drm_fourcc.h (62502B)
1/* 2 * Copyright 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24#ifndef DRM_FOURCC_H 25#define DRM_FOURCC_H 26 27#include "drm.h" 28 29#if defined(__cplusplus) 30extern "C" { 31#endif 32 33/** 34 * DOC: overview 35 * 36 * In the DRM subsystem, framebuffer pixel formats are described using the 37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the 38 * fourcc code, a Format Modifier may optionally be provided, in order to 39 * further describe the buffer's format - for example tiling or compression. 40 * 41 * Format Modifiers 42 * ---------------- 43 * 44 * Format modifiers are used in conjunction with a fourcc code, forming a 45 * unique fourcc:modifier pair. This format:modifier pair must fully define the 46 * format and data layout of the buffer, and should be the only way to describe 47 * that particular buffer. 48 * 49 * Having multiple fourcc:modifier pairs which describe the same layout should 50 * be avoided, as such aliases run the risk of different drivers exposing 51 * different names for the same data format, forcing userspace to understand 52 * that they are aliases. 53 * 54 * Format modifiers may change any property of the buffer, including the number 55 * of planes and/or the required allocation size. Format modifiers are 56 * vendor-namespaced, and as such the relationship between a fourcc code and a 57 * modifier is specific to the modifer being used. For example, some modifiers 58 * may preserve meaning - such as number of planes - from the fourcc code, 59 * whereas others may not. 60 * 61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must 62 * match only a single modifier. A modifier must not be a subset of layouts of 63 * another modifier. For instance, it's incorrect to encode pitch alignment in 64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel 65 * aligned modifier. That said, modifiers can have implicit minimal 66 * requirements. 67 * 68 * For modifiers where the combination of fourcc code and modifier can alias, 69 * a canonical pair needs to be defined and used by all drivers. Preferred 70 * combinations are also encouraged where all combinations might lead to 71 * confusion and unnecessarily reduced interoperability. An example for the 72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts. 73 * 74 * There are two kinds of modifier users: 75 * 76 * - Kernel and user-space drivers: for drivers it's important that modifiers 77 * don't alias, otherwise two drivers might support the same format but use 78 * different aliases, preventing them from sharing buffers in an efficient 79 * format. 80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users 81 * see modifiers as opaque tokens they can check for equality and intersect. 82 * These users musn't need to know to reason about the modifier value 83 * (i.e. they are not expected to extract information out of the modifier). 84 * 85 * Vendors should document their modifier usage in as much detail as 86 * possible, to ensure maximum compatibility across devices, drivers and 87 * applications. 88 * 89 * The authoritative list of format modifier codes is found in 90 * `include/uapi/drm/drm_fourcc.h` 91 */ 92 93#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \ 94 ((__u32)(c) << 16) | ((__u32)(d) << 24)) 95 96#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */ 97 98/* Reserve 0 for the invalid format specifier */ 99#define DRM_FORMAT_INVALID 0 100 101/* color index */ 102#define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ 103 104/* 8 bpp Red */ 105#define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ 106 107/* 10 bpp Red */ 108#define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */ 109 110/* 12 bpp Red */ 111#define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */ 112 113/* 16 bpp Red */ 114#define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ 115 116/* 16 bpp RG */ 117#define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ 118#define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ 119 120/* 32 bpp RG */ 121#define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ 122#define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ 123 124/* 8 bpp RGB */ 125#define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ 126#define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ 127 128/* 16 bpp RGB */ 129#define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ 130#define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ 131#define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ 132#define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ 133 134#define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ 135#define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ 136#define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ 137#define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ 138 139#define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ 140#define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ 141#define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ 142#define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ 143 144#define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ 145#define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ 146#define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ 147#define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ 148 149#define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ 150#define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ 151 152/* 24 bpp RGB */ 153#define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ 154#define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ 155 156/* 32 bpp RGB */ 157#define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ 158#define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ 159#define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ 160#define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ 161 162#define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ 163#define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ 164#define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ 165#define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ 166 167#define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ 168#define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ 169#define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ 170#define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ 171 172#define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ 173#define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ 174#define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ 175#define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ 176 177/* 64 bpp RGB */ 178#define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */ 179#define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */ 180 181#define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */ 182#define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */ 183 184/* 185 * Floating point 64bpp RGB 186 * IEEE 754-2008 binary16 half-precision float 187 * [15:0] sign:exponent:mantissa 1:5:10 188 */ 189#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */ 190#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */ 191 192#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */ 193#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */ 194 195/* 196 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits 197 * of unused padding per component: 198 */ 199#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */ 200 201/* packed YCbCr */ 202#define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ 203#define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ 204#define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ 205#define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ 206 207#define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ 208#define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ 209#define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */ 210#define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */ 211 212/* 213 * packed Y2xx indicate for each component, xx valid data occupy msb 214 * 16-xx padding occupy lsb 215 */ 216#define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */ 217#define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */ 218#define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */ 219 220/* 221 * packed Y4xx indicate for each component, xx valid data occupy msb 222 * 16-xx padding occupy lsb except Y410 223 */ 224#define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */ 225#define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 226#define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */ 227 228#define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */ 229#define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 230#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */ 231 232/* 233 * packed YCbCr420 2x2 tiled formats 234 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile 235 */ 236/* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 237#define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') 238/* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 239#define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') 240 241/* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 242#define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') 243/* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 244#define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') 245 246/* 247 * 1-plane YUV 4:2:0 248 * In these formats, the component ordering is specified (Y, followed by U 249 * then V), but the exact Linear layout is undefined. 250 * These formats can only be used with a non-Linear modifier. 251 */ 252#define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8') 253#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0') 254 255/* 256 * 2 plane RGB + A 257 * index 0 = RGB plane, same format as the corresponding non _A8 format has 258 * index 1 = A plane, [7:0] A 259 */ 260#define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') 261#define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') 262#define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') 263#define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') 264#define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') 265#define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') 266#define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') 267#define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') 268 269/* 270 * 2 plane YCbCr 271 * index 0 = Y plane, [7:0] Y 272 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian 273 * or 274 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian 275 */ 276#define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ 277#define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ 278#define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ 279#define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ 280#define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ 281#define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ 282/* 283 * 2 plane YCbCr 284 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian 285 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian 286 */ 287#define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */ 288 289/* 290 * 2 plane YCbCr MSB aligned 291 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 292 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 293 */ 294#define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */ 295 296/* 297 * 2 plane YCbCr MSB aligned 298 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 299 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 300 */ 301#define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */ 302 303/* 304 * 2 plane YCbCr MSB aligned 305 * index 0 = Y plane, [15:0] Y:x [12:4] little endian 306 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian 307 */ 308#define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */ 309 310/* 311 * 2 plane YCbCr MSB aligned 312 * index 0 = Y plane, [15:0] Y little endian 313 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian 314 */ 315#define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */ 316 317/* 2 plane YCbCr420. 318 * 3 10 bit components and 2 padding bits packed into 4 bytes. 319 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian 320 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian 321 */ 322#define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */ 323 324/* 3 plane non-subsampled (444) YCbCr 325 * 16 bits per component, but only 10 bits are used and 6 bits are padded 326 * index 0: Y plane, [15:0] Y:x [10:6] little endian 327 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian 328 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian 329 */ 330#define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0') 331 332/* 3 plane non-subsampled (444) YCrCb 333 * 16 bits per component, but only 10 bits are used and 6 bits are padded 334 * index 0: Y plane, [15:0] Y:x [10:6] little endian 335 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian 336 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian 337 */ 338#define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1') 339 340/* 341 * 3 plane YCbCr 342 * index 0: Y plane, [7:0] Y 343 * index 1: Cb plane, [7:0] Cb 344 * index 2: Cr plane, [7:0] Cr 345 * or 346 * index 1: Cr plane, [7:0] Cr 347 * index 2: Cb plane, [7:0] Cb 348 */ 349#define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ 350#define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ 351#define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ 352#define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ 353#define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ 354#define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ 355#define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ 356#define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ 357#define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ 358#define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ 359 360 361/* 362 * Format Modifiers: 363 * 364 * Format modifiers describe, typically, a re-ordering or modification 365 * of the data in a plane of an FB. This can be used to express tiled/ 366 * swizzled formats, or compression, or a combination of the two. 367 * 368 * The upper 8 bits of the format modifier are a vendor-id as assigned 369 * below. The lower 56 bits are assigned as vendor sees fit. 370 */ 371 372/* Vendor Ids: */ 373#define DRM_FORMAT_MOD_VENDOR_NONE 0 374#define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 375#define DRM_FORMAT_MOD_VENDOR_AMD 0x02 376#define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 377#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 378#define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 379#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 380#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 381#define DRM_FORMAT_MOD_VENDOR_ARM 0x08 382#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09 383#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a 384 385/* add more to the end as needed */ 386 387#define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) 388 389#define fourcc_mod_get_vendor(modifier) \ 390 (((modifier) >> 56) & 0xff) 391 392#define fourcc_mod_is_vendor(modifier, vendor) \ 393 (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor) 394 395#define fourcc_mod_code(vendor, val) \ 396 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) 397 398/* 399 * Format Modifier tokens: 400 * 401 * When adding a new token please document the layout with a code comment, 402 * similar to the fourcc codes above. drm_fourcc.h is considered the 403 * authoritative source for all of these. 404 * 405 * Generic modifier names: 406 * 407 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names 408 * for layouts which are common across multiple vendors. To preserve 409 * compatibility, in cases where a vendor-specific definition already exists and 410 * a generic name for it is desired, the common name is a purely symbolic alias 411 * and must use the same numerical value as the original definition. 412 * 413 * Note that generic names should only be used for modifiers which describe 414 * generic layouts (such as pixel re-ordering), which may have 415 * independently-developed support across multiple vendors. 416 * 417 * In future cases where a generic layout is identified before merging with a 418 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor 419 * 'NONE' could be considered. This should only be for obvious, exceptional 420 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only 421 * apply to a single vendor. 422 * 423 * Generic names should not be used for cases where multiple hardware vendors 424 * have implementations of the same standardised compression scheme (such as 425 * AFBC). In those cases, all implementations should use the same format 426 * modifier(s), reflecting the vendor of the standard. 427 */ 428 429#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE 430 431/* 432 * Invalid Modifier 433 * 434 * This modifier can be used as a sentinel to terminate the format modifiers 435 * list, or to initialize a variable with an invalid modifier. It might also be 436 * used to report an error back to userspace for certain APIs. 437 */ 438#define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) 439 440/* 441 * Linear Layout 442 * 443 * Just plain linear layout. Note that this is different from no specifying any 444 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), 445 * which tells the driver to also take driver-internal information into account 446 * and so might actually result in a tiled framebuffer. 447 */ 448#define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) 449 450/* 451 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead 452 * 453 * The "none" format modifier doesn't actually mean that the modifier is 454 * implicit, instead it means that the layout is linear. Whether modifiers are 455 * used is out-of-band information carried in an API-specific way (e.g. in a 456 * flag for drm_mode_fb_cmd2). 457 */ 458#define DRM_FORMAT_MOD_NONE 0 459 460/* Intel framebuffer modifiers */ 461 462/* 463 * Intel X-tiling layout 464 * 465 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 466 * in row-major layout. Within the tile bytes are laid out row-major, with 467 * a platform-dependent stride. On top of that the memory can apply 468 * platform-depending swizzling of some higher address bits into bit6. 469 * 470 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. 471 * On earlier platforms the is highly platforms specific and not useful for 472 * cross-driver sharing. It exists since on a given platform it does uniquely 473 * identify the layout in a simple way for i915-specific userspace, which 474 * facilitated conversion of userspace to modifiers. Additionally the exact 475 * format on some really old platforms is not known. 476 */ 477#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) 478 479/* 480 * Intel Y-tiling layout 481 * 482 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 483 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) 484 * chunks column-major, with a platform-dependent height. On top of that the 485 * memory can apply platform-depending swizzling of some higher address bits 486 * into bit6. 487 * 488 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. 489 * On earlier platforms the is highly platforms specific and not useful for 490 * cross-driver sharing. It exists since on a given platform it does uniquely 491 * identify the layout in a simple way for i915-specific userspace, which 492 * facilitated conversion of userspace to modifiers. Additionally the exact 493 * format on some really old platforms is not known. 494 */ 495#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) 496 497/* 498 * Intel Yf-tiling layout 499 * 500 * This is a tiled layout using 4Kb tiles in row-major layout. 501 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which 502 * are arranged in four groups (two wide, two high) with column-major layout. 503 * Each group therefore consits out of four 256 byte units, which are also laid 504 * out as 2x2 column-major. 505 * 256 byte units are made out of four 64 byte blocks of pixels, producing 506 * either a square block or a 2:1 unit. 507 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width 508 * in pixel depends on the pixel depth. 509 */ 510#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) 511 512/* 513 * Intel color control surface (CCS) for render compression 514 * 515 * The framebuffer format must be one of the 8:8:8:8 RGB formats. 516 * The main surface will be plane index 0 and must be Y/Yf-tiled, 517 * the CCS will be plane index 1. 518 * 519 * Each CCS tile matches a 1024x512 pixel area of the main surface. 520 * To match certain aspects of the 3D hardware the CCS is 521 * considered to be made up of normal 128Bx32 Y tiles, Thus 522 * the CCS pitch must be specified in multiples of 128 bytes. 523 * 524 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed 525 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. 526 * But that fact is not relevant unless the memory is accessed 527 * directly. 528 */ 529#define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) 530#define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) 531 532/* 533 * Intel color control surfaces (CCS) for Gen-12 render compression. 534 * 535 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 536 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 537 * main surface. In other words, 4 bits in CCS map to a main surface cache 538 * line pair. The main surface pitch is required to be a multiple of four 539 * Y-tile widths. 540 */ 541#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6) 542 543/* 544 * Intel color control surfaces (CCS) for Gen-12 media compression 545 * 546 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 547 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 548 * main surface. In other words, 4 bits in CCS map to a main surface cache 549 * line pair. The main surface pitch is required to be a multiple of four 550 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the 551 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, 552 * planes 2 and 3 for the respective CCS. 553 */ 554#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7) 555 556/* 557 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render 558 * compression. 559 * 560 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear 561 * and at index 1. The clear color is stored at index 2, and the pitch should 562 * be ignored. The clear color structure is 256 bits. The first 128 bits 563 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented 564 * by 32 bits. The raw clear color is consumed by the 3d engine and generates 565 * the converted clear color of size 64 bits. The first 32 bits store the Lower 566 * Converted Clear Color value and the next 32 bits store the Higher Converted 567 * Clear Color value when applicable. The Converted Clear Color values are 568 * consumed by the DE. The last 64 bits are used to store Color Discard Enable 569 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line 570 * corresponds to an area of 4x1 tiles in the main surface. The main surface 571 * pitch is required to be a multiple of 4 tile widths. 572 */ 573#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8) 574 575/* 576 * Intel Tile 4 layout 577 * 578 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same 579 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It 580 * only differs from Tile Y at the 256B granularity in between. At this 581 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape 582 * of 64B x 8 rows. 583 */ 584#define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9) 585 586/* 587 * Intel color control surfaces (CCS) for DG2 render compression. 588 * 589 * The main surface is Tile 4 and at plane index 0. The CCS data is stored 590 * outside of the GEM object in a reserved memory area dedicated for the 591 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The 592 * main surface pitch is required to be a multiple of four Tile 4 widths. 593 */ 594#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10) 595 596/* 597 * Intel color control surfaces (CCS) for DG2 media compression. 598 * 599 * The main surface is Tile 4 and at plane index 0. For semi-planar formats 600 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices 601 * 0 and 1, respectively. The CCS for all planes are stored outside of the 602 * GEM object in a reserved memory area dedicated for the storage of the 603 * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface 604 * pitch is required to be a multiple of four Tile 4 widths. 605 */ 606#define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11) 607 608/* 609 * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression. 610 * 611 * The main surface is Tile 4 and at plane index 0. The CCS data is stored 612 * outside of the GEM object in a reserved memory area dedicated for the 613 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The 614 * main surface pitch is required to be a multiple of four Tile 4 widths. The 615 * clear color is stored at plane index 1 and the pitch should be ignored. The 616 * format of the 256 bits of clear color data matches the one used for the 617 * I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description 618 * for details. 619 */ 620#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12) 621 622/* 623 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks 624 * 625 * Macroblocks are laid in a Z-shape, and each pixel data is following the 626 * standard NV12 style. 627 * As for NV12, an image is the result of two frame buffers: one for Y, 628 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). 629 * Alignment requirements are (for each buffer): 630 * - multiple of 128 pixels for the width 631 * - multiple of 32 pixels for the height 632 * 633 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html 634 */ 635#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) 636 637/* 638 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks 639 * 640 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major 641 * layout. For YCbCr formats Cb/Cr components are taken in such a way that 642 * they correspond to their 16x16 luma block. 643 */ 644#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) 645 646/* 647 * Qualcomm Compressed Format 648 * 649 * Refers to a compressed variant of the base format that is compressed. 650 * Implementation may be platform and base-format specific. 651 * 652 * Each macrotile consists of m x n (mostly 4 x 4) tiles. 653 * Pixel data pitch/stride is aligned with macrotile width. 654 * Pixel data height is aligned with macrotile height. 655 * Entire pixel data buffer is aligned with 4k(bytes). 656 */ 657#define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) 658 659/* 660 * Qualcomm Tiled Format 661 * 662 * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed. 663 * Implementation may be platform and base-format specific. 664 * 665 * Each macrotile consists of m x n (mostly 4 x 4) tiles. 666 * Pixel data pitch/stride is aligned with macrotile width. 667 * Pixel data height is aligned with macrotile height. 668 * Entire pixel data buffer is aligned with 4k(bytes). 669 */ 670#define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3) 671 672/* 673 * Qualcomm Alternate Tiled Format 674 * 675 * Alternate tiled format typically only used within GMEM. 676 * Implementation may be platform and base-format specific. 677 */ 678#define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2) 679 680 681/* Vivante framebuffer modifiers */ 682 683/* 684 * Vivante 4x4 tiling layout 685 * 686 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major 687 * layout. 688 */ 689#define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) 690 691/* 692 * Vivante 64x64 super-tiling layout 693 * 694 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile 695 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- 696 * major layout. 697 * 698 * For more information: see 699 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling 700 */ 701#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) 702 703/* 704 * Vivante 4x4 tiling layout for dual-pipe 705 * 706 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a 707 * different base address. Offsets from the base addresses are therefore halved 708 * compared to the non-split tiled layout. 709 */ 710#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) 711 712/* 713 * Vivante 64x64 super-tiling layout for dual-pipe 714 * 715 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile 716 * starts at a different base address. Offsets from the base addresses are 717 * therefore halved compared to the non-split super-tiled layout. 718 */ 719#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) 720 721/* NVIDIA frame buffer modifiers */ 722 723/* 724 * Tegra Tiled Layout, used by Tegra 2, 3 and 4. 725 * 726 * Pixels are arranged in simple tiles of 16 x 16 bytes. 727 */ 728#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) 729 730/* 731 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80, 732 * and Tegra GPUs starting with Tegra K1. 733 * 734 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies 735 * based on the architecture generation. GOBs themselves are then arranged in 736 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power 737 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents 738 * a block depth or height of "4"). 739 * 740 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 741 * in full detail. 742 * 743 * Macro 744 * Bits Param Description 745 * ---- ----- ----------------------------------------------------------------- 746 * 747 * 3:0 h log2(height) of each block, in GOBs. Placed here for 748 * compatibility with the existing 749 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. 750 * 751 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for 752 * compatibility with the existing 753 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. 754 * 755 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block 756 * size). Must be zero. 757 * 758 * Note there is no log2(width) parameter. Some portions of the 759 * hardware support a block width of two gobs, but it is impractical 760 * to use due to lack of support elsewhere, and has no known 761 * benefits. 762 * 763 * 11:9 - Reserved (To support 2D-array textures with variable array stride 764 * in blocks, specified via log2(tile width in blocks)). Must be 765 * zero. 766 * 767 * 19:12 k Page Kind. This value directly maps to a field in the page 768 * tables of all GPUs >= NV50. It affects the exact layout of bits 769 * in memory and can be derived from the tuple 770 * 771 * (format, GPU model, compression type, samples per pixel) 772 * 773 * Where compression type is defined below. If GPU model were 774 * implied by the format modifier, format, or memory buffer, page 775 * kind would not need to be included in the modifier itself, but 776 * since the modifier should define the layout of the associated 777 * memory buffer independent from any device or other context, it 778 * must be included here. 779 * 780 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed 781 * starting with Fermi GPUs. Additionally, the mapping between page 782 * kind and bit layout has changed at various points. 783 * 784 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping 785 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping 786 * 2 = Gob Height 8, Turing+ Page Kind mapping 787 * 3 = Reserved for future use. 788 * 789 * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further 790 * bit remapping step that occurs at an even lower level than the 791 * page kind and block linear swizzles. This causes the layout of 792 * surfaces mapped in those SOC's GPUs to be incompatible with the 793 * equivalent mapping on other GPUs in the same system. 794 * 795 * 0 = Tegra K1 - Tegra Parker/TX2 Layout. 796 * 1 = Desktop GPU and Tegra Xavier+ Layout 797 * 798 * 25:23 c Lossless Framebuffer Compression type. 799 * 800 * 0 = none 801 * 1 = ROP/3D, layout 1, exact compression format implied by Page 802 * Kind field 803 * 2 = ROP/3D, layout 2, exact compression format implied by Page 804 * Kind field 805 * 3 = CDE horizontal 806 * 4 = CDE vertical 807 * 5 = Reserved for future use 808 * 6 = Reserved for future use 809 * 7 = Reserved for future use 810 * 811 * 55:25 - Reserved for future use. Must be zero. 812 */ 813#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \ 814 fourcc_mod_code(NVIDIA, (0x10 | \ 815 ((h) & 0xf) | \ 816 (((k) & 0xff) << 12) | \ 817 (((g) & 0x3) << 20) | \ 818 (((s) & 0x1) << 22) | \ 819 (((c) & 0x7) << 23))) 820 821/* To grandfather in prior block linear format modifiers to the above layout, 822 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable 823 * with block-linear layouts, is remapped within drivers to the value 0xfe, 824 * which corresponds to the "generic" kind used for simple single-sample 825 * uncompressed color formats on Fermi - Volta GPUs. 826 */ 827static inline __u64 828drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier) 829{ 830 if (!(modifier & 0x10) || (modifier & (0xff << 12))) 831 return modifier; 832 else 833 return modifier | (0xfe << 12); 834} 835 836/* 837 * 16Bx2 Block Linear layout, used by Tegra K1 and later 838 * 839 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked 840 * vertically by a power of 2 (1 to 32 GOBs) to form a block. 841 * 842 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. 843 * 844 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. 845 * Valid values are: 846 * 847 * 0 == ONE_GOB 848 * 1 == TWO_GOBS 849 * 2 == FOUR_GOBS 850 * 3 == EIGHT_GOBS 851 * 4 == SIXTEEN_GOBS 852 * 5 == THIRTYTWO_GOBS 853 * 854 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 855 * in full detail. 856 */ 857#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ 858 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v)) 859 860#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ 861 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0) 862#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ 863 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1) 864#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ 865 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2) 866#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ 867 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3) 868#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ 869 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4) 870#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ 871 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5) 872 873/* 874 * Some Broadcom modifiers take parameters, for example the number of 875 * vertical lines in the image. Reserve the lower 32 bits for modifier 876 * type, and the next 24 bits for parameters. Top 8 bits are the 877 * vendor code. 878 */ 879#define __fourcc_mod_broadcom_param_shift 8 880#define __fourcc_mod_broadcom_param_bits 48 881#define fourcc_mod_broadcom_code(val, params) \ 882 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val)) 883#define fourcc_mod_broadcom_param(m) \ 884 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ 885 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) 886#define fourcc_mod_broadcom_mod(m) \ 887 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ 888 __fourcc_mod_broadcom_param_shift)) 889 890/* 891 * Broadcom VC4 "T" format 892 * 893 * This is the primary layout that the V3D GPU can texture from (it 894 * can't do linear). The T format has: 895 * 896 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 897 * pixels at 32 bit depth. 898 * 899 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually 900 * 16x16 pixels). 901 * 902 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On 903 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows 904 * they're (TR, BR, BL, TL), where bottom left is start of memory. 905 * 906 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k 907 * tiles) or right-to-left (odd rows of 4k tiles). 908 */ 909#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) 910 911/* 912 * Broadcom SAND format 913 * 914 * This is the native format that the H.264 codec block uses. For VC4 915 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. 916 * 917 * The image can be considered to be split into columns, and the 918 * columns are placed consecutively into memory. The width of those 919 * columns can be either 32, 64, 128, or 256 pixels, but in practice 920 * only 128 pixel columns are used. 921 * 922 * The pitch between the start of each column is set to optimally 923 * switch between SDRAM banks. This is passed as the number of lines 924 * of column width in the modifier (we can't use the stride value due 925 * to various core checks that look at it , so you should set the 926 * stride to width*cpp). 927 * 928 * Note that the column height for this format modifier is the same 929 * for all of the planes, assuming that each column contains both Y 930 * and UV. Some SAND-using hardware stores UV in a separate tiled 931 * image from Y to reduce the column height, which is not supported 932 * with these modifiers. 933 * 934 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also 935 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes 936 * wide, but as this is a 10 bpp format that translates to 96 pixels. 937 */ 938 939#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ 940 fourcc_mod_broadcom_code(2, v) 941#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ 942 fourcc_mod_broadcom_code(3, v) 943#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ 944 fourcc_mod_broadcom_code(4, v) 945#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ 946 fourcc_mod_broadcom_code(5, v) 947 948#define DRM_FORMAT_MOD_BROADCOM_SAND32 \ 949 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) 950#define DRM_FORMAT_MOD_BROADCOM_SAND64 \ 951 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) 952#define DRM_FORMAT_MOD_BROADCOM_SAND128 \ 953 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) 954#define DRM_FORMAT_MOD_BROADCOM_SAND256 \ 955 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) 956 957/* Broadcom UIF format 958 * 959 * This is the common format for the current Broadcom multimedia 960 * blocks, including V3D 3.x and newer, newer video codecs, and 961 * displays. 962 * 963 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), 964 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are 965 * stored in columns, with padding between the columns to ensure that 966 * moving from one column to the next doesn't hit the same SDRAM page 967 * bank. 968 * 969 * To calculate the padding, it is assumed that each hardware block 970 * and the software driving it knows the platform's SDRAM page size, 971 * number of banks, and XOR address, and that it's identical between 972 * all blocks using the format. This tiling modifier will use XOR as 973 * necessary to reduce the padding. If a hardware block can't do XOR, 974 * the assumption is that a no-XOR tiling modifier will be created. 975 */ 976#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) 977 978/* 979 * Arm Framebuffer Compression (AFBC) modifiers 980 * 981 * AFBC is a proprietary lossless image compression protocol and format. 982 * It provides fine-grained random access and minimizes the amount of data 983 * transferred between IP blocks. 984 * 985 * AFBC has several features which may be supported and/or used, which are 986 * represented using bits in the modifier. Not all combinations are valid, 987 * and different devices or use-cases may support different combinations. 988 * 989 * Further information on the use of AFBC modifiers can be found in 990 * Documentation/gpu/afbc.rst 991 */ 992 993/* 994 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific 995 * modifiers) denote the category for modifiers. Currently we have three 996 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of 997 * sixteen different categories. 998 */ 999#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \ 1000 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL)) 1001 1002#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00 1003#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01 1004 1005#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \ 1006 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode) 1007 1008/* 1009 * AFBC superblock size 1010 * 1011 * Indicates the superblock size(s) used for the AFBC buffer. The buffer 1012 * size (in pixels) must be aligned to a multiple of the superblock size. 1013 * Four lowest significant bits(LSBs) are reserved for block size. 1014 * 1015 * Where one superblock size is specified, it applies to all planes of the 1016 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified, 1017 * the first applies to the Luma plane and the second applies to the Chroma 1018 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma). 1019 * Multiple superblock sizes are only valid for multi-plane YCbCr formats. 1020 */ 1021#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf 1022#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) 1023#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) 1024#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL) 1025#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL) 1026 1027/* 1028 * AFBC lossless colorspace transform 1029 * 1030 * Indicates that the buffer makes use of the AFBC lossless colorspace 1031 * transform. 1032 */ 1033#define AFBC_FORMAT_MOD_YTR (1ULL << 4) 1034 1035/* 1036 * AFBC block-split 1037 * 1038 * Indicates that the payload of each superblock is split. The second 1039 * half of the payload is positioned at a predefined offset from the start 1040 * of the superblock payload. 1041 */ 1042#define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) 1043 1044/* 1045 * AFBC sparse layout 1046 * 1047 * This flag indicates that the payload of each superblock must be stored at a 1048 * predefined position relative to the other superblocks in the same AFBC 1049 * buffer. This order is the same order used by the header buffer. In this mode 1050 * each superblock is given the same amount of space as an uncompressed 1051 * superblock of the particular format would require, rounding up to the next 1052 * multiple of 128 bytes in size. 1053 */ 1054#define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) 1055 1056/* 1057 * AFBC copy-block restrict 1058 * 1059 * Buffers with this flag must obey the copy-block restriction. The restriction 1060 * is such that there are no copy-blocks referring across the border of 8x8 1061 * blocks. For the subsampled data the 8x8 limitation is also subsampled. 1062 */ 1063#define AFBC_FORMAT_MOD_CBR (1ULL << 7) 1064 1065/* 1066 * AFBC tiled layout 1067 * 1068 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all 1069 * superblocks inside a tile are stored together in memory. 8x8 tiles are used 1070 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for 1071 * larger bpp formats. The order between the tiles is scan line. 1072 * When the tiled layout is used, the buffer size (in pixels) must be aligned 1073 * to the tile size. 1074 */ 1075#define AFBC_FORMAT_MOD_TILED (1ULL << 8) 1076 1077/* 1078 * AFBC solid color blocks 1079 * 1080 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth 1081 * can be reduced if a whole superblock is a single color. 1082 */ 1083#define AFBC_FORMAT_MOD_SC (1ULL << 9) 1084 1085/* 1086 * AFBC double-buffer 1087 * 1088 * Indicates that the buffer is allocated in a layout safe for front-buffer 1089 * rendering. 1090 */ 1091#define AFBC_FORMAT_MOD_DB (1ULL << 10) 1092 1093/* 1094 * AFBC buffer content hints 1095 * 1096 * Indicates that the buffer includes per-superblock content hints. 1097 */ 1098#define AFBC_FORMAT_MOD_BCH (1ULL << 11) 1099 1100/* AFBC uncompressed storage mode 1101 * 1102 * Indicates that the buffer is using AFBC uncompressed storage mode. 1103 * In this mode all superblock payloads in the buffer use the uncompressed 1104 * storage mode, which is usually only used for data which cannot be compressed. 1105 * The buffer layout is the same as for AFBC buffers without USM set, this only 1106 * affects the storage mode of the individual superblocks. Note that even a 1107 * buffer without USM set may use uncompressed storage mode for some or all 1108 * superblocks, USM just guarantees it for all. 1109 */ 1110#define AFBC_FORMAT_MOD_USM (1ULL << 12) 1111 1112/* 1113 * Arm Fixed-Rate Compression (AFRC) modifiers 1114 * 1115 * AFRC is a proprietary fixed rate image compression protocol and format, 1116 * designed to provide guaranteed bandwidth and memory footprint 1117 * reductions in graphics and media use-cases. 1118 * 1119 * AFRC buffers consist of one or more planes, with the same components 1120 * and meaning as an uncompressed buffer using the same pixel format. 1121 * 1122 * Within each plane, the pixel/luma/chroma values are grouped into 1123 * "coding unit" blocks which are individually compressed to a 1124 * fixed size (in bytes). All coding units within a given plane of a buffer 1125 * store the same number of values, and have the same compressed size. 1126 * 1127 * The coding unit size is configurable, allowing different rates of compression. 1128 * 1129 * The start of each AFRC buffer plane must be aligned to an alignment granule which 1130 * depends on the coding unit size. 1131 * 1132 * Coding Unit Size Plane Alignment 1133 * ---------------- --------------- 1134 * 16 bytes 1024 bytes 1135 * 24 bytes 512 bytes 1136 * 32 bytes 2048 bytes 1137 * 1138 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned 1139 * to a multiple of the paging tile dimensions. 1140 * The dimensions of each paging tile depend on whether the buffer is optimised for 1141 * scanline (SCAN layout) or rotated (ROT layout) access. 1142 * 1143 * Layout Paging Tile Width Paging Tile Height 1144 * ------ ----------------- ------------------ 1145 * SCAN 16 coding units 4 coding units 1146 * ROT 8 coding units 8 coding units 1147 * 1148 * The dimensions of each coding unit depend on the number of components 1149 * in the compressed plane and whether the buffer is optimised for 1150 * scanline (SCAN layout) or rotated (ROT layout) access. 1151 * 1152 * Number of Components in Plane Layout Coding Unit Width Coding Unit Height 1153 * ----------------------------- --------- ----------------- ------------------ 1154 * 1 SCAN 16 samples 4 samples 1155 * Example: 16x4 luma samples in a 'Y' plane 1156 * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer 1157 * ----------------------------- --------- ----------------- ------------------ 1158 * 1 ROT 8 samples 8 samples 1159 * Example: 8x8 luma samples in a 'Y' plane 1160 * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer 1161 * ----------------------------- --------- ----------------- ------------------ 1162 * 2 DONT CARE 8 samples 4 samples 1163 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer 1164 * ----------------------------- --------- ----------------- ------------------ 1165 * 3 DONT CARE 4 samples 4 samples 1166 * Example: 4x4 pixels in an RGB buffer without alpha 1167 * ----------------------------- --------- ----------------- ------------------ 1168 * 4 DONT CARE 4 samples 4 samples 1169 * Example: 4x4 pixels in an RGB buffer with alpha 1170 */ 1171 1172#define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02 1173 1174#define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \ 1175 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode) 1176 1177/* 1178 * AFRC coding unit size modifier. 1179 * 1180 * Indicates the number of bytes used to store each compressed coding unit for 1181 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance 1182 * is the same for both Cb and Cr, which may be stored in separate planes. 1183 * 1184 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store 1185 * each compressed coding unit in the first plane of the buffer. For RGBA buffers 1186 * this is the only plane, while for semi-planar and fully-planar YUV buffers, 1187 * this corresponds to the luma plane. 1188 * 1189 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store 1190 * each compressed coding unit in the second and third planes in the buffer. 1191 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s). 1192 * 1193 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified 1194 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero. 1195 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and 1196 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified. 1197 */ 1198#define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf 1199#define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL) 1200#define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL) 1201#define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL) 1202 1203#define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size) 1204#define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4) 1205 1206/* 1207 * AFRC scanline memory layout. 1208 * 1209 * Indicates if the buffer uses the scanline-optimised layout 1210 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout. 1211 * The memory layout is the same for all planes. 1212 */ 1213#define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8) 1214 1215/* 1216 * Arm 16x16 Block U-Interleaved modifier 1217 * 1218 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image 1219 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels 1220 * in the block are reordered. 1221 */ 1222#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \ 1223 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL) 1224 1225/* 1226 * Allwinner tiled modifier 1227 * 1228 * This tiling mode is implemented by the VPU found on all Allwinner platforms, 1229 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3 1230 * planes. 1231 * 1232 * With this tiling, the luminance samples are disposed in tiles representing 1233 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels. 1234 * The pixel order in each tile is linear and the tiles are disposed linearly, 1235 * both in row-major order. 1236 */ 1237#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1) 1238 1239/* 1240 * Amlogic Video Framebuffer Compression modifiers 1241 * 1242 * Amlogic uses a proprietary lossless image compression protocol and format 1243 * for their hardware video codec accelerators, either video decoders or 1244 * video input encoders. 1245 * 1246 * It considerably reduces memory bandwidth while writing and reading 1247 * frames in memory. 1248 * 1249 * The underlying storage is considered to be 3 components, 8bit or 10-bit 1250 * per component YCbCr 420, single plane : 1251 * - DRM_FORMAT_YUV420_8BIT 1252 * - DRM_FORMAT_YUV420_10BIT 1253 * 1254 * The first 8 bits of the mode defines the layout, then the following 8 bits 1255 * defines the options changing the layout. 1256 * 1257 * Not all combinations are valid, and different SoCs may support different 1258 * combinations of layout and options. 1259 */ 1260#define __fourcc_mod_amlogic_layout_mask 0xff 1261#define __fourcc_mod_amlogic_options_shift 8 1262#define __fourcc_mod_amlogic_options_mask 0xff 1263 1264#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \ 1265 fourcc_mod_code(AMLOGIC, \ 1266 ((__layout) & __fourcc_mod_amlogic_layout_mask) | \ 1267 (((__options) & __fourcc_mod_amlogic_options_mask) \ 1268 << __fourcc_mod_amlogic_options_shift)) 1269 1270/* Amlogic FBC Layouts */ 1271 1272/* 1273 * Amlogic FBC Basic Layout 1274 * 1275 * The basic layout is composed of: 1276 * - a body content organized in 64x32 superblocks with 4096 bytes per 1277 * superblock in default mode. 1278 * - a 32 bytes per 128x64 header block 1279 * 1280 * This layout is transferrable between Amlogic SoCs supporting this modifier. 1281 */ 1282#define AMLOGIC_FBC_LAYOUT_BASIC (1ULL) 1283 1284/* 1285 * Amlogic FBC Scatter Memory layout 1286 * 1287 * Indicates the header contains IOMMU references to the compressed 1288 * frames content to optimize memory access and layout. 1289 * 1290 * In this mode, only the header memory address is needed, thus the 1291 * content memory organization is tied to the current producer 1292 * execution and cannot be saved/dumped neither transferrable between 1293 * Amlogic SoCs supporting this modifier. 1294 * 1295 * Due to the nature of the layout, these buffers are not expected to 1296 * be accessible by the user-space clients, but only accessible by the 1297 * hardware producers and consumers. 1298 * 1299 * The user-space clients should expect a failure while trying to mmap 1300 * the DMA-BUF handle returned by the producer. 1301 */ 1302#define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL) 1303 1304/* Amlogic FBC Layout Options Bit Mask */ 1305 1306/* 1307 * Amlogic FBC Memory Saving mode 1308 * 1309 * Indicates the storage is packed when pixel size is multiple of word 1310 * boudaries, i.e. 8bit should be stored in this mode to save allocation 1311 * memory. 1312 * 1313 * This mode reduces body layout to 3072 bytes per 64x32 superblock with 1314 * the basic layout and 3200 bytes per 64x32 superblock combined with 1315 * the scatter layout. 1316 */ 1317#define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0) 1318 1319/* 1320 * AMD modifiers 1321 * 1322 * Memory layout: 1323 * 1324 * without DCC: 1325 * - main surface 1326 * 1327 * with DCC & without DCC_RETILE: 1328 * - main surface in plane 0 1329 * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set) 1330 * 1331 * with DCC & DCC_RETILE: 1332 * - main surface in plane 0 1333 * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned) 1334 * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned) 1335 * 1336 * For multi-plane formats the above surfaces get merged into one plane for 1337 * each format plane, based on the required alignment only. 1338 * 1339 * Bits Parameter Notes 1340 * ----- ------------------------ --------------------------------------------- 1341 * 1342 * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_* 1343 * 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_* 1344 * 13 DCC 1345 * 14 DCC_RETILE 1346 * 15 DCC_PIPE_ALIGN 1347 * 16 DCC_INDEPENDENT_64B 1348 * 17 DCC_INDEPENDENT_128B 1349 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_* 1350 * 20 DCC_CONSTANT_ENCODE 1351 * 23:21 PIPE_XOR_BITS Only for some chips 1352 * 26:24 BANK_XOR_BITS Only for some chips 1353 * 29:27 PACKERS Only for some chips 1354 * 32:30 RB Only for some chips 1355 * 35:33 PIPE Only for some chips 1356 * 55:36 - Reserved for future use, must be zero 1357 */ 1358#define AMD_FMT_MOD fourcc_mod_code(AMD, 0) 1359 1360#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD) 1361 1362/* Reserve 0 for GFX8 and older */ 1363#define AMD_FMT_MOD_TILE_VER_GFX9 1 1364#define AMD_FMT_MOD_TILE_VER_GFX10 2 1365#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3 1366 1367/* 1368 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical 1369 * version. 1370 */ 1371#define AMD_FMT_MOD_TILE_GFX9_64K_S 9 1372 1373/* 1374 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has 1375 * GFX9 as canonical version. 1376 */ 1377#define AMD_FMT_MOD_TILE_GFX9_64K_D 10 1378#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25 1379#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26 1380#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27 1381 1382#define AMD_FMT_MOD_DCC_BLOCK_64B 0 1383#define AMD_FMT_MOD_DCC_BLOCK_128B 1 1384#define AMD_FMT_MOD_DCC_BLOCK_256B 2 1385 1386#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0 1387#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF 1388#define AMD_FMT_MOD_TILE_SHIFT 8 1389#define AMD_FMT_MOD_TILE_MASK 0x1F 1390 1391/* Whether DCC compression is enabled. */ 1392#define AMD_FMT_MOD_DCC_SHIFT 13 1393#define AMD_FMT_MOD_DCC_MASK 0x1 1394 1395/* 1396 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and 1397 * one which is not-aligned. 1398 */ 1399#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14 1400#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1 1401 1402/* Only set if DCC_RETILE = false */ 1403#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15 1404#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1 1405 1406#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16 1407#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1 1408#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17 1409#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1 1410#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18 1411#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3 1412 1413/* 1414 * DCC supports embedding some clear colors directly in the DCC surface. 1415 * However, on older GPUs the rendering HW ignores the embedded clear color 1416 * and prefers the driver provided color. This necessitates doing a fastclear 1417 * eliminate operation before a process transfers control. 1418 * 1419 * If this bit is set that means the fastclear eliminate is not needed for these 1420 * embeddable colors. 1421 */ 1422#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20 1423#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1 1424 1425/* 1426 * The below fields are for accounting for per GPU differences. These are only 1427 * relevant for GFX9 and later and if the tile field is *_X/_T. 1428 * 1429 * PIPE_XOR_BITS = always needed 1430 * BANK_XOR_BITS = only for TILE_VER_GFX9 1431 * PACKERS = only for TILE_VER_GFX10_RBPLUS 1432 * RB = only for TILE_VER_GFX9 & DCC 1433 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN) 1434 */ 1435#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21 1436#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7 1437#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24 1438#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7 1439#define AMD_FMT_MOD_PACKERS_SHIFT 27 1440#define AMD_FMT_MOD_PACKERS_MASK 0x7 1441#define AMD_FMT_MOD_RB_SHIFT 30 1442#define AMD_FMT_MOD_RB_MASK 0x7 1443#define AMD_FMT_MOD_PIPE_SHIFT 33 1444#define AMD_FMT_MOD_PIPE_MASK 0x7 1445 1446#define AMD_FMT_MOD_SET(field, value) \ 1447 ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT) 1448#define AMD_FMT_MOD_GET(field, value) \ 1449 (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK) 1450#define AMD_FMT_MOD_CLEAR(field) \ 1451 (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT)) 1452 1453#if defined(__cplusplus) 1454} 1455#endif 1456 1457#endif /* DRM_FOURCC_H */