cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

qman.h (43480B)


      1/* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
      2 *
      3 * Redistribution and use in source and binary forms, with or without
      4 * modification, are permitted provided that the following conditions are met:
      5 *     * Redistributions of source code must retain the above copyright
      6 *	 notice, this list of conditions and the following disclaimer.
      7 *     * Redistributions in binary form must reproduce the above copyright
      8 *	 notice, this list of conditions and the following disclaimer in the
      9 *	 documentation and/or other materials provided with the distribution.
     10 *     * Neither the name of Freescale Semiconductor nor the
     11 *	 names of its contributors may be used to endorse or promote products
     12 *	 derived from this software without specific prior written permission.
     13 *
     14 * ALTERNATIVELY, this software may be distributed under the terms of the
     15 * GNU General Public License ("GPL") as published by the Free Software
     16 * Foundation, either version 2 of that License or (at your option) any
     17 * later version.
     18 *
     19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
     20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
     23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 */
     30
     31#ifndef __FSL_QMAN_H
     32#define __FSL_QMAN_H
     33
     34#include <linux/bitops.h>
     35#include <linux/device.h>
     36
     37/* Hardware constants */
     38#define QM_CHANNEL_SWPORTAL0 0
     39#define QMAN_CHANNEL_POOL1 0x21
     40#define QMAN_CHANNEL_CAAM 0x80
     41#define QMAN_CHANNEL_POOL1_REV3 0x401
     42#define QMAN_CHANNEL_CAAM_REV3 0x840
     43extern u16 qm_channel_pool1;
     44extern u16 qm_channel_caam;
     45
     46/* Portal processing (interrupt) sources */
     47#define QM_PIRQ_CSCI	0x00100000	/* Congestion State Change */
     48#define QM_PIRQ_EQCI	0x00080000	/* Enqueue Command Committed */
     49#define QM_PIRQ_EQRI	0x00040000	/* EQCR Ring (below threshold) */
     50#define QM_PIRQ_DQRI	0x00020000	/* DQRR Ring (non-empty) */
     51#define QM_PIRQ_MRI	0x00010000	/* MR Ring (non-empty) */
     52/*
     53 * This mask contains all the interrupt sources that need handling except DQRI,
     54 * ie. that if present should trigger slow-path processing.
     55 */
     56#define QM_PIRQ_SLOW	(QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
     57			 QM_PIRQ_MRI)
     58
     59/* For qman_static_dequeue_*** APIs */
     60#define QM_SDQCR_CHANNELS_POOL_MASK	0x00007fff
     61/* for n in [1,15] */
     62#define QM_SDQCR_CHANNELS_POOL(n)	(0x00008000 >> (n))
     63/* for conversion from n of qm_channel */
     64static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
     65{
     66	return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
     67}
     68
     69/* --- QMan data structures (and associated constants) --- */
     70
     71/* "Frame Descriptor (FD)" */
     72struct qm_fd {
     73	union {
     74		struct {
     75			u8 cfg8b_w1;
     76			u8 bpid;	/* Buffer Pool ID */
     77			u8 cfg8b_w3;
     78			u8 addr_hi;	/* high 8-bits of 40-bit address */
     79			__be32 addr_lo;	/* low 32-bits of 40-bit address */
     80		} __packed;
     81		__be64 data;
     82	};
     83	__be32 cfg;	/* format, offset, length / congestion */
     84	union {
     85		__be32 cmd;
     86		__be32 status;
     87	};
     88} __aligned(8);
     89
     90#define QM_FD_FORMAT_SG		BIT(31)
     91#define QM_FD_FORMAT_LONG	BIT(30)
     92#define QM_FD_FORMAT_COMPOUND	BIT(29)
     93#define QM_FD_FORMAT_MASK	GENMASK(31, 29)
     94#define QM_FD_OFF_SHIFT		20
     95#define QM_FD_OFF_MASK		GENMASK(28, 20)
     96#define QM_FD_LEN_MASK		GENMASK(19, 0)
     97#define QM_FD_LEN_BIG_MASK	GENMASK(28, 0)
     98
     99enum qm_fd_format {
    100	/*
    101	 * 'contig' implies a contiguous buffer, whereas 'sg' implies a
    102	 * scatter-gather table. 'big' implies a 29-bit length with no offset
    103	 * field, otherwise length is 20-bit and offset is 9-bit. 'compound'
    104	 * implies a s/g-like table, where each entry itself represents a frame
    105	 * (contiguous or scatter-gather) and the 29-bit "length" is
    106	 * interpreted purely for congestion calculations, ie. a "congestion
    107	 * weight".
    108	 */
    109	qm_fd_contig = 0,
    110	qm_fd_contig_big = QM_FD_FORMAT_LONG,
    111	qm_fd_sg = QM_FD_FORMAT_SG,
    112	qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
    113	qm_fd_compound = QM_FD_FORMAT_COMPOUND
    114};
    115
    116static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
    117{
    118	return be64_to_cpu(fd->data) & 0xffffffffffLLU;
    119}
    120
    121static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
    122{
    123	return be64_to_cpu(fd->data) & 0xffffffffffLLU;
    124}
    125
    126static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr)
    127{
    128	fd->addr_hi = upper_32_bits(addr);
    129	fd->addr_lo = cpu_to_be32(lower_32_bits(addr));
    130}
    131
    132/*
    133 * The 'format' field indicates the interpretation of the remaining
    134 * 29 bits of the 32-bit word.
    135 * If 'format' is _contig or _sg, 20b length and 9b offset.
    136 * If 'format' is _contig_big or _sg_big, 29b length.
    137 * If 'format' is _compound, 29b "congestion weight".
    138 */
    139static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd)
    140{
    141	return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK;
    142}
    143
    144static inline int qm_fd_get_offset(const struct qm_fd *fd)
    145{
    146	return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT;
    147}
    148
    149static inline int qm_fd_get_length(const struct qm_fd *fd)
    150{
    151	return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK;
    152}
    153
    154static inline int qm_fd_get_len_big(const struct qm_fd *fd)
    155{
    156	return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK;
    157}
    158
    159static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt,
    160				   int off, int len)
    161{
    162	fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) |
    163			      ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK));
    164}
    165
    166#define qm_fd_set_contig(fd, off, len) \
    167	qm_fd_set_param(fd, qm_fd_contig, off, len)
    168#define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len)
    169#define qm_fd_set_contig_big(fd, len) \
    170	qm_fd_set_param(fd, qm_fd_contig_big, 0, len)
    171#define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len)
    172#define qm_fd_set_compound(fd, len) qm_fd_set_param(fd, qm_fd_compound, 0, len)
    173
    174static inline void qm_fd_clear_fd(struct qm_fd *fd)
    175{
    176	fd->data = 0;
    177	fd->cfg = 0;
    178	fd->cmd = 0;
    179}
    180
    181/* Scatter/Gather table entry */
    182struct qm_sg_entry {
    183	union {
    184		struct {
    185			u8 __reserved1[3];
    186			u8 addr_hi;	/* high 8-bits of 40-bit address */
    187			__be32 addr_lo;	/* low 32-bits of 40-bit address */
    188		};
    189		__be64 data;
    190	};
    191	__be32 cfg;	/* E bit, F bit, length */
    192	u8 __reserved2;
    193	u8 bpid;
    194	__be16 offset; /* 13-bit, _res[13-15]*/
    195} __packed;
    196
    197#define QM_SG_LEN_MASK	GENMASK(29, 0)
    198#define QM_SG_OFF_MASK	GENMASK(12, 0)
    199#define QM_SG_FIN	BIT(30)
    200#define QM_SG_EXT	BIT(31)
    201
    202static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
    203{
    204	return be64_to_cpu(sg->data) & 0xffffffffffLLU;
    205}
    206
    207static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
    208{
    209	return be64_to_cpu(sg->data) & 0xffffffffffLLU;
    210}
    211
    212static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr)
    213{
    214	sg->addr_hi = upper_32_bits(addr);
    215	sg->addr_lo = cpu_to_be32(lower_32_bits(addr));
    216}
    217
    218static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg)
    219{
    220	return be32_to_cpu(sg->cfg) & QM_SG_FIN;
    221}
    222
    223static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg)
    224{
    225	return be32_to_cpu(sg->cfg) & QM_SG_EXT;
    226}
    227
    228static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg)
    229{
    230	return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK;
    231}
    232
    233static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len)
    234{
    235	sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK);
    236}
    237
    238static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len)
    239{
    240	sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK));
    241}
    242
    243static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg)
    244{
    245	return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK;
    246}
    247
    248/* "Frame Dequeue Response" */
    249struct qm_dqrr_entry {
    250	u8 verb;
    251	u8 stat;
    252	__be16 seqnum;	/* 15-bit */
    253	u8 tok;
    254	u8 __reserved2[3];
    255	__be32 fqid;	/* 24-bit */
    256	__be32 context_b;
    257	struct qm_fd fd;
    258	u8 __reserved4[32];
    259} __packed __aligned(64);
    260#define QM_DQRR_VERB_VBIT		0x80
    261#define QM_DQRR_VERB_MASK		0x7f	/* where the verb contains; */
    262#define QM_DQRR_VERB_FRAME_DEQUEUE	0x60	/* "this format" */
    263#define QM_DQRR_STAT_FQ_EMPTY		0x80	/* FQ empty */
    264#define QM_DQRR_STAT_FQ_HELDACTIVE	0x40	/* FQ held active */
    265#define QM_DQRR_STAT_FQ_FORCEELIGIBLE	0x20	/* FQ was force-eligible'd */
    266#define QM_DQRR_STAT_FD_VALID		0x10	/* has a non-NULL FD */
    267#define QM_DQRR_STAT_UNSCHEDULED	0x02	/* Unscheduled dequeue */
    268#define QM_DQRR_STAT_DQCR_EXPIRED	0x01	/* VDQCR or PDQCR expired*/
    269
    270/* 'fqid' is a 24-bit field in every h/w descriptor */
    271#define QM_FQID_MASK	GENMASK(23, 0)
    272#define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK))
    273#define qm_fqid_get(p)    (be32_to_cpu((p)->fqid) & QM_FQID_MASK)
    274
    275/* "ERN Message Response" */
    276/* "FQ State Change Notification" */
    277union qm_mr_entry {
    278	struct {
    279		u8 verb;
    280		u8 __reserved[63];
    281	};
    282	struct {
    283		u8 verb;
    284		u8 dca;
    285		__be16 seqnum;
    286		u8 rc;		/* Rej Code: 8-bit */
    287		u8 __reserved[3];
    288		__be32 fqid;	/* 24-bit */
    289		__be32 tag;
    290		struct qm_fd fd;
    291		u8 __reserved1[32];
    292	} __packed __aligned(64) ern;
    293	struct {
    294		u8 verb;
    295		u8 fqs;		/* Frame Queue Status */
    296		u8 __reserved1[6];
    297		__be32 fqid;	/* 24-bit */
    298		__be32 context_b;
    299		u8 __reserved2[48];
    300	} __packed fq;		/* FQRN/FQRNI/FQRL/FQPN */
    301};
    302#define QM_MR_VERB_VBIT			0x80
    303/*
    304 * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
    305 * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
    306 * from the other MR types by noting if the 0x20 bit is unset.
    307 */
    308#define QM_MR_VERB_TYPE_MASK		0x27
    309#define QM_MR_VERB_DC_ERN		0x20
    310#define QM_MR_VERB_FQRN			0x21
    311#define QM_MR_VERB_FQRNI		0x22
    312#define QM_MR_VERB_FQRL			0x23
    313#define QM_MR_VERB_FQPN			0x24
    314#define QM_MR_RC_MASK			0xf0	/* contains one of; */
    315#define QM_MR_RC_CGR_TAILDROP		0x00
    316#define QM_MR_RC_WRED			0x10
    317#define QM_MR_RC_ERROR			0x20
    318#define QM_MR_RC_ORPWINDOW_EARLY	0x30
    319#define QM_MR_RC_ORPWINDOW_LATE		0x40
    320#define QM_MR_RC_FQ_TAILDROP		0x50
    321#define QM_MR_RC_ORPWINDOW_RETIRED	0x60
    322#define QM_MR_RC_ORP_ZERO		0x70
    323#define QM_MR_FQS_ORLPRESENT		0x02	/* ORL fragments to come */
    324#define QM_MR_FQS_NOTEMPTY		0x01	/* FQ has enqueued frames */
    325
    326/*
    327 * An identical structure of FQD fields is present in the "Init FQ" command and
    328 * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
    329 * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
    330 * latter has two inlines to assist with converting to/from the mant+exp
    331 * representation.
    332 */
    333struct qm_fqd_stashing {
    334	/* See QM_STASHING_EXCL_<...> */
    335	u8 exclusive;
    336	/* Numbers of cachelines */
    337	u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */
    338};
    339
    340struct qm_fqd_oac {
    341	/* "Overhead Accounting Control", see QM_OAC_<...> */
    342	u8 oac; /* oac[6-7], _res[0-5] */
    343	/* Two's-complement value (-128 to +127) */
    344	s8 oal; /* "Overhead Accounting Length" */
    345};
    346
    347struct qm_fqd {
    348	/* _res[6-7], orprws[3-5], oa[2], olws[0-1] */
    349	u8 orpc;
    350	u8 cgid;
    351	__be16 fq_ctrl;	/* See QM_FQCTRL_<...> */
    352	__be16 dest_wq;	/* channel[3-15], wq[0-2] */
    353	__be16 ics_cred; /* 15-bit */
    354	/*
    355	 * For "Initialize Frame Queue" commands, the write-enable mask
    356	 * determines whether 'td' or 'oac_init' is observed. For query
    357	 * commands, this field is always 'td', and 'oac_query' (below) reflects
    358	 * the Overhead ACcounting values.
    359	 */
    360	union {
    361		__be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */
    362		struct qm_fqd_oac oac_init;
    363	};
    364	__be32 context_b;
    365	union {
    366		/* Treat it as 64-bit opaque */
    367		__be64 opaque;
    368		struct {
    369			__be32 hi;
    370			__be32 lo;
    371		};
    372		/* Treat it as s/w portal stashing config */
    373		/* see "FQD Context_A field used for [...]" */
    374		struct {
    375			struct qm_fqd_stashing stashing;
    376			/*
    377			 * 48-bit address of FQ context to
    378			 * stash, must be cacheline-aligned
    379			 */
    380			__be16 context_hi;
    381			__be32 context_lo;
    382		} __packed;
    383	} context_a;
    384	struct qm_fqd_oac oac_query;
    385} __packed;
    386
    387#define QM_FQD_CHAN_OFF		3
    388#define QM_FQD_WQ_MASK		GENMASK(2, 0)
    389#define QM_FQD_TD_EXP_MASK	GENMASK(4, 0)
    390#define QM_FQD_TD_MANT_OFF	5
    391#define QM_FQD_TD_MANT_MASK	GENMASK(12, 5)
    392#define QM_FQD_TD_MAX		0xe0000000
    393#define QM_FQD_TD_MANT_MAX	0xff
    394#define QM_FQD_OAC_OFF		6
    395#define QM_FQD_AS_OFF		4
    396#define QM_FQD_DS_OFF		2
    397#define QM_FQD_XS_MASK		0x3
    398
    399/* 64-bit converters for context_hi/lo */
    400static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
    401{
    402	return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
    403}
    404
    405static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
    406{
    407	return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
    408}
    409
    410static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
    411{
    412	return qm_fqd_stashing_get64(fqd);
    413}
    414
    415static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
    416{
    417	fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr));
    418	fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr));
    419}
    420
    421static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
    422{
    423	fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr));
    424	fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr));
    425}
    426
    427/* convert a threshold value into mant+exp representation */
    428static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val,
    429				      int roundup)
    430{
    431	u32 e = 0;
    432	int td, oddbit = 0;
    433
    434	if (val > QM_FQD_TD_MAX)
    435		return -ERANGE;
    436
    437	while (val > QM_FQD_TD_MANT_MAX) {
    438		oddbit = val & 1;
    439		val >>= 1;
    440		e++;
    441		if (roundup && oddbit)
    442			val++;
    443	}
    444
    445	td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK;
    446	td |= (e & QM_FQD_TD_EXP_MASK);
    447	fqd->td = cpu_to_be16(td);
    448	return 0;
    449}
    450/* and the other direction */
    451static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd)
    452{
    453	int td = be16_to_cpu(fqd->td);
    454
    455	return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF)
    456		<< (td & QM_FQD_TD_EXP_MASK);
    457}
    458
    459static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs)
    460{
    461	struct qm_fqd_stashing *st = &fqd->context_a.stashing;
    462
    463	st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) |
    464		 ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) |
    465		 (cs & QM_FQD_XS_MASK);
    466}
    467
    468static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd)
    469{
    470	return fqd->context_a.stashing.cl;
    471}
    472
    473static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val)
    474{
    475	fqd->oac_init.oac = val << QM_FQD_OAC_OFF;
    476}
    477
    478static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val)
    479{
    480	fqd->oac_init.oal = val;
    481}
    482
    483static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq)
    484{
    485	fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) |
    486				   (wq & QM_FQD_WQ_MASK));
    487}
    488
    489static inline int qm_fqd_get_chan(const struct qm_fqd *fqd)
    490{
    491	return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF;
    492}
    493
    494static inline int qm_fqd_get_wq(const struct qm_fqd *fqd)
    495{
    496	return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK;
    497}
    498
    499/* See "Frame Queue Descriptor (FQD)" */
    500/* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
    501#define QM_FQCTRL_MASK		0x07ff	/* 'fq_ctrl' flags; */
    502#define QM_FQCTRL_CGE		0x0400	/* Congestion Group Enable */
    503#define QM_FQCTRL_TDE		0x0200	/* Tail-Drop Enable */
    504#define QM_FQCTRL_CTXASTASHING	0x0080	/* Context-A stashing */
    505#define QM_FQCTRL_CPCSTASH	0x0040	/* CPC Stash Enable */
    506#define QM_FQCTRL_FORCESFDR	0x0008	/* High-priority SFDRs */
    507#define QM_FQCTRL_AVOIDBLOCK	0x0004	/* Don't block active */
    508#define QM_FQCTRL_HOLDACTIVE	0x0002	/* Hold active in portal */
    509#define QM_FQCTRL_PREFERINCACHE	0x0001	/* Aggressively cache FQD */
    510#define QM_FQCTRL_LOCKINCACHE	QM_FQCTRL_PREFERINCACHE /* older naming */
    511
    512/* See "FQD Context_A field used for [...] */
    513/* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
    514#define QM_STASHING_EXCL_ANNOTATION	0x04
    515#define QM_STASHING_EXCL_DATA		0x02
    516#define QM_STASHING_EXCL_CTX		0x01
    517
    518/* See "Intra Class Scheduling" */
    519/* FQD field 'OAC' (Overhead ACcounting) uses these constants */
    520#define QM_OAC_ICS		0x2 /* Accounting for Intra-Class Scheduling */
    521#define QM_OAC_CG		0x1 /* Accounting for Congestion Groups */
    522
    523/*
    524 * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
    525 * and associated commands/responses. The WRED parameters are calculated from
    526 * these fields as follows;
    527 *   MaxTH = MA * (2 ^ Mn)
    528 *   Slope = SA / (2 ^ Sn)
    529 *    MaxP = 4 * (Pn + 1)
    530 */
    531struct qm_cgr_wr_parm {
    532	/* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */
    533	__be32 word;
    534};
    535/*
    536 * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
    537 * management commands, this is padded to a 16-bit structure field, so that's
    538 * how we represent it here. The congestion state threshold is calculated from
    539 * these fields as follows;
    540 *   CS threshold = TA * (2 ^ Tn)
    541 */
    542struct qm_cgr_cs_thres {
    543	/* _res[13-15], TA[5-12], Tn[0-4] */
    544	__be16 word;
    545};
    546/*
    547 * This identical structure of CGR fields is present in the "Init/Modify CGR"
    548 * commands and the "Query CGR" result. It's suctioned out here into its own
    549 * struct.
    550 */
    551struct __qm_mc_cgr {
    552	struct qm_cgr_wr_parm wr_parm_g;
    553	struct qm_cgr_wr_parm wr_parm_y;
    554	struct qm_cgr_wr_parm wr_parm_r;
    555	u8 wr_en_g;	/* boolean, use QM_CGR_EN */
    556	u8 wr_en_y;	/* boolean, use QM_CGR_EN */
    557	u8 wr_en_r;	/* boolean, use QM_CGR_EN */
    558	u8 cscn_en;	/* boolean, use QM_CGR_EN */
    559	union {
    560		struct {
    561			__be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */
    562			__be16 cscn_targ_dcp_low;
    563		};
    564		__be32 cscn_targ;	/* use QM_CGR_TARG_* */
    565	};
    566	u8 cstd_en;	/* boolean, use QM_CGR_EN */
    567	u8 cs;		/* boolean, only used in query response */
    568	struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */
    569	u8 mode;	/* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
    570} __packed;
    571#define QM_CGR_EN		0x01 /* For wr_en_*, cscn_en, cstd_en */
    572#define QM_CGR_TARG_UDP_CTRL_WRITE_BIT	0x8000 /* value written to portal bit*/
    573#define QM_CGR_TARG_UDP_CTRL_DCP	0x4000 /* 0: SWP, 1: DCP */
    574#define QM_CGR_TARG_PORTAL(n)	(0x80000000 >> (n)) /* s/w portal, 0-9 */
    575#define QM_CGR_TARG_FMAN0	0x00200000 /* direct-connect portal: fman0 */
    576#define QM_CGR_TARG_FMAN1	0x00100000 /*			   : fman1 */
    577/* Convert CGR thresholds to/from "cs_thres" format */
    578static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
    579{
    580	int thres = be16_to_cpu(th->word);
    581
    582	return ((thres >> 5) & 0xff) << (thres & 0x1f);
    583}
    584
    585static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
    586					int roundup)
    587{
    588	u32 e = 0;
    589	int oddbit = 0;
    590
    591	while (val > 0xff) {
    592		oddbit = val & 1;
    593		val >>= 1;
    594		e++;
    595		if (roundup && oddbit)
    596			val++;
    597	}
    598	th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f));
    599	return 0;
    600}
    601
    602/* "Initialize FQ" */
    603struct qm_mcc_initfq {
    604	u8 __reserved1[2];
    605	__be16 we_mask;	/* Write Enable Mask */
    606	__be32 fqid;	/* 24-bit */
    607	__be16 count;	/* Initialises 'count+1' FQDs */
    608	struct qm_fqd fqd; /* the FQD fields go here */
    609	u8 __reserved2[30];
    610} __packed;
    611/* "Initialize/Modify CGR" */
    612struct qm_mcc_initcgr {
    613	u8 __reserve1[2];
    614	__be16 we_mask;	/* Write Enable Mask */
    615	struct __qm_mc_cgr cgr;	/* CGR fields */
    616	u8 __reserved2[2];
    617	u8 cgid;
    618	u8 __reserved3[32];
    619} __packed;
    620
    621/* INITFQ-specific flags */
    622#define QM_INITFQ_WE_MASK		0x01ff	/* 'Write Enable' flags; */
    623#define QM_INITFQ_WE_OAC		0x0100
    624#define QM_INITFQ_WE_ORPC		0x0080
    625#define QM_INITFQ_WE_CGID		0x0040
    626#define QM_INITFQ_WE_FQCTRL		0x0020
    627#define QM_INITFQ_WE_DESTWQ		0x0010
    628#define QM_INITFQ_WE_ICSCRED		0x0008
    629#define QM_INITFQ_WE_TDTHRESH		0x0004
    630#define QM_INITFQ_WE_CONTEXTB		0x0002
    631#define QM_INITFQ_WE_CONTEXTA		0x0001
    632/* INITCGR/MODIFYCGR-specific flags */
    633#define QM_CGR_WE_MASK			0x07ff	/* 'Write Enable Mask'; */
    634#define QM_CGR_WE_WR_PARM_G		0x0400
    635#define QM_CGR_WE_WR_PARM_Y		0x0200
    636#define QM_CGR_WE_WR_PARM_R		0x0100
    637#define QM_CGR_WE_WR_EN_G		0x0080
    638#define QM_CGR_WE_WR_EN_Y		0x0040
    639#define QM_CGR_WE_WR_EN_R		0x0020
    640#define QM_CGR_WE_CSCN_EN		0x0010
    641#define QM_CGR_WE_CSCN_TARG		0x0008
    642#define QM_CGR_WE_CSTD_EN		0x0004
    643#define QM_CGR_WE_CS_THRES		0x0002
    644#define QM_CGR_WE_MODE			0x0001
    645
    646#define QMAN_CGR_FLAG_USE_INIT	     0x00000001
    647#define QMAN_CGR_MODE_FRAME          0x00000001
    648
    649	/* Portal and Frame Queues */
    650/* Represents a managed portal */
    651struct qman_portal;
    652
    653/*
    654 * This object type represents QMan frame queue descriptors (FQD), it is
    655 * cacheline-aligned, and initialised by qman_create_fq(). The structure is
    656 * defined further down.
    657 */
    658struct qman_fq;
    659
    660/*
    661 * This object type represents a QMan congestion group, it is defined further
    662 * down.
    663 */
    664struct qman_cgr;
    665
    666/*
    667 * This enum, and the callback type that returns it, are used when handling
    668 * dequeued frames via DQRR. Note that for "null" callbacks registered with the
    669 * portal object (for handling dequeues that do not demux because context_b is
    670 * NULL), the return value *MUST* be qman_cb_dqrr_consume.
    671 */
    672enum qman_cb_dqrr_result {
    673	/* DQRR entry can be consumed */
    674	qman_cb_dqrr_consume,
    675	/* Like _consume, but requests parking - FQ must be held-active */
    676	qman_cb_dqrr_park,
    677	/* Does not consume, for DCA mode only. */
    678	qman_cb_dqrr_defer,
    679	/*
    680	 * Stop processing without consuming this ring entry. Exits the current
    681	 * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
    682	 * an interrupt handler, the callback would typically call
    683	 * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
    684	 * otherwise the interrupt will reassert immediately.
    685	 */
    686	qman_cb_dqrr_stop,
    687	/* Like qman_cb_dqrr_stop, but consumes the current entry. */
    688	qman_cb_dqrr_consume_stop
    689};
    690typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
    691					struct qman_fq *fq,
    692					const struct qm_dqrr_entry *dqrr,
    693					bool sched_napi);
    694
    695/*
    696 * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
    697 * are always consumed after the callback returns.
    698 */
    699typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
    700			   const union qm_mr_entry *msg);
    701
    702/*
    703 * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
    704 * held-active + held-suspended are just "sched". Things like "retired" will not
    705 * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
    706 * then, to indicate it's completing and to gate attempts to retry the retire
    707 * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
    708 * technically impossible in the case of enqueue DCAs (which refer to DQRR ring
    709 * index rather than the FQ that ring entry corresponds to), so repeated park
    710 * commands are allowed (if you're silly enough to try) but won't change FQ
    711 * state, and the resulting park notifications move FQs from "sched" to
    712 * "parked".
    713 */
    714enum qman_fq_state {
    715	qman_fq_state_oos,
    716	qman_fq_state_parked,
    717	qman_fq_state_sched,
    718	qman_fq_state_retired
    719};
    720
    721#define QMAN_FQ_STATE_CHANGING	     0x80000000 /* 'state' is changing */
    722#define QMAN_FQ_STATE_NE	     0x40000000 /* retired FQ isn't empty */
    723#define QMAN_FQ_STATE_ORL	     0x20000000 /* retired FQ has ORL */
    724#define QMAN_FQ_STATE_BLOCKOOS	     0xe0000000 /* if any are set, no OOS */
    725#define QMAN_FQ_STATE_CGR_EN	     0x10000000 /* CGR enabled */
    726#define QMAN_FQ_STATE_VDQCR	     0x08000000 /* being volatile dequeued */
    727
    728/*
    729 * Frame queue objects (struct qman_fq) are stored within memory passed to
    730 * qman_create_fq(), as this allows stashing of caller-provided demux callback
    731 * pointers at no extra cost to stashing of (driver-internal) FQ state. If the
    732 * caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
    733 * they should;
    734 *
    735 * (a) extend the qman_fq structure with their state; eg.
    736 *
    737 *     // myfq is allocated and driver_fq callbacks filled in;
    738 *     struct my_fq {
    739 *	   struct qman_fq base;
    740 *	   int an_extra_field;
    741 *	   [ ... add other fields to be associated with each FQ ...]
    742 *     } *myfq = some_my_fq_allocator();
    743 *     struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
    744 *
    745 *     // in a dequeue callback, access extra fields from 'fq' via a cast;
    746 *     struct my_fq *myfq = (struct my_fq *)fq;
    747 *     do_something_with(myfq->an_extra_field);
    748 *     [...]
    749 *
    750 * (b) when and if configuring the FQ for context stashing, specify how ever
    751 *     many cachelines are required to stash 'struct my_fq', to accelerate not
    752 *     only the QMan driver but the callback as well.
    753 */
    754
    755struct qman_fq_cb {
    756	qman_cb_dqrr dqrr;	/* for dequeued frames */
    757	qman_cb_mr ern;		/* for s/w ERNs */
    758	qman_cb_mr fqs;		/* frame-queue state changes*/
    759};
    760
    761struct qman_fq {
    762	/* Caller of qman_create_fq() provides these demux callbacks */
    763	struct qman_fq_cb cb;
    764	/*
    765	 * These are internal to the driver, don't touch. In particular, they
    766	 * may change, be removed, or extended (so you shouldn't rely on
    767	 * sizeof(qman_fq) being a constant).
    768	 */
    769	u32 fqid, idx;
    770	unsigned long flags;
    771	enum qman_fq_state state;
    772	int cgr_groupid;
    773};
    774
    775/*
    776 * This callback type is used when handling congestion group entry/exit.
    777 * 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
    778 */
    779typedef void (*qman_cb_cgr)(struct qman_portal *qm,
    780			    struct qman_cgr *cgr, int congested);
    781
    782struct qman_cgr {
    783	/* Set these prior to qman_create_cgr() */
    784	u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
    785	qman_cb_cgr cb;
    786	/* These are private to the driver */
    787	u16 chan; /* portal channel this object is created on */
    788	struct list_head node;
    789};
    790
    791/* Flags to qman_create_fq() */
    792#define QMAN_FQ_FLAG_NO_ENQUEUE	     0x00000001 /* can't enqueue */
    793#define QMAN_FQ_FLAG_NO_MODIFY	     0x00000002 /* can only enqueue */
    794#define QMAN_FQ_FLAG_TO_DCPORTAL     0x00000004 /* consumed by CAAM/PME/Fman */
    795#define QMAN_FQ_FLAG_DYNAMIC_FQID    0x00000020 /* (de)allocate fqid */
    796
    797/* Flags to qman_init_fq() */
    798#define QMAN_INITFQ_FLAG_SCHED	     0x00000001 /* schedule rather than park */
    799#define QMAN_INITFQ_FLAG_LOCAL	     0x00000004 /* set dest portal */
    800
    801/*
    802 * For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use
    803 * NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use
    804 * FQID(n) to fill in the frame queue ID.
    805 */
    806#define QM_VDQCR_PRECEDENCE_VDQCR	0x0
    807#define QM_VDQCR_PRECEDENCE_SDQCR	0x80000000
    808#define QM_VDQCR_EXACT			0x40000000
    809#define QM_VDQCR_NUMFRAMES_MASK		0x3f000000
    810#define QM_VDQCR_NUMFRAMES_SET(n)	(((n) & 0x3f) << 24)
    811#define QM_VDQCR_NUMFRAMES_GET(n)	(((n) >> 24) & 0x3f)
    812#define QM_VDQCR_NUMFRAMES_TILLEMPTY	QM_VDQCR_NUMFRAMES_SET(0)
    813
    814#define QMAN_VOLATILE_FLAG_WAIT	     0x00000001 /* wait if VDQCR is in use */
    815#define QMAN_VOLATILE_FLAG_WAIT_INT  0x00000002 /* if wait, interruptible? */
    816#define QMAN_VOLATILE_FLAG_FINISH    0x00000004 /* wait till VDQCR completes */
    817
    818/* "Query FQ Non-Programmable Fields" */
    819struct qm_mcr_queryfq_np {
    820	u8 verb;
    821	u8 result;
    822	u8 __reserved1;
    823	u8 state;		/* QM_MCR_NP_STATE_*** */
    824	u32 fqd_link;		/* 24-bit, _res2[24-31] */
    825	u16 odp_seq;		/* 14-bit, _res3[14-15] */
    826	u16 orp_nesn;		/* 14-bit, _res4[14-15] */
    827	u16 orp_ea_hseq;	/* 15-bit, _res5[15] */
    828	u16 orp_ea_tseq;	/* 15-bit, _res6[15] */
    829	u32 orp_ea_hptr;	/* 24-bit, _res7[24-31] */
    830	u32 orp_ea_tptr;	/* 24-bit, _res8[24-31] */
    831	u32 pfdr_hptr;		/* 24-bit, _res9[24-31] */
    832	u32 pfdr_tptr;		/* 24-bit, _res10[24-31] */
    833	u8 __reserved2[5];
    834	u8 is;			/* 1-bit, _res12[1-7] */
    835	u16 ics_surp;
    836	u32 byte_cnt;
    837	u32 frm_cnt;		/* 24-bit, _res13[24-31] */
    838	u32 __reserved3;
    839	u16 ra1_sfdr;		/* QM_MCR_NP_RA1_*** */
    840	u16 ra2_sfdr;		/* QM_MCR_NP_RA2_*** */
    841	u16 __reserved4;
    842	u16 od1_sfdr;		/* QM_MCR_NP_OD1_*** */
    843	u16 od2_sfdr;		/* QM_MCR_NP_OD2_*** */
    844	u16 od3_sfdr;		/* QM_MCR_NP_OD3_*** */
    845} __packed;
    846
    847#define QM_MCR_NP_STATE_FE		0x10
    848#define QM_MCR_NP_STATE_R		0x08
    849#define QM_MCR_NP_STATE_MASK		0x07	/* Reads FQD::STATE; */
    850#define QM_MCR_NP_STATE_OOS		0x00
    851#define QM_MCR_NP_STATE_RETIRED		0x01
    852#define QM_MCR_NP_STATE_TEN_SCHED	0x02
    853#define QM_MCR_NP_STATE_TRU_SCHED	0x03
    854#define QM_MCR_NP_STATE_PARKED		0x04
    855#define QM_MCR_NP_STATE_ACTIVE		0x05
    856#define QM_MCR_NP_PTR_MASK		0x07ff	/* for RA[12] & OD[123] */
    857#define QM_MCR_NP_RA1_NRA(v)		(((v) >> 14) & 0x3)	/* FQD::NRA */
    858#define QM_MCR_NP_RA2_IT(v)		(((v) >> 14) & 0x1)	/* FQD::IT */
    859#define QM_MCR_NP_OD1_NOD(v)		(((v) >> 14) & 0x3)	/* FQD::NOD */
    860#define QM_MCR_NP_OD3_NPC(v)		(((v) >> 14) & 0x3)	/* FQD::NPC */
    861
    862enum qm_mcr_queryfq_np_masks {
    863	qm_mcr_fqd_link_mask = BIT(24) - 1,
    864	qm_mcr_odp_seq_mask = BIT(14) - 1,
    865	qm_mcr_orp_nesn_mask = BIT(14) - 1,
    866	qm_mcr_orp_ea_hseq_mask = BIT(15) - 1,
    867	qm_mcr_orp_ea_tseq_mask = BIT(15) - 1,
    868	qm_mcr_orp_ea_hptr_mask = BIT(24) - 1,
    869	qm_mcr_orp_ea_tptr_mask = BIT(24) - 1,
    870	qm_mcr_pfdr_hptr_mask = BIT(24) - 1,
    871	qm_mcr_pfdr_tptr_mask = BIT(24) - 1,
    872	qm_mcr_is_mask = BIT(1) - 1,
    873	qm_mcr_frm_cnt_mask = BIT(24) - 1,
    874};
    875
    876#define qm_mcr_np_get(np, field) \
    877	((np)->field & (qm_mcr_##field##_mask))
    878
    879	/* Portal Management */
    880/**
    881 * qman_p_irqsource_add - add processing sources to be interrupt-driven
    882 * @bits: bitmask of QM_PIRQ_**I processing sources
    883 *
    884 * Adds processing sources that should be interrupt-driven (rather than
    885 * processed via qman_poll_***() functions).
    886 */
    887void qman_p_irqsource_add(struct qman_portal *p, u32 bits);
    888
    889/**
    890 * qman_p_irqsource_remove - remove processing sources from being int-driven
    891 * @bits: bitmask of QM_PIRQ_**I processing sources
    892 *
    893 * Removes processing sources from being interrupt-driven, so that they will
    894 * instead be processed via qman_poll_***() functions.
    895 */
    896void qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
    897
    898/**
    899 * qman_affine_cpus - return a mask of cpus that have affine portals
    900 */
    901const cpumask_t *qman_affine_cpus(void);
    902
    903/**
    904 * qman_affine_channel - return the channel ID of an portal
    905 * @cpu: the cpu whose affine portal is the subject of the query
    906 *
    907 * If @cpu is -1, the affine portal for the current CPU will be used. It is a
    908 * bug to call this function for any value of @cpu (other than -1) that is not a
    909 * member of the mask returned from qman_affine_cpus().
    910 */
    911u16 qman_affine_channel(int cpu);
    912
    913/**
    914 * qman_get_affine_portal - return the portal pointer affine to cpu
    915 * @cpu: the cpu whose affine portal is the subject of the query
    916 */
    917struct qman_portal *qman_get_affine_portal(int cpu);
    918
    919/**
    920 * qman_start_using_portal - register a device link for the portal user
    921 * @p: the portal that will be in use
    922 * @dev: the device that will use the portal
    923 *
    924 * Makes sure that the devices that use the portal are unbound when the
    925 * portal is unbound
    926 */
    927int qman_start_using_portal(struct qman_portal *p, struct device *dev);
    928
    929/**
    930 * qman_p_poll_dqrr - process DQRR (fast-path) entries
    931 * @limit: the maximum number of DQRR entries to process
    932 *
    933 * Use of this function requires that DQRR processing not be interrupt-driven.
    934 * The return value represents the number of DQRR entries processed.
    935 */
    936int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
    937
    938/**
    939 * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR
    940 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
    941 *
    942 * Adds a set of pool channels to the portal's static dequeue command register
    943 * (SDQCR). The requested pools are limited to those the portal has dequeue
    944 * access to.
    945 */
    946void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
    947
    948	/* FQ management */
    949/**
    950 * qman_create_fq - Allocates a FQ
    951 * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
    952 * @flags: bit-mask of QMAN_FQ_FLAG_*** options
    953 * @fq: memory for storing the 'fq', with callbacks filled in
    954 *
    955 * Creates a frame queue object for the given @fqid, unless the
    956 * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
    957 * dynamically allocated (or the function fails if none are available). Once
    958 * created, the caller should not touch the memory at 'fq' except as extended to
    959 * adjacent memory for user-defined fields (see the definition of "struct
    960 * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
    961 * pre-existing frame-queues that aren't to be otherwise interfered with, it
    962 * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
    963 * causes the driver to honour any context_b modifications requested in the
    964 * qm_init_fq() API, as this indicates the frame queue will be consumed by a
    965 * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
    966 * software portals, the context_b field is controlled by the driver and can't
    967 * be modified by the caller.
    968 */
    969int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
    970
    971/**
    972 * qman_destroy_fq - Deallocates a FQ
    973 * @fq: the frame queue object to release
    974 *
    975 * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
    976 * not deallocated but the caller regains ownership, to do with as desired. The
    977 * FQ must be in the 'out-of-service' or in the 'parked' state.
    978 */
    979void qman_destroy_fq(struct qman_fq *fq);
    980
    981/**
    982 * qman_fq_fqid - Queries the frame queue ID of a FQ object
    983 * @fq: the frame queue object to query
    984 */
    985u32 qman_fq_fqid(struct qman_fq *fq);
    986
    987/**
    988 * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
    989 * @fq: the frame queue object to modify, must be 'parked' or new.
    990 * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
    991 * @opts: the FQ-modification settings, as defined in the low-level API
    992 *
    993 * The @opts parameter comes from the low-level portal API. Select
    994 * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
    995 * rather than parked. NB, @opts can be NULL.
    996 *
    997 * Note that some fields and options within @opts may be ignored or overwritten
    998 * by the driver;
    999 * 1. the 'count' and 'fqid' fields are always ignored (this operation only
   1000 * affects one frame queue: @fq).
   1001 * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
   1002 * 'fqd' structure's 'context_b' field are sometimes overwritten;
   1003 *   - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
   1004 *     initialised to a value used by the driver for demux.
   1005 *   - if context_b is initialised for demux, so is context_a in case stashing
   1006 *     is requested (see item 4).
   1007 * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
   1008 * objects.)
   1009 * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
   1010 * 'dest::channel' field will be overwritten to match the portal used to issue
   1011 * the command. If the WE_DESTWQ write-enable bit had already been set by the
   1012 * caller, the channel workqueue will be left as-is, otherwise the write-enable
   1013 * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
   1014 * isn't set, the destination channel/workqueue fields and the write-enable bit
   1015 * are left as-is.
   1016 * 4. if the driver overwrites context_a/b for demux, then if
   1017 * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
   1018 * context_a.address fields and will leave the stashing fields provided by the
   1019 * user alone, otherwise it will zero out the context_a.stashing fields.
   1020 */
   1021int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
   1022
   1023/**
   1024 * qman_schedule_fq - Schedules a FQ
   1025 * @fq: the frame queue object to schedule, must be 'parked'
   1026 *
   1027 * Schedules the frame queue, which must be Parked, which takes it to
   1028 * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
   1029 */
   1030int qman_schedule_fq(struct qman_fq *fq);
   1031
   1032/**
   1033 * qman_retire_fq - Retires a FQ
   1034 * @fq: the frame queue object to retire
   1035 * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately
   1036 *
   1037 * Retires the frame queue. This returns zero if it succeeds immediately, +1 if
   1038 * the retirement was started asynchronously, otherwise it returns negative for
   1039 * failure. When this function returns zero, @flags is set to indicate whether
   1040 * the retired FQ is empty and/or whether it has any ORL fragments (to show up
   1041 * as ERNs). Otherwise the corresponding flags will be known when a subsequent
   1042 * FQRN message shows up on the portal's message ring.
   1043 *
   1044 * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
   1045 * Active state), the completion will be via the message ring as a FQRN - but
   1046 * the corresponding callback may occur before this function returns!! Ie. the
   1047 * caller should be prepared to accept the callback as the function is called,
   1048 * not only once it has returned.
   1049 */
   1050int qman_retire_fq(struct qman_fq *fq, u32 *flags);
   1051
   1052/**
   1053 * qman_oos_fq - Puts a FQ "out of service"
   1054 * @fq: the frame queue object to be put out-of-service, must be 'retired'
   1055 *
   1056 * The frame queue must be retired and empty, and if any order restoration list
   1057 * was released as ERNs at the time of retirement, they must all be consumed.
   1058 */
   1059int qman_oos_fq(struct qman_fq *fq);
   1060
   1061/*
   1062 * qman_volatile_dequeue - Issue a volatile dequeue command
   1063 * @fq: the frame queue object to dequeue from
   1064 * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
   1065 * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
   1066 *
   1067 * Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
   1068 * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
   1069 * the VDQCR is already in use, otherwise returns non-zero for failure. If
   1070 * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
   1071 * the VDQCR command has finished executing (ie. once the callback for the last
   1072 * DQRR entry resulting from the VDQCR command has been called). If not using
   1073 * the FINISH flag, completion can be determined either by detecting the
   1074 * presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits
   1075 * in the "stat" parameter passed to the FQ's dequeue callback, or by waiting
   1076 * for the QMAN_FQ_STATE_VDQCR bit to disappear.
   1077 */
   1078int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr);
   1079
   1080/**
   1081 * qman_enqueue - Enqueue a frame to a frame queue
   1082 * @fq: the frame queue object to enqueue to
   1083 * @fd: a descriptor of the frame to be enqueued
   1084 *
   1085 * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
   1086 * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
   1087 * field is ignored. The return value is non-zero on error, such as ring full.
   1088 */
   1089int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd);
   1090
   1091/**
   1092 * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
   1093 * @result: is set by the API to the base FQID of the allocated range
   1094 * @count: the number of FQIDs required
   1095 *
   1096 * Returns 0 on success, or a negative error code.
   1097 */
   1098int qman_alloc_fqid_range(u32 *result, u32 count);
   1099#define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1)
   1100
   1101/**
   1102 * qman_release_fqid - Release the specified frame queue ID
   1103 * @fqid: the FQID to be released back to the resource pool
   1104 *
   1105 * This function can also be used to seed the allocator with
   1106 * FQID ranges that it can subsequently allocate from.
   1107 * Returns 0 on success, or a negative error code.
   1108 */
   1109int qman_release_fqid(u32 fqid);
   1110
   1111/**
   1112 * qman_query_fq_np - Queries non-programmable FQD fields
   1113 * @fq: the frame queue object to be queried
   1114 * @np: storage for the queried FQD fields
   1115 */
   1116int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);
   1117
   1118	/* Pool-channel management */
   1119/**
   1120 * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
   1121 * @result: is set by the API to the base pool-channel ID of the allocated range
   1122 * @count: the number of pool-channel IDs required
   1123 *
   1124 * Returns 0 on success, or a negative error code.
   1125 */
   1126int qman_alloc_pool_range(u32 *result, u32 count);
   1127#define qman_alloc_pool(result) qman_alloc_pool_range(result, 1)
   1128
   1129/**
   1130 * qman_release_pool - Release the specified pool-channel ID
   1131 * @id: the pool-chan ID to be released back to the resource pool
   1132 *
   1133 * This function can also be used to seed the allocator with
   1134 * pool-channel ID ranges that it can subsequently allocate from.
   1135 * Returns 0 on success, or a negative error code.
   1136 */
   1137int qman_release_pool(u32 id);
   1138
   1139	/* CGR management */
   1140/**
   1141 * qman_create_cgr - Register a congestion group object
   1142 * @cgr: the 'cgr' object, with fields filled in
   1143 * @flags: QMAN_CGR_FLAG_* values
   1144 * @opts: optional state of CGR settings
   1145 *
   1146 * Registers this object to receiving congestion entry/exit callbacks on the
   1147 * portal affine to the cpu portal on which this API is executed. If opts is
   1148 * NULL then only the callback (cgr->cb) function is registered. If @flags
   1149 * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
   1150 * any unspecified parameters) will be used rather than a modify hw hardware
   1151 * (which only modifies the specified parameters).
   1152 */
   1153int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
   1154		    struct qm_mcc_initcgr *opts);
   1155
   1156/**
   1157 * qman_delete_cgr - Deregisters a congestion group object
   1158 * @cgr: the 'cgr' object to deregister
   1159 *
   1160 * "Unplugs" this CGR object from the portal affine to the cpu on which this API
   1161 * is executed. This must be excuted on the same affine portal on which it was
   1162 * created.
   1163 */
   1164int qman_delete_cgr(struct qman_cgr *cgr);
   1165
   1166/**
   1167 * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
   1168 * @cgr: the 'cgr' object to deregister
   1169 *
   1170 * This will select the proper CPU and run there qman_delete_cgr().
   1171 */
   1172void qman_delete_cgr_safe(struct qman_cgr *cgr);
   1173
   1174/**
   1175 * qman_query_cgr_congested - Queries CGR's congestion status
   1176 * @cgr: the 'cgr' object to query
   1177 * @result: returns 'cgr's congestion status, 1 (true) if congested
   1178 */
   1179int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result);
   1180
   1181/**
   1182 * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
   1183 * @result: is set by the API to the base CGR ID of the allocated range
   1184 * @count: the number of CGR IDs required
   1185 *
   1186 * Returns 0 on success, or a negative error code.
   1187 */
   1188int qman_alloc_cgrid_range(u32 *result, u32 count);
   1189#define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1)
   1190
   1191/**
   1192 * qman_release_cgrid - Release the specified CGR ID
   1193 * @id: the CGR ID to be released back to the resource pool
   1194 *
   1195 * This function can also be used to seed the allocator with
   1196 * CGR ID ranges that it can subsequently allocate from.
   1197 * Returns 0 on success, or a negative error code.
   1198 */
   1199int qman_release_cgrid(u32 id);
   1200
   1201/**
   1202 * qman_is_probed - Check if qman is probed
   1203 *
   1204 * Returns 1 if the qman driver successfully probed, -1 if the qman driver
   1205 * failed to probe or 0 if the qman driver did not probed yet.
   1206 */
   1207int qman_is_probed(void);
   1208
   1209/**
   1210 * qman_portals_probed - Check if all cpu bound qman portals are probed
   1211 *
   1212 * Returns 1 if all the required cpu bound qman portals successfully probed,
   1213 * -1 if probe errors appeared or 0 if the qman portals did not yet finished
   1214 * probing.
   1215 */
   1216int qman_portals_probed(void);
   1217
   1218/**
   1219 * qman_dqrr_get_ithresh - Get coalesce interrupt threshold
   1220 * @portal: portal to get the value for
   1221 * @ithresh: threshold pointer
   1222 */
   1223void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh);
   1224
   1225/**
   1226 * qman_dqrr_set_ithresh - Set coalesce interrupt threshold
   1227 * @portal: portal to set the new value on
   1228 * @ithresh: new threshold value
   1229 *
   1230 * Returns 0 on success, or a negative error code.
   1231 */
   1232int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh);
   1233
   1234/**
   1235 * qman_dqrr_get_iperiod - Get coalesce interrupt period
   1236 * @portal: portal to get the value for
   1237 * @iperiod: period pointer
   1238 */
   1239void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod);
   1240
   1241/**
   1242 * qman_dqrr_set_iperiod - Set coalesce interrupt period
   1243 * @portal: portal to set the new value on
   1244 * @ithresh: new period value
   1245 *
   1246 * Returns 0 on success, or a negative error code.
   1247 */
   1248int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod);
   1249
   1250#endif	/* __FSL_QMAN_H */