cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

btrfs_tree.h (27269B)


      1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
      2#ifndef _BTRFS_CTREE_H_
      3#define _BTRFS_CTREE_H_
      4
      5#include <linux/btrfs.h>
      6#include <linux/types.h>
      7#ifdef __KERNEL__
      8#include <linux/stddef.h>
      9#else
     10#include <stddef.h>
     11#endif
     12
     13/*
     14 * This header contains the structure definitions and constants used
     15 * by file system objects that can be retrieved using
     16 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
     17 * is needed to describe a leaf node's key or item contents.
     18 */
     19
     20/* holds pointers to all of the tree roots */
     21#define BTRFS_ROOT_TREE_OBJECTID 1ULL
     22
     23/* stores information about which extents are in use, and reference counts */
     24#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
     25
     26/*
     27 * chunk tree stores translations from logical -> physical block numbering
     28 * the super block points to the chunk tree
     29 */
     30#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
     31
     32/*
     33 * stores information about which areas of a given device are in use.
     34 * one per device.  The tree of tree roots points to the device tree
     35 */
     36#define BTRFS_DEV_TREE_OBJECTID 4ULL
     37
     38/* one per subvolume, storing files and directories */
     39#define BTRFS_FS_TREE_OBJECTID 5ULL
     40
     41/* directory objectid inside the root tree */
     42#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
     43
     44/* holds checksums of all the data extents */
     45#define BTRFS_CSUM_TREE_OBJECTID 7ULL
     46
     47/* holds quota configuration and tracking */
     48#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
     49
     50/* for storing items that use the BTRFS_UUID_KEY* types */
     51#define BTRFS_UUID_TREE_OBJECTID 9ULL
     52
     53/* tracks free space in block groups. */
     54#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
     55
     56/* Holds the block group items for extent tree v2. */
     57#define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL
     58
     59/* device stats in the device tree */
     60#define BTRFS_DEV_STATS_OBJECTID 0ULL
     61
     62/* for storing balance parameters in the root tree */
     63#define BTRFS_BALANCE_OBJECTID -4ULL
     64
     65/* orphan objectid for tracking unlinked/truncated files */
     66#define BTRFS_ORPHAN_OBJECTID -5ULL
     67
     68/* does write ahead logging to speed up fsyncs */
     69#define BTRFS_TREE_LOG_OBJECTID -6ULL
     70#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
     71
     72/* for space balancing */
     73#define BTRFS_TREE_RELOC_OBJECTID -8ULL
     74#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
     75
     76/*
     77 * extent checksums all have this objectid
     78 * this allows them to share the logging tree
     79 * for fsyncs
     80 */
     81#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
     82
     83/* For storing free space cache */
     84#define BTRFS_FREE_SPACE_OBJECTID -11ULL
     85
     86/*
     87 * The inode number assigned to the special inode for storing
     88 * free ino cache
     89 */
     90#define BTRFS_FREE_INO_OBJECTID -12ULL
     91
     92/* dummy objectid represents multiple objectids */
     93#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
     94
     95/*
     96 * All files have objectids in this range.
     97 */
     98#define BTRFS_FIRST_FREE_OBJECTID 256ULL
     99#define BTRFS_LAST_FREE_OBJECTID -256ULL
    100#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
    101
    102
    103/*
    104 * the device items go into the chunk tree.  The key is in the form
    105 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
    106 */
    107#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
    108
    109#define BTRFS_BTREE_INODE_OBJECTID 1
    110
    111#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
    112
    113#define BTRFS_DEV_REPLACE_DEVID 0ULL
    114
    115/*
    116 * inode items have the data typically returned from stat and store other
    117 * info about object characteristics.  There is one for every file and dir in
    118 * the FS
    119 */
    120#define BTRFS_INODE_ITEM_KEY		1
    121#define BTRFS_INODE_REF_KEY		12
    122#define BTRFS_INODE_EXTREF_KEY		13
    123#define BTRFS_XATTR_ITEM_KEY		24
    124
    125/*
    126 * fs verity items are stored under two different key types on disk.
    127 * The descriptor items:
    128 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
    129 *
    130 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size
    131 * of the descriptor item and some extra data for encryption.
    132 * Starting at offset 1, these hold the generic fs verity descriptor.  The
    133 * latter are opaque to btrfs, we just read and write them as a blob for the
    134 * higher level verity code.  The most common descriptor size is 256 bytes.
    135 *
    136 * The merkle tree items:
    137 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
    138 *
    139 * These also start at offset 0, and correspond to the merkle tree bytes.  When
    140 * fsverity asks for page 0 of the merkle tree, we pull up one page starting at
    141 * offset 0 for this key type.  These are also opaque to btrfs, we're blindly
    142 * storing whatever fsverity sends down.
    143 */
    144#define BTRFS_VERITY_DESC_ITEM_KEY	36
    145#define BTRFS_VERITY_MERKLE_ITEM_KEY	37
    146
    147#define BTRFS_ORPHAN_ITEM_KEY		48
    148/* reserve 2-15 close to the inode for later flexibility */
    149
    150/*
    151 * dir items are the name -> inode pointers in a directory.  There is one
    152 * for every name in a directory.  BTRFS_DIR_LOG_ITEM_KEY is no longer used
    153 * but it's still defined here for documentation purposes and to help avoid
    154 * having its numerical value reused in the future.
    155 */
    156#define BTRFS_DIR_LOG_ITEM_KEY  60
    157#define BTRFS_DIR_LOG_INDEX_KEY 72
    158#define BTRFS_DIR_ITEM_KEY	84
    159#define BTRFS_DIR_INDEX_KEY	96
    160/*
    161 * extent data is for file data
    162 */
    163#define BTRFS_EXTENT_DATA_KEY	108
    164
    165/*
    166 * extent csums are stored in a separate tree and hold csums for
    167 * an entire extent on disk.
    168 */
    169#define BTRFS_EXTENT_CSUM_KEY	128
    170
    171/*
    172 * root items point to tree roots.  They are typically in the root
    173 * tree used by the super block to find all the other trees
    174 */
    175#define BTRFS_ROOT_ITEM_KEY	132
    176
    177/*
    178 * root backrefs tie subvols and snapshots to the directory entries that
    179 * reference them
    180 */
    181#define BTRFS_ROOT_BACKREF_KEY	144
    182
    183/*
    184 * root refs make a fast index for listing all of the snapshots and
    185 * subvolumes referenced by a given root.  They point directly to the
    186 * directory item in the root that references the subvol
    187 */
    188#define BTRFS_ROOT_REF_KEY	156
    189
    190/*
    191 * extent items are in the extent map tree.  These record which blocks
    192 * are used, and how many references there are to each block
    193 */
    194#define BTRFS_EXTENT_ITEM_KEY	168
    195
    196/*
    197 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
    198 * the length, so we save the level in key->offset instead of the length.
    199 */
    200#define BTRFS_METADATA_ITEM_KEY	169
    201
    202#define BTRFS_TREE_BLOCK_REF_KEY	176
    203
    204#define BTRFS_EXTENT_DATA_REF_KEY	178
    205
    206#define BTRFS_EXTENT_REF_V0_KEY		180
    207
    208#define BTRFS_SHARED_BLOCK_REF_KEY	182
    209
    210#define BTRFS_SHARED_DATA_REF_KEY	184
    211
    212/*
    213 * block groups give us hints into the extent allocation trees.  Which
    214 * blocks are free etc etc
    215 */
    216#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
    217
    218/*
    219 * Every block group is represented in the free space tree by a free space info
    220 * item, which stores some accounting information. It is keyed on
    221 * (block_group_start, FREE_SPACE_INFO, block_group_length).
    222 */
    223#define BTRFS_FREE_SPACE_INFO_KEY 198
    224
    225/*
    226 * A free space extent tracks an extent of space that is free in a block group.
    227 * It is keyed on (start, FREE_SPACE_EXTENT, length).
    228 */
    229#define BTRFS_FREE_SPACE_EXTENT_KEY 199
    230
    231/*
    232 * When a block group becomes very fragmented, we convert it to use bitmaps
    233 * instead of extents. A free space bitmap is keyed on
    234 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
    235 * (length / sectorsize) bits.
    236 */
    237#define BTRFS_FREE_SPACE_BITMAP_KEY 200
    238
    239#define BTRFS_DEV_EXTENT_KEY	204
    240#define BTRFS_DEV_ITEM_KEY	216
    241#define BTRFS_CHUNK_ITEM_KEY	228
    242
    243/*
    244 * Records the overall state of the qgroups.
    245 * There's only one instance of this key present,
    246 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
    247 */
    248#define BTRFS_QGROUP_STATUS_KEY         240
    249/*
    250 * Records the currently used space of the qgroup.
    251 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
    252 */
    253#define BTRFS_QGROUP_INFO_KEY           242
    254/*
    255 * Contains the user configured limits for the qgroup.
    256 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
    257 */
    258#define BTRFS_QGROUP_LIMIT_KEY          244
    259/*
    260 * Records the child-parent relationship of qgroups. For
    261 * each relation, 2 keys are present:
    262 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
    263 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
    264 */
    265#define BTRFS_QGROUP_RELATION_KEY       246
    266
    267/*
    268 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
    269 */
    270#define BTRFS_BALANCE_ITEM_KEY	248
    271
    272/*
    273 * The key type for tree items that are stored persistently, but do not need to
    274 * exist for extended period of time. The items can exist in any tree.
    275 *
    276 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
    277 *
    278 * Existing items:
    279 *
    280 * - balance status item
    281 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
    282 */
    283#define BTRFS_TEMPORARY_ITEM_KEY	248
    284
    285/*
    286 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
    287 */
    288#define BTRFS_DEV_STATS_KEY		249
    289
    290/*
    291 * The key type for tree items that are stored persistently and usually exist
    292 * for a long period, eg. filesystem lifetime. The item kinds can be status
    293 * information, stats or preference values. The item can exist in any tree.
    294 *
    295 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
    296 *
    297 * Existing items:
    298 *
    299 * - device statistics, store IO stats in the device tree, one key for all
    300 *   stats
    301 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
    302 */
    303#define BTRFS_PERSISTENT_ITEM_KEY	249
    304
    305/*
    306 * Persistently stores the device replace state in the device tree.
    307 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
    308 */
    309#define BTRFS_DEV_REPLACE_KEY	250
    310
    311/*
    312 * Stores items that allow to quickly map UUIDs to something else.
    313 * These items are part of the filesystem UUID tree.
    314 * The key is built like this:
    315 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
    316 */
    317#if BTRFS_UUID_SIZE != 16
    318#error "UUID items require BTRFS_UUID_SIZE == 16!"
    319#endif
    320#define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
    321#define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
    322						 * received subvols */
    323
    324/*
    325 * string items are for debugging.  They just store a short string of
    326 * data in the FS
    327 */
    328#define BTRFS_STRING_ITEM_KEY	253
    329
    330/* Maximum metadata block size (nodesize) */
    331#define BTRFS_MAX_METADATA_BLOCKSIZE			65536
    332
    333/* 32 bytes in various csum fields */
    334#define BTRFS_CSUM_SIZE 32
    335
    336/* csum types */
    337enum btrfs_csum_type {
    338	BTRFS_CSUM_TYPE_CRC32	= 0,
    339	BTRFS_CSUM_TYPE_XXHASH	= 1,
    340	BTRFS_CSUM_TYPE_SHA256	= 2,
    341	BTRFS_CSUM_TYPE_BLAKE2	= 3,
    342};
    343
    344/*
    345 * flags definitions for directory entry item type
    346 *
    347 * Used by:
    348 * struct btrfs_dir_item.type
    349 *
    350 * Values 0..7 must match common file type values in fs_types.h.
    351 */
    352#define BTRFS_FT_UNKNOWN	0
    353#define BTRFS_FT_REG_FILE	1
    354#define BTRFS_FT_DIR		2
    355#define BTRFS_FT_CHRDEV		3
    356#define BTRFS_FT_BLKDEV		4
    357#define BTRFS_FT_FIFO		5
    358#define BTRFS_FT_SOCK		6
    359#define BTRFS_FT_SYMLINK	7
    360#define BTRFS_FT_XATTR		8
    361#define BTRFS_FT_MAX		9
    362
    363/*
    364 * The key defines the order in the tree, and so it also defines (optimal)
    365 * block layout.
    366 *
    367 * objectid corresponds to the inode number.
    368 *
    369 * type tells us things about the object, and is a kind of stream selector.
    370 * so for a given inode, keys with type of 1 might refer to the inode data,
    371 * type of 2 may point to file data in the btree and type == 3 may point to
    372 * extents.
    373 *
    374 * offset is the starting byte offset for this key in the stream.
    375 *
    376 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
    377 * in cpu native order.  Otherwise they are identical and their sizes
    378 * should be the same (ie both packed)
    379 */
    380struct btrfs_disk_key {
    381	__le64 objectid;
    382	__u8 type;
    383	__le64 offset;
    384} __attribute__ ((__packed__));
    385
    386struct btrfs_key {
    387	__u64 objectid;
    388	__u8 type;
    389	__u64 offset;
    390} __attribute__ ((__packed__));
    391
    392struct btrfs_dev_item {
    393	/* the internal btrfs device id */
    394	__le64 devid;
    395
    396	/* size of the device */
    397	__le64 total_bytes;
    398
    399	/* bytes used */
    400	__le64 bytes_used;
    401
    402	/* optimal io alignment for this device */
    403	__le32 io_align;
    404
    405	/* optimal io width for this device */
    406	__le32 io_width;
    407
    408	/* minimal io size for this device */
    409	__le32 sector_size;
    410
    411	/* type and info about this device */
    412	__le64 type;
    413
    414	/* expected generation for this device */
    415	__le64 generation;
    416
    417	/*
    418	 * starting byte of this partition on the device,
    419	 * to allow for stripe alignment in the future
    420	 */
    421	__le64 start_offset;
    422
    423	/* grouping information for allocation decisions */
    424	__le32 dev_group;
    425
    426	/* seek speed 0-100 where 100 is fastest */
    427	__u8 seek_speed;
    428
    429	/* bandwidth 0-100 where 100 is fastest */
    430	__u8 bandwidth;
    431
    432	/* btrfs generated uuid for this device */
    433	__u8 uuid[BTRFS_UUID_SIZE];
    434
    435	/* uuid of FS who owns this device */
    436	__u8 fsid[BTRFS_UUID_SIZE];
    437} __attribute__ ((__packed__));
    438
    439struct btrfs_stripe {
    440	__le64 devid;
    441	__le64 offset;
    442	__u8 dev_uuid[BTRFS_UUID_SIZE];
    443} __attribute__ ((__packed__));
    444
    445struct btrfs_chunk {
    446	/* size of this chunk in bytes */
    447	__le64 length;
    448
    449	/* objectid of the root referencing this chunk */
    450	__le64 owner;
    451
    452	__le64 stripe_len;
    453	__le64 type;
    454
    455	/* optimal io alignment for this chunk */
    456	__le32 io_align;
    457
    458	/* optimal io width for this chunk */
    459	__le32 io_width;
    460
    461	/* minimal io size for this chunk */
    462	__le32 sector_size;
    463
    464	/* 2^16 stripes is quite a lot, a second limit is the size of a single
    465	 * item in the btree
    466	 */
    467	__le16 num_stripes;
    468
    469	/* sub stripes only matter for raid10 */
    470	__le16 sub_stripes;
    471	struct btrfs_stripe stripe;
    472	/* additional stripes go here */
    473} __attribute__ ((__packed__));
    474
    475#define BTRFS_FREE_SPACE_EXTENT	1
    476#define BTRFS_FREE_SPACE_BITMAP	2
    477
    478struct btrfs_free_space_entry {
    479	__le64 offset;
    480	__le64 bytes;
    481	__u8 type;
    482} __attribute__ ((__packed__));
    483
    484struct btrfs_free_space_header {
    485	struct btrfs_disk_key location;
    486	__le64 generation;
    487	__le64 num_entries;
    488	__le64 num_bitmaps;
    489} __attribute__ ((__packed__));
    490
    491#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
    492#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
    493
    494/* Super block flags */
    495/* Errors detected */
    496#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
    497
    498#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
    499#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
    500#define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
    501#define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
    502#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
    503
    504
    505/*
    506 * items in the extent btree are used to record the objectid of the
    507 * owner of the block and the number of references
    508 */
    509
    510struct btrfs_extent_item {
    511	__le64 refs;
    512	__le64 generation;
    513	__le64 flags;
    514} __attribute__ ((__packed__));
    515
    516struct btrfs_extent_item_v0 {
    517	__le32 refs;
    518} __attribute__ ((__packed__));
    519
    520
    521#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
    522#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
    523
    524/* following flags only apply to tree blocks */
    525
    526/* use full backrefs for extent pointers in the block */
    527#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
    528
    529/*
    530 * this flag is only used internally by scrub and may be changed at any time
    531 * it is only declared here to avoid collisions
    532 */
    533#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
    534
    535struct btrfs_tree_block_info {
    536	struct btrfs_disk_key key;
    537	__u8 level;
    538} __attribute__ ((__packed__));
    539
    540struct btrfs_extent_data_ref {
    541	__le64 root;
    542	__le64 objectid;
    543	__le64 offset;
    544	__le32 count;
    545} __attribute__ ((__packed__));
    546
    547struct btrfs_shared_data_ref {
    548	__le32 count;
    549} __attribute__ ((__packed__));
    550
    551struct btrfs_extent_inline_ref {
    552	__u8 type;
    553	__le64 offset;
    554} __attribute__ ((__packed__));
    555
    556/* dev extents record free space on individual devices.  The owner
    557 * field points back to the chunk allocation mapping tree that allocated
    558 * the extent.  The chunk tree uuid field is a way to double check the owner
    559 */
    560struct btrfs_dev_extent {
    561	__le64 chunk_tree;
    562	__le64 chunk_objectid;
    563	__le64 chunk_offset;
    564	__le64 length;
    565	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
    566} __attribute__ ((__packed__));
    567
    568struct btrfs_inode_ref {
    569	__le64 index;
    570	__le16 name_len;
    571	/* name goes here */
    572} __attribute__ ((__packed__));
    573
    574struct btrfs_inode_extref {
    575	__le64 parent_objectid;
    576	__le64 index;
    577	__le16 name_len;
    578	__u8   name[0];
    579	/* name goes here */
    580} __attribute__ ((__packed__));
    581
    582struct btrfs_timespec {
    583	__le64 sec;
    584	__le32 nsec;
    585} __attribute__ ((__packed__));
    586
    587struct btrfs_inode_item {
    588	/* nfs style generation number */
    589	__le64 generation;
    590	/* transid that last touched this inode */
    591	__le64 transid;
    592	__le64 size;
    593	__le64 nbytes;
    594	__le64 block_group;
    595	__le32 nlink;
    596	__le32 uid;
    597	__le32 gid;
    598	__le32 mode;
    599	__le64 rdev;
    600	__le64 flags;
    601
    602	/* modification sequence number for NFS */
    603	__le64 sequence;
    604
    605	/*
    606	 * a little future expansion, for more than this we can
    607	 * just grow the inode item and version it
    608	 */
    609	__le64 reserved[4];
    610	struct btrfs_timespec atime;
    611	struct btrfs_timespec ctime;
    612	struct btrfs_timespec mtime;
    613	struct btrfs_timespec otime;
    614} __attribute__ ((__packed__));
    615
    616struct btrfs_dir_log_item {
    617	__le64 end;
    618} __attribute__ ((__packed__));
    619
    620struct btrfs_dir_item {
    621	struct btrfs_disk_key location;
    622	__le64 transid;
    623	__le16 data_len;
    624	__le16 name_len;
    625	__u8 type;
    626} __attribute__ ((__packed__));
    627
    628#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
    629
    630/*
    631 * Internal in-memory flag that a subvolume has been marked for deletion but
    632 * still visible as a directory
    633 */
    634#define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
    635
    636struct btrfs_root_item {
    637	struct btrfs_inode_item inode;
    638	__le64 generation;
    639	__le64 root_dirid;
    640	__le64 bytenr;
    641	__le64 byte_limit;
    642	__le64 bytes_used;
    643	__le64 last_snapshot;
    644	__le64 flags;
    645	__le32 refs;
    646	struct btrfs_disk_key drop_progress;
    647	__u8 drop_level;
    648	__u8 level;
    649
    650	/*
    651	 * The following fields appear after subvol_uuids+subvol_times
    652	 * were introduced.
    653	 */
    654
    655	/*
    656	 * This generation number is used to test if the new fields are valid
    657	 * and up to date while reading the root item. Every time the root item
    658	 * is written out, the "generation" field is copied into this field. If
    659	 * anyone ever mounted the fs with an older kernel, we will have
    660	 * mismatching generation values here and thus must invalidate the
    661	 * new fields. See btrfs_update_root and btrfs_find_last_root for
    662	 * details.
    663	 * the offset of generation_v2 is also used as the start for the memset
    664	 * when invalidating the fields.
    665	 */
    666	__le64 generation_v2;
    667	__u8 uuid[BTRFS_UUID_SIZE];
    668	__u8 parent_uuid[BTRFS_UUID_SIZE];
    669	__u8 received_uuid[BTRFS_UUID_SIZE];
    670	__le64 ctransid; /* updated when an inode changes */
    671	__le64 otransid; /* trans when created */
    672	__le64 stransid; /* trans when sent. non-zero for received subvol */
    673	__le64 rtransid; /* trans when received. non-zero for received subvol */
    674	struct btrfs_timespec ctime;
    675	struct btrfs_timespec otime;
    676	struct btrfs_timespec stime;
    677	struct btrfs_timespec rtime;
    678	__le64 reserved[8]; /* for future */
    679} __attribute__ ((__packed__));
    680
    681/*
    682 * Btrfs root item used to be smaller than current size.  The old format ends
    683 * at where member generation_v2 is.
    684 */
    685static inline __u32 btrfs_legacy_root_item_size(void)
    686{
    687	return offsetof(struct btrfs_root_item, generation_v2);
    688}
    689
    690/*
    691 * this is used for both forward and backward root refs
    692 */
    693struct btrfs_root_ref {
    694	__le64 dirid;
    695	__le64 sequence;
    696	__le16 name_len;
    697} __attribute__ ((__packed__));
    698
    699struct btrfs_disk_balance_args {
    700	/*
    701	 * profiles to operate on, single is denoted by
    702	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
    703	 */
    704	__le64 profiles;
    705
    706	/*
    707	 * usage filter
    708	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
    709	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
    710	 */
    711	union {
    712		__le64 usage;
    713		struct {
    714			__le32 usage_min;
    715			__le32 usage_max;
    716		};
    717	};
    718
    719	/* devid filter */
    720	__le64 devid;
    721
    722	/* devid subset filter [pstart..pend) */
    723	__le64 pstart;
    724	__le64 pend;
    725
    726	/* btrfs virtual address space subset filter [vstart..vend) */
    727	__le64 vstart;
    728	__le64 vend;
    729
    730	/*
    731	 * profile to convert to, single is denoted by
    732	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
    733	 */
    734	__le64 target;
    735
    736	/* BTRFS_BALANCE_ARGS_* */
    737	__le64 flags;
    738
    739	/*
    740	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
    741	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
    742	 * and maximum
    743	 */
    744	union {
    745		__le64 limit;
    746		struct {
    747			__le32 limit_min;
    748			__le32 limit_max;
    749		};
    750	};
    751
    752	/*
    753	 * Process chunks that cross stripes_min..stripes_max devices,
    754	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
    755	 */
    756	__le32 stripes_min;
    757	__le32 stripes_max;
    758
    759	__le64 unused[6];
    760} __attribute__ ((__packed__));
    761
    762/*
    763 * store balance parameters to disk so that balance can be properly
    764 * resumed after crash or unmount
    765 */
    766struct btrfs_balance_item {
    767	/* BTRFS_BALANCE_* */
    768	__le64 flags;
    769
    770	struct btrfs_disk_balance_args data;
    771	struct btrfs_disk_balance_args meta;
    772	struct btrfs_disk_balance_args sys;
    773
    774	__le64 unused[4];
    775} __attribute__ ((__packed__));
    776
    777enum {
    778	BTRFS_FILE_EXTENT_INLINE   = 0,
    779	BTRFS_FILE_EXTENT_REG      = 1,
    780	BTRFS_FILE_EXTENT_PREALLOC = 2,
    781	BTRFS_NR_FILE_EXTENT_TYPES = 3,
    782};
    783
    784struct btrfs_file_extent_item {
    785	/*
    786	 * transaction id that created this extent
    787	 */
    788	__le64 generation;
    789	/*
    790	 * max number of bytes to hold this extent in ram
    791	 * when we split a compressed extent we can't know how big
    792	 * each of the resulting pieces will be.  So, this is
    793	 * an upper limit on the size of the extent in ram instead of
    794	 * an exact limit.
    795	 */
    796	__le64 ram_bytes;
    797
    798	/*
    799	 * 32 bits for the various ways we might encode the data,
    800	 * including compression and encryption.  If any of these
    801	 * are set to something a given disk format doesn't understand
    802	 * it is treated like an incompat flag for reading and writing,
    803	 * but not for stat.
    804	 */
    805	__u8 compression;
    806	__u8 encryption;
    807	__le16 other_encoding; /* spare for later use */
    808
    809	/* are we inline data or a real extent? */
    810	__u8 type;
    811
    812	/*
    813	 * disk space consumed by the extent, checksum blocks are included
    814	 * in these numbers
    815	 *
    816	 * At this offset in the structure, the inline extent data start.
    817	 */
    818	__le64 disk_bytenr;
    819	__le64 disk_num_bytes;
    820	/*
    821	 * the logical offset in file blocks (no csums)
    822	 * this extent record is for.  This allows a file extent to point
    823	 * into the middle of an existing extent on disk, sharing it
    824	 * between two snapshots (useful if some bytes in the middle of the
    825	 * extent have changed
    826	 */
    827	__le64 offset;
    828	/*
    829	 * the logical number of file blocks (no csums included).  This
    830	 * always reflects the size uncompressed and without encoding.
    831	 */
    832	__le64 num_bytes;
    833
    834} __attribute__ ((__packed__));
    835
    836struct btrfs_csum_item {
    837	__u8 csum;
    838} __attribute__ ((__packed__));
    839
    840struct btrfs_dev_stats_item {
    841	/*
    842	 * grow this item struct at the end for future enhancements and keep
    843	 * the existing values unchanged
    844	 */
    845	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
    846} __attribute__ ((__packed__));
    847
    848#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
    849#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
    850
    851struct btrfs_dev_replace_item {
    852	/*
    853	 * grow this item struct at the end for future enhancements and keep
    854	 * the existing values unchanged
    855	 */
    856	__le64 src_devid;
    857	__le64 cursor_left;
    858	__le64 cursor_right;
    859	__le64 cont_reading_from_srcdev_mode;
    860
    861	__le64 replace_state;
    862	__le64 time_started;
    863	__le64 time_stopped;
    864	__le64 num_write_errors;
    865	__le64 num_uncorrectable_read_errors;
    866} __attribute__ ((__packed__));
    867
    868/* different types of block groups (and chunks) */
    869#define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
    870#define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
    871#define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
    872#define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
    873#define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
    874#define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
    875#define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
    876#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
    877#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
    878#define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
    879#define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
    880#define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
    881					 BTRFS_SPACE_INFO_GLOBAL_RSV)
    882
    883#define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
    884					 BTRFS_BLOCK_GROUP_SYSTEM |  \
    885					 BTRFS_BLOCK_GROUP_METADATA)
    886
    887#define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
    888					 BTRFS_BLOCK_GROUP_RAID1 |   \
    889					 BTRFS_BLOCK_GROUP_RAID1C3 | \
    890					 BTRFS_BLOCK_GROUP_RAID1C4 | \
    891					 BTRFS_BLOCK_GROUP_RAID5 |   \
    892					 BTRFS_BLOCK_GROUP_RAID6 |   \
    893					 BTRFS_BLOCK_GROUP_DUP |     \
    894					 BTRFS_BLOCK_GROUP_RAID10)
    895#define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
    896					 BTRFS_BLOCK_GROUP_RAID6)
    897
    898#define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
    899					 BTRFS_BLOCK_GROUP_RAID1C3 | \
    900					 BTRFS_BLOCK_GROUP_RAID1C4)
    901
    902/*
    903 * We need a bit for restriper to be able to tell when chunks of type
    904 * SINGLE are available.  This "extended" profile format is used in
    905 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
    906 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
    907 * to avoid remappings between two formats in future.
    908 */
    909#define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
    910
    911/*
    912 * A fake block group type that is used to communicate global block reserve
    913 * size to userspace via the SPACE_INFO ioctl.
    914 */
    915#define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
    916
    917#define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
    918					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
    919
    920static inline __u64 chunk_to_extended(__u64 flags)
    921{
    922	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
    923		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
    924
    925	return flags;
    926}
    927static inline __u64 extended_to_chunk(__u64 flags)
    928{
    929	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
    930}
    931
    932struct btrfs_block_group_item {
    933	__le64 used;
    934	__le64 chunk_objectid;
    935	__le64 flags;
    936} __attribute__ ((__packed__));
    937
    938struct btrfs_free_space_info {
    939	__le32 extent_count;
    940	__le32 flags;
    941} __attribute__ ((__packed__));
    942
    943#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
    944
    945#define BTRFS_QGROUP_LEVEL_SHIFT		48
    946static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
    947{
    948	return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
    949}
    950
    951/*
    952 * is subvolume quota turned on?
    953 */
    954#define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
    955/*
    956 * RESCAN is set during the initialization phase
    957 */
    958#define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
    959/*
    960 * Some qgroup entries are known to be out of date,
    961 * either because the configuration has changed in a way that
    962 * makes a rescan necessary, or because the fs has been mounted
    963 * with a non-qgroup-aware version.
    964 * Turning qouta off and on again makes it inconsistent, too.
    965 */
    966#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
    967
    968#define BTRFS_QGROUP_STATUS_VERSION        1
    969
    970struct btrfs_qgroup_status_item {
    971	__le64 version;
    972	/*
    973	 * the generation is updated during every commit. As older
    974	 * versions of btrfs are not aware of qgroups, it will be
    975	 * possible to detect inconsistencies by checking the
    976	 * generation on mount time
    977	 */
    978	__le64 generation;
    979
    980	/* flag definitions see above */
    981	__le64 flags;
    982
    983	/*
    984	 * only used during scanning to record the progress
    985	 * of the scan. It contains a logical address
    986	 */
    987	__le64 rescan;
    988} __attribute__ ((__packed__));
    989
    990struct btrfs_qgroup_info_item {
    991	__le64 generation;
    992	__le64 rfer;
    993	__le64 rfer_cmpr;
    994	__le64 excl;
    995	__le64 excl_cmpr;
    996} __attribute__ ((__packed__));
    997
    998struct btrfs_qgroup_limit_item {
    999	/*
   1000	 * only updated when any of the other values change
   1001	 */
   1002	__le64 flags;
   1003	__le64 max_rfer;
   1004	__le64 max_excl;
   1005	__le64 rsv_rfer;
   1006	__le64 rsv_excl;
   1007} __attribute__ ((__packed__));
   1008
   1009struct btrfs_verity_descriptor_item {
   1010	/* Size of the verity descriptor in bytes */
   1011	__le64 size;
   1012	/*
   1013	 * When we implement support for fscrypt, we will need to encrypt the
   1014	 * Merkle tree for encrypted verity files. These 128 bits are for the
   1015	 * eventual storage of an fscrypt initialization vector.
   1016	 */
   1017	__le64 reserved[2];
   1018	__u8 encryption;
   1019} __attribute__ ((__packed__));
   1020
   1021#endif /* _BTRFS_CTREE_H_ */