)				\
    714		      FP_SET_EXCEPTION(FP_EX_INEXACT);				\
    715		    _FP_FRAC_SRL_##wc(X, 1);					\
    716		  }								\
    717		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
    718	      }									\
    719	    if (rsigned && X##_s)						\
    720	      r = -r;								\
    721	  }									\
    722	break;									\
    723      }										\
    724  } while (0)
    725
    726#define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned)				\
    727  do {										\
    728    r = 0;									\
    729    switch (X##_c)								\
    730      {										\
    731      case FP_CLS_NORMAL:							\
    732	if (X##_e >= _FP_FRACBITS_##fs - 1)					\
    733	  {									\
    734	    if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs)				\
    735	      {									\
    736		if (X##_e >= _FP_WFRACBITS_##fs - 1)				\
    737		  {								\
    738		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
    739		    r <<= X##_e - _FP_WFRACBITS_##fs + 1;			\
    740		  }								\
    741		else								\
    742		  {								\
    743		    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e			\
    744				      + _FP_FRACBITS_##fs - 1);			\
    745		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
    746		  }								\
    747	      }									\
    748	  }									\
    749	else									\
    750	  {									\
    751	    int _lz0, _lz1;							\
    752	    if (X##_e <= -_FP_WORKBITS - 1)					\
    753	      _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);				\
    754	    else								\
    755	      _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e,		\
    756				_FP_WFRACBITS_##fs);				\
    757	    _FP_FRAC_CLZ_##wc(_lz0, X);						\
    758	    _FP_ROUND(wc, X);							\
    759	    _FP_FRAC_CLZ_##wc(_lz1, X);						\
    760	    if (_lz1 < _lz0)							\
    761	      X##_e++; /* For overflow detection.  */				\
    762	    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);					\
    763	    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
    764	  }									\
    765	if (rsigned && X##_s)							\
    766	  r = -r;								\
    767	if (X##_e >= rsize - (rsigned > 0 || X##_s)				\
    768	    || (!rsigned && X##_s))						\
    769	  {	/* overflow */							\
    770	  case FP_CLS_NAN:                                                      \
    771	  case FP_CLS_INF:							\
    772	    if (!rsigned)							\
    773	      {									\
    774		r = 0;								\
    775		if (!X##_s)							\
    776		  r = ~r;							\
    777	      }									\
    778	    else if (rsigned != 2)						\
    779	      {									\
    780		r = 1;								\
    781		r <<= rsize - 1;						\
    782		r -= 1 - X##_s;							\
    783	      }									\
    784	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
    785	  }									\
    786	break;									\
    787      case FP_CLS_ZERO:								\
    788        break;									\
    789      }										\
    790  } while (0)
    791
    792#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype)			\
    793  do {									\
    794    if (r)								\
    795      {									\
    796        unsigned rtype ur_;						\
    797	X##_c = FP_CLS_NORMAL;						\
    798									\
    799	if ((X##_s = (r < 0)))						\
    800	  ur_ = (unsigned rtype) -r;					\
    801	else								\
    802	  ur_ = (unsigned rtype) r;					\
    803	(void) (((rsize) <= _FP_W_TYPE_SIZE)				\
    804		? ({ __FP_CLZ(X##_e, ur_); })				\
    805		: ({							\
    806		     __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE),  \
    807							    (_FP_W_TYPE)ur_); \
    808		  }));							\
    809	if (rsize < _FP_W_TYPE_SIZE)					\
    810		X##_e -= (_FP_W_TYPE_SIZE - rsize);			\
    811	X##_e = rsize - X##_e - 1;					\
    812									\
    813	if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs <= X##_e)	\
    814	  __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
    815	_FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize);			\
    816	if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0)			\
    817	  _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));	\
    818      }									\
    819    else								\
    820      {									\
    821	X##_c = FP_CLS_ZERO, X##_s = 0;					\
    822      }									\
    823  } while (0)
    824
    825
    826#define FP_CONV(dfs,sfs,dwc,swc,D,S)			\
    827  do {							\
    828    _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S);	\
    829    D##_e = S##_e;					\
    830    D##_c = S##_c;					\
    831    D##_s = S##_s;					\
    832  } while (0)
    833
    834/*
    835 * Helper primitives.
    836 */
    837
    838/* Count leading zeros in a word.  */
    839
    840#ifndef __FP_CLZ
    841#if _FP_W_TYPE_SIZE < 64
    842/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
    843#define __FP_CLZ(r, x)				\
    844  do {						\
    845    _FP_W_TYPE _t = (x);			\
    846    r = _FP_W_TYPE_SIZE - 1;			\
    847    if (_t > 0xffff) r -= 16;			\
    848    if (_t > 0xffff) _t >>= 16;			\
    849    if (_t > 0xff) r -= 8;			\
    850    if (_t > 0xff) _t >>= 8;			\
    851    if (_t & 0xf0) r -= 4;			\
    852    if (_t & 0xf0) _t >>= 4;			\
    853    if (_t & 0xc) r -= 2;			\
    854    if (_t & 0xc) _t >>= 2;			\
    855    if (_t & 0x2) r -= 1;			\
    856  } while (0)
    857#else /* not _FP_W_TYPE_SIZE < 64 */
    858#define __FP_CLZ(r, x)				\
    859  do {						\
    860    _FP_W_TYPE _t = (x);			\
    861    r = _FP_W_TYPE_SIZE - 1;			\
    862    if (_t > 0xffffffff) r -= 32;		\
    863    if (_t > 0xffffffff) _t >>= 32;		\
    864    if (_t > 0xffff) r -= 16;			\
    865    if (_t > 0xffff) _t >>= 16;			\
    866    if (_t > 0xff) r -= 8;			\
    867    if (_t > 0xff) _t >>= 8;			\
    868    if (_t & 0xf0) r -= 4;			\
    869    if (_t & 0xf0) _t >>= 4;			\
    870    if (_t & 0xc) r -= 2;			\
    871    if (_t & 0xc) _t >>= 2;			\
    872    if (_t & 0x2) r -= 1;			\
    873  } while (0)
    874#endif /* not _FP_W_TYPE_SIZE < 64 */
    875#endif /* ndef __FP_CLZ */
    876
    877#define _FP_DIV_HELP_imm(q, r, n, d)		\
    878  do {						\
    879    q = n / d, r = n % d;			\
    880  } while (0)
    881
    882#endif /* __MATH_EMU_OP_COMMON_H__ */