qman.h (43480B)
1/* Copyright 2008 - 2016 Freescale Semiconductor, Inc. 2 * 3 * Redistribution and use in source and binary forms, with or without 4 * modification, are permitted provided that the following conditions are met: 5 * * Redistributions of source code must retain the above copyright 6 * notice, this list of conditions and the following disclaimer. 7 * * Redistributions in binary form must reproduce the above copyright 8 * notice, this list of conditions and the following disclaimer in the 9 * documentation and/or other materials provided with the distribution. 10 * * Neither the name of Freescale Semiconductor nor the 11 * names of its contributors may be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * ALTERNATIVELY, this software may be distributed under the terms of the 15 * GNU General Public License ("GPL") as published by the Free Software 16 * Foundation, either version 2 of that License or (at your option) any 17 * later version. 18 * 19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY 20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY 23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31#ifndef __FSL_QMAN_H 32#define __FSL_QMAN_H 33 34#include <linux/bitops.h> 35#include <linux/device.h> 36 37/* Hardware constants */ 38#define QM_CHANNEL_SWPORTAL0 0 39#define QMAN_CHANNEL_POOL1 0x21 40#define QMAN_CHANNEL_CAAM 0x80 41#define QMAN_CHANNEL_POOL1_REV3 0x401 42#define QMAN_CHANNEL_CAAM_REV3 0x840 43extern u16 qm_channel_pool1; 44extern u16 qm_channel_caam; 45 46/* Portal processing (interrupt) sources */ 47#define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */ 48#define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */ 49#define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */ 50#define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */ 51#define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */ 52/* 53 * This mask contains all the interrupt sources that need handling except DQRI, 54 * ie. that if present should trigger slow-path processing. 55 */ 56#define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \ 57 QM_PIRQ_MRI) 58 59/* For qman_static_dequeue_*** APIs */ 60#define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff 61/* for n in [1,15] */ 62#define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n)) 63/* for conversion from n of qm_channel */ 64static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel) 65{ 66 return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1); 67} 68 69/* --- QMan data structures (and associated constants) --- */ 70 71/* "Frame Descriptor (FD)" */ 72struct qm_fd { 73 union { 74 struct { 75 u8 cfg8b_w1; 76 u8 bpid; /* Buffer Pool ID */ 77 u8 cfg8b_w3; 78 u8 addr_hi; /* high 8-bits of 40-bit address */ 79 __be32 addr_lo; /* low 32-bits of 40-bit address */ 80 } __packed; 81 __be64 data; 82 }; 83 __be32 cfg; /* format, offset, length / congestion */ 84 union { 85 __be32 cmd; 86 __be32 status; 87 }; 88} __aligned(8); 89 90#define QM_FD_FORMAT_SG BIT(31) 91#define QM_FD_FORMAT_LONG BIT(30) 92#define QM_FD_FORMAT_COMPOUND BIT(29) 93#define QM_FD_FORMAT_MASK GENMASK(31, 29) 94#define QM_FD_OFF_SHIFT 20 95#define QM_FD_OFF_MASK GENMASK(28, 20) 96#define QM_FD_LEN_MASK GENMASK(19, 0) 97#define QM_FD_LEN_BIG_MASK GENMASK(28, 0) 98 99enum qm_fd_format { 100 /* 101 * 'contig' implies a contiguous buffer, whereas 'sg' implies a 102 * scatter-gather table. 'big' implies a 29-bit length with no offset 103 * field, otherwise length is 20-bit and offset is 9-bit. 'compound' 104 * implies a s/g-like table, where each entry itself represents a frame 105 * (contiguous or scatter-gather) and the 29-bit "length" is 106 * interpreted purely for congestion calculations, ie. a "congestion 107 * weight". 108 */ 109 qm_fd_contig = 0, 110 qm_fd_contig_big = QM_FD_FORMAT_LONG, 111 qm_fd_sg = QM_FD_FORMAT_SG, 112 qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG, 113 qm_fd_compound = QM_FD_FORMAT_COMPOUND 114}; 115 116static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd) 117{ 118 return be64_to_cpu(fd->data) & 0xffffffffffLLU; 119} 120 121static inline u64 qm_fd_addr_get64(const struct qm_fd *fd) 122{ 123 return be64_to_cpu(fd->data) & 0xffffffffffLLU; 124} 125 126static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr) 127{ 128 fd->addr_hi = upper_32_bits(addr); 129 fd->addr_lo = cpu_to_be32(lower_32_bits(addr)); 130} 131 132/* 133 * The 'format' field indicates the interpretation of the remaining 134 * 29 bits of the 32-bit word. 135 * If 'format' is _contig or _sg, 20b length and 9b offset. 136 * If 'format' is _contig_big or _sg_big, 29b length. 137 * If 'format' is _compound, 29b "congestion weight". 138 */ 139static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd) 140{ 141 return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK; 142} 143 144static inline int qm_fd_get_offset(const struct qm_fd *fd) 145{ 146 return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT; 147} 148 149static inline int qm_fd_get_length(const struct qm_fd *fd) 150{ 151 return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK; 152} 153 154static inline int qm_fd_get_len_big(const struct qm_fd *fd) 155{ 156 return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK; 157} 158 159static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt, 160 int off, int len) 161{ 162 fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) | 163 ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK)); 164} 165 166#define qm_fd_set_contig(fd, off, len) \ 167 qm_fd_set_param(fd, qm_fd_contig, off, len) 168#define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len) 169#define qm_fd_set_contig_big(fd, len) \ 170 qm_fd_set_param(fd, qm_fd_contig_big, 0, len) 171#define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len) 172#define qm_fd_set_compound(fd, len) qm_fd_set_param(fd, qm_fd_compound, 0, len) 173 174static inline void qm_fd_clear_fd(struct qm_fd *fd) 175{ 176 fd->data = 0; 177 fd->cfg = 0; 178 fd->cmd = 0; 179} 180 181/* Scatter/Gather table entry */ 182struct qm_sg_entry { 183 union { 184 struct { 185 u8 __reserved1[3]; 186 u8 addr_hi; /* high 8-bits of 40-bit address */ 187 __be32 addr_lo; /* low 32-bits of 40-bit address */ 188 }; 189 __be64 data; 190 }; 191 __be32 cfg; /* E bit, F bit, length */ 192 u8 __reserved2; 193 u8 bpid; 194 __be16 offset; /* 13-bit, _res[13-15]*/ 195} __packed; 196 197#define QM_SG_LEN_MASK GENMASK(29, 0) 198#define QM_SG_OFF_MASK GENMASK(12, 0) 199#define QM_SG_FIN BIT(30) 200#define QM_SG_EXT BIT(31) 201 202static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg) 203{ 204 return be64_to_cpu(sg->data) & 0xffffffffffLLU; 205} 206 207static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg) 208{ 209 return be64_to_cpu(sg->data) & 0xffffffffffLLU; 210} 211 212static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr) 213{ 214 sg->addr_hi = upper_32_bits(addr); 215 sg->addr_lo = cpu_to_be32(lower_32_bits(addr)); 216} 217 218static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg) 219{ 220 return be32_to_cpu(sg->cfg) & QM_SG_FIN; 221} 222 223static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg) 224{ 225 return be32_to_cpu(sg->cfg) & QM_SG_EXT; 226} 227 228static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg) 229{ 230 return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK; 231} 232 233static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len) 234{ 235 sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK); 236} 237 238static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len) 239{ 240 sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK)); 241} 242 243static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg) 244{ 245 return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK; 246} 247 248/* "Frame Dequeue Response" */ 249struct qm_dqrr_entry { 250 u8 verb; 251 u8 stat; 252 __be16 seqnum; /* 15-bit */ 253 u8 tok; 254 u8 __reserved2[3]; 255 __be32 fqid; /* 24-bit */ 256 __be32 context_b; 257 struct qm_fd fd; 258 u8 __reserved4[32]; 259} __packed __aligned(64); 260#define QM_DQRR_VERB_VBIT 0x80 261#define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */ 262#define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */ 263#define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */ 264#define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */ 265#define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */ 266#define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */ 267#define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */ 268#define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/ 269 270/* 'fqid' is a 24-bit field in every h/w descriptor */ 271#define QM_FQID_MASK GENMASK(23, 0) 272#define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK)) 273#define qm_fqid_get(p) (be32_to_cpu((p)->fqid) & QM_FQID_MASK) 274 275/* "ERN Message Response" */ 276/* "FQ State Change Notification" */ 277union qm_mr_entry { 278 struct { 279 u8 verb; 280 u8 __reserved[63]; 281 }; 282 struct { 283 u8 verb; 284 u8 dca; 285 __be16 seqnum; 286 u8 rc; /* Rej Code: 8-bit */ 287 u8 __reserved[3]; 288 __be32 fqid; /* 24-bit */ 289 __be32 tag; 290 struct qm_fd fd; 291 u8 __reserved1[32]; 292 } __packed __aligned(64) ern; 293 struct { 294 u8 verb; 295 u8 fqs; /* Frame Queue Status */ 296 u8 __reserved1[6]; 297 __be32 fqid; /* 24-bit */ 298 __be32 context_b; 299 u8 __reserved2[48]; 300 } __packed fq; /* FQRN/FQRNI/FQRL/FQPN */ 301}; 302#define QM_MR_VERB_VBIT 0x80 303/* 304 * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb 305 * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished 306 * from the other MR types by noting if the 0x20 bit is unset. 307 */ 308#define QM_MR_VERB_TYPE_MASK 0x27 309#define QM_MR_VERB_DC_ERN 0x20 310#define QM_MR_VERB_FQRN 0x21 311#define QM_MR_VERB_FQRNI 0x22 312#define QM_MR_VERB_FQRL 0x23 313#define QM_MR_VERB_FQPN 0x24 314#define QM_MR_RC_MASK 0xf0 /* contains one of; */ 315#define QM_MR_RC_CGR_TAILDROP 0x00 316#define QM_MR_RC_WRED 0x10 317#define QM_MR_RC_ERROR 0x20 318#define QM_MR_RC_ORPWINDOW_EARLY 0x30 319#define QM_MR_RC_ORPWINDOW_LATE 0x40 320#define QM_MR_RC_FQ_TAILDROP 0x50 321#define QM_MR_RC_ORPWINDOW_RETIRED 0x60 322#define QM_MR_RC_ORP_ZERO 0x70 323#define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */ 324#define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */ 325 326/* 327 * An identical structure of FQD fields is present in the "Init FQ" command and 328 * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type. 329 * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the 330 * latter has two inlines to assist with converting to/from the mant+exp 331 * representation. 332 */ 333struct qm_fqd_stashing { 334 /* See QM_STASHING_EXCL_<...> */ 335 u8 exclusive; 336 /* Numbers of cachelines */ 337 u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */ 338}; 339 340struct qm_fqd_oac { 341 /* "Overhead Accounting Control", see QM_OAC_<...> */ 342 u8 oac; /* oac[6-7], _res[0-5] */ 343 /* Two's-complement value (-128 to +127) */ 344 s8 oal; /* "Overhead Accounting Length" */ 345}; 346 347struct qm_fqd { 348 /* _res[6-7], orprws[3-5], oa[2], olws[0-1] */ 349 u8 orpc; 350 u8 cgid; 351 __be16 fq_ctrl; /* See QM_FQCTRL_<...> */ 352 __be16 dest_wq; /* channel[3-15], wq[0-2] */ 353 __be16 ics_cred; /* 15-bit */ 354 /* 355 * For "Initialize Frame Queue" commands, the write-enable mask 356 * determines whether 'td' or 'oac_init' is observed. For query 357 * commands, this field is always 'td', and 'oac_query' (below) reflects 358 * the Overhead ACcounting values. 359 */ 360 union { 361 __be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */ 362 struct qm_fqd_oac oac_init; 363 }; 364 __be32 context_b; 365 union { 366 /* Treat it as 64-bit opaque */ 367 __be64 opaque; 368 struct { 369 __be32 hi; 370 __be32 lo; 371 }; 372 /* Treat it as s/w portal stashing config */ 373 /* see "FQD Context_A field used for [...]" */ 374 struct { 375 struct qm_fqd_stashing stashing; 376 /* 377 * 48-bit address of FQ context to 378 * stash, must be cacheline-aligned 379 */ 380 __be16 context_hi; 381 __be32 context_lo; 382 } __packed; 383 } context_a; 384 struct qm_fqd_oac oac_query; 385} __packed; 386 387#define QM_FQD_CHAN_OFF 3 388#define QM_FQD_WQ_MASK GENMASK(2, 0) 389#define QM_FQD_TD_EXP_MASK GENMASK(4, 0) 390#define QM_FQD_TD_MANT_OFF 5 391#define QM_FQD_TD_MANT_MASK GENMASK(12, 5) 392#define QM_FQD_TD_MAX 0xe0000000 393#define QM_FQD_TD_MANT_MAX 0xff 394#define QM_FQD_OAC_OFF 6 395#define QM_FQD_AS_OFF 4 396#define QM_FQD_DS_OFF 2 397#define QM_FQD_XS_MASK 0x3 398 399/* 64-bit converters for context_hi/lo */ 400static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd) 401{ 402 return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL; 403} 404 405static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd) 406{ 407 return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL; 408} 409 410static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd) 411{ 412 return qm_fqd_stashing_get64(fqd); 413} 414 415static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr) 416{ 417 fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr)); 418 fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr)); 419} 420 421static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr) 422{ 423 fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr)); 424 fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr)); 425} 426 427/* convert a threshold value into mant+exp representation */ 428static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val, 429 int roundup) 430{ 431 u32 e = 0; 432 int td, oddbit = 0; 433 434 if (val > QM_FQD_TD_MAX) 435 return -ERANGE; 436 437 while (val > QM_FQD_TD_MANT_MAX) { 438 oddbit = val & 1; 439 val >>= 1; 440 e++; 441 if (roundup && oddbit) 442 val++; 443 } 444 445 td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK; 446 td |= (e & QM_FQD_TD_EXP_MASK); 447 fqd->td = cpu_to_be16(td); 448 return 0; 449} 450/* and the other direction */ 451static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd) 452{ 453 int td = be16_to_cpu(fqd->td); 454 455 return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF) 456 << (td & QM_FQD_TD_EXP_MASK); 457} 458 459static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs) 460{ 461 struct qm_fqd_stashing *st = &fqd->context_a.stashing; 462 463 st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) | 464 ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) | 465 (cs & QM_FQD_XS_MASK); 466} 467 468static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd) 469{ 470 return fqd->context_a.stashing.cl; 471} 472 473static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val) 474{ 475 fqd->oac_init.oac = val << QM_FQD_OAC_OFF; 476} 477 478static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val) 479{ 480 fqd->oac_init.oal = val; 481} 482 483static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq) 484{ 485 fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) | 486 (wq & QM_FQD_WQ_MASK)); 487} 488 489static inline int qm_fqd_get_chan(const struct qm_fqd *fqd) 490{ 491 return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF; 492} 493 494static inline int qm_fqd_get_wq(const struct qm_fqd *fqd) 495{ 496 return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK; 497} 498 499/* See "Frame Queue Descriptor (FQD)" */ 500/* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */ 501#define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */ 502#define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */ 503#define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */ 504#define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */ 505#define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */ 506#define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */ 507#define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */ 508#define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */ 509#define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */ 510#define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */ 511 512/* See "FQD Context_A field used for [...] */ 513/* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */ 514#define QM_STASHING_EXCL_ANNOTATION 0x04 515#define QM_STASHING_EXCL_DATA 0x02 516#define QM_STASHING_EXCL_CTX 0x01 517 518/* See "Intra Class Scheduling" */ 519/* FQD field 'OAC' (Overhead ACcounting) uses these constants */ 520#define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */ 521#define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */ 522 523/* 524 * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields 525 * and associated commands/responses. The WRED parameters are calculated from 526 * these fields as follows; 527 * MaxTH = MA * (2 ^ Mn) 528 * Slope = SA / (2 ^ Sn) 529 * MaxP = 4 * (Pn + 1) 530 */ 531struct qm_cgr_wr_parm { 532 /* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */ 533 __be32 word; 534}; 535/* 536 * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding 537 * management commands, this is padded to a 16-bit structure field, so that's 538 * how we represent it here. The congestion state threshold is calculated from 539 * these fields as follows; 540 * CS threshold = TA * (2 ^ Tn) 541 */ 542struct qm_cgr_cs_thres { 543 /* _res[13-15], TA[5-12], Tn[0-4] */ 544 __be16 word; 545}; 546/* 547 * This identical structure of CGR fields is present in the "Init/Modify CGR" 548 * commands and the "Query CGR" result. It's suctioned out here into its own 549 * struct. 550 */ 551struct __qm_mc_cgr { 552 struct qm_cgr_wr_parm wr_parm_g; 553 struct qm_cgr_wr_parm wr_parm_y; 554 struct qm_cgr_wr_parm wr_parm_r; 555 u8 wr_en_g; /* boolean, use QM_CGR_EN */ 556 u8 wr_en_y; /* boolean, use QM_CGR_EN */ 557 u8 wr_en_r; /* boolean, use QM_CGR_EN */ 558 u8 cscn_en; /* boolean, use QM_CGR_EN */ 559 union { 560 struct { 561 __be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */ 562 __be16 cscn_targ_dcp_low; 563 }; 564 __be32 cscn_targ; /* use QM_CGR_TARG_* */ 565 }; 566 u8 cstd_en; /* boolean, use QM_CGR_EN */ 567 u8 cs; /* boolean, only used in query response */ 568 struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */ 569 u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */ 570} __packed; 571#define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */ 572#define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/ 573#define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */ 574#define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */ 575#define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */ 576#define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */ 577/* Convert CGR thresholds to/from "cs_thres" format */ 578static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th) 579{ 580 int thres = be16_to_cpu(th->word); 581 582 return ((thres >> 5) & 0xff) << (thres & 0x1f); 583} 584 585static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val, 586 int roundup) 587{ 588 u32 e = 0; 589 int oddbit = 0; 590 591 while (val > 0xff) { 592 oddbit = val & 1; 593 val >>= 1; 594 e++; 595 if (roundup && oddbit) 596 val++; 597 } 598 th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f)); 599 return 0; 600} 601 602/* "Initialize FQ" */ 603struct qm_mcc_initfq { 604 u8 __reserved1[2]; 605 __be16 we_mask; /* Write Enable Mask */ 606 __be32 fqid; /* 24-bit */ 607 __be16 count; /* Initialises 'count+1' FQDs */ 608 struct qm_fqd fqd; /* the FQD fields go here */ 609 u8 __reserved2[30]; 610} __packed; 611/* "Initialize/Modify CGR" */ 612struct qm_mcc_initcgr { 613 u8 __reserve1[2]; 614 __be16 we_mask; /* Write Enable Mask */ 615 struct __qm_mc_cgr cgr; /* CGR fields */ 616 u8 __reserved2[2]; 617 u8 cgid; 618 u8 __reserved3[32]; 619} __packed; 620 621/* INITFQ-specific flags */ 622#define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */ 623#define QM_INITFQ_WE_OAC 0x0100 624#define QM_INITFQ_WE_ORPC 0x0080 625#define QM_INITFQ_WE_CGID 0x0040 626#define QM_INITFQ_WE_FQCTRL 0x0020 627#define QM_INITFQ_WE_DESTWQ 0x0010 628#define QM_INITFQ_WE_ICSCRED 0x0008 629#define QM_INITFQ_WE_TDTHRESH 0x0004 630#define QM_INITFQ_WE_CONTEXTB 0x0002 631#define QM_INITFQ_WE_CONTEXTA 0x0001 632/* INITCGR/MODIFYCGR-specific flags */ 633#define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */ 634#define QM_CGR_WE_WR_PARM_G 0x0400 635#define QM_CGR_WE_WR_PARM_Y 0x0200 636#define QM_CGR_WE_WR_PARM_R 0x0100 637#define QM_CGR_WE_WR_EN_G 0x0080 638#define QM_CGR_WE_WR_EN_Y 0x0040 639#define QM_CGR_WE_WR_EN_R 0x0020 640#define QM_CGR_WE_CSCN_EN 0x0010 641#define QM_CGR_WE_CSCN_TARG 0x0008 642#define QM_CGR_WE_CSTD_EN 0x0004 643#define QM_CGR_WE_CS_THRES 0x0002 644#define QM_CGR_WE_MODE 0x0001 645 646#define QMAN_CGR_FLAG_USE_INIT 0x00000001 647#define QMAN_CGR_MODE_FRAME 0x00000001 648 649 /* Portal and Frame Queues */ 650/* Represents a managed portal */ 651struct qman_portal; 652 653/* 654 * This object type represents QMan frame queue descriptors (FQD), it is 655 * cacheline-aligned, and initialised by qman_create_fq(). The structure is 656 * defined further down. 657 */ 658struct qman_fq; 659 660/* 661 * This object type represents a QMan congestion group, it is defined further 662 * down. 663 */ 664struct qman_cgr; 665 666/* 667 * This enum, and the callback type that returns it, are used when handling 668 * dequeued frames via DQRR. Note that for "null" callbacks registered with the 669 * portal object (for handling dequeues that do not demux because context_b is 670 * NULL), the return value *MUST* be qman_cb_dqrr_consume. 671 */ 672enum qman_cb_dqrr_result { 673 /* DQRR entry can be consumed */ 674 qman_cb_dqrr_consume, 675 /* Like _consume, but requests parking - FQ must be held-active */ 676 qman_cb_dqrr_park, 677 /* Does not consume, for DCA mode only. */ 678 qman_cb_dqrr_defer, 679 /* 680 * Stop processing without consuming this ring entry. Exits the current 681 * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within 682 * an interrupt handler, the callback would typically call 683 * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value, 684 * otherwise the interrupt will reassert immediately. 685 */ 686 qman_cb_dqrr_stop, 687 /* Like qman_cb_dqrr_stop, but consumes the current entry. */ 688 qman_cb_dqrr_consume_stop 689}; 690typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm, 691 struct qman_fq *fq, 692 const struct qm_dqrr_entry *dqrr, 693 bool sched_napi); 694 695/* 696 * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They 697 * are always consumed after the callback returns. 698 */ 699typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq, 700 const union qm_mr_entry *msg); 701 702/* 703 * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active + 704 * held-active + held-suspended are just "sched". Things like "retired" will not 705 * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until 706 * then, to indicate it's completing and to gate attempts to retry the retire 707 * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's 708 * technically impossible in the case of enqueue DCAs (which refer to DQRR ring 709 * index rather than the FQ that ring entry corresponds to), so repeated park 710 * commands are allowed (if you're silly enough to try) but won't change FQ 711 * state, and the resulting park notifications move FQs from "sched" to 712 * "parked". 713 */ 714enum qman_fq_state { 715 qman_fq_state_oos, 716 qman_fq_state_parked, 717 qman_fq_state_sched, 718 qman_fq_state_retired 719}; 720 721#define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */ 722#define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */ 723#define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */ 724#define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */ 725#define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */ 726#define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */ 727 728/* 729 * Frame queue objects (struct qman_fq) are stored within memory passed to 730 * qman_create_fq(), as this allows stashing of caller-provided demux callback 731 * pointers at no extra cost to stashing of (driver-internal) FQ state. If the 732 * caller wishes to add per-FQ state and have it benefit from dequeue-stashing, 733 * they should; 734 * 735 * (a) extend the qman_fq structure with their state; eg. 736 * 737 * // myfq is allocated and driver_fq callbacks filled in; 738 * struct my_fq { 739 * struct qman_fq base; 740 * int an_extra_field; 741 * [ ... add other fields to be associated with each FQ ...] 742 * } *myfq = some_my_fq_allocator(); 743 * struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base); 744 * 745 * // in a dequeue callback, access extra fields from 'fq' via a cast; 746 * struct my_fq *myfq = (struct my_fq *)fq; 747 * do_something_with(myfq->an_extra_field); 748 * [...] 749 * 750 * (b) when and if configuring the FQ for context stashing, specify how ever 751 * many cachelines are required to stash 'struct my_fq', to accelerate not 752 * only the QMan driver but the callback as well. 753 */ 754 755struct qman_fq_cb { 756 qman_cb_dqrr dqrr; /* for dequeued frames */ 757 qman_cb_mr ern; /* for s/w ERNs */ 758 qman_cb_mr fqs; /* frame-queue state changes*/ 759}; 760 761struct qman_fq { 762 /* Caller of qman_create_fq() provides these demux callbacks */ 763 struct qman_fq_cb cb; 764 /* 765 * These are internal to the driver, don't touch. In particular, they 766 * may change, be removed, or extended (so you shouldn't rely on 767 * sizeof(qman_fq) being a constant). 768 */ 769 u32 fqid, idx; 770 unsigned long flags; 771 enum qman_fq_state state; 772 int cgr_groupid; 773}; 774 775/* 776 * This callback type is used when handling congestion group entry/exit. 777 * 'congested' is non-zero on congestion-entry, and zero on congestion-exit. 778 */ 779typedef void (*qman_cb_cgr)(struct qman_portal *qm, 780 struct qman_cgr *cgr, int congested); 781 782struct qman_cgr { 783 /* Set these prior to qman_create_cgr() */ 784 u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/ 785 qman_cb_cgr cb; 786 /* These are private to the driver */ 787 u16 chan; /* portal channel this object is created on */ 788 struct list_head node; 789}; 790 791/* Flags to qman_create_fq() */ 792#define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */ 793#define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */ 794#define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */ 795#define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */ 796 797/* Flags to qman_init_fq() */ 798#define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */ 799#define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */ 800 801/* 802 * For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use 803 * NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use 804 * FQID(n) to fill in the frame queue ID. 805 */ 806#define QM_VDQCR_PRECEDENCE_VDQCR 0x0 807#define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000 808#define QM_VDQCR_EXACT 0x40000000 809#define QM_VDQCR_NUMFRAMES_MASK 0x3f000000 810#define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24) 811#define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f) 812#define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0) 813 814#define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */ 815#define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */ 816#define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */ 817 818/* "Query FQ Non-Programmable Fields" */ 819struct qm_mcr_queryfq_np { 820 u8 verb; 821 u8 result; 822 u8 __reserved1; 823 u8 state; /* QM_MCR_NP_STATE_*** */ 824 u32 fqd_link; /* 24-bit, _res2[24-31] */ 825 u16 odp_seq; /* 14-bit, _res3[14-15] */ 826 u16 orp_nesn; /* 14-bit, _res4[14-15] */ 827 u16 orp_ea_hseq; /* 15-bit, _res5[15] */ 828 u16 orp_ea_tseq; /* 15-bit, _res6[15] */ 829 u32 orp_ea_hptr; /* 24-bit, _res7[24-31] */ 830 u32 orp_ea_tptr; /* 24-bit, _res8[24-31] */ 831 u32 pfdr_hptr; /* 24-bit, _res9[24-31] */ 832 u32 pfdr_tptr; /* 24-bit, _res10[24-31] */ 833 u8 __reserved2[5]; 834 u8 is; /* 1-bit, _res12[1-7] */ 835 u16 ics_surp; 836 u32 byte_cnt; 837 u32 frm_cnt; /* 24-bit, _res13[24-31] */ 838 u32 __reserved3; 839 u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */ 840 u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */ 841 u16 __reserved4; 842 u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */ 843 u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */ 844 u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */ 845} __packed; 846 847#define QM_MCR_NP_STATE_FE 0x10 848#define QM_MCR_NP_STATE_R 0x08 849#define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */ 850#define QM_MCR_NP_STATE_OOS 0x00 851#define QM_MCR_NP_STATE_RETIRED 0x01 852#define QM_MCR_NP_STATE_TEN_SCHED 0x02 853#define QM_MCR_NP_STATE_TRU_SCHED 0x03 854#define QM_MCR_NP_STATE_PARKED 0x04 855#define QM_MCR_NP_STATE_ACTIVE 0x05 856#define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */ 857#define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */ 858#define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */ 859#define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */ 860#define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */ 861 862enum qm_mcr_queryfq_np_masks { 863 qm_mcr_fqd_link_mask = BIT(24) - 1, 864 qm_mcr_odp_seq_mask = BIT(14) - 1, 865 qm_mcr_orp_nesn_mask = BIT(14) - 1, 866 qm_mcr_orp_ea_hseq_mask = BIT(15) - 1, 867 qm_mcr_orp_ea_tseq_mask = BIT(15) - 1, 868 qm_mcr_orp_ea_hptr_mask = BIT(24) - 1, 869 qm_mcr_orp_ea_tptr_mask = BIT(24) - 1, 870 qm_mcr_pfdr_hptr_mask = BIT(24) - 1, 871 qm_mcr_pfdr_tptr_mask = BIT(24) - 1, 872 qm_mcr_is_mask = BIT(1) - 1, 873 qm_mcr_frm_cnt_mask = BIT(24) - 1, 874}; 875 876#define qm_mcr_np_get(np, field) \ 877 ((np)->field & (qm_mcr_##field##_mask)) 878 879 /* Portal Management */ 880/** 881 * qman_p_irqsource_add - add processing sources to be interrupt-driven 882 * @bits: bitmask of QM_PIRQ_**I processing sources 883 * 884 * Adds processing sources that should be interrupt-driven (rather than 885 * processed via qman_poll_***() functions). 886 */ 887void qman_p_irqsource_add(struct qman_portal *p, u32 bits); 888 889/** 890 * qman_p_irqsource_remove - remove processing sources from being int-driven 891 * @bits: bitmask of QM_PIRQ_**I processing sources 892 * 893 * Removes processing sources from being interrupt-driven, so that they will 894 * instead be processed via qman_poll_***() functions. 895 */ 896void qman_p_irqsource_remove(struct qman_portal *p, u32 bits); 897 898/** 899 * qman_affine_cpus - return a mask of cpus that have affine portals 900 */ 901const cpumask_t *qman_affine_cpus(void); 902 903/** 904 * qman_affine_channel - return the channel ID of an portal 905 * @cpu: the cpu whose affine portal is the subject of the query 906 * 907 * If @cpu is -1, the affine portal for the current CPU will be used. It is a 908 * bug to call this function for any value of @cpu (other than -1) that is not a 909 * member of the mask returned from qman_affine_cpus(). 910 */ 911u16 qman_affine_channel(int cpu); 912 913/** 914 * qman_get_affine_portal - return the portal pointer affine to cpu 915 * @cpu: the cpu whose affine portal is the subject of the query 916 */ 917struct qman_portal *qman_get_affine_portal(int cpu); 918 919/** 920 * qman_start_using_portal - register a device link for the portal user 921 * @p: the portal that will be in use 922 * @dev: the device that will use the portal 923 * 924 * Makes sure that the devices that use the portal are unbound when the 925 * portal is unbound 926 */ 927int qman_start_using_portal(struct qman_portal *p, struct device *dev); 928 929/** 930 * qman_p_poll_dqrr - process DQRR (fast-path) entries 931 * @limit: the maximum number of DQRR entries to process 932 * 933 * Use of this function requires that DQRR processing not be interrupt-driven. 934 * The return value represents the number of DQRR entries processed. 935 */ 936int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit); 937 938/** 939 * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR 940 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n) 941 * 942 * Adds a set of pool channels to the portal's static dequeue command register 943 * (SDQCR). The requested pools are limited to those the portal has dequeue 944 * access to. 945 */ 946void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools); 947 948 /* FQ management */ 949/** 950 * qman_create_fq - Allocates a FQ 951 * @fqid: the index of the FQD to encapsulate, must be "Out of Service" 952 * @flags: bit-mask of QMAN_FQ_FLAG_*** options 953 * @fq: memory for storing the 'fq', with callbacks filled in 954 * 955 * Creates a frame queue object for the given @fqid, unless the 956 * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is 957 * dynamically allocated (or the function fails if none are available). Once 958 * created, the caller should not touch the memory at 'fq' except as extended to 959 * adjacent memory for user-defined fields (see the definition of "struct 960 * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to 961 * pre-existing frame-queues that aren't to be otherwise interfered with, it 962 * prevents all other modifications to the frame queue. The TO_DCPORTAL flag 963 * causes the driver to honour any context_b modifications requested in the 964 * qm_init_fq() API, as this indicates the frame queue will be consumed by a 965 * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by 966 * software portals, the context_b field is controlled by the driver and can't 967 * be modified by the caller. 968 */ 969int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq); 970 971/** 972 * qman_destroy_fq - Deallocates a FQ 973 * @fq: the frame queue object to release 974 * 975 * The memory for this frame queue object ('fq' provided in qman_create_fq()) is 976 * not deallocated but the caller regains ownership, to do with as desired. The 977 * FQ must be in the 'out-of-service' or in the 'parked' state. 978 */ 979void qman_destroy_fq(struct qman_fq *fq); 980 981/** 982 * qman_fq_fqid - Queries the frame queue ID of a FQ object 983 * @fq: the frame queue object to query 984 */ 985u32 qman_fq_fqid(struct qman_fq *fq); 986 987/** 988 * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled" 989 * @fq: the frame queue object to modify, must be 'parked' or new. 990 * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options 991 * @opts: the FQ-modification settings, as defined in the low-level API 992 * 993 * The @opts parameter comes from the low-level portal API. Select 994 * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled 995 * rather than parked. NB, @opts can be NULL. 996 * 997 * Note that some fields and options within @opts may be ignored or overwritten 998 * by the driver; 999 * 1. the 'count' and 'fqid' fields are always ignored (this operation only 1000 * affects one frame queue: @fq). 1001 * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated 1002 * 'fqd' structure's 'context_b' field are sometimes overwritten; 1003 * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is 1004 * initialised to a value used by the driver for demux. 1005 * - if context_b is initialised for demux, so is context_a in case stashing 1006 * is requested (see item 4). 1007 * (So caller control of context_b is only possible for TO_DCPORTAL frame queue 1008 * objects.) 1009 * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's 1010 * 'dest::channel' field will be overwritten to match the portal used to issue 1011 * the command. If the WE_DESTWQ write-enable bit had already been set by the 1012 * caller, the channel workqueue will be left as-is, otherwise the write-enable 1013 * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag 1014 * isn't set, the destination channel/workqueue fields and the write-enable bit 1015 * are left as-is. 1016 * 4. if the driver overwrites context_a/b for demux, then if 1017 * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite 1018 * context_a.address fields and will leave the stashing fields provided by the 1019 * user alone, otherwise it will zero out the context_a.stashing fields. 1020 */ 1021int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts); 1022 1023/** 1024 * qman_schedule_fq - Schedules a FQ 1025 * @fq: the frame queue object to schedule, must be 'parked' 1026 * 1027 * Schedules the frame queue, which must be Parked, which takes it to 1028 * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level. 1029 */ 1030int qman_schedule_fq(struct qman_fq *fq); 1031 1032/** 1033 * qman_retire_fq - Retires a FQ 1034 * @fq: the frame queue object to retire 1035 * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately 1036 * 1037 * Retires the frame queue. This returns zero if it succeeds immediately, +1 if 1038 * the retirement was started asynchronously, otherwise it returns negative for 1039 * failure. When this function returns zero, @flags is set to indicate whether 1040 * the retired FQ is empty and/or whether it has any ORL fragments (to show up 1041 * as ERNs). Otherwise the corresponding flags will be known when a subsequent 1042 * FQRN message shows up on the portal's message ring. 1043 * 1044 * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or 1045 * Active state), the completion will be via the message ring as a FQRN - but 1046 * the corresponding callback may occur before this function returns!! Ie. the 1047 * caller should be prepared to accept the callback as the function is called, 1048 * not only once it has returned. 1049 */ 1050int qman_retire_fq(struct qman_fq *fq, u32 *flags); 1051 1052/** 1053 * qman_oos_fq - Puts a FQ "out of service" 1054 * @fq: the frame queue object to be put out-of-service, must be 'retired' 1055 * 1056 * The frame queue must be retired and empty, and if any order restoration list 1057 * was released as ERNs at the time of retirement, they must all be consumed. 1058 */ 1059int qman_oos_fq(struct qman_fq *fq); 1060 1061/* 1062 * qman_volatile_dequeue - Issue a volatile dequeue command 1063 * @fq: the frame queue object to dequeue from 1064 * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options 1065 * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set() 1066 * 1067 * Attempts to lock access to the portal's VDQCR volatile dequeue functionality. 1068 * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and 1069 * the VDQCR is already in use, otherwise returns non-zero for failure. If 1070 * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once 1071 * the VDQCR command has finished executing (ie. once the callback for the last 1072 * DQRR entry resulting from the VDQCR command has been called). If not using 1073 * the FINISH flag, completion can be determined either by detecting the 1074 * presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits 1075 * in the "stat" parameter passed to the FQ's dequeue callback, or by waiting 1076 * for the QMAN_FQ_STATE_VDQCR bit to disappear. 1077 */ 1078int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr); 1079 1080/** 1081 * qman_enqueue - Enqueue a frame to a frame queue 1082 * @fq: the frame queue object to enqueue to 1083 * @fd: a descriptor of the frame to be enqueued 1084 * 1085 * Fills an entry in the EQCR of portal @qm to enqueue the frame described by 1086 * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid' 1087 * field is ignored. The return value is non-zero on error, such as ring full. 1088 */ 1089int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd); 1090 1091/** 1092 * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs 1093 * @result: is set by the API to the base FQID of the allocated range 1094 * @count: the number of FQIDs required 1095 * 1096 * Returns 0 on success, or a negative error code. 1097 */ 1098int qman_alloc_fqid_range(u32 *result, u32 count); 1099#define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1) 1100 1101/** 1102 * qman_release_fqid - Release the specified frame queue ID 1103 * @fqid: the FQID to be released back to the resource pool 1104 * 1105 * This function can also be used to seed the allocator with 1106 * FQID ranges that it can subsequently allocate from. 1107 * Returns 0 on success, or a negative error code. 1108 */ 1109int qman_release_fqid(u32 fqid); 1110 1111/** 1112 * qman_query_fq_np - Queries non-programmable FQD fields 1113 * @fq: the frame queue object to be queried 1114 * @np: storage for the queried FQD fields 1115 */ 1116int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np); 1117 1118 /* Pool-channel management */ 1119/** 1120 * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs 1121 * @result: is set by the API to the base pool-channel ID of the allocated range 1122 * @count: the number of pool-channel IDs required 1123 * 1124 * Returns 0 on success, or a negative error code. 1125 */ 1126int qman_alloc_pool_range(u32 *result, u32 count); 1127#define qman_alloc_pool(result) qman_alloc_pool_range(result, 1) 1128 1129/** 1130 * qman_release_pool - Release the specified pool-channel ID 1131 * @id: the pool-chan ID to be released back to the resource pool 1132 * 1133 * This function can also be used to seed the allocator with 1134 * pool-channel ID ranges that it can subsequently allocate from. 1135 * Returns 0 on success, or a negative error code. 1136 */ 1137int qman_release_pool(u32 id); 1138 1139 /* CGR management */ 1140/** 1141 * qman_create_cgr - Register a congestion group object 1142 * @cgr: the 'cgr' object, with fields filled in 1143 * @flags: QMAN_CGR_FLAG_* values 1144 * @opts: optional state of CGR settings 1145 * 1146 * Registers this object to receiving congestion entry/exit callbacks on the 1147 * portal affine to the cpu portal on which this API is executed. If opts is 1148 * NULL then only the callback (cgr->cb) function is registered. If @flags 1149 * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset 1150 * any unspecified parameters) will be used rather than a modify hw hardware 1151 * (which only modifies the specified parameters). 1152 */ 1153int qman_create_cgr(struct qman_cgr *cgr, u32 flags, 1154 struct qm_mcc_initcgr *opts); 1155 1156/** 1157 * qman_delete_cgr - Deregisters a congestion group object 1158 * @cgr: the 'cgr' object to deregister 1159 * 1160 * "Unplugs" this CGR object from the portal affine to the cpu on which this API 1161 * is executed. This must be excuted on the same affine portal on which it was 1162 * created. 1163 */ 1164int qman_delete_cgr(struct qman_cgr *cgr); 1165 1166/** 1167 * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU 1168 * @cgr: the 'cgr' object to deregister 1169 * 1170 * This will select the proper CPU and run there qman_delete_cgr(). 1171 */ 1172void qman_delete_cgr_safe(struct qman_cgr *cgr); 1173 1174/** 1175 * qman_query_cgr_congested - Queries CGR's congestion status 1176 * @cgr: the 'cgr' object to query 1177 * @result: returns 'cgr's congestion status, 1 (true) if congested 1178 */ 1179int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result); 1180 1181/** 1182 * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs 1183 * @result: is set by the API to the base CGR ID of the allocated range 1184 * @count: the number of CGR IDs required 1185 * 1186 * Returns 0 on success, or a negative error code. 1187 */ 1188int qman_alloc_cgrid_range(u32 *result, u32 count); 1189#define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1) 1190 1191/** 1192 * qman_release_cgrid - Release the specified CGR ID 1193 * @id: the CGR ID to be released back to the resource pool 1194 * 1195 * This function can also be used to seed the allocator with 1196 * CGR ID ranges that it can subsequently allocate from. 1197 * Returns 0 on success, or a negative error code. 1198 */ 1199int qman_release_cgrid(u32 id); 1200 1201/** 1202 * qman_is_probed - Check if qman is probed 1203 * 1204 * Returns 1 if the qman driver successfully probed, -1 if the qman driver 1205 * failed to probe or 0 if the qman driver did not probed yet. 1206 */ 1207int qman_is_probed(void); 1208 1209/** 1210 * qman_portals_probed - Check if all cpu bound qman portals are probed 1211 * 1212 * Returns 1 if all the required cpu bound qman portals successfully probed, 1213 * -1 if probe errors appeared or 0 if the qman portals did not yet finished 1214 * probing. 1215 */ 1216int qman_portals_probed(void); 1217 1218/** 1219 * qman_dqrr_get_ithresh - Get coalesce interrupt threshold 1220 * @portal: portal to get the value for 1221 * @ithresh: threshold pointer 1222 */ 1223void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh); 1224 1225/** 1226 * qman_dqrr_set_ithresh - Set coalesce interrupt threshold 1227 * @portal: portal to set the new value on 1228 * @ithresh: new threshold value 1229 * 1230 * Returns 0 on success, or a negative error code. 1231 */ 1232int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh); 1233 1234/** 1235 * qman_dqrr_get_iperiod - Get coalesce interrupt period 1236 * @portal: portal to get the value for 1237 * @iperiod: period pointer 1238 */ 1239void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod); 1240 1241/** 1242 * qman_dqrr_set_iperiod - Set coalesce interrupt period 1243 * @portal: portal to set the new value on 1244 * @ithresh: new period value 1245 * 1246 * Returns 0 on success, or a negative error code. 1247 */ 1248int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod); 1249 1250#endif /* __FSL_QMAN_H */