rdmavt_qp.h (28687B)
1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ 2/* 3 * Copyright(c) 2016 - 2020 Intel Corporation. 4 */ 5 6#ifndef DEF_RDMAVT_INCQP_H 7#define DEF_RDMAVT_INCQP_H 8 9#include <rdma/rdma_vt.h> 10#include <rdma/ib_pack.h> 11#include <rdma/ib_verbs.h> 12#include <rdma/rdmavt_cq.h> 13#include <rdma/rvt-abi.h> 14/* 15 * Atomic bit definitions for r_aflags. 16 */ 17#define RVT_R_WRID_VALID 0 18#define RVT_R_REWIND_SGE 1 19 20/* 21 * Bit definitions for r_flags. 22 */ 23#define RVT_R_REUSE_SGE 0x01 24#define RVT_R_RDMAR_SEQ 0x02 25#define RVT_R_RSP_NAK 0x04 26#define RVT_R_RSP_SEND 0x08 27#define RVT_R_COMM_EST 0x10 28 29/* 30 * If a packet's QP[23:16] bits match this value, then it is 31 * a PSM packet and the hardware will expect a KDETH header 32 * following the BTH. 33 */ 34#define RVT_KDETH_QP_PREFIX 0x80 35#define RVT_KDETH_QP_SUFFIX 0xffff 36#define RVT_KDETH_QP_PREFIX_MASK 0x00ff0000 37#define RVT_KDETH_QP_PREFIX_SHIFT 16 38#define RVT_KDETH_QP_BASE (u32)(RVT_KDETH_QP_PREFIX << \ 39 RVT_KDETH_QP_PREFIX_SHIFT) 40#define RVT_KDETH_QP_MAX (u32)(RVT_KDETH_QP_BASE + RVT_KDETH_QP_SUFFIX) 41 42/* 43 * If a packet's LNH == BTH and DEST QPN[23:16] in the BTH match this 44 * prefix value, then it is an AIP packet with a DETH containing the entropy 45 * value in byte 4 following the BTH. 46 */ 47#define RVT_AIP_QP_PREFIX 0x81 48#define RVT_AIP_QP_SUFFIX 0xffff 49#define RVT_AIP_QP_PREFIX_MASK 0x00ff0000 50#define RVT_AIP_QP_PREFIX_SHIFT 16 51#define RVT_AIP_QP_BASE (u32)(RVT_AIP_QP_PREFIX << \ 52 RVT_AIP_QP_PREFIX_SHIFT) 53#define RVT_AIP_QPN_MAX BIT(RVT_AIP_QP_PREFIX_SHIFT) 54#define RVT_AIP_QP_MAX (u32)(RVT_AIP_QP_BASE + RVT_AIP_QPN_MAX - 1) 55 56/* 57 * Bit definitions for s_flags. 58 * 59 * RVT_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled 60 * RVT_S_BUSY - send tasklet is processing the QP 61 * RVT_S_TIMER - the RC retry timer is active 62 * RVT_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics 63 * RVT_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs 64 * before processing the next SWQE 65 * RVT_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete 66 * before processing the next SWQE 67 * RVT_S_WAIT_RNR - waiting for RNR timeout 68 * RVT_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE 69 * RVT_S_WAIT_DMA - waiting for send DMA queue to drain before generating 70 * next send completion entry not via send DMA 71 * RVT_S_WAIT_PIO - waiting for a send buffer to be available 72 * RVT_S_WAIT_TX - waiting for a struct verbs_txreq to be available 73 * RVT_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available 74 * RVT_S_WAIT_KMEM - waiting for kernel memory to be available 75 * RVT_S_WAIT_PSN - waiting for a packet to exit the send DMA queue 76 * RVT_S_WAIT_ACK - waiting for an ACK packet before sending more requests 77 * RVT_S_SEND_ONE - send one packet, request ACK, then wait for ACK 78 * RVT_S_ECN - a BECN was queued to the send engine 79 * RVT_S_MAX_BIT_MASK - The max bit that can be used by rdmavt 80 */ 81#define RVT_S_SIGNAL_REQ_WR 0x0001 82#define RVT_S_BUSY 0x0002 83#define RVT_S_TIMER 0x0004 84#define RVT_S_RESP_PENDING 0x0008 85#define RVT_S_ACK_PENDING 0x0010 86#define RVT_S_WAIT_FENCE 0x0020 87#define RVT_S_WAIT_RDMAR 0x0040 88#define RVT_S_WAIT_RNR 0x0080 89#define RVT_S_WAIT_SSN_CREDIT 0x0100 90#define RVT_S_WAIT_DMA 0x0200 91#define RVT_S_WAIT_PIO 0x0400 92#define RVT_S_WAIT_TX 0x0800 93#define RVT_S_WAIT_DMA_DESC 0x1000 94#define RVT_S_WAIT_KMEM 0x2000 95#define RVT_S_WAIT_PSN 0x4000 96#define RVT_S_WAIT_ACK 0x8000 97#define RVT_S_SEND_ONE 0x10000 98#define RVT_S_UNLIMITED_CREDIT 0x20000 99#define RVT_S_ECN 0x40000 100#define RVT_S_MAX_BIT_MASK 0x800000 101 102/* 103 * Drivers should use s_flags starting with bit 31 down to the bit next to 104 * RVT_S_MAX_BIT_MASK 105 */ 106 107/* 108 * Wait flags that would prevent any packet type from being sent. 109 */ 110#define RVT_S_ANY_WAIT_IO \ 111 (RVT_S_WAIT_PIO | RVT_S_WAIT_TX | \ 112 RVT_S_WAIT_DMA_DESC | RVT_S_WAIT_KMEM) 113 114/* 115 * Wait flags that would prevent send work requests from making progress. 116 */ 117#define RVT_S_ANY_WAIT_SEND (RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR | \ 118 RVT_S_WAIT_RNR | RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_DMA | \ 119 RVT_S_WAIT_PSN | RVT_S_WAIT_ACK) 120 121#define RVT_S_ANY_WAIT (RVT_S_ANY_WAIT_IO | RVT_S_ANY_WAIT_SEND) 122 123/* Number of bits to pay attention to in the opcode for checking qp type */ 124#define RVT_OPCODE_QP_MASK 0xE0 125 126/* Flags for checking QP state (see ib_rvt_state_ops[]) */ 127#define RVT_POST_SEND_OK 0x01 128#define RVT_POST_RECV_OK 0x02 129#define RVT_PROCESS_RECV_OK 0x04 130#define RVT_PROCESS_SEND_OK 0x08 131#define RVT_PROCESS_NEXT_SEND_OK 0x10 132#define RVT_FLUSH_SEND 0x20 133#define RVT_FLUSH_RECV 0x40 134#define RVT_PROCESS_OR_FLUSH_SEND \ 135 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND) 136#define RVT_SEND_OR_FLUSH_OR_RECV_OK \ 137 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND | RVT_PROCESS_RECV_OK) 138 139/* 140 * Internal send flags 141 */ 142#define RVT_SEND_RESERVE_USED IB_SEND_RESERVED_START 143#define RVT_SEND_COMPLETION_ONLY (IB_SEND_RESERVED_START << 1) 144 145/** 146 * rvt_ud_wr - IB UD work plus AH cache 147 * @wr: valid IB work request 148 * @attr: pointer to an allocated AH attribute 149 * 150 * Special case the UD WR so we can keep track of the AH attributes. 151 * 152 * NOTE: This data structure is stricly ordered wr then attr. I.e the attr 153 * MUST come after wr. The ib_ud_wr is sized and copied in rvt_post_one_wr. 154 * The copy assumes that wr is first. 155 */ 156struct rvt_ud_wr { 157 struct ib_ud_wr wr; 158 struct rdma_ah_attr *attr; 159}; 160 161/* 162 * Send work request queue entry. 163 * The size of the sg_list is determined when the QP is created and stored 164 * in qp->s_max_sge. 165 */ 166struct rvt_swqe { 167 union { 168 struct ib_send_wr wr; /* don't use wr.sg_list */ 169 struct rvt_ud_wr ud_wr; 170 struct ib_reg_wr reg_wr; 171 struct ib_rdma_wr rdma_wr; 172 struct ib_atomic_wr atomic_wr; 173 }; 174 u32 psn; /* first packet sequence number */ 175 u32 lpsn; /* last packet sequence number */ 176 u32 ssn; /* send sequence number */ 177 u32 length; /* total length of data in sg_list */ 178 void *priv; /* driver dependent field */ 179 struct rvt_sge sg_list[]; 180}; 181 182/** 183 * struct rvt_krwq - kernel struct receive work request 184 * @p_lock: lock to protect producer of the kernel buffer 185 * @head: index of next entry to fill 186 * @c_lock:lock to protect consumer of the kernel buffer 187 * @tail: index of next entry to pull 188 * @count: count is aproximate of total receive enteries posted 189 * @rvt_rwqe: struct of receive work request queue entry 190 * 191 * This structure is used to contain the head pointer, 192 * tail pointer and receive work queue entries for kernel 193 * mode user. 194 */ 195struct rvt_krwq { 196 spinlock_t p_lock; /* protect producer */ 197 u32 head; /* new work requests posted to the head */ 198 199 /* protect consumer */ 200 spinlock_t c_lock ____cacheline_aligned_in_smp; 201 u32 tail; /* receives pull requests from here. */ 202 u32 count; /* approx count of receive entries posted */ 203 struct rvt_rwqe *curr_wq; 204 struct rvt_rwqe wq[]; 205}; 206 207/* 208 * rvt_get_swqe_ah - Return the pointer to the struct rvt_ah 209 * @swqe: valid Send WQE 210 * 211 */ 212static inline struct rvt_ah *rvt_get_swqe_ah(struct rvt_swqe *swqe) 213{ 214 return ibah_to_rvtah(swqe->ud_wr.wr.ah); 215} 216 217/** 218 * rvt_get_swqe_ah_attr - Return the cached ah attribute information 219 * @swqe: valid Send WQE 220 * 221 */ 222static inline struct rdma_ah_attr *rvt_get_swqe_ah_attr(struct rvt_swqe *swqe) 223{ 224 return swqe->ud_wr.attr; 225} 226 227/** 228 * rvt_get_swqe_remote_qpn - Access the remote QPN value 229 * @swqe: valid Send WQE 230 * 231 */ 232static inline u32 rvt_get_swqe_remote_qpn(struct rvt_swqe *swqe) 233{ 234 return swqe->ud_wr.wr.remote_qpn; 235} 236 237/** 238 * rvt_get_swqe_remote_qkey - Acces the remote qkey value 239 * @swqe: valid Send WQE 240 * 241 */ 242static inline u32 rvt_get_swqe_remote_qkey(struct rvt_swqe *swqe) 243{ 244 return swqe->ud_wr.wr.remote_qkey; 245} 246 247/** 248 * rvt_get_swqe_pkey_index - Access the pkey index 249 * @swqe: valid Send WQE 250 * 251 */ 252static inline u16 rvt_get_swqe_pkey_index(struct rvt_swqe *swqe) 253{ 254 return swqe->ud_wr.wr.pkey_index; 255} 256 257struct rvt_rq { 258 struct rvt_rwq *wq; 259 struct rvt_krwq *kwq; 260 u32 size; /* size of RWQE array */ 261 u8 max_sge; 262 /* protect changes in this struct */ 263 spinlock_t lock ____cacheline_aligned_in_smp; 264}; 265 266/** 267 * rvt_get_rq_count - count numbers of request work queue entries 268 * in circular buffer 269 * @rq: data structure for request queue entry 270 * @head: head indices of the circular buffer 271 * @tail: tail indices of the circular buffer 272 * 273 * Return - total number of entries in the Receive Queue 274 */ 275 276static inline u32 rvt_get_rq_count(struct rvt_rq *rq, u32 head, u32 tail) 277{ 278 u32 count = head - tail; 279 280 if ((s32)count < 0) 281 count += rq->size; 282 return count; 283} 284 285/* 286 * This structure holds the information that the send tasklet needs 287 * to send a RDMA read response or atomic operation. 288 */ 289struct rvt_ack_entry { 290 struct rvt_sge rdma_sge; 291 u64 atomic_data; 292 u32 psn; 293 u32 lpsn; 294 u8 opcode; 295 u8 sent; 296 void *priv; 297}; 298 299#define RC_QP_SCALING_INTERVAL 5 300 301#define RVT_OPERATION_PRIV 0x00000001 302#define RVT_OPERATION_ATOMIC 0x00000002 303#define RVT_OPERATION_ATOMIC_SGE 0x00000004 304#define RVT_OPERATION_LOCAL 0x00000008 305#define RVT_OPERATION_USE_RESERVE 0x00000010 306#define RVT_OPERATION_IGN_RNR_CNT 0x00000020 307 308#define RVT_OPERATION_MAX (IB_WR_RESERVED10 + 1) 309 310/** 311 * rvt_operation_params - op table entry 312 * @length - the length to copy into the swqe entry 313 * @qpt_support - a bit mask indicating QP type support 314 * @flags - RVT_OPERATION flags (see above) 315 * 316 * This supports table driven post send so that 317 * the driver can have differing an potentially 318 * different sets of operations. 319 * 320 **/ 321 322struct rvt_operation_params { 323 size_t length; 324 u32 qpt_support; 325 u32 flags; 326}; 327 328/* 329 * Common variables are protected by both r_rq.lock and s_lock in that order 330 * which only happens in modify_qp() or changing the QP 'state'. 331 */ 332struct rvt_qp { 333 struct ib_qp ibqp; 334 void *priv; /* Driver private data */ 335 /* read mostly fields above and below */ 336 struct rdma_ah_attr remote_ah_attr; 337 struct rdma_ah_attr alt_ah_attr; 338 struct rvt_qp __rcu *next; /* link list for QPN hash table */ 339 struct rvt_swqe *s_wq; /* send work queue */ 340 struct rvt_mmap_info *ip; 341 342 unsigned long timeout_jiffies; /* computed from timeout */ 343 344 int srate_mbps; /* s_srate (below) converted to Mbit/s */ 345 pid_t pid; /* pid for user mode QPs */ 346 u32 remote_qpn; 347 u32 qkey; /* QKEY for this QP (for UD or RD) */ 348 u32 s_size; /* send work queue size */ 349 350 u16 pmtu; /* decoded from path_mtu */ 351 u8 log_pmtu; /* shift for pmtu */ 352 u8 state; /* QP state */ 353 u8 allowed_ops; /* high order bits of allowed opcodes */ 354 u8 qp_access_flags; 355 u8 alt_timeout; /* Alternate path timeout for this QP */ 356 u8 timeout; /* Timeout for this QP */ 357 u8 s_srate; 358 u8 s_mig_state; 359 u8 port_num; 360 u8 s_pkey_index; /* PKEY index to use */ 361 u8 s_alt_pkey_index; /* Alternate path PKEY index to use */ 362 u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */ 363 u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */ 364 u8 s_retry_cnt; /* number of times to retry */ 365 u8 s_rnr_retry_cnt; 366 u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */ 367 u8 s_max_sge; /* size of s_wq->sg_list */ 368 u8 s_draining; 369 370 /* start of read/write fields */ 371 atomic_t refcount ____cacheline_aligned_in_smp; 372 wait_queue_head_t wait; 373 374 struct rvt_ack_entry *s_ack_queue; 375 struct rvt_sge_state s_rdma_read_sge; 376 377 spinlock_t r_lock ____cacheline_aligned_in_smp; /* used for APM */ 378 u32 r_psn; /* expected rcv packet sequence number */ 379 unsigned long r_aflags; 380 u64 r_wr_id; /* ID for current receive WQE */ 381 u32 r_ack_psn; /* PSN for next ACK or atomic ACK */ 382 u32 r_len; /* total length of r_sge */ 383 u32 r_rcv_len; /* receive data len processed */ 384 u32 r_msn; /* message sequence number */ 385 386 u8 r_state; /* opcode of last packet received */ 387 u8 r_flags; 388 u8 r_head_ack_queue; /* index into s_ack_queue[] */ 389 u8 r_adefered; /* defered ack count */ 390 391 struct list_head rspwait; /* link for waiting to respond */ 392 393 struct rvt_sge_state r_sge; /* current receive data */ 394 struct rvt_rq r_rq; /* receive work queue */ 395 396 /* post send line */ 397 spinlock_t s_hlock ____cacheline_aligned_in_smp; 398 u32 s_head; /* new entries added here */ 399 u32 s_next_psn; /* PSN for next request */ 400 u32 s_avail; /* number of entries avail */ 401 u32 s_ssn; /* SSN of tail entry */ 402 atomic_t s_reserved_used; /* reserved entries in use */ 403 404 spinlock_t s_lock ____cacheline_aligned_in_smp; 405 u32 s_flags; 406 struct rvt_sge_state *s_cur_sge; 407 struct rvt_swqe *s_wqe; 408 struct rvt_sge_state s_sge; /* current send request data */ 409 struct rvt_mregion *s_rdma_mr; 410 u32 s_len; /* total length of s_sge */ 411 u32 s_rdma_read_len; /* total length of s_rdma_read_sge */ 412 u32 s_last_psn; /* last response PSN processed */ 413 u32 s_sending_psn; /* lowest PSN that is being sent */ 414 u32 s_sending_hpsn; /* highest PSN that is being sent */ 415 u32 s_psn; /* current packet sequence number */ 416 u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */ 417 u32 s_ack_psn; /* PSN for acking sends and RDMA writes */ 418 u32 s_tail; /* next entry to process */ 419 u32 s_cur; /* current work queue entry */ 420 u32 s_acked; /* last un-ACK'ed entry */ 421 u32 s_last; /* last completed entry */ 422 u32 s_lsn; /* limit sequence number (credit) */ 423 u32 s_ahgpsn; /* set to the psn in the copy of the header */ 424 u16 s_cur_size; /* size of send packet in bytes */ 425 u16 s_rdma_ack_cnt; 426 u8 s_hdrwords; /* size of s_hdr in 32 bit words */ 427 s8 s_ahgidx; 428 u8 s_state; /* opcode of last packet sent */ 429 u8 s_ack_state; /* opcode of packet to ACK */ 430 u8 s_nak_state; /* non-zero if NAK is pending */ 431 u8 r_nak_state; /* non-zero if NAK is pending */ 432 u8 s_retry; /* requester retry counter */ 433 u8 s_rnr_retry; /* requester RNR retry counter */ 434 u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */ 435 u8 s_tail_ack_queue; /* index into s_ack_queue[] */ 436 u8 s_acked_ack_queue; /* index into s_ack_queue[] */ 437 438 struct rvt_sge_state s_ack_rdma_sge; 439 struct timer_list s_timer; 440 struct hrtimer s_rnr_timer; 441 442 atomic_t local_ops_pending; /* number of fast_reg/local_inv reqs */ 443 444 /* 445 * This sge list MUST be last. Do not add anything below here. 446 */ 447 struct rvt_sge *r_sg_list /* verified SGEs */ 448 ____cacheline_aligned_in_smp; 449}; 450 451struct rvt_srq { 452 struct ib_srq ibsrq; 453 struct rvt_rq rq; 454 struct rvt_mmap_info *ip; 455 /* send signal when number of RWQEs < limit */ 456 u32 limit; 457}; 458 459static inline struct rvt_srq *ibsrq_to_rvtsrq(struct ib_srq *ibsrq) 460{ 461 return container_of(ibsrq, struct rvt_srq, ibsrq); 462} 463 464static inline struct rvt_qp *ibqp_to_rvtqp(struct ib_qp *ibqp) 465{ 466 return container_of(ibqp, struct rvt_qp, ibqp); 467} 468 469#define RVT_QPN_MAX BIT(24) 470#define RVT_QPNMAP_ENTRIES (RVT_QPN_MAX / PAGE_SIZE / BITS_PER_BYTE) 471#define RVT_BITS_PER_PAGE (PAGE_SIZE * BITS_PER_BYTE) 472#define RVT_BITS_PER_PAGE_MASK (RVT_BITS_PER_PAGE - 1) 473#define RVT_QPN_MASK IB_QPN_MASK 474 475/* 476 * QPN-map pages start out as NULL, they get allocated upon 477 * first use and are never deallocated. This way, 478 * large bitmaps are not allocated unless large numbers of QPs are used. 479 */ 480struct rvt_qpn_map { 481 void *page; 482}; 483 484struct rvt_qpn_table { 485 spinlock_t lock; /* protect changes to the qp table */ 486 unsigned flags; /* flags for QP0/1 allocated for each port */ 487 u32 last; /* last QP number allocated */ 488 u32 nmaps; /* size of the map table */ 489 u16 limit; 490 u8 incr; 491 /* bit map of free QP numbers other than 0/1 */ 492 struct rvt_qpn_map map[RVT_QPNMAP_ENTRIES]; 493}; 494 495struct rvt_qp_ibdev { 496 u32 qp_table_size; 497 u32 qp_table_bits; 498 struct rvt_qp __rcu **qp_table; 499 spinlock_t qpt_lock; /* qptable lock */ 500 struct rvt_qpn_table qpn_table; 501}; 502 503/* 504 * There is one struct rvt_mcast for each multicast GID. 505 * All attached QPs are then stored as a list of 506 * struct rvt_mcast_qp. 507 */ 508struct rvt_mcast_qp { 509 struct list_head list; 510 struct rvt_qp *qp; 511}; 512 513struct rvt_mcast_addr { 514 union ib_gid mgid; 515 u16 lid; 516}; 517 518struct rvt_mcast { 519 struct rb_node rb_node; 520 struct rvt_mcast_addr mcast_addr; 521 struct list_head qp_list; 522 wait_queue_head_t wait; 523 atomic_t refcount; 524 int n_attached; 525}; 526 527/* 528 * Since struct rvt_swqe is not a fixed size, we can't simply index into 529 * struct rvt_qp.s_wq. This function does the array index computation. 530 */ 531static inline struct rvt_swqe *rvt_get_swqe_ptr(struct rvt_qp *qp, 532 unsigned n) 533{ 534 return (struct rvt_swqe *)((char *)qp->s_wq + 535 (sizeof(struct rvt_swqe) + 536 qp->s_max_sge * 537 sizeof(struct rvt_sge)) * n); 538} 539 540/* 541 * Since struct rvt_rwqe is not a fixed size, we can't simply index into 542 * struct rvt_rwq.wq. This function does the array index computation. 543 */ 544static inline struct rvt_rwqe *rvt_get_rwqe_ptr(struct rvt_rq *rq, unsigned n) 545{ 546 return (struct rvt_rwqe *) 547 ((char *)rq->kwq->curr_wq + 548 (sizeof(struct rvt_rwqe) + 549 rq->max_sge * sizeof(struct ib_sge)) * n); 550} 551 552/** 553 * rvt_is_user_qp - return if this is user mode QP 554 * @qp - the target QP 555 */ 556static inline bool rvt_is_user_qp(struct rvt_qp *qp) 557{ 558 return !!qp->pid; 559} 560 561/** 562 * rvt_get_qp - get a QP reference 563 * @qp - the QP to hold 564 */ 565static inline void rvt_get_qp(struct rvt_qp *qp) 566{ 567 atomic_inc(&qp->refcount); 568} 569 570/** 571 * rvt_put_qp - release a QP reference 572 * @qp - the QP to release 573 */ 574static inline void rvt_put_qp(struct rvt_qp *qp) 575{ 576 if (qp && atomic_dec_and_test(&qp->refcount)) 577 wake_up(&qp->wait); 578} 579 580/** 581 * rvt_put_swqe - drop mr refs held by swqe 582 * @wqe - the send wqe 583 * 584 * This drops any mr references held by the swqe 585 */ 586static inline void rvt_put_swqe(struct rvt_swqe *wqe) 587{ 588 int i; 589 590 for (i = 0; i < wqe->wr.num_sge; i++) { 591 struct rvt_sge *sge = &wqe->sg_list[i]; 592 593 rvt_put_mr(sge->mr); 594 } 595} 596 597/** 598 * rvt_qp_wqe_reserve - reserve operation 599 * @qp - the rvt qp 600 * @wqe - the send wqe 601 * 602 * This routine used in post send to record 603 * a wqe relative reserved operation use. 604 */ 605static inline void rvt_qp_wqe_reserve( 606 struct rvt_qp *qp, 607 struct rvt_swqe *wqe) 608{ 609 atomic_inc(&qp->s_reserved_used); 610} 611 612/** 613 * rvt_qp_wqe_unreserve - clean reserved operation 614 * @qp - the rvt qp 615 * @flags - send wqe flags 616 * 617 * This decrements the reserve use count. 618 * 619 * This call MUST precede the change to 620 * s_last to insure that post send sees a stable 621 * s_avail. 622 * 623 * An smp_mp__after_atomic() is used to insure 624 * the compiler does not juggle the order of the s_last 625 * ring index and the decrementing of s_reserved_used. 626 */ 627static inline void rvt_qp_wqe_unreserve(struct rvt_qp *qp, int flags) 628{ 629 if (unlikely(flags & RVT_SEND_RESERVE_USED)) { 630 atomic_dec(&qp->s_reserved_used); 631 /* insure no compiler re-order up to s_last change */ 632 smp_mb__after_atomic(); 633 } 634} 635 636extern const enum ib_wc_opcode ib_rvt_wc_opcode[]; 637 638/* 639 * Compare the lower 24 bits of the msn values. 640 * Returns an integer <, ==, or > than zero. 641 */ 642static inline int rvt_cmp_msn(u32 a, u32 b) 643{ 644 return (((int)a) - ((int)b)) << 8; 645} 646 647__be32 rvt_compute_aeth(struct rvt_qp *qp); 648 649void rvt_get_credit(struct rvt_qp *qp, u32 aeth); 650 651u32 rvt_restart_sge(struct rvt_sge_state *ss, struct rvt_swqe *wqe, u32 len); 652 653/** 654 * rvt_div_round_up_mtu - round up divide 655 * @qp - the qp pair 656 * @len - the length 657 * 658 * Perform a shift based mtu round up divide 659 */ 660static inline u32 rvt_div_round_up_mtu(struct rvt_qp *qp, u32 len) 661{ 662 return (len + qp->pmtu - 1) >> qp->log_pmtu; 663} 664 665/** 666 * @qp - the qp pair 667 * @len - the length 668 * 669 * Perform a shift based mtu divide 670 */ 671static inline u32 rvt_div_mtu(struct rvt_qp *qp, u32 len) 672{ 673 return len >> qp->log_pmtu; 674} 675 676/** 677 * rvt_timeout_to_jiffies - Convert a ULP timeout input into jiffies 678 * @timeout - timeout input(0 - 31). 679 * 680 * Return a timeout value in jiffies. 681 */ 682static inline unsigned long rvt_timeout_to_jiffies(u8 timeout) 683{ 684 if (timeout > 31) 685 timeout = 31; 686 687 return usecs_to_jiffies(1U << timeout) * 4096UL / 1000UL; 688} 689 690/** 691 * rvt_lookup_qpn - return the QP with the given QPN 692 * @ibp: the ibport 693 * @qpn: the QP number to look up 694 * 695 * The caller must hold the rcu_read_lock(), and keep the lock until 696 * the returned qp is no longer in use. 697 */ 698static inline struct rvt_qp *rvt_lookup_qpn(struct rvt_dev_info *rdi, 699 struct rvt_ibport *rvp, 700 u32 qpn) __must_hold(RCU) 701{ 702 struct rvt_qp *qp = NULL; 703 704 if (unlikely(qpn <= 1)) { 705 qp = rcu_dereference(rvp->qp[qpn]); 706 } else { 707 u32 n = hash_32(qpn, rdi->qp_dev->qp_table_bits); 708 709 for (qp = rcu_dereference(rdi->qp_dev->qp_table[n]); qp; 710 qp = rcu_dereference(qp->next)) 711 if (qp->ibqp.qp_num == qpn) 712 break; 713 } 714 return qp; 715} 716 717/** 718 * rvt_mod_retry_timer - mod a retry timer 719 * @qp - the QP 720 * @shift - timeout shift to wait for multiple packets 721 * Modify a potentially already running retry timer 722 */ 723static inline void rvt_mod_retry_timer_ext(struct rvt_qp *qp, u8 shift) 724{ 725 struct ib_qp *ibqp = &qp->ibqp; 726 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 727 728 lockdep_assert_held(&qp->s_lock); 729 qp->s_flags |= RVT_S_TIMER; 730 /* 4.096 usec. * (1 << qp->timeout) */ 731 mod_timer(&qp->s_timer, jiffies + rdi->busy_jiffies + 732 (qp->timeout_jiffies << shift)); 733} 734 735static inline void rvt_mod_retry_timer(struct rvt_qp *qp) 736{ 737 return rvt_mod_retry_timer_ext(qp, 0); 738} 739 740/** 741 * rvt_put_qp_swqe - drop refs held by swqe 742 * @qp: the send qp 743 * @wqe: the send wqe 744 * 745 * This drops any references held by the swqe 746 */ 747static inline void rvt_put_qp_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe) 748{ 749 rvt_put_swqe(wqe); 750 if (qp->allowed_ops == IB_OPCODE_UD) 751 rdma_destroy_ah_attr(wqe->ud_wr.attr); 752} 753 754/** 755 * rvt_qp_sqwe_incr - increment ring index 756 * @qp: the qp 757 * @val: the starting value 758 * 759 * Return: the new value wrapping as appropriate 760 */ 761static inline u32 762rvt_qp_swqe_incr(struct rvt_qp *qp, u32 val) 763{ 764 if (++val >= qp->s_size) 765 val = 0; 766 return val; 767} 768 769int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err); 770 771/** 772 * rvt_recv_cq - add a new entry to completion queue 773 * by receive queue 774 * @qp: receive queue 775 * @wc: work completion entry to add 776 * @solicited: true if @entry is solicited 777 * 778 * This is wrapper function for rvt_enter_cq function call by 779 * receive queue. If rvt_cq_enter return false, it means cq is 780 * full and the qp is put into error state. 781 */ 782static inline void rvt_recv_cq(struct rvt_qp *qp, struct ib_wc *wc, 783 bool solicited) 784{ 785 struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.recv_cq); 786 787 if (unlikely(!rvt_cq_enter(cq, wc, solicited))) 788 rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR); 789} 790 791/** 792 * rvt_send_cq - add a new entry to completion queue 793 * by send queue 794 * @qp: send queue 795 * @wc: work completion entry to add 796 * @solicited: true if @entry is solicited 797 * 798 * This is wrapper function for rvt_enter_cq function call by 799 * send queue. If rvt_cq_enter return false, it means cq is 800 * full and the qp is put into error state. 801 */ 802static inline void rvt_send_cq(struct rvt_qp *qp, struct ib_wc *wc, 803 bool solicited) 804{ 805 struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.send_cq); 806 807 if (unlikely(!rvt_cq_enter(cq, wc, solicited))) 808 rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR); 809} 810 811/** 812 * rvt_qp_complete_swqe - insert send completion 813 * @qp - the qp 814 * @wqe - the send wqe 815 * @opcode - wc operation (driver dependent) 816 * @status - completion status 817 * 818 * Update the s_last information, and then insert a send 819 * completion into the completion 820 * queue if the qp indicates it should be done. 821 * 822 * See IBTA 10.7.3.1 for info on completion 823 * control. 824 * 825 * Return: new last 826 */ 827static inline u32 828rvt_qp_complete_swqe(struct rvt_qp *qp, 829 struct rvt_swqe *wqe, 830 enum ib_wc_opcode opcode, 831 enum ib_wc_status status) 832{ 833 bool need_completion; 834 u64 wr_id; 835 u32 byte_len, last; 836 int flags = wqe->wr.send_flags; 837 838 rvt_qp_wqe_unreserve(qp, flags); 839 rvt_put_qp_swqe(qp, wqe); 840 841 need_completion = 842 !(flags & RVT_SEND_RESERVE_USED) && 843 (!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) || 844 (flags & IB_SEND_SIGNALED) || 845 status != IB_WC_SUCCESS); 846 if (need_completion) { 847 wr_id = wqe->wr.wr_id; 848 byte_len = wqe->length; 849 /* above fields required before writing s_last */ 850 } 851 last = rvt_qp_swqe_incr(qp, qp->s_last); 852 /* see rvt_qp_is_avail() */ 853 smp_store_release(&qp->s_last, last); 854 if (need_completion) { 855 struct ib_wc w = { 856 .wr_id = wr_id, 857 .status = status, 858 .opcode = opcode, 859 .qp = &qp->ibqp, 860 .byte_len = byte_len, 861 }; 862 rvt_send_cq(qp, &w, status != IB_WC_SUCCESS); 863 } 864 return last; 865} 866 867extern const int ib_rvt_state_ops[]; 868 869struct rvt_dev_info; 870int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only); 871void rvt_comm_est(struct rvt_qp *qp); 872void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err); 873unsigned long rvt_rnr_tbl_to_usec(u32 index); 874enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t); 875void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth); 876void rvt_del_timers_sync(struct rvt_qp *qp); 877void rvt_stop_rc_timers(struct rvt_qp *qp); 878void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift); 879static inline void rvt_add_retry_timer(struct rvt_qp *qp) 880{ 881 rvt_add_retry_timer_ext(qp, 0); 882} 883 884void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 885 void *data, u32 length, 886 bool release, bool copy_last); 887void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 888 enum ib_wc_status status); 889void rvt_ruc_loopback(struct rvt_qp *qp); 890 891/** 892 * struct rvt_qp_iter - the iterator for QPs 893 * @qp - the current QP 894 * 895 * This structure defines the current iterator 896 * state for sequenced access to all QPs relative 897 * to an rvt_dev_info. 898 */ 899struct rvt_qp_iter { 900 struct rvt_qp *qp; 901 /* private: backpointer */ 902 struct rvt_dev_info *rdi; 903 /* private: callback routine */ 904 void (*cb)(struct rvt_qp *qp, u64 v); 905 /* private: for arg to callback routine */ 906 u64 v; 907 /* private: number of SMI,GSI QPs for device */ 908 int specials; 909 /* private: current iterator index */ 910 int n; 911}; 912 913/** 914 * ib_cq_tail - Return tail index of cq buffer 915 * @send_cq - The cq for send 916 * 917 * This is called in qp_iter_print to get tail 918 * of cq buffer. 919 */ 920static inline u32 ib_cq_tail(struct ib_cq *send_cq) 921{ 922 struct rvt_cq *cq = ibcq_to_rvtcq(send_cq); 923 924 return ibcq_to_rvtcq(send_cq)->ip ? 925 RDMA_READ_UAPI_ATOMIC(cq->queue->tail) : 926 ibcq_to_rvtcq(send_cq)->kqueue->tail; 927} 928 929/** 930 * ib_cq_head - Return head index of cq buffer 931 * @send_cq - The cq for send 932 * 933 * This is called in qp_iter_print to get head 934 * of cq buffer. 935 */ 936static inline u32 ib_cq_head(struct ib_cq *send_cq) 937{ 938 struct rvt_cq *cq = ibcq_to_rvtcq(send_cq); 939 940 return ibcq_to_rvtcq(send_cq)->ip ? 941 RDMA_READ_UAPI_ATOMIC(cq->queue->head) : 942 ibcq_to_rvtcq(send_cq)->kqueue->head; 943} 944 945/** 946 * rvt_free_rq - free memory allocated for rvt_rq struct 947 * @rvt_rq: request queue data structure 948 * 949 * This function should only be called if the rvt_mmap_info() 950 * has not succeeded. 951 */ 952static inline void rvt_free_rq(struct rvt_rq *rq) 953{ 954 kvfree(rq->kwq); 955 rq->kwq = NULL; 956 vfree(rq->wq); 957 rq->wq = NULL; 958} 959 960/** 961 * rvt_to_iport - Get the ibport pointer 962 * @qp: the qp pointer 963 * 964 * This function returns the ibport pointer from the qp pointer. 965 */ 966static inline struct rvt_ibport *rvt_to_iport(struct rvt_qp *qp) 967{ 968 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 969 970 return rdi->ports[qp->port_num - 1]; 971} 972 973/** 974 * rvt_rc_credit_avail - Check if there are enough RC credits for the request 975 * @qp: the qp 976 * @wqe: the request 977 * 978 * This function returns false when there are not enough credits for the given 979 * request and true otherwise. 980 */ 981static inline bool rvt_rc_credit_avail(struct rvt_qp *qp, struct rvt_swqe *wqe) 982{ 983 lockdep_assert_held(&qp->s_lock); 984 if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT) && 985 rvt_cmp_msn(wqe->ssn, qp->s_lsn + 1) > 0) { 986 struct rvt_ibport *rvp = rvt_to_iport(qp); 987 988 qp->s_flags |= RVT_S_WAIT_SSN_CREDIT; 989 rvp->n_rc_crwaits++; 990 return false; 991 } 992 return true; 993} 994 995struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 996 u64 v, 997 void (*cb)(struct rvt_qp *qp, u64 v)); 998int rvt_qp_iter_next(struct rvt_qp_iter *iter); 999void rvt_qp_iter(struct rvt_dev_info *rdi, 1000 u64 v, 1001 void (*cb)(struct rvt_qp *qp, u64 v)); 1002void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey); 1003#endif /* DEF_RDMAVT_INCQP_H */