cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

netif.h (34550B)


      1/* SPDX-License-Identifier: MIT */
      2/******************************************************************************
      3 * xen_netif.h
      4 *
      5 * Unified network-device I/O interface for Xen guest OSes.
      6 *
      7 * Copyright (c) 2003-2004, Keir Fraser
      8 */
      9
     10#ifndef __XEN_PUBLIC_IO_XEN_NETIF_H__
     11#define __XEN_PUBLIC_IO_XEN_NETIF_H__
     12
     13#include "ring.h"
     14#include "../grant_table.h"
     15
     16/*
     17 * Older implementation of Xen network frontend / backend has an
     18 * implicit dependency on the MAX_SKB_FRAGS as the maximum number of
     19 * ring slots a skb can use. Netfront / netback may not work as
     20 * expected when frontend and backend have different MAX_SKB_FRAGS.
     21 *
     22 * A better approach is to add mechanism for netfront / netback to
     23 * negotiate this value. However we cannot fix all possible
     24 * frontends, so we need to define a value which states the minimum
     25 * slots backend must support.
     26 *
     27 * The minimum value derives from older Linux kernel's MAX_SKB_FRAGS
     28 * (18), which is proved to work with most frontends. Any new backend
     29 * which doesn't negotiate with frontend should expect frontend to
     30 * send a valid packet using slots up to this value.
     31 */
     32#define XEN_NETIF_NR_SLOTS_MIN 18
     33
     34/*
     35 * Notifications after enqueuing any type of message should be conditional on
     36 * the appropriate req_event or rsp_event field in the shared ring.
     37 * If the client sends notification for rx requests then it should specify
     38 * feature 'feature-rx-notify' via xenbus. Otherwise the backend will assume
     39 * that it cannot safely queue packets (as it may not be kicked to send them).
     40 */
     41
     42/*
     43 * "feature-split-event-channels" is introduced to separate guest TX
     44 * and RX notification. Backend either doesn't support this feature or
     45 * advertises it via xenstore as 0 (disabled) or 1 (enabled).
     46 *
     47 * To make use of this feature, frontend should allocate two event
     48 * channels for TX and RX, advertise them to backend as
     49 * "event-channel-tx" and "event-channel-rx" respectively. If frontend
     50 * doesn't want to use this feature, it just writes "event-channel"
     51 * node as before.
     52 */
     53
     54/*
     55 * Multiple transmit and receive queues:
     56 * If supported, the backend will write the key "multi-queue-max-queues" to
     57 * the directory for that vif, and set its value to the maximum supported
     58 * number of queues.
     59 * Frontends that are aware of this feature and wish to use it can write the
     60 * key "multi-queue-num-queues", set to the number they wish to use, which
     61 * must be greater than zero, and no more than the value reported by the backend
     62 * in "multi-queue-max-queues".
     63 *
     64 * Queues replicate the shared rings and event channels.
     65 * "feature-split-event-channels" may optionally be used when using
     66 * multiple queues, but is not mandatory.
     67 *
     68 * Each queue consists of one shared ring pair, i.e. there must be the same
     69 * number of tx and rx rings.
     70 *
     71 * For frontends requesting just one queue, the usual event-channel and
     72 * ring-ref keys are written as before, simplifying the backend processing
     73 * to avoid distinguishing between a frontend that doesn't understand the
     74 * multi-queue feature, and one that does, but requested only one queue.
     75 *
     76 * Frontends requesting two or more queues must not write the toplevel
     77 * event-channel (or event-channel-{tx,rx}) and {tx,rx}-ring-ref keys,
     78 * instead writing those keys under sub-keys having the name "queue-N" where
     79 * N is the integer ID of the queue for which those keys belong. Queues
     80 * are indexed from zero. For example, a frontend with two queues and split
     81 * event channels must write the following set of queue-related keys:
     82 *
     83 * /local/domain/1/device/vif/0/multi-queue-num-queues = "2"
     84 * /local/domain/1/device/vif/0/queue-0 = ""
     85 * /local/domain/1/device/vif/0/queue-0/tx-ring-ref = "<ring-ref-tx0>"
     86 * /local/domain/1/device/vif/0/queue-0/rx-ring-ref = "<ring-ref-rx0>"
     87 * /local/domain/1/device/vif/0/queue-0/event-channel-tx = "<evtchn-tx0>"
     88 * /local/domain/1/device/vif/0/queue-0/event-channel-rx = "<evtchn-rx0>"
     89 * /local/domain/1/device/vif/0/queue-1 = ""
     90 * /local/domain/1/device/vif/0/queue-1/tx-ring-ref = "<ring-ref-tx1>"
     91 * /local/domain/1/device/vif/0/queue-1/rx-ring-ref = "<ring-ref-rx1"
     92 * /local/domain/1/device/vif/0/queue-1/event-channel-tx = "<evtchn-tx1>"
     93 * /local/domain/1/device/vif/0/queue-1/event-channel-rx = "<evtchn-rx1>"
     94 *
     95 * If there is any inconsistency in the XenStore data, the backend may
     96 * choose not to connect any queues, instead treating the request as an
     97 * error. This includes scenarios where more (or fewer) queues were
     98 * requested than the frontend provided details for.
     99 *
    100 * Mapping of packets to queues is considered to be a function of the
    101 * transmitting system (backend or frontend) and is not negotiated
    102 * between the two. Guests are free to transmit packets on any queue
    103 * they choose, provided it has been set up correctly. Guests must be
    104 * prepared to receive packets on any queue they have requested be set up.
    105 */
    106
    107/*
    108 * "feature-no-csum-offload" should be used to turn IPv4 TCP/UDP checksum
    109 * offload off or on. If it is missing then the feature is assumed to be on.
    110 * "feature-ipv6-csum-offload" should be used to turn IPv6 TCP/UDP checksum
    111 * offload on or off. If it is missing then the feature is assumed to be off.
    112 */
    113
    114/*
    115 * "feature-gso-tcpv4" and "feature-gso-tcpv6" advertise the capability to
    116 * handle large TCP packets (in IPv4 or IPv6 form respectively). Neither
    117 * frontends nor backends are assumed to be capable unless the flags are
    118 * present.
    119 */
    120
    121/*
    122 * "feature-multicast-control" and "feature-dynamic-multicast-control"
    123 * advertise the capability to filter ethernet multicast packets in the
    124 * backend. If the frontend wishes to take advantage of this feature then
    125 * it may set "request-multicast-control". If the backend only advertises
    126 * "feature-multicast-control" then "request-multicast-control" must be set
    127 * before the frontend moves into the connected state. The backend will
    128 * sample the value on this state transition and any subsequent change in
    129 * value will have no effect. However, if the backend also advertises
    130 * "feature-dynamic-multicast-control" then "request-multicast-control"
    131 * may be set by the frontend at any time. In this case, the backend will
    132 * watch the value and re-sample on watch events.
    133 *
    134 * If the sampled value of "request-multicast-control" is set then the
    135 * backend transmit side should no longer flood multicast packets to the
    136 * frontend, it should instead drop any multicast packet that does not
    137 * match in a filter list.
    138 * The list is amended by the frontend by sending dummy transmit requests
    139 * containing XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL} extra-info fragments as
    140 * specified below.
    141 * Note that the filter list may be amended even if the sampled value of
    142 * "request-multicast-control" is not set, however the filter should only
    143 * be applied if it is set.
    144 */
    145
    146/*
    147 * "xdp-headroom" is used to request that extra space is added
    148 * for XDP processing.  The value is measured in bytes and passed by
    149 * the frontend to be consistent between both ends.
    150 * If the value is greater than zero that means that
    151 * an RX response is going to be passed to an XDP program for processing.
    152 * XEN_NETIF_MAX_XDP_HEADROOM defines the maximum headroom offset in bytes
    153 *
    154 * "feature-xdp-headroom" is set to "1" by the netback side like other features
    155 * so a guest can check if an XDP program can be processed.
    156 */
    157#define XEN_NETIF_MAX_XDP_HEADROOM 0x7FFF
    158
    159/*
    160 * Control ring
    161 * ============
    162 *
    163 * Some features, such as hashing (detailed below), require a
    164 * significant amount of out-of-band data to be passed from frontend to
    165 * backend. Use of xenstore is not suitable for large quantities of data
    166 * because of quota limitations and so a dedicated 'control ring' is used.
    167 * The ability of the backend to use a control ring is advertised by
    168 * setting:
    169 *
    170 * /local/domain/X/backend/<domid>/<vif>/feature-ctrl-ring = "1"
    171 *
    172 * The frontend provides a control ring to the backend by setting:
    173 *
    174 * /local/domain/<domid>/device/vif/<vif>/ctrl-ring-ref = <gref>
    175 * /local/domain/<domid>/device/vif/<vif>/event-channel-ctrl = <port>
    176 *
    177 * where <gref> is the grant reference of the shared page used to
    178 * implement the control ring and <port> is an event channel to be used
    179 * as a mailbox interrupt. These keys must be set before the frontend
    180 * moves into the connected state.
    181 *
    182 * The control ring uses a fixed request/response message size and is
    183 * balanced (i.e. one request to one response), so operationally it is much
    184 * the same as a transmit or receive ring.
    185 * Note that there is no requirement that responses are issued in the same
    186 * order as requests.
    187 */
    188
    189/*
    190 * Hash types
    191 * ==========
    192 *
    193 * For the purposes of the definitions below, 'Packet[]' is an array of
    194 * octets containing an IP packet without options, 'Array[X..Y]' means a
    195 * sub-array of 'Array' containing bytes X thru Y inclusive, and '+' is
    196 * used to indicate concatenation of arrays.
    197 */
    198
    199/*
    200 * A hash calculated over an IP version 4 header as follows:
    201 *
    202 * Buffer[0..8] = Packet[12..15] (source address) +
    203 *                Packet[16..19] (destination address)
    204 *
    205 * Result = Hash(Buffer, 8)
    206 */
    207#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4 0
    208#define XEN_NETIF_CTRL_HASH_TYPE_IPV4 \
    209	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4)
    210
    211/*
    212 * A hash calculated over an IP version 4 header and TCP header as
    213 * follows:
    214 *
    215 * Buffer[0..12] = Packet[12..15] (source address) +
    216 *                 Packet[16..19] (destination address) +
    217 *                 Packet[20..21] (source port) +
    218 *                 Packet[22..23] (destination port)
    219 *
    220 * Result = Hash(Buffer, 12)
    221 */
    222#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP 1
    223#define XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP \
    224	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP)
    225
    226/*
    227 * A hash calculated over an IP version 6 header as follows:
    228 *
    229 * Buffer[0..32] = Packet[8..23]  (source address ) +
    230 *                 Packet[24..39] (destination address)
    231 *
    232 * Result = Hash(Buffer, 32)
    233 */
    234#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6 2
    235#define XEN_NETIF_CTRL_HASH_TYPE_IPV6 \
    236	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6)
    237
    238/*
    239 * A hash calculated over an IP version 6 header and TCP header as
    240 * follows:
    241 *
    242 * Buffer[0..36] = Packet[8..23]  (source address) +
    243 *                 Packet[24..39] (destination address) +
    244 *                 Packet[40..41] (source port) +
    245 *                 Packet[42..43] (destination port)
    246 *
    247 * Result = Hash(Buffer, 36)
    248 */
    249#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP 3
    250#define XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP \
    251	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP)
    252
    253/*
    254 * Hash algorithms
    255 * ===============
    256 */
    257
    258#define XEN_NETIF_CTRL_HASH_ALGORITHM_NONE 0
    259
    260/*
    261 * Toeplitz hash:
    262 */
    263
    264#define XEN_NETIF_CTRL_HASH_ALGORITHM_TOEPLITZ 1
    265
    266/*
    267 * This algorithm uses a 'key' as well as the data buffer itself.
    268 * (Buffer[] and Key[] are treated as shift-registers where the MSB of
    269 * Buffer/Key[0] is considered 'left-most' and the LSB of Buffer/Key[N-1]
    270 * is the 'right-most').
    271 *
    272 * Value = 0
    273 * For number of bits in Buffer[]
    274 *    If (left-most bit of Buffer[] is 1)
    275 *        Value ^= left-most 32 bits of Key[]
    276 *    Key[] << 1
    277 *    Buffer[] << 1
    278 *
    279 * The code below is provided for convenience where an operating system
    280 * does not already provide an implementation.
    281 */
    282#ifdef XEN_NETIF_DEFINE_TOEPLITZ
    283static uint32_t xen_netif_toeplitz_hash(const uint8_t *key,
    284					unsigned int keylen,
    285					const uint8_t *buf, unsigned int buflen)
    286{
    287	unsigned int keyi, bufi;
    288	uint64_t prefix = 0;
    289	uint64_t hash = 0;
    290
    291	/* Pre-load prefix with the first 8 bytes of the key */
    292	for (keyi = 0; keyi < 8; keyi++) {
    293		prefix <<= 8;
    294		prefix |= (keyi < keylen) ? key[keyi] : 0;
    295	}
    296
    297	for (bufi = 0; bufi < buflen; bufi++) {
    298		uint8_t byte = buf[bufi];
    299		unsigned int bit;
    300
    301		for (bit = 0; bit < 8; bit++) {
    302			if (byte & 0x80)
    303				hash ^= prefix;
    304			prefix <<= 1;
    305			byte <<= 1;
    306		}
    307
    308		/*
    309		 * 'prefix' has now been left-shifted by 8, so
    310		 * OR in the next byte.
    311		 */
    312		prefix |= (keyi < keylen) ? key[keyi] : 0;
    313		keyi++;
    314	}
    315
    316	/* The valid part of the hash is in the upper 32 bits. */
    317	return hash >> 32;
    318}
    319#endif				/* XEN_NETIF_DEFINE_TOEPLITZ */
    320
    321/*
    322 * Control requests (struct xen_netif_ctrl_request)
    323 * ================================================
    324 *
    325 * All requests have the following format:
    326 *
    327 *    0     1     2     3     4     5     6     7  octet
    328 * +-----+-----+-----+-----+-----+-----+-----+-----+
    329 * |    id     |   type    |         data[0]       |
    330 * +-----+-----+-----+-----+-----+-----+-----+-----+
    331 * |         data[1]       |         data[2]       |
    332 * +-----+-----+-----+-----+-----------------------+
    333 *
    334 * id: the request identifier, echoed in response.
    335 * type: the type of request (see below)
    336 * data[]: any data associated with the request (determined by type)
    337 */
    338
    339struct xen_netif_ctrl_request {
    340	uint16_t id;
    341	uint16_t type;
    342
    343#define XEN_NETIF_CTRL_TYPE_INVALID               0
    344#define XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS        1
    345#define XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS        2
    346#define XEN_NETIF_CTRL_TYPE_SET_HASH_KEY          3
    347#define XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE 4
    348#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE 5
    349#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING      6
    350#define XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM    7
    351
    352	uint32_t data[3];
    353};
    354
    355/*
    356 * Control responses (struct xen_netif_ctrl_response)
    357 * ==================================================
    358 *
    359 * All responses have the following format:
    360 *
    361 *    0     1     2     3     4     5     6     7  octet
    362 * +-----+-----+-----+-----+-----+-----+-----+-----+
    363 * |    id     |   type    |         status        |
    364 * +-----+-----+-----+-----+-----+-----+-----+-----+
    365 * |         data          |
    366 * +-----+-----+-----+-----+
    367 *
    368 * id: the corresponding request identifier
    369 * type: the type of the corresponding request
    370 * status: the status of request processing
    371 * data: any data associated with the response (determined by type and
    372 *       status)
    373 */
    374
    375struct xen_netif_ctrl_response {
    376	uint16_t id;
    377	uint16_t type;
    378	uint32_t status;
    379
    380#define XEN_NETIF_CTRL_STATUS_SUCCESS           0
    381#define XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     1
    382#define XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER 2
    383#define XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   3
    384
    385	uint32_t data;
    386};
    387
    388/*
    389 * Control messages
    390 * ================
    391 *
    392 * XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
    393 * --------------------------------------
    394 *
    395 * This is sent by the frontend to set the desired hash algorithm.
    396 *
    397 * Request:
    398 *
    399 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
    400 *  data[0] = a XEN_NETIF_CTRL_HASH_ALGORITHM_* value
    401 *  data[1] = 0
    402 *  data[2] = 0
    403 *
    404 * Response:
    405 *
    406 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
    407 *                                                     supported
    408 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - The algorithm is not
    409 *                                                     supported
    410 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
    411 *
    412 * NOTE: Setting data[0] to XEN_NETIF_CTRL_HASH_ALGORITHM_NONE disables
    413 *       hashing and the backend is free to choose how it steers packets
    414 *       to queues (which is the default behaviour).
    415 *
    416 * XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
    417 * ----------------------------------
    418 *
    419 * This is sent by the frontend to query the types of hash supported by
    420 * the backend.
    421 *
    422 * Request:
    423 *
    424 *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
    425 *  data[0] = 0
    426 *  data[1] = 0
    427 *  data[2] = 0
    428 *
    429 * Response:
    430 *
    431 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
    432 *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
    433 *  data   = supported hash types (if operation was successful)
    434 *
    435 * NOTE: A valid hash algorithm must be selected before this operation can
    436 *       succeed.
    437 *
    438 * XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
    439 * ----------------------------------
    440 *
    441 * This is sent by the frontend to set the types of hash that the backend
    442 * should calculate. (See above for hash type definitions).
    443 * Note that the 'maximal' type of hash should always be chosen. For
    444 * example, if the frontend sets both IPV4 and IPV4_TCP hash types then
    445 * the latter hash type should be calculated for any TCP packet and the
    446 * former only calculated for non-TCP packets.
    447 *
    448 * Request:
    449 *
    450 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
    451 *  data[0] = bitwise OR of XEN_NETIF_CTRL_HASH_TYPE_* values
    452 *  data[1] = 0
    453 *  data[2] = 0
    454 *
    455 * Response:
    456 *
    457 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
    458 *                                                     supported
    459 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - One or more flag
    460 *                                                     value is invalid or
    461 *                                                     unsupported
    462 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
    463 *  data   = 0
    464 *
    465 * NOTE: A valid hash algorithm must be selected before this operation can
    466 *       succeed.
    467 *       Also, setting data[0] to zero disables hashing and the backend
    468 *       is free to choose how it steers packets to queues.
    469 *
    470 * XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
    471 * --------------------------------
    472 *
    473 * This is sent by the frontend to set the key of the hash if the algorithm
    474 * requires it. (See hash algorithms above).
    475 *
    476 * Request:
    477 *
    478 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
    479 *  data[0] = grant reference of page containing the key (assumed to
    480 *            start at beginning of grant)
    481 *  data[1] = size of key in octets
    482 *  data[2] = 0
    483 *
    484 * Response:
    485 *
    486 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
    487 *                                                     supported
    488 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Key size is invalid
    489 *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Key size is larger
    490 *                                                     than the backend
    491 *                                                     supports
    492 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
    493 *  data   = 0
    494 *
    495 * NOTE: Any key octets not specified are assumed to be zero (the key
    496 *       is assumed to be empty by default) and specifying a new key
    497 *       invalidates any previous key, hence specifying a key size of
    498 *       zero will clear the key (which ensures that the calculated hash
    499 *       will always be zero).
    500 *       The maximum size of key is algorithm and backend specific, but
    501 *       is also limited by the single grant reference.
    502 *       The grant reference may be read-only and must remain valid until
    503 *       the response has been processed.
    504 *
    505 * XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
    506 * -----------------------------------------
    507 *
    508 * This is sent by the frontend to query the maximum size of mapping
    509 * table supported by the backend. The size is specified in terms of
    510 * table entries.
    511 *
    512 * Request:
    513 *
    514 *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
    515 *  data[0] = 0
    516 *  data[1] = 0
    517 *  data[2] = 0
    518 *
    519 * Response:
    520 *
    521 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
    522 *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
    523 *  data   = maximum number of entries allowed in the mapping table
    524 *           (if operation was successful) or zero if a mapping table is
    525 *           not supported (i.e. hash mapping is done only by modular
    526 *           arithmetic).
    527 *
    528 * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
    529 * -------------------------------------
    530 *
    531 * This is sent by the frontend to set the actual size of the mapping
    532 * table to be used by the backend. The size is specified in terms of
    533 * table entries.
    534 * Any previous table is invalidated by this message and any new table
    535 * is assumed to be zero filled.
    536 *
    537 * Request:
    538 *
    539 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
    540 *  data[0] = number of entries in mapping table
    541 *  data[1] = 0
    542 *  data[2] = 0
    543 *
    544 * Response:
    545 *
    546 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
    547 *                                                     supported
    548 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size is invalid
    549 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
    550 *  data   = 0
    551 *
    552 * NOTE: Setting data[0] to 0 means that hash mapping should be done
    553 *       using modular arithmetic.
    554 *
    555 * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
    556 * ------------------------------------
    557 *
    558 * This is sent by the frontend to set the content of the table mapping
    559 * hash value to queue number. The backend should calculate the hash from
    560 * the packet header, use it as an index into the table (modulo the size
    561 * of the table) and then steer the packet to the queue number found at
    562 * that index.
    563 *
    564 * Request:
    565 *
    566 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
    567 *  data[0] = grant reference of page containing the mapping (sub-)table
    568 *            (assumed to start at beginning of grant)
    569 *  data[1] = size of (sub-)table in entries
    570 *  data[2] = offset, in entries, of sub-table within overall table
    571 *
    572 * Response:
    573 *
    574 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
    575 *                                                     supported
    576 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size or content
    577 *                                                     is invalid
    578 *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Table size is larger
    579 *                                                     than the backend
    580 *                                                     supports
    581 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
    582 *  data   = 0
    583 *
    584 * NOTE: The overall table has the following format:
    585 *
    586 *          0     1     2     3     4     5     6     7  octet
    587 *       +-----+-----+-----+-----+-----+-----+-----+-----+
    588 *       |       mapping[0]      |       mapping[1]      |
    589 *       +-----+-----+-----+-----+-----+-----+-----+-----+
    590 *       |                       .                       |
    591 *       |                       .                       |
    592 *       |                       .                       |
    593 *       +-----+-----+-----+-----+-----+-----+-----+-----+
    594 *       |      mapping[N-2]     |      mapping[N-1]     |
    595 *       +-----+-----+-----+-----+-----+-----+-----+-----+
    596 *
    597 *       where N is specified by a XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
    598 *       message and each  mapping must specifies a queue between 0 and
    599 *       "multi-queue-num-queues" (see above).
    600 *       The backend may support a mapping table larger than can be
    601 *       mapped by a single grant reference. Thus sub-tables within a
    602 *       larger table can be individually set by sending multiple messages
    603 *       with differing offset values. Specifying a new sub-table does not
    604 *       invalidate any table data outside that range.
    605 *       The grant reference may be read-only and must remain valid until
    606 *       the response has been processed.
    607 */
    608
    609DEFINE_RING_TYPES(xen_netif_ctrl,
    610		  struct xen_netif_ctrl_request,
    611		  struct xen_netif_ctrl_response);
    612
    613/*
    614 * Guest transmit
    615 * ==============
    616 *
    617 * This is the 'wire' format for transmit (frontend -> backend) packets:
    618 *
    619 *  Fragment 1: xen_netif_tx_request_t  - flags = XEN_NETTXF_*
    620 *                                    size = total packet size
    621 * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
    622 *                                     XEN_NETTXF_extra_info)
    623 *  ...
    624 * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
    625 *                                     XEN_NETIF_EXTRA_MORE)
    626 *  ...
    627 *  Fragment N: xen_netif_tx_request_t  - (only if fragment N-1 flags include
    628 *                                     XEN_NETTXF_more_data - flags on preceding
    629 *                                     extras are not relevant here)
    630 *                                    flags = 0
    631 *                                    size = fragment size
    632 *
    633 * NOTE:
    634 *
    635 * This format slightly is different from that used for receive
    636 * (backend -> frontend) packets. Specifically, in a multi-fragment
    637 * packet the actual size of fragment 1 can only be determined by
    638 * subtracting the sizes of fragments 2..N from the total packet size.
    639 *
    640 * Ring slot size is 12 octets, however not all request/response
    641 * structs use the full size.
    642 *
    643 * tx request data (xen_netif_tx_request_t)
    644 * ------------------------------------
    645 *
    646 *    0     1     2     3     4     5     6     7  octet
    647 * +-----+-----+-----+-----+-----+-----+-----+-----+
    648 * | grant ref             | offset    | flags     |
    649 * +-----+-----+-----+-----+-----+-----+-----+-----+
    650 * | id        | size      |
    651 * +-----+-----+-----+-----+
    652 *
    653 * grant ref: Reference to buffer page.
    654 * offset: Offset within buffer page.
    655 * flags: XEN_NETTXF_*.
    656 * id: request identifier, echoed in response.
    657 * size: packet size in bytes.
    658 *
    659 * tx response (xen_netif_tx_response_t)
    660 * ---------------------------------
    661 *
    662 *    0     1     2     3     4     5     6     7  octet
    663 * +-----+-----+-----+-----+-----+-----+-----+-----+
    664 * | id        | status    | unused                |
    665 * +-----+-----+-----+-----+-----+-----+-----+-----+
    666 * | unused                |
    667 * +-----+-----+-----+-----+
    668 *
    669 * id: reflects id in transmit request
    670 * status: XEN_NETIF_RSP_*
    671 *
    672 * Guest receive
    673 * =============
    674 *
    675 * This is the 'wire' format for receive (backend -> frontend) packets:
    676 *
    677 *  Fragment 1: xen_netif_rx_request_t  - flags = XEN_NETRXF_*
    678 *                                    size = fragment size
    679 * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
    680 *                                     XEN_NETRXF_extra_info)
    681 *  ...
    682 * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
    683 *                                     XEN_NETIF_EXTRA_MORE)
    684 *  ...
    685 *  Fragment N: xen_netif_rx_request_t  - (only if fragment N-1 flags include
    686 *                                     XEN_NETRXF_more_data - flags on preceding
    687 *                                     extras are not relevant here)
    688 *                                    flags = 0
    689 *                                    size = fragment size
    690 *
    691 * NOTE:
    692 *
    693 * This format slightly is different from that used for transmit
    694 * (frontend -> backend) packets. Specifically, in a multi-fragment
    695 * packet the size of the packet can only be determined by summing the
    696 * sizes of fragments 1..N.
    697 *
    698 * Ring slot size is 8 octets.
    699 *
    700 * rx request (xen_netif_rx_request_t)
    701 * -------------------------------
    702 *
    703 *    0     1     2     3     4     5     6     7  octet
    704 * +-----+-----+-----+-----+-----+-----+-----+-----+
    705 * | id        | pad       | gref                  |
    706 * +-----+-----+-----+-----+-----+-----+-----+-----+
    707 *
    708 * id: request identifier, echoed in response.
    709 * gref: reference to incoming granted frame.
    710 *
    711 * rx response (xen_netif_rx_response_t)
    712 * ---------------------------------
    713 *
    714 *    0     1     2     3     4     5     6     7  octet
    715 * +-----+-----+-----+-----+-----+-----+-----+-----+
    716 * | id        | offset    | flags     | status    |
    717 * +-----+-----+-----+-----+-----+-----+-----+-----+
    718 *
    719 * id: reflects id in receive request
    720 * offset: offset in page of start of received packet
    721 * flags: XEN_NETRXF_*
    722 * status: -ve: XEN_NETIF_RSP_*; +ve: Rx'ed pkt size.
    723 *
    724 * NOTE: Historically, to support GSO on the frontend receive side, Linux
    725 *       netfront does not make use of the rx response id (because, as
    726 *       described below, extra info structures overlay the id field).
    727 *       Instead it assumes that responses always appear in the same ring
    728 *       slot as their corresponding request. Thus, to maintain
    729 *       compatibility, backends must make sure this is the case.
    730 *
    731 * Extra Info
    732 * ==========
    733 *
    734 * Can be present if initial request or response has NET{T,R}XF_extra_info,
    735 * or previous extra request has XEN_NETIF_EXTRA_MORE.
    736 *
    737 * The struct therefore needs to fit into either a tx or rx slot and
    738 * is therefore limited to 8 octets.
    739 *
    740 * NOTE: Because extra info data overlays the usual request/response
    741 *       structures, there is no id information in the opposite direction.
    742 *       So, if an extra info overlays an rx response the frontend can
    743 *       assume that it is in the same ring slot as the request that was
    744 *       consumed to make the slot available, and the backend must ensure
    745 *       this assumption is true.
    746 *
    747 * extra info (xen_netif_extra_info_t)
    748 * -------------------------------
    749 *
    750 * General format:
    751 *
    752 *    0     1     2     3     4     5     6     7  octet
    753 * +-----+-----+-----+-----+-----+-----+-----+-----+
    754 * |type |flags| type specific data                |
    755 * +-----+-----+-----+-----+-----+-----+-----+-----+
    756 * | padding for tx        |
    757 * +-----+-----+-----+-----+
    758 *
    759 * type: XEN_NETIF_EXTRA_TYPE_*
    760 * flags: XEN_NETIF_EXTRA_FLAG_*
    761 * padding for tx: present only in the tx case due to 8 octet limit
    762 *                 from rx case. Not shown in type specific entries
    763 *                 below.
    764 *
    765 * XEN_NETIF_EXTRA_TYPE_GSO:
    766 *
    767 *    0     1     2     3     4     5     6     7  octet
    768 * +-----+-----+-----+-----+-----+-----+-----+-----+
    769 * |type |flags| size      |type | pad | features  |
    770 * +-----+-----+-----+-----+-----+-----+-----+-----+
    771 *
    772 * type: Must be XEN_NETIF_EXTRA_TYPE_GSO
    773 * flags: XEN_NETIF_EXTRA_FLAG_*
    774 * size: Maximum payload size of each segment. For example,
    775 *       for TCP this is just the path MSS.
    776 * type: XEN_NETIF_GSO_TYPE_*: This determines the protocol of
    777 *       the packet and any extra features required to segment the
    778 *       packet properly.
    779 * features: EN_XEN_NETIF_GSO_FEAT_*: This specifies any extra GSO
    780 *           features required to process this packet, such as ECN
    781 *           support for TCPv4.
    782 *
    783 * XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}:
    784 *
    785 *    0     1     2     3     4     5     6     7  octet
    786 * +-----+-----+-----+-----+-----+-----+-----+-----+
    787 * |type |flags| addr                              |
    788 * +-----+-----+-----+-----+-----+-----+-----+-----+
    789 *
    790 * type: Must be XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}
    791 * flags: XEN_NETIF_EXTRA_FLAG_*
    792 * addr: address to add/remove
    793 *
    794 * XEN_NETIF_EXTRA_TYPE_HASH:
    795 *
    796 * A backend that supports teoplitz hashing is assumed to accept
    797 * this type of extra info in transmit packets.
    798 * A frontend that enables hashing is assumed to accept
    799 * this type of extra info in receive packets.
    800 *
    801 *    0     1     2     3     4     5     6     7  octet
    802 * +-----+-----+-----+-----+-----+-----+-----+-----+
    803 * |type |flags|htype| alg |LSB ---- value ---- MSB|
    804 * +-----+-----+-----+-----+-----+-----+-----+-----+
    805 *
    806 * type: Must be XEN_NETIF_EXTRA_TYPE_HASH
    807 * flags: XEN_NETIF_EXTRA_FLAG_*
    808 * htype: Hash type (one of _XEN_NETIF_CTRL_HASH_TYPE_* - see above)
    809 * alg: The algorithm used to calculate the hash (one of
    810 *      XEN_NETIF_CTRL_HASH_TYPE_ALGORITHM_* - see above)
    811 * value: Hash value
    812 */
    813
    814/* Protocol checksum field is blank in the packet (hardware offload)? */
    815#define _XEN_NETTXF_csum_blank     (0)
    816#define  XEN_NETTXF_csum_blank     (1U<<_XEN_NETTXF_csum_blank)
    817
    818/* Packet data has been validated against protocol checksum. */
    819#define _XEN_NETTXF_data_validated (1)
    820#define  XEN_NETTXF_data_validated (1U<<_XEN_NETTXF_data_validated)
    821
    822/* Packet continues in the next request descriptor. */
    823#define _XEN_NETTXF_more_data      (2)
    824#define  XEN_NETTXF_more_data      (1U<<_XEN_NETTXF_more_data)
    825
    826/* Packet to be followed by extra descriptor(s). */
    827#define _XEN_NETTXF_extra_info     (3)
    828#define  XEN_NETTXF_extra_info     (1U<<_XEN_NETTXF_extra_info)
    829
    830#define XEN_NETIF_MAX_TX_SIZE 0xFFFF
    831struct xen_netif_tx_request {
    832	grant_ref_t gref;
    833	uint16_t offset;
    834	uint16_t flags;
    835	uint16_t id;
    836	uint16_t size;
    837};
    838
    839/* Types of xen_netif_extra_info descriptors. */
    840#define XEN_NETIF_EXTRA_TYPE_NONE      (0)	/* Never used - invalid */
    841#define XEN_NETIF_EXTRA_TYPE_GSO       (1)	/* u.gso */
    842#define XEN_NETIF_EXTRA_TYPE_MCAST_ADD (2)	/* u.mcast */
    843#define XEN_NETIF_EXTRA_TYPE_MCAST_DEL (3)	/* u.mcast */
    844#define XEN_NETIF_EXTRA_TYPE_HASH      (4)	/* u.hash */
    845#define XEN_NETIF_EXTRA_TYPE_XDP       (5)	/* u.xdp */
    846#define XEN_NETIF_EXTRA_TYPE_MAX       (6)
    847
    848/* xen_netif_extra_info_t flags. */
    849#define _XEN_NETIF_EXTRA_FLAG_MORE (0)
    850#define XEN_NETIF_EXTRA_FLAG_MORE  (1U<<_XEN_NETIF_EXTRA_FLAG_MORE)
    851
    852/* GSO types */
    853#define XEN_NETIF_GSO_TYPE_NONE         (0)
    854#define XEN_NETIF_GSO_TYPE_TCPV4        (1)
    855#define XEN_NETIF_GSO_TYPE_TCPV6        (2)
    856
    857/*
    858 * This structure needs to fit within both xen_netif_tx_request_t and
    859 * xen_netif_rx_response_t for compatibility.
    860 */
    861struct xen_netif_extra_info {
    862	uint8_t type;
    863	uint8_t flags;
    864	union {
    865		struct {
    866			uint16_t size;
    867			uint8_t type;
    868			uint8_t pad;
    869			uint16_t features;
    870		} gso;
    871		struct {
    872			uint8_t addr[6];
    873		} mcast;
    874		struct {
    875			uint8_t type;
    876			uint8_t algorithm;
    877			uint8_t value[4];
    878		} hash;
    879		struct {
    880			uint16_t headroom;
    881			uint16_t pad[2];
    882		} xdp;
    883		uint16_t pad[3];
    884	} u;
    885};
    886
    887struct xen_netif_tx_response {
    888	uint16_t id;
    889	int16_t status;
    890};
    891
    892struct xen_netif_rx_request {
    893	uint16_t id;		/* Echoed in response message.        */
    894	uint16_t pad;
    895	grant_ref_t gref;
    896};
    897
    898/* Packet data has been validated against protocol checksum. */
    899#define _XEN_NETRXF_data_validated (0)
    900#define  XEN_NETRXF_data_validated (1U<<_XEN_NETRXF_data_validated)
    901
    902/* Protocol checksum field is blank in the packet (hardware offload)? */
    903#define _XEN_NETRXF_csum_blank     (1)
    904#define  XEN_NETRXF_csum_blank     (1U<<_XEN_NETRXF_csum_blank)
    905
    906/* Packet continues in the next request descriptor. */
    907#define _XEN_NETRXF_more_data      (2)
    908#define  XEN_NETRXF_more_data      (1U<<_XEN_NETRXF_more_data)
    909
    910/* Packet to be followed by extra descriptor(s). */
    911#define _XEN_NETRXF_extra_info     (3)
    912#define  XEN_NETRXF_extra_info     (1U<<_XEN_NETRXF_extra_info)
    913
    914/* Packet has GSO prefix. Deprecated but included for compatibility */
    915#define _XEN_NETRXF_gso_prefix     (4)
    916#define  XEN_NETRXF_gso_prefix     (1U<<_XEN_NETRXF_gso_prefix)
    917
    918struct xen_netif_rx_response {
    919	uint16_t id;
    920	uint16_t offset;
    921	uint16_t flags;
    922	int16_t status;
    923};
    924
    925/*
    926 * Generate xen_netif ring structures and types.
    927 */
    928
    929DEFINE_RING_TYPES(xen_netif_tx, struct xen_netif_tx_request,
    930		  struct xen_netif_tx_response);
    931DEFINE_RING_TYPES(xen_netif_rx, struct xen_netif_rx_request,
    932		  struct xen_netif_rx_response);
    933
    934#define XEN_NETIF_RSP_DROPPED         -2
    935#define XEN_NETIF_RSP_ERROR           -1
    936#define XEN_NETIF_RSP_OKAY             0
    937/* No response: used for auxiliary requests (e.g., xen_netif_extra_info_t). */
    938#define XEN_NETIF_RSP_NULL             1
    939
    940#endif