cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hyperv.h (11167B)


      1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
      2/*
      3 *
      4 * Copyright (c) 2011, Microsoft Corporation.
      5 *
      6 * This program is free software; you can redistribute it and/or modify it
      7 * under the terms and conditions of the GNU General Public License,
      8 * version 2, as published by the Free Software Foundation.
      9 *
     10 * This program is distributed in the hope it will be useful, but WITHOUT
     11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     13 * more details.
     14 *
     15 * You should have received a copy of the GNU General Public License along with
     16 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
     17 * Place - Suite 330, Boston, MA 02111-1307 USA.
     18 *
     19 * Authors:
     20 *   Haiyang Zhang <haiyangz@microsoft.com>
     21 *   Hank Janssen  <hjanssen@microsoft.com>
     22 *   K. Y. Srinivasan <kys@microsoft.com>
     23 *
     24 */
     25
     26#ifndef _UAPI_HYPERV_H
     27#define _UAPI_HYPERV_H
     28
     29#include <linux/types.h>
     30
     31/*
     32 * Framework version for util services.
     33 */
     34#define UTIL_FW_MINOR  0
     35
     36#define UTIL_WS2K8_FW_MAJOR  1
     37#define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
     38
     39#define UTIL_FW_MAJOR  3
     40#define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
     41
     42
     43/*
     44 * Implementation of host controlled snapshot of the guest.
     45 */
     46
     47#define VSS_OP_REGISTER 128
     48
     49/*
     50  Daemon code with full handshake support.
     51 */
     52#define VSS_OP_REGISTER1 129
     53
     54enum hv_vss_op {
     55	VSS_OP_CREATE = 0,
     56	VSS_OP_DELETE,
     57	VSS_OP_HOT_BACKUP,
     58	VSS_OP_GET_DM_INFO,
     59	VSS_OP_BU_COMPLETE,
     60	/*
     61	 * Following operations are only supported with IC version >= 5.0
     62	 */
     63	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
     64	VSS_OP_THAW, /* Unfreeze the file systems */
     65	VSS_OP_AUTO_RECOVER,
     66	VSS_OP_COUNT /* Number of operations, must be last */
     67};
     68
     69
     70/*
     71 * Header for all VSS messages.
     72 */
     73struct hv_vss_hdr {
     74	__u8 operation;
     75	__u8 reserved[7];
     76} __attribute__((packed));
     77
     78
     79/*
     80 * Flag values for the hv_vss_check_feature. Linux supports only
     81 * one value.
     82 */
     83#define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
     84
     85struct hv_vss_check_feature {
     86	__u32 flags;
     87} __attribute__((packed));
     88
     89struct hv_vss_check_dm_info {
     90	__u32 flags;
     91} __attribute__((packed));
     92
     93/*
     94 * struct hv_vss_msg encodes the fields that the Linux VSS
     95 * driver accesses. However, FREEZE messages from Hyper-V contain
     96 * additional LUN information that Linux doesn't use and are not
     97 * represented in struct hv_vss_msg. A received FREEZE message may
     98 * be as large as 6,260 bytes, so the driver must allocate at least
     99 * that much space, not sizeof(struct hv_vss_msg). Other messages
    100 * such as AUTO_RECOVER may be as large as 12,500 bytes. However,
    101 * because the Linux VSS driver responds that it doesn't support
    102 * auto-recovery, it should not receive such messages.
    103 */
    104struct hv_vss_msg {
    105	union {
    106		struct hv_vss_hdr vss_hdr;
    107		int error;
    108	};
    109	union {
    110		struct hv_vss_check_feature vss_cf;
    111		struct hv_vss_check_dm_info dm_info;
    112	};
    113} __attribute__((packed));
    114
    115/*
    116 * Implementation of a host to guest copy facility.
    117 */
    118
    119#define FCOPY_VERSION_0 0
    120#define FCOPY_VERSION_1 1
    121#define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
    122#define W_MAX_PATH 260
    123
    124enum hv_fcopy_op {
    125	START_FILE_COPY = 0,
    126	WRITE_TO_FILE,
    127	COMPLETE_FCOPY,
    128	CANCEL_FCOPY,
    129};
    130
    131struct hv_fcopy_hdr {
    132	__u32 operation;
    133	__u8 service_id0[16]; /* currently unused */
    134	__u8 service_id1[16]; /* currently unused */
    135} __attribute__((packed));
    136
    137#define OVER_WRITE	0x1
    138#define CREATE_PATH	0x2
    139
    140struct hv_start_fcopy {
    141	struct hv_fcopy_hdr hdr;
    142	__u16 file_name[W_MAX_PATH];
    143	__u16 path_name[W_MAX_PATH];
    144	__u32 copy_flags;
    145	__u64 file_size;
    146} __attribute__((packed));
    147
    148/*
    149 * The file is chunked into fragments.
    150 */
    151#define DATA_FRAGMENT	(6 * 1024)
    152
    153struct hv_do_fcopy {
    154	struct hv_fcopy_hdr hdr;
    155	__u32   pad;
    156	__u64	offset;
    157	__u32	size;
    158	__u8	data[DATA_FRAGMENT];
    159} __attribute__((packed));
    160
    161/*
    162 * An implementation of HyperV key value pair (KVP) functionality for Linux.
    163 *
    164 *
    165 * Copyright (C) 2010, Novell, Inc.
    166 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
    167 *
    168 */
    169
    170/*
    171 * Maximum value size - used for both key names and value data, and includes
    172 * any applicable NULL terminators.
    173 *
    174 * Note:  This limit is somewhat arbitrary, but falls easily within what is
    175 * supported for all native guests (back to Win 2000) and what is reasonable
    176 * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
    177 * limited to 255 character key names.
    178 *
    179 * MSDN recommends not storing data values larger than 2048 bytes in the
    180 * registry.
    181 *
    182 * Note:  This value is used in defining the KVP exchange message - this value
    183 * cannot be modified without affecting the message size and compatibility.
    184 */
    185
    186/*
    187 * bytes, including any null terminators
    188 */
    189#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
    190
    191
    192/*
    193 * Maximum key size - the registry limit for the length of an entry name
    194 * is 256 characters, including the null terminator
    195 */
    196
    197#define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
    198
    199/*
    200 * In Linux, we implement the KVP functionality in two components:
    201 * 1) The kernel component which is packaged as part of the hv_utils driver
    202 * is responsible for communicating with the host and responsible for
    203 * implementing the host/guest protocol. 2) A user level daemon that is
    204 * responsible for data gathering.
    205 *
    206 * Host/Guest Protocol: The host iterates over an index and expects the guest
    207 * to assign a key name to the index and also return the value corresponding to
    208 * the key. The host will have atmost one KVP transaction outstanding at any
    209 * given point in time. The host side iteration stops when the guest returns
    210 * an error. Microsoft has specified the following mapping of key names to
    211 * host specified index:
    212 *
    213 *	Index		Key Name
    214 *	0		FullyQualifiedDomainName
    215 *	1		IntegrationServicesVersion
    216 *	2		NetworkAddressIPv4
    217 *	3		NetworkAddressIPv6
    218 *	4		OSBuildNumber
    219 *	5		OSName
    220 *	6		OSMajorVersion
    221 *	7		OSMinorVersion
    222 *	8		OSVersion
    223 *	9		ProcessorArchitecture
    224 *
    225 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
    226 *
    227 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
    228 * data gathering functionality in a user mode daemon. The user level daemon
    229 * is also responsible for binding the key name to the index as well. The
    230 * kernel and user-level daemon communicate using a connector channel.
    231 *
    232 * The user mode component first registers with the
    233 * kernel component. Subsequently, the kernel component requests, data
    234 * for the specified keys. In response to this message the user mode component
    235 * fills in the value corresponding to the specified key. We overload the
    236 * sequence field in the cn_msg header to define our KVP message types.
    237 *
    238 *
    239 * The kernel component simply acts as a conduit for communication between the
    240 * Windows host and the user-level daemon. The kernel component passes up the
    241 * index received from the Host to the user-level daemon. If the index is
    242 * valid (supported), the corresponding key as well as its
    243 * value (both are strings) is returned. If the index is invalid
    244 * (not supported), a NULL key string is returned.
    245 */
    246
    247
    248/*
    249 * Registry value types.
    250 */
    251
    252#define REG_SZ 1
    253#define REG_U32 4
    254#define REG_U64 8
    255
    256/*
    257 * As we look at expanding the KVP functionality to include
    258 * IP injection functionality, we need to maintain binary
    259 * compatibility with older daemons.
    260 *
    261 * The KVP opcodes are defined by the host and it was unfortunate
    262 * that I chose to treat the registration operation as part of the
    263 * KVP operations defined by the host.
    264 * Here is the level of compatibility
    265 * (between the user level daemon and the kernel KVP driver) that we
    266 * will implement:
    267 *
    268 * An older daemon will always be supported on a newer driver.
    269 * A given user level daemon will require a minimal version of the
    270 * kernel driver.
    271 * If we cannot handle the version differences, we will fail gracefully
    272 * (this can happen when we have a user level daemon that is more
    273 * advanced than the KVP driver.
    274 *
    275 * We will use values used in this handshake for determining if we have
    276 * workable user level daemon and the kernel driver. We begin by taking the
    277 * registration opcode out of the KVP opcode namespace. We will however,
    278 * maintain compatibility with the existing user-level daemon code.
    279 */
    280
    281/*
    282 * Daemon code not supporting IP injection (legacy daemon).
    283 */
    284
    285#define KVP_OP_REGISTER	4
    286
    287/*
    288 * Daemon code supporting IP injection.
    289 * The KVP opcode field is used to communicate the
    290 * registration information; so define a namespace that
    291 * will be distinct from the host defined KVP opcode.
    292 */
    293
    294#define KVP_OP_REGISTER1 100
    295
    296enum hv_kvp_exchg_op {
    297	KVP_OP_GET = 0,
    298	KVP_OP_SET,
    299	KVP_OP_DELETE,
    300	KVP_OP_ENUMERATE,
    301	KVP_OP_GET_IP_INFO,
    302	KVP_OP_SET_IP_INFO,
    303	KVP_OP_COUNT /* Number of operations, must be last. */
    304};
    305
    306enum hv_kvp_exchg_pool {
    307	KVP_POOL_EXTERNAL = 0,
    308	KVP_POOL_GUEST,
    309	KVP_POOL_AUTO,
    310	KVP_POOL_AUTO_EXTERNAL,
    311	KVP_POOL_AUTO_INTERNAL,
    312	KVP_POOL_COUNT /* Number of pools, must be last. */
    313};
    314
    315/*
    316 * Some Hyper-V status codes.
    317 */
    318
    319#define HV_S_OK				0x00000000
    320#define HV_E_FAIL			0x80004005
    321#define HV_S_CONT			0x80070103
    322#define HV_ERROR_NOT_SUPPORTED		0x80070032
    323#define HV_ERROR_MACHINE_LOCKED		0x800704F7
    324#define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
    325#define HV_INVALIDARG			0x80070057
    326#define HV_GUID_NOTFOUND		0x80041002
    327#define HV_ERROR_ALREADY_EXISTS		0x80070050
    328#define HV_ERROR_DISK_FULL		0x80070070
    329
    330#define ADDR_FAMILY_NONE	0x00
    331#define ADDR_FAMILY_IPV4	0x01
    332#define ADDR_FAMILY_IPV6	0x02
    333
    334#define MAX_ADAPTER_ID_SIZE	128
    335#define MAX_IP_ADDR_SIZE	1024
    336#define MAX_GATEWAY_SIZE	512
    337
    338
    339struct hv_kvp_ipaddr_value {
    340	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
    341	__u8	addr_family;
    342	__u8	dhcp_enabled;
    343	__u16	ip_addr[MAX_IP_ADDR_SIZE];
    344	__u16	sub_net[MAX_IP_ADDR_SIZE];
    345	__u16	gate_way[MAX_GATEWAY_SIZE];
    346	__u16	dns_addr[MAX_IP_ADDR_SIZE];
    347} __attribute__((packed));
    348
    349
    350struct hv_kvp_hdr {
    351	__u8 operation;
    352	__u8 pool;
    353	__u16 pad;
    354} __attribute__((packed));
    355
    356struct hv_kvp_exchg_msg_value {
    357	__u32 value_type;
    358	__u32 key_size;
    359	__u32 value_size;
    360	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
    361	union {
    362		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
    363		__u32 value_u32;
    364		__u64 value_u64;
    365	};
    366} __attribute__((packed));
    367
    368struct hv_kvp_msg_enumerate {
    369	__u32 index;
    370	struct hv_kvp_exchg_msg_value data;
    371} __attribute__((packed));
    372
    373struct hv_kvp_msg_get {
    374	struct hv_kvp_exchg_msg_value data;
    375};
    376
    377struct hv_kvp_msg_set {
    378	struct hv_kvp_exchg_msg_value data;
    379};
    380
    381struct hv_kvp_msg_delete {
    382	__u32 key_size;
    383	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
    384};
    385
    386struct hv_kvp_register {
    387	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
    388};
    389
    390struct hv_kvp_msg {
    391	union {
    392		struct hv_kvp_hdr	kvp_hdr;
    393		int error;
    394	};
    395	union {
    396		struct hv_kvp_msg_get		kvp_get;
    397		struct hv_kvp_msg_set		kvp_set;
    398		struct hv_kvp_msg_delete	kvp_delete;
    399		struct hv_kvp_msg_enumerate	kvp_enum_data;
    400		struct hv_kvp_ipaddr_value      kvp_ip_val;
    401		struct hv_kvp_register		kvp_register;
    402	} body;
    403} __attribute__((packed));
    404
    405struct hv_kvp_ip_msg {
    406	__u8 operation;
    407	__u8 pool;
    408	struct hv_kvp_ipaddr_value      kvp_ip_val;
    409} __attribute__((packed));
    410
    411#endif /* _UAPI_HYPERV_H */