cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

drm_fourcc.h (62502B)


      1/*
      2 * Copyright 2011 Intel Corporation
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice (including the next
     12 * paragraph) shall be included in all copies or substantial portions of the
     13 * Software.
     14 *
     15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
     19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     21 * OTHER DEALINGS IN THE SOFTWARE.
     22 */
     23
     24#ifndef DRM_FOURCC_H
     25#define DRM_FOURCC_H
     26
     27#include "drm.h"
     28
     29#if defined(__cplusplus)
     30extern "C" {
     31#endif
     32
     33/**
     34 * DOC: overview
     35 *
     36 * In the DRM subsystem, framebuffer pixel formats are described using the
     37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
     38 * fourcc code, a Format Modifier may optionally be provided, in order to
     39 * further describe the buffer's format - for example tiling or compression.
     40 *
     41 * Format Modifiers
     42 * ----------------
     43 *
     44 * Format modifiers are used in conjunction with a fourcc code, forming a
     45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
     46 * format and data layout of the buffer, and should be the only way to describe
     47 * that particular buffer.
     48 *
     49 * Having multiple fourcc:modifier pairs which describe the same layout should
     50 * be avoided, as such aliases run the risk of different drivers exposing
     51 * different names for the same data format, forcing userspace to understand
     52 * that they are aliases.
     53 *
     54 * Format modifiers may change any property of the buffer, including the number
     55 * of planes and/or the required allocation size. Format modifiers are
     56 * vendor-namespaced, and as such the relationship between a fourcc code and a
     57 * modifier is specific to the modifer being used. For example, some modifiers
     58 * may preserve meaning - such as number of planes - from the fourcc code,
     59 * whereas others may not.
     60 *
     61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
     62 * match only a single modifier. A modifier must not be a subset of layouts of
     63 * another modifier. For instance, it's incorrect to encode pitch alignment in
     64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
     65 * aligned modifier. That said, modifiers can have implicit minimal
     66 * requirements.
     67 *
     68 * For modifiers where the combination of fourcc code and modifier can alias,
     69 * a canonical pair needs to be defined and used by all drivers. Preferred
     70 * combinations are also encouraged where all combinations might lead to
     71 * confusion and unnecessarily reduced interoperability. An example for the
     72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
     73 *
     74 * There are two kinds of modifier users:
     75 *
     76 * - Kernel and user-space drivers: for drivers it's important that modifiers
     77 *   don't alias, otherwise two drivers might support the same format but use
     78 *   different aliases, preventing them from sharing buffers in an efficient
     79 *   format.
     80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
     81 *   see modifiers as opaque tokens they can check for equality and intersect.
     82 *   These users musn't need to know to reason about the modifier value
     83 *   (i.e. they are not expected to extract information out of the modifier).
     84 *
     85 * Vendors should document their modifier usage in as much detail as
     86 * possible, to ensure maximum compatibility across devices, drivers and
     87 * applications.
     88 *
     89 * The authoritative list of format modifier codes is found in
     90 * `include/uapi/drm/drm_fourcc.h`
     91 */
     92
     93#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
     94				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
     95
     96#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
     97
     98/* Reserve 0 for the invalid format specifier */
     99#define DRM_FORMAT_INVALID	0
    100
    101/* color index */
    102#define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
    103
    104/* 8 bpp Red */
    105#define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
    106
    107/* 10 bpp Red */
    108#define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
    109
    110/* 12 bpp Red */
    111#define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
    112
    113/* 16 bpp Red */
    114#define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
    115
    116/* 16 bpp RG */
    117#define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
    118#define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
    119
    120/* 32 bpp RG */
    121#define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
    122#define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
    123
    124/* 8 bpp RGB */
    125#define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
    126#define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
    127
    128/* 16 bpp RGB */
    129#define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
    130#define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
    131#define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
    132#define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
    133
    134#define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
    135#define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
    136#define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
    137#define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
    138
    139#define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
    140#define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
    141#define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
    142#define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
    143
    144#define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
    145#define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
    146#define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
    147#define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
    148
    149#define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
    150#define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
    151
    152/* 24 bpp RGB */
    153#define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
    154#define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
    155
    156/* 32 bpp RGB */
    157#define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
    158#define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
    159#define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
    160#define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
    161
    162#define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
    163#define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
    164#define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
    165#define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
    166
    167#define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
    168#define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
    169#define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
    170#define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
    171
    172#define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
    173#define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
    174#define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
    175#define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
    176
    177/* 64 bpp RGB */
    178#define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
    179#define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
    180
    181#define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
    182#define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
    183
    184/*
    185 * Floating point 64bpp RGB
    186 * IEEE 754-2008 binary16 half-precision float
    187 * [15:0] sign:exponent:mantissa 1:5:10
    188 */
    189#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
    190#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
    191
    192#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
    193#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
    194
    195/*
    196 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
    197 * of unused padding per component:
    198 */
    199#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
    200
    201/* packed YCbCr */
    202#define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
    203#define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
    204#define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
    205#define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
    206
    207#define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
    208#define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
    209#define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
    210#define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
    211
    212/*
    213 * packed Y2xx indicate for each component, xx valid data occupy msb
    214 * 16-xx padding occupy lsb
    215 */
    216#define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
    217#define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
    218#define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
    219
    220/*
    221 * packed Y4xx indicate for each component, xx valid data occupy msb
    222 * 16-xx padding occupy lsb except Y410
    223 */
    224#define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
    225#define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
    226#define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
    227
    228#define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
    229#define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
    230#define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
    231
    232/*
    233 * packed YCbCr420 2x2 tiled formats
    234 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
    235 */
    236/* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
    237#define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
    238/* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
    239#define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
    240
    241/* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
    242#define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
    243/* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
    244#define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
    245
    246/*
    247 * 1-plane YUV 4:2:0
    248 * In these formats, the component ordering is specified (Y, followed by U
    249 * then V), but the exact Linear layout is undefined.
    250 * These formats can only be used with a non-Linear modifier.
    251 */
    252#define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
    253#define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
    254
    255/*
    256 * 2 plane RGB + A
    257 * index 0 = RGB plane, same format as the corresponding non _A8 format has
    258 * index 1 = A plane, [7:0] A
    259 */
    260#define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
    261#define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
    262#define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
    263#define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
    264#define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
    265#define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
    266#define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
    267#define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
    268
    269/*
    270 * 2 plane YCbCr
    271 * index 0 = Y plane, [7:0] Y
    272 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
    273 * or
    274 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
    275 */
    276#define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
    277#define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
    278#define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
    279#define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
    280#define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
    281#define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
    282/*
    283 * 2 plane YCbCr
    284 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
    285 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
    286 */
    287#define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
    288
    289/*
    290 * 2 plane YCbCr MSB aligned
    291 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
    292 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
    293 */
    294#define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
    295
    296/*
    297 * 2 plane YCbCr MSB aligned
    298 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
    299 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
    300 */
    301#define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
    302
    303/*
    304 * 2 plane YCbCr MSB aligned
    305 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
    306 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
    307 */
    308#define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
    309
    310/*
    311 * 2 plane YCbCr MSB aligned
    312 * index 0 = Y plane, [15:0] Y little endian
    313 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
    314 */
    315#define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
    316
    317/* 2 plane YCbCr420.
    318 * 3 10 bit components and 2 padding bits packed into 4 bytes.
    319 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
    320 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
    321 */
    322#define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
    323
    324/* 3 plane non-subsampled (444) YCbCr
    325 * 16 bits per component, but only 10 bits are used and 6 bits are padded
    326 * index 0: Y plane, [15:0] Y:x [10:6] little endian
    327 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
    328 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
    329 */
    330#define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
    331
    332/* 3 plane non-subsampled (444) YCrCb
    333 * 16 bits per component, but only 10 bits are used and 6 bits are padded
    334 * index 0: Y plane, [15:0] Y:x [10:6] little endian
    335 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
    336 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
    337 */
    338#define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
    339
    340/*
    341 * 3 plane YCbCr
    342 * index 0: Y plane, [7:0] Y
    343 * index 1: Cb plane, [7:0] Cb
    344 * index 2: Cr plane, [7:0] Cr
    345 * or
    346 * index 1: Cr plane, [7:0] Cr
    347 * index 2: Cb plane, [7:0] Cb
    348 */
    349#define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
    350#define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
    351#define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
    352#define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
    353#define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
    354#define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
    355#define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
    356#define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
    357#define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
    358#define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
    359
    360
    361/*
    362 * Format Modifiers:
    363 *
    364 * Format modifiers describe, typically, a re-ordering or modification
    365 * of the data in a plane of an FB.  This can be used to express tiled/
    366 * swizzled formats, or compression, or a combination of the two.
    367 *
    368 * The upper 8 bits of the format modifier are a vendor-id as assigned
    369 * below.  The lower 56 bits are assigned as vendor sees fit.
    370 */
    371
    372/* Vendor Ids: */
    373#define DRM_FORMAT_MOD_VENDOR_NONE    0
    374#define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
    375#define DRM_FORMAT_MOD_VENDOR_AMD     0x02
    376#define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
    377#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
    378#define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
    379#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
    380#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
    381#define DRM_FORMAT_MOD_VENDOR_ARM     0x08
    382#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
    383#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
    384
    385/* add more to the end as needed */
    386
    387#define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
    388
    389#define fourcc_mod_get_vendor(modifier) \
    390	(((modifier) >> 56) & 0xff)
    391
    392#define fourcc_mod_is_vendor(modifier, vendor) \
    393	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
    394
    395#define fourcc_mod_code(vendor, val) \
    396	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
    397
    398/*
    399 * Format Modifier tokens:
    400 *
    401 * When adding a new token please document the layout with a code comment,
    402 * similar to the fourcc codes above. drm_fourcc.h is considered the
    403 * authoritative source for all of these.
    404 *
    405 * Generic modifier names:
    406 *
    407 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
    408 * for layouts which are common across multiple vendors. To preserve
    409 * compatibility, in cases where a vendor-specific definition already exists and
    410 * a generic name for it is desired, the common name is a purely symbolic alias
    411 * and must use the same numerical value as the original definition.
    412 *
    413 * Note that generic names should only be used for modifiers which describe
    414 * generic layouts (such as pixel re-ordering), which may have
    415 * independently-developed support across multiple vendors.
    416 *
    417 * In future cases where a generic layout is identified before merging with a
    418 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
    419 * 'NONE' could be considered. This should only be for obvious, exceptional
    420 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
    421 * apply to a single vendor.
    422 *
    423 * Generic names should not be used for cases where multiple hardware vendors
    424 * have implementations of the same standardised compression scheme (such as
    425 * AFBC). In those cases, all implementations should use the same format
    426 * modifier(s), reflecting the vendor of the standard.
    427 */
    428
    429#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
    430
    431/*
    432 * Invalid Modifier
    433 *
    434 * This modifier can be used as a sentinel to terminate the format modifiers
    435 * list, or to initialize a variable with an invalid modifier. It might also be
    436 * used to report an error back to userspace for certain APIs.
    437 */
    438#define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
    439
    440/*
    441 * Linear Layout
    442 *
    443 * Just plain linear layout. Note that this is different from no specifying any
    444 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
    445 * which tells the driver to also take driver-internal information into account
    446 * and so might actually result in a tiled framebuffer.
    447 */
    448#define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
    449
    450/*
    451 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
    452 *
    453 * The "none" format modifier doesn't actually mean that the modifier is
    454 * implicit, instead it means that the layout is linear. Whether modifiers are
    455 * used is out-of-band information carried in an API-specific way (e.g. in a
    456 * flag for drm_mode_fb_cmd2).
    457 */
    458#define DRM_FORMAT_MOD_NONE	0
    459
    460/* Intel framebuffer modifiers */
    461
    462/*
    463 * Intel X-tiling layout
    464 *
    465 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
    466 * in row-major layout. Within the tile bytes are laid out row-major, with
    467 * a platform-dependent stride. On top of that the memory can apply
    468 * platform-depending swizzling of some higher address bits into bit6.
    469 *
    470 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
    471 * On earlier platforms the is highly platforms specific and not useful for
    472 * cross-driver sharing. It exists since on a given platform it does uniquely
    473 * identify the layout in a simple way for i915-specific userspace, which
    474 * facilitated conversion of userspace to modifiers. Additionally the exact
    475 * format on some really old platforms is not known.
    476 */
    477#define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
    478
    479/*
    480 * Intel Y-tiling layout
    481 *
    482 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
    483 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
    484 * chunks column-major, with a platform-dependent height. On top of that the
    485 * memory can apply platform-depending swizzling of some higher address bits
    486 * into bit6.
    487 *
    488 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
    489 * On earlier platforms the is highly platforms specific and not useful for
    490 * cross-driver sharing. It exists since on a given platform it does uniquely
    491 * identify the layout in a simple way for i915-specific userspace, which
    492 * facilitated conversion of userspace to modifiers. Additionally the exact
    493 * format on some really old platforms is not known.
    494 */
    495#define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
    496
    497/*
    498 * Intel Yf-tiling layout
    499 *
    500 * This is a tiled layout using 4Kb tiles in row-major layout.
    501 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
    502 * are arranged in four groups (two wide, two high) with column-major layout.
    503 * Each group therefore consits out of four 256 byte units, which are also laid
    504 * out as 2x2 column-major.
    505 * 256 byte units are made out of four 64 byte blocks of pixels, producing
    506 * either a square block or a 2:1 unit.
    507 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
    508 * in pixel depends on the pixel depth.
    509 */
    510#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
    511
    512/*
    513 * Intel color control surface (CCS) for render compression
    514 *
    515 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
    516 * The main surface will be plane index 0 and must be Y/Yf-tiled,
    517 * the CCS will be plane index 1.
    518 *
    519 * Each CCS tile matches a 1024x512 pixel area of the main surface.
    520 * To match certain aspects of the 3D hardware the CCS is
    521 * considered to be made up of normal 128Bx32 Y tiles, Thus
    522 * the CCS pitch must be specified in multiples of 128 bytes.
    523 *
    524 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
    525 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
    526 * But that fact is not relevant unless the memory is accessed
    527 * directly.
    528 */
    529#define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
    530#define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
    531
    532/*
    533 * Intel color control surfaces (CCS) for Gen-12 render compression.
    534 *
    535 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
    536 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
    537 * main surface. In other words, 4 bits in CCS map to a main surface cache
    538 * line pair. The main surface pitch is required to be a multiple of four
    539 * Y-tile widths.
    540 */
    541#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
    542
    543/*
    544 * Intel color control surfaces (CCS) for Gen-12 media compression
    545 *
    546 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
    547 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
    548 * main surface. In other words, 4 bits in CCS map to a main surface cache
    549 * line pair. The main surface pitch is required to be a multiple of four
    550 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
    551 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
    552 * planes 2 and 3 for the respective CCS.
    553 */
    554#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
    555
    556/*
    557 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
    558 * compression.
    559 *
    560 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
    561 * and at index 1. The clear color is stored at index 2, and the pitch should
    562 * be ignored. The clear color structure is 256 bits. The first 128 bits
    563 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
    564 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
    565 * the converted clear color of size 64 bits. The first 32 bits store the Lower
    566 * Converted Clear Color value and the next 32 bits store the Higher Converted
    567 * Clear Color value when applicable. The Converted Clear Color values are
    568 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
    569 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
    570 * corresponds to an area of 4x1 tiles in the main surface. The main surface
    571 * pitch is required to be a multiple of 4 tile widths.
    572 */
    573#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
    574
    575/*
    576 * Intel Tile 4 layout
    577 *
    578 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
    579 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
    580 * only differs from Tile Y at the 256B granularity in between. At this
    581 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
    582 * of 64B x 8 rows.
    583 */
    584#define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
    585
    586/*
    587 * Intel color control surfaces (CCS) for DG2 render compression.
    588 *
    589 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
    590 * outside of the GEM object in a reserved memory area dedicated for the
    591 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
    592 * main surface pitch is required to be a multiple of four Tile 4 widths.
    593 */
    594#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
    595
    596/*
    597 * Intel color control surfaces (CCS) for DG2 media compression.
    598 *
    599 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
    600 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
    601 * 0 and 1, respectively. The CCS for all planes are stored outside of the
    602 * GEM object in a reserved memory area dedicated for the storage of the
    603 * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
    604 * pitch is required to be a multiple of four Tile 4 widths.
    605 */
    606#define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
    607
    608/*
    609 * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
    610 *
    611 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
    612 * outside of the GEM object in a reserved memory area dedicated for the
    613 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
    614 * main surface pitch is required to be a multiple of four Tile 4 widths. The
    615 * clear color is stored at plane index 1 and the pitch should be ignored. The
    616 * format of the 256 bits of clear color data matches the one used for the
    617 * I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
    618 * for details.
    619 */
    620#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
    621
    622/*
    623 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
    624 *
    625 * Macroblocks are laid in a Z-shape, and each pixel data is following the
    626 * standard NV12 style.
    627 * As for NV12, an image is the result of two frame buffers: one for Y,
    628 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
    629 * Alignment requirements are (for each buffer):
    630 * - multiple of 128 pixels for the width
    631 * - multiple of  32 pixels for the height
    632 *
    633 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
    634 */
    635#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
    636
    637/*
    638 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
    639 *
    640 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
    641 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
    642 * they correspond to their 16x16 luma block.
    643 */
    644#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
    645
    646/*
    647 * Qualcomm Compressed Format
    648 *
    649 * Refers to a compressed variant of the base format that is compressed.
    650 * Implementation may be platform and base-format specific.
    651 *
    652 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
    653 * Pixel data pitch/stride is aligned with macrotile width.
    654 * Pixel data height is aligned with macrotile height.
    655 * Entire pixel data buffer is aligned with 4k(bytes).
    656 */
    657#define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
    658
    659/*
    660 * Qualcomm Tiled Format
    661 *
    662 * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
    663 * Implementation may be platform and base-format specific.
    664 *
    665 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
    666 * Pixel data pitch/stride is aligned with macrotile width.
    667 * Pixel data height is aligned with macrotile height.
    668 * Entire pixel data buffer is aligned with 4k(bytes).
    669 */
    670#define DRM_FORMAT_MOD_QCOM_TILED3	fourcc_mod_code(QCOM, 3)
    671
    672/*
    673 * Qualcomm Alternate Tiled Format
    674 *
    675 * Alternate tiled format typically only used within GMEM.
    676 * Implementation may be platform and base-format specific.
    677 */
    678#define DRM_FORMAT_MOD_QCOM_TILED2	fourcc_mod_code(QCOM, 2)
    679
    680
    681/* Vivante framebuffer modifiers */
    682
    683/*
    684 * Vivante 4x4 tiling layout
    685 *
    686 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
    687 * layout.
    688 */
    689#define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
    690
    691/*
    692 * Vivante 64x64 super-tiling layout
    693 *
    694 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
    695 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
    696 * major layout.
    697 *
    698 * For more information: see
    699 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
    700 */
    701#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
    702
    703/*
    704 * Vivante 4x4 tiling layout for dual-pipe
    705 *
    706 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
    707 * different base address. Offsets from the base addresses are therefore halved
    708 * compared to the non-split tiled layout.
    709 */
    710#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
    711
    712/*
    713 * Vivante 64x64 super-tiling layout for dual-pipe
    714 *
    715 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
    716 * starts at a different base address. Offsets from the base addresses are
    717 * therefore halved compared to the non-split super-tiled layout.
    718 */
    719#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
    720
    721/* NVIDIA frame buffer modifiers */
    722
    723/*
    724 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
    725 *
    726 * Pixels are arranged in simple tiles of 16 x 16 bytes.
    727 */
    728#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
    729
    730/*
    731 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
    732 * and Tegra GPUs starting with Tegra K1.
    733 *
    734 * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
    735 * based on the architecture generation.  GOBs themselves are then arranged in
    736 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
    737 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
    738 * a block depth or height of "4").
    739 *
    740 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
    741 * in full detail.
    742 *
    743 *       Macro
    744 * Bits  Param Description
    745 * ----  ----- -----------------------------------------------------------------
    746 *
    747 *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
    748 *             compatibility with the existing
    749 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
    750 *
    751 *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
    752 *             compatibility with the existing
    753 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
    754 *
    755 *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
    756 *             size).  Must be zero.
    757 *
    758 *             Note there is no log2(width) parameter.  Some portions of the
    759 *             hardware support a block width of two gobs, but it is impractical
    760 *             to use due to lack of support elsewhere, and has no known
    761 *             benefits.
    762 *
    763 * 11:9  -     Reserved (To support 2D-array textures with variable array stride
    764 *             in blocks, specified via log2(tile width in blocks)).  Must be
    765 *             zero.
    766 *
    767 * 19:12 k     Page Kind.  This value directly maps to a field in the page
    768 *             tables of all GPUs >= NV50.  It affects the exact layout of bits
    769 *             in memory and can be derived from the tuple
    770 *
    771 *               (format, GPU model, compression type, samples per pixel)
    772 *
    773 *             Where compression type is defined below.  If GPU model were
    774 *             implied by the format modifier, format, or memory buffer, page
    775 *             kind would not need to be included in the modifier itself, but
    776 *             since the modifier should define the layout of the associated
    777 *             memory buffer independent from any device or other context, it
    778 *             must be included here.
    779 *
    780 * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
    781 *             starting with Fermi GPUs.  Additionally, the mapping between page
    782 *             kind and bit layout has changed at various points.
    783 *
    784 *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
    785 *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
    786 *               2 = Gob Height 8, Turing+ Page Kind mapping
    787 *               3 = Reserved for future use.
    788 *
    789 * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
    790 *             bit remapping step that occurs at an even lower level than the
    791 *             page kind and block linear swizzles.  This causes the layout of
    792 *             surfaces mapped in those SOC's GPUs to be incompatible with the
    793 *             equivalent mapping on other GPUs in the same system.
    794 *
    795 *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
    796 *               1 = Desktop GPU and Tegra Xavier+ Layout
    797 *
    798 * 25:23 c     Lossless Framebuffer Compression type.
    799 *
    800 *               0 = none
    801 *               1 = ROP/3D, layout 1, exact compression format implied by Page
    802 *                   Kind field
    803 *               2 = ROP/3D, layout 2, exact compression format implied by Page
    804 *                   Kind field
    805 *               3 = CDE horizontal
    806 *               4 = CDE vertical
    807 *               5 = Reserved for future use
    808 *               6 = Reserved for future use
    809 *               7 = Reserved for future use
    810 *
    811 * 55:25 -     Reserved for future use.  Must be zero.
    812 */
    813#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
    814	fourcc_mod_code(NVIDIA, (0x10 | \
    815				 ((h) & 0xf) | \
    816				 (((k) & 0xff) << 12) | \
    817				 (((g) & 0x3) << 20) | \
    818				 (((s) & 0x1) << 22) | \
    819				 (((c) & 0x7) << 23)))
    820
    821/* To grandfather in prior block linear format modifiers to the above layout,
    822 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
    823 * with block-linear layouts, is remapped within drivers to the value 0xfe,
    824 * which corresponds to the "generic" kind used for simple single-sample
    825 * uncompressed color formats on Fermi - Volta GPUs.
    826 */
    827static inline __u64
    828drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
    829{
    830	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
    831		return modifier;
    832	else
    833		return modifier | (0xfe << 12);
    834}
    835
    836/*
    837 * 16Bx2 Block Linear layout, used by Tegra K1 and later
    838 *
    839 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
    840 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
    841 *
    842 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
    843 *
    844 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
    845 * Valid values are:
    846 *
    847 * 0 == ONE_GOB
    848 * 1 == TWO_GOBS
    849 * 2 == FOUR_GOBS
    850 * 3 == EIGHT_GOBS
    851 * 4 == SIXTEEN_GOBS
    852 * 5 == THIRTYTWO_GOBS
    853 *
    854 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
    855 * in full detail.
    856 */
    857#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
    858	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
    859
    860#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
    861	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
    862#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
    863	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
    864#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
    865	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
    866#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
    867	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
    868#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
    869	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
    870#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
    871	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
    872
    873/*
    874 * Some Broadcom modifiers take parameters, for example the number of
    875 * vertical lines in the image. Reserve the lower 32 bits for modifier
    876 * type, and the next 24 bits for parameters. Top 8 bits are the
    877 * vendor code.
    878 */
    879#define __fourcc_mod_broadcom_param_shift 8
    880#define __fourcc_mod_broadcom_param_bits 48
    881#define fourcc_mod_broadcom_code(val, params) \
    882	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
    883#define fourcc_mod_broadcom_param(m) \
    884	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
    885	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
    886#define fourcc_mod_broadcom_mod(m) \
    887	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
    888		 __fourcc_mod_broadcom_param_shift))
    889
    890/*
    891 * Broadcom VC4 "T" format
    892 *
    893 * This is the primary layout that the V3D GPU can texture from (it
    894 * can't do linear).  The T format has:
    895 *
    896 * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
    897 *   pixels at 32 bit depth.
    898 *
    899 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
    900 *   16x16 pixels).
    901 *
    902 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
    903 *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
    904 *   they're (TR, BR, BL, TL), where bottom left is start of memory.
    905 *
    906 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
    907 *   tiles) or right-to-left (odd rows of 4k tiles).
    908 */
    909#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
    910
    911/*
    912 * Broadcom SAND format
    913 *
    914 * This is the native format that the H.264 codec block uses.  For VC4
    915 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
    916 *
    917 * The image can be considered to be split into columns, and the
    918 * columns are placed consecutively into memory.  The width of those
    919 * columns can be either 32, 64, 128, or 256 pixels, but in practice
    920 * only 128 pixel columns are used.
    921 *
    922 * The pitch between the start of each column is set to optimally
    923 * switch between SDRAM banks. This is passed as the number of lines
    924 * of column width in the modifier (we can't use the stride value due
    925 * to various core checks that look at it , so you should set the
    926 * stride to width*cpp).
    927 *
    928 * Note that the column height for this format modifier is the same
    929 * for all of the planes, assuming that each column contains both Y
    930 * and UV.  Some SAND-using hardware stores UV in a separate tiled
    931 * image from Y to reduce the column height, which is not supported
    932 * with these modifiers.
    933 *
    934 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
    935 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
    936 * wide, but as this is a 10 bpp format that translates to 96 pixels.
    937 */
    938
    939#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
    940	fourcc_mod_broadcom_code(2, v)
    941#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
    942	fourcc_mod_broadcom_code(3, v)
    943#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
    944	fourcc_mod_broadcom_code(4, v)
    945#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
    946	fourcc_mod_broadcom_code(5, v)
    947
    948#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
    949	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
    950#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
    951	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
    952#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
    953	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
    954#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
    955	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
    956
    957/* Broadcom UIF format
    958 *
    959 * This is the common format for the current Broadcom multimedia
    960 * blocks, including V3D 3.x and newer, newer video codecs, and
    961 * displays.
    962 *
    963 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
    964 * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
    965 * stored in columns, with padding between the columns to ensure that
    966 * moving from one column to the next doesn't hit the same SDRAM page
    967 * bank.
    968 *
    969 * To calculate the padding, it is assumed that each hardware block
    970 * and the software driving it knows the platform's SDRAM page size,
    971 * number of banks, and XOR address, and that it's identical between
    972 * all blocks using the format.  This tiling modifier will use XOR as
    973 * necessary to reduce the padding.  If a hardware block can't do XOR,
    974 * the assumption is that a no-XOR tiling modifier will be created.
    975 */
    976#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
    977
    978/*
    979 * Arm Framebuffer Compression (AFBC) modifiers
    980 *
    981 * AFBC is a proprietary lossless image compression protocol and format.
    982 * It provides fine-grained random access and minimizes the amount of data
    983 * transferred between IP blocks.
    984 *
    985 * AFBC has several features which may be supported and/or used, which are
    986 * represented using bits in the modifier. Not all combinations are valid,
    987 * and different devices or use-cases may support different combinations.
    988 *
    989 * Further information on the use of AFBC modifiers can be found in
    990 * Documentation/gpu/afbc.rst
    991 */
    992
    993/*
    994 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
    995 * modifiers) denote the category for modifiers. Currently we have three
    996 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
    997 * sixteen different categories.
    998 */
    999#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
   1000	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
   1001
   1002#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
   1003#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
   1004
   1005#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
   1006	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
   1007
   1008/*
   1009 * AFBC superblock size
   1010 *
   1011 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
   1012 * size (in pixels) must be aligned to a multiple of the superblock size.
   1013 * Four lowest significant bits(LSBs) are reserved for block size.
   1014 *
   1015 * Where one superblock size is specified, it applies to all planes of the
   1016 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
   1017 * the first applies to the Luma plane and the second applies to the Chroma
   1018 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
   1019 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
   1020 */
   1021#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
   1022#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
   1023#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
   1024#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
   1025#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
   1026
   1027/*
   1028 * AFBC lossless colorspace transform
   1029 *
   1030 * Indicates that the buffer makes use of the AFBC lossless colorspace
   1031 * transform.
   1032 */
   1033#define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
   1034
   1035/*
   1036 * AFBC block-split
   1037 *
   1038 * Indicates that the payload of each superblock is split. The second
   1039 * half of the payload is positioned at a predefined offset from the start
   1040 * of the superblock payload.
   1041 */
   1042#define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
   1043
   1044/*
   1045 * AFBC sparse layout
   1046 *
   1047 * This flag indicates that the payload of each superblock must be stored at a
   1048 * predefined position relative to the other superblocks in the same AFBC
   1049 * buffer. This order is the same order used by the header buffer. In this mode
   1050 * each superblock is given the same amount of space as an uncompressed
   1051 * superblock of the particular format would require, rounding up to the next
   1052 * multiple of 128 bytes in size.
   1053 */
   1054#define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
   1055
   1056/*
   1057 * AFBC copy-block restrict
   1058 *
   1059 * Buffers with this flag must obey the copy-block restriction. The restriction
   1060 * is such that there are no copy-blocks referring across the border of 8x8
   1061 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
   1062 */
   1063#define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
   1064
   1065/*
   1066 * AFBC tiled layout
   1067 *
   1068 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
   1069 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
   1070 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
   1071 * larger bpp formats. The order between the tiles is scan line.
   1072 * When the tiled layout is used, the buffer size (in pixels) must be aligned
   1073 * to the tile size.
   1074 */
   1075#define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
   1076
   1077/*
   1078 * AFBC solid color blocks
   1079 *
   1080 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
   1081 * can be reduced if a whole superblock is a single color.
   1082 */
   1083#define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
   1084
   1085/*
   1086 * AFBC double-buffer
   1087 *
   1088 * Indicates that the buffer is allocated in a layout safe for front-buffer
   1089 * rendering.
   1090 */
   1091#define AFBC_FORMAT_MOD_DB      (1ULL << 10)
   1092
   1093/*
   1094 * AFBC buffer content hints
   1095 *
   1096 * Indicates that the buffer includes per-superblock content hints.
   1097 */
   1098#define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
   1099
   1100/* AFBC uncompressed storage mode
   1101 *
   1102 * Indicates that the buffer is using AFBC uncompressed storage mode.
   1103 * In this mode all superblock payloads in the buffer use the uncompressed
   1104 * storage mode, which is usually only used for data which cannot be compressed.
   1105 * The buffer layout is the same as for AFBC buffers without USM set, this only
   1106 * affects the storage mode of the individual superblocks. Note that even a
   1107 * buffer without USM set may use uncompressed storage mode for some or all
   1108 * superblocks, USM just guarantees it for all.
   1109 */
   1110#define AFBC_FORMAT_MOD_USM	(1ULL << 12)
   1111
   1112/*
   1113 * Arm Fixed-Rate Compression (AFRC) modifiers
   1114 *
   1115 * AFRC is a proprietary fixed rate image compression protocol and format,
   1116 * designed to provide guaranteed bandwidth and memory footprint
   1117 * reductions in graphics and media use-cases.
   1118 *
   1119 * AFRC buffers consist of one or more planes, with the same components
   1120 * and meaning as an uncompressed buffer using the same pixel format.
   1121 *
   1122 * Within each plane, the pixel/luma/chroma values are grouped into
   1123 * "coding unit" blocks which are individually compressed to a
   1124 * fixed size (in bytes). All coding units within a given plane of a buffer
   1125 * store the same number of values, and have the same compressed size.
   1126 *
   1127 * The coding unit size is configurable, allowing different rates of compression.
   1128 *
   1129 * The start of each AFRC buffer plane must be aligned to an alignment granule which
   1130 * depends on the coding unit size.
   1131 *
   1132 * Coding Unit Size   Plane Alignment
   1133 * ----------------   ---------------
   1134 * 16 bytes           1024 bytes
   1135 * 24 bytes           512  bytes
   1136 * 32 bytes           2048 bytes
   1137 *
   1138 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
   1139 * to a multiple of the paging tile dimensions.
   1140 * The dimensions of each paging tile depend on whether the buffer is optimised for
   1141 * scanline (SCAN layout) or rotated (ROT layout) access.
   1142 *
   1143 * Layout   Paging Tile Width   Paging Tile Height
   1144 * ------   -----------------   ------------------
   1145 * SCAN     16 coding units     4 coding units
   1146 * ROT      8  coding units     8 coding units
   1147 *
   1148 * The dimensions of each coding unit depend on the number of components
   1149 * in the compressed plane and whether the buffer is optimised for
   1150 * scanline (SCAN layout) or rotated (ROT layout) access.
   1151 *
   1152 * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
   1153 * -----------------------------   ---------   -----------------   ------------------
   1154 * 1                               SCAN        16 samples          4 samples
   1155 * Example: 16x4 luma samples in a 'Y' plane
   1156 *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
   1157 * -----------------------------   ---------   -----------------   ------------------
   1158 * 1                               ROT         8 samples           8 samples
   1159 * Example: 8x8 luma samples in a 'Y' plane
   1160 *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
   1161 * -----------------------------   ---------   -----------------   ------------------
   1162 * 2                               DONT CARE   8 samples           4 samples
   1163 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
   1164 * -----------------------------   ---------   -----------------   ------------------
   1165 * 3                               DONT CARE   4 samples           4 samples
   1166 * Example: 4x4 pixels in an RGB buffer without alpha
   1167 * -----------------------------   ---------   -----------------   ------------------
   1168 * 4                               DONT CARE   4 samples           4 samples
   1169 * Example: 4x4 pixels in an RGB buffer with alpha
   1170 */
   1171
   1172#define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
   1173
   1174#define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
   1175	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
   1176
   1177/*
   1178 * AFRC coding unit size modifier.
   1179 *
   1180 * Indicates the number of bytes used to store each compressed coding unit for
   1181 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
   1182 * is the same for both Cb and Cr, which may be stored in separate planes.
   1183 *
   1184 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
   1185 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
   1186 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
   1187 * this corresponds to the luma plane.
   1188 *
   1189 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
   1190 * each compressed coding unit in the second and third planes in the buffer.
   1191 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
   1192 *
   1193 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
   1194 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
   1195 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
   1196 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
   1197 */
   1198#define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
   1199#define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
   1200#define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
   1201#define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
   1202
   1203#define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
   1204#define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
   1205
   1206/*
   1207 * AFRC scanline memory layout.
   1208 *
   1209 * Indicates if the buffer uses the scanline-optimised layout
   1210 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
   1211 * The memory layout is the same for all planes.
   1212 */
   1213#define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
   1214
   1215/*
   1216 * Arm 16x16 Block U-Interleaved modifier
   1217 *
   1218 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
   1219 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
   1220 * in the block are reordered.
   1221 */
   1222#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
   1223	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
   1224
   1225/*
   1226 * Allwinner tiled modifier
   1227 *
   1228 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
   1229 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
   1230 * planes.
   1231 *
   1232 * With this tiling, the luminance samples are disposed in tiles representing
   1233 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
   1234 * The pixel order in each tile is linear and the tiles are disposed linearly,
   1235 * both in row-major order.
   1236 */
   1237#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
   1238
   1239/*
   1240 * Amlogic Video Framebuffer Compression modifiers
   1241 *
   1242 * Amlogic uses a proprietary lossless image compression protocol and format
   1243 * for their hardware video codec accelerators, either video decoders or
   1244 * video input encoders.
   1245 *
   1246 * It considerably reduces memory bandwidth while writing and reading
   1247 * frames in memory.
   1248 *
   1249 * The underlying storage is considered to be 3 components, 8bit or 10-bit
   1250 * per component YCbCr 420, single plane :
   1251 * - DRM_FORMAT_YUV420_8BIT
   1252 * - DRM_FORMAT_YUV420_10BIT
   1253 *
   1254 * The first 8 bits of the mode defines the layout, then the following 8 bits
   1255 * defines the options changing the layout.
   1256 *
   1257 * Not all combinations are valid, and different SoCs may support different
   1258 * combinations of layout and options.
   1259 */
   1260#define __fourcc_mod_amlogic_layout_mask 0xff
   1261#define __fourcc_mod_amlogic_options_shift 8
   1262#define __fourcc_mod_amlogic_options_mask 0xff
   1263
   1264#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
   1265	fourcc_mod_code(AMLOGIC, \
   1266			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
   1267			(((__options) & __fourcc_mod_amlogic_options_mask) \
   1268			 << __fourcc_mod_amlogic_options_shift))
   1269
   1270/* Amlogic FBC Layouts */
   1271
   1272/*
   1273 * Amlogic FBC Basic Layout
   1274 *
   1275 * The basic layout is composed of:
   1276 * - a body content organized in 64x32 superblocks with 4096 bytes per
   1277 *   superblock in default mode.
   1278 * - a 32 bytes per 128x64 header block
   1279 *
   1280 * This layout is transferrable between Amlogic SoCs supporting this modifier.
   1281 */
   1282#define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
   1283
   1284/*
   1285 * Amlogic FBC Scatter Memory layout
   1286 *
   1287 * Indicates the header contains IOMMU references to the compressed
   1288 * frames content to optimize memory access and layout.
   1289 *
   1290 * In this mode, only the header memory address is needed, thus the
   1291 * content memory organization is tied to the current producer
   1292 * execution and cannot be saved/dumped neither transferrable between
   1293 * Amlogic SoCs supporting this modifier.
   1294 *
   1295 * Due to the nature of the layout, these buffers are not expected to
   1296 * be accessible by the user-space clients, but only accessible by the
   1297 * hardware producers and consumers.
   1298 *
   1299 * The user-space clients should expect a failure while trying to mmap
   1300 * the DMA-BUF handle returned by the producer.
   1301 */
   1302#define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
   1303
   1304/* Amlogic FBC Layout Options Bit Mask */
   1305
   1306/*
   1307 * Amlogic FBC Memory Saving mode
   1308 *
   1309 * Indicates the storage is packed when pixel size is multiple of word
   1310 * boudaries, i.e. 8bit should be stored in this mode to save allocation
   1311 * memory.
   1312 *
   1313 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
   1314 * the basic layout and 3200 bytes per 64x32 superblock combined with
   1315 * the scatter layout.
   1316 */
   1317#define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
   1318
   1319/*
   1320 * AMD modifiers
   1321 *
   1322 * Memory layout:
   1323 *
   1324 * without DCC:
   1325 *   - main surface
   1326 *
   1327 * with DCC & without DCC_RETILE:
   1328 *   - main surface in plane 0
   1329 *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
   1330 *
   1331 * with DCC & DCC_RETILE:
   1332 *   - main surface in plane 0
   1333 *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
   1334 *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
   1335 *
   1336 * For multi-plane formats the above surfaces get merged into one plane for
   1337 * each format plane, based on the required alignment only.
   1338 *
   1339 * Bits  Parameter                Notes
   1340 * ----- ------------------------ ---------------------------------------------
   1341 *
   1342 *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
   1343 *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
   1344 *    13 DCC
   1345 *    14 DCC_RETILE
   1346 *    15 DCC_PIPE_ALIGN
   1347 *    16 DCC_INDEPENDENT_64B
   1348 *    17 DCC_INDEPENDENT_128B
   1349 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
   1350 *    20 DCC_CONSTANT_ENCODE
   1351 * 23:21 PIPE_XOR_BITS            Only for some chips
   1352 * 26:24 BANK_XOR_BITS            Only for some chips
   1353 * 29:27 PACKERS                  Only for some chips
   1354 * 32:30 RB                       Only for some chips
   1355 * 35:33 PIPE                     Only for some chips
   1356 * 55:36 -                        Reserved for future use, must be zero
   1357 */
   1358#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
   1359
   1360#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
   1361
   1362/* Reserve 0 for GFX8 and older */
   1363#define AMD_FMT_MOD_TILE_VER_GFX9 1
   1364#define AMD_FMT_MOD_TILE_VER_GFX10 2
   1365#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
   1366
   1367/*
   1368 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
   1369 * version.
   1370 */
   1371#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
   1372
   1373/*
   1374 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
   1375 * GFX9 as canonical version.
   1376 */
   1377#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
   1378#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
   1379#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
   1380#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
   1381
   1382#define AMD_FMT_MOD_DCC_BLOCK_64B 0
   1383#define AMD_FMT_MOD_DCC_BLOCK_128B 1
   1384#define AMD_FMT_MOD_DCC_BLOCK_256B 2
   1385
   1386#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
   1387#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
   1388#define AMD_FMT_MOD_TILE_SHIFT 8
   1389#define AMD_FMT_MOD_TILE_MASK 0x1F
   1390
   1391/* Whether DCC compression is enabled. */
   1392#define AMD_FMT_MOD_DCC_SHIFT 13
   1393#define AMD_FMT_MOD_DCC_MASK 0x1
   1394
   1395/*
   1396 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
   1397 * one which is not-aligned.
   1398 */
   1399#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
   1400#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
   1401
   1402/* Only set if DCC_RETILE = false */
   1403#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
   1404#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
   1405
   1406#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
   1407#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
   1408#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
   1409#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
   1410#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
   1411#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
   1412
   1413/*
   1414 * DCC supports embedding some clear colors directly in the DCC surface.
   1415 * However, on older GPUs the rendering HW ignores the embedded clear color
   1416 * and prefers the driver provided color. This necessitates doing a fastclear
   1417 * eliminate operation before a process transfers control.
   1418 *
   1419 * If this bit is set that means the fastclear eliminate is not needed for these
   1420 * embeddable colors.
   1421 */
   1422#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
   1423#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
   1424
   1425/*
   1426 * The below fields are for accounting for per GPU differences. These are only
   1427 * relevant for GFX9 and later and if the tile field is *_X/_T.
   1428 *
   1429 * PIPE_XOR_BITS = always needed
   1430 * BANK_XOR_BITS = only for TILE_VER_GFX9
   1431 * PACKERS = only for TILE_VER_GFX10_RBPLUS
   1432 * RB = only for TILE_VER_GFX9 & DCC
   1433 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
   1434 */
   1435#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
   1436#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
   1437#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
   1438#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
   1439#define AMD_FMT_MOD_PACKERS_SHIFT 27
   1440#define AMD_FMT_MOD_PACKERS_MASK 0x7
   1441#define AMD_FMT_MOD_RB_SHIFT 30
   1442#define AMD_FMT_MOD_RB_MASK 0x7
   1443#define AMD_FMT_MOD_PIPE_SHIFT 33
   1444#define AMD_FMT_MOD_PIPE_MASK 0x7
   1445
   1446#define AMD_FMT_MOD_SET(field, value) \
   1447	((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
   1448#define AMD_FMT_MOD_GET(field, value) \
   1449	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
   1450#define AMD_FMT_MOD_CLEAR(field) \
   1451	(~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
   1452
   1453#if defined(__cplusplus)
   1454}
   1455#endif
   1456
   1457#endif /* DRM_FOURCC_H */