cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

xen.h (30729B)


      1/* SPDX-License-Identifier: MIT */
      2/******************************************************************************
      3 * xen.h
      4 *
      5 * Guest OS interface to Xen.
      6 *
      7 * Copyright (c) 2004, K A Fraser
      8 */
      9
     10#ifndef __XEN_PUBLIC_XEN_H__
     11#define __XEN_PUBLIC_XEN_H__
     12
     13#include <asm/xen/interface.h>
     14
     15/*
     16 * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
     17 */
     18
     19/*
     20 * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
     21 *         EAX = return value
     22 *         (argument registers may be clobbered on return)
     23 * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
     24 *         RAX = return value
     25 *         (argument registers not clobbered on return; RCX, R11 are)
     26 */
     27#define __HYPERVISOR_set_trap_table        0
     28#define __HYPERVISOR_mmu_update            1
     29#define __HYPERVISOR_set_gdt               2
     30#define __HYPERVISOR_stack_switch          3
     31#define __HYPERVISOR_set_callbacks         4
     32#define __HYPERVISOR_fpu_taskswitch        5
     33#define __HYPERVISOR_sched_op_compat       6
     34#define __HYPERVISOR_platform_op           7
     35#define __HYPERVISOR_set_debugreg          8
     36#define __HYPERVISOR_get_debugreg          9
     37#define __HYPERVISOR_update_descriptor    10
     38#define __HYPERVISOR_memory_op            12
     39#define __HYPERVISOR_multicall            13
     40#define __HYPERVISOR_update_va_mapping    14
     41#define __HYPERVISOR_set_timer_op         15
     42#define __HYPERVISOR_event_channel_op_compat 16
     43#define __HYPERVISOR_xen_version          17
     44#define __HYPERVISOR_console_io           18
     45#define __HYPERVISOR_physdev_op_compat    19
     46#define __HYPERVISOR_grant_table_op       20
     47#define __HYPERVISOR_vm_assist            21
     48#define __HYPERVISOR_update_va_mapping_otherdomain 22
     49#define __HYPERVISOR_iret                 23 /* x86 only */
     50#define __HYPERVISOR_vcpu_op              24
     51#define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
     52#define __HYPERVISOR_mmuext_op            26
     53#define __HYPERVISOR_xsm_op               27
     54#define __HYPERVISOR_nmi_op               28
     55#define __HYPERVISOR_sched_op             29
     56#define __HYPERVISOR_callback_op          30
     57#define __HYPERVISOR_xenoprof_op          31
     58#define __HYPERVISOR_event_channel_op     32
     59#define __HYPERVISOR_physdev_op           33
     60#define __HYPERVISOR_hvm_op               34
     61#define __HYPERVISOR_sysctl               35
     62#define __HYPERVISOR_domctl               36
     63#define __HYPERVISOR_kexec_op             37
     64#define __HYPERVISOR_tmem_op              38
     65#define __HYPERVISOR_xc_reserved_op       39 /* reserved for XenClient */
     66#define __HYPERVISOR_xenpmu_op            40
     67#define __HYPERVISOR_dm_op                41
     68
     69/* Architecture-specific hypercall definitions. */
     70#define __HYPERVISOR_arch_0               48
     71#define __HYPERVISOR_arch_1               49
     72#define __HYPERVISOR_arch_2               50
     73#define __HYPERVISOR_arch_3               51
     74#define __HYPERVISOR_arch_4               52
     75#define __HYPERVISOR_arch_5               53
     76#define __HYPERVISOR_arch_6               54
     77#define __HYPERVISOR_arch_7               55
     78
     79/*
     80 * VIRTUAL INTERRUPTS
     81 *
     82 * Virtual interrupts that a guest OS may receive from Xen.
     83 * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
     84 * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
     85 * The latter can be allocated only once per guest: they must initially be
     86 * allocated to VCPU0 but can subsequently be re-bound.
     87 */
     88#define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
     89#define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
     90#define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
     91#define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
     92#define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
     93#define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
     94#define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
     95#define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
     96#define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
     97#define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occured           */
     98#define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient                     */
     99#define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
    100#define VIRQ_XENPMU     13  /* PMC interrupt                                 */
    101
    102/* Architecture-specific VIRQ definitions. */
    103#define VIRQ_ARCH_0    16
    104#define VIRQ_ARCH_1    17
    105#define VIRQ_ARCH_2    18
    106#define VIRQ_ARCH_3    19
    107#define VIRQ_ARCH_4    20
    108#define VIRQ_ARCH_5    21
    109#define VIRQ_ARCH_6    22
    110#define VIRQ_ARCH_7    23
    111
    112#define NR_VIRQS       24
    113
    114/*
    115 * enum neg_errnoval HYPERVISOR_mmu_update(const struct mmu_update reqs[],
    116 *                                         unsigned count, unsigned *done_out,
    117 *                                         unsigned foreigndom)
    118 * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
    119 * @count is the length of the above array.
    120 * @pdone is an output parameter indicating number of completed operations
    121 * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
    122 *                    hypercall invocation. Can be DOMID_SELF.
    123 * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
    124 *                     in this hypercall invocation. The value of this field
    125 *                     (x) encodes the PFD as follows:
    126 *                     x == 0 => PFD == DOMID_SELF
    127 *                     x != 0 => PFD == x - 1
    128 *
    129 * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
    130 * -------------
    131 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
    132 * Updates an entry in a page table belonging to PFD. If updating an L1 table,
    133 * and the new table entry is valid/present, the mapped frame must belong to
    134 * FD. If attempting to map an I/O page then the caller assumes the privilege
    135 * of the FD.
    136 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
    137 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
    138 * ptr[:2]  -- Machine address of the page-table entry to modify.
    139 * val      -- Value to write.
    140 *
    141 * There also certain implicit requirements when using this hypercall. The
    142 * pages that make up a pagetable must be mapped read-only in the guest.
    143 * This prevents uncontrolled guest updates to the pagetable. Xen strictly
    144 * enforces this, and will disallow any pagetable update which will end up
    145 * mapping pagetable page RW, and will disallow using any writable page as a
    146 * pagetable. In practice it means that when constructing a page table for a
    147 * process, thread, etc, we MUST be very dilligient in following these rules:
    148 *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
    149 *      the entries.
    150 *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
    151 *      or L2).
    152 *  3). Start filling out the PTE table (L1) with the PTE entries. Once
    153 *      done, make sure to set each of those entries to RO (so writeable bit
    154 *      is unset). Once that has been completed, set the PMD (L2) for this
    155 *      PTE table as RO.
    156 *  4). When completed with all of the PMD (L2) entries, and all of them have
    157 *      been set to RO, make sure to set RO the PUD (L3). Do the same
    158 *      operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
    159 *  5). Now before you can use those pages (so setting the cr3), you MUST also
    160 *      pin them so that the hypervisor can verify the entries. This is done
    161 *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
    162 *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
    163 *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
    164 *      issued.
    165 * For 32-bit guests, the L4 is not used (as there is less pagetables), so
    166 * instead use L3.
    167 * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
    168 * hypercall. Also if so desired the OS can also try to write to the PTE
    169 * and be trapped by the hypervisor (as the PTE entry is RO).
    170 *
    171 * To deallocate the pages, the operations are the reverse of the steps
    172 * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
    173 * pagetable MUST not be in use (meaning that the cr3 is not set to it).
    174 *
    175 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
    176 * Updates an entry in the machine->pseudo-physical mapping table.
    177 * ptr[:2]  -- Machine address within the frame whose mapping to modify.
    178 *             The frame must belong to the FD, if one is specified.
    179 * val      -- Value to write into the mapping entry.
    180 *
    181 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
    182 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
    183 * with those in @val.
    184 *
    185 * @val is usually the machine frame number along with some attributes.
    186 * The attributes by default follow the architecture defined bits. Meaning that
    187 * if this is a X86_64 machine and four page table layout is used, the layout
    188 * of val is:
    189 *  - 63 if set means No execute (NX)
    190 *  - 46-13 the machine frame number
    191 *  - 12 available for guest
    192 *  - 11 available for guest
    193 *  - 10 available for guest
    194 *  - 9 available for guest
    195 *  - 8 global
    196 *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
    197 *  - 6 dirty
    198 *  - 5 accessed
    199 *  - 4 page cached disabled
    200 *  - 3 page write through
    201 *  - 2 userspace accessible
    202 *  - 1 writeable
    203 *  - 0 present
    204 *
    205 *  The one bits that does not fit with the default layout is the PAGE_PSE
    206 *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
    207 *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
    208 *  (or 2MB) instead of using the PAGE_PSE bit.
    209 *
    210 *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
    211 *  using it as the Page Attribute Table (PAT) bit - for details on it please
    212 *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
    213 *  pages instead of using MTRRs.
    214 *
    215 *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
    216 *                    PAT4                 PAT0
    217 *  +-----+-----+----+----+----+-----+----+----+
    218 *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
    219 *  +-----+-----+----+----+----+-----+----+----+
    220 *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
    221 *  +-----+-----+----+----+----+-----+----+----+
    222 *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
    223 *  +-----+-----+----+----+----+-----+----+----+
    224 *
    225 *  The lookup of this index table translates to looking up
    226 *  Bit 7, Bit 4, and Bit 3 of val entry:
    227 *
    228 *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
    229 *
    230 *  If all bits are off, then we are using PAT0. If bit 3 turned on,
    231 *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
    232 *
    233 *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
    234 *  that if a guest that follows Linux's PAT setup and would like to set Write
    235 *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
    236 *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
    237 *  caching as:
    238 *
    239 *   WB = none (so PAT0)
    240 *   WC = PWT (bit 3 on)
    241 *   UC = PWT | PCD (bit 3 and 4 are on).
    242 *
    243 * To make it work with Xen, it needs to translate the WC bit as so:
    244 *
    245 *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
    246 *
    247 * And to translate back it would:
    248 *
    249 * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
    250 */
    251#define MMU_NORMAL_PT_UPDATE       0 /* checked '*ptr = val'. ptr is MA.      */
    252#define MMU_MACHPHYS_UPDATE        1 /* ptr = MA of frame to modify entry for */
    253#define MMU_PT_UPDATE_PRESERVE_AD  2 /* atomically: *ptr = val | (*ptr&(A|D)) */
    254#define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA.      */
    255
    256/*
    257 * MMU EXTENDED OPERATIONS
    258 *
    259 * enum neg_errnoval HYPERVISOR_mmuext_op(mmuext_op_t uops[],
    260 *                                        unsigned int count,
    261 *                                        unsigned int *pdone,
    262 *                                        unsigned int foreigndom)
    263 */
    264/* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
    265 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
    266 * Where the FD has some effect, it is described below.
    267 *
    268 * cmd: MMUEXT_(UN)PIN_*_TABLE
    269 * mfn: Machine frame number to be (un)pinned as a p.t. page.
    270 *      The frame must belong to the FD, if one is specified.
    271 *
    272 * cmd: MMUEXT_NEW_BASEPTR
    273 * mfn: Machine frame number of new page-table base to install in MMU.
    274 *
    275 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
    276 * mfn: Machine frame number of new page-table base to install in MMU
    277 *      when in user space.
    278 *
    279 * cmd: MMUEXT_TLB_FLUSH_LOCAL
    280 * No additional arguments. Flushes local TLB.
    281 *
    282 * cmd: MMUEXT_INVLPG_LOCAL
    283 * linear_addr: Linear address to be flushed from the local TLB.
    284 *
    285 * cmd: MMUEXT_TLB_FLUSH_MULTI
    286 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
    287 *
    288 * cmd: MMUEXT_INVLPG_MULTI
    289 * linear_addr: Linear address to be flushed.
    290 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
    291 *
    292 * cmd: MMUEXT_TLB_FLUSH_ALL
    293 * No additional arguments. Flushes all VCPUs' TLBs.
    294 *
    295 * cmd: MMUEXT_INVLPG_ALL
    296 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
    297 *
    298 * cmd: MMUEXT_FLUSH_CACHE
    299 * No additional arguments. Writes back and flushes cache contents.
    300 *
    301 * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
    302 * No additional arguments. Writes back and flushes cache contents
    303 * on all CPUs in the system.
    304 *
    305 * cmd: MMUEXT_SET_LDT
    306 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
    307 * nr_ents: Number of entries in LDT.
    308 *
    309 * cmd: MMUEXT_CLEAR_PAGE
    310 * mfn: Machine frame number to be cleared.
    311 *
    312 * cmd: MMUEXT_COPY_PAGE
    313 * mfn: Machine frame number of the destination page.
    314 * src_mfn: Machine frame number of the source page.
    315 *
    316 * cmd: MMUEXT_[UN]MARK_SUPER
    317 * mfn: Machine frame number of head of superpage to be [un]marked.
    318 */
    319#define MMUEXT_PIN_L1_TABLE      0
    320#define MMUEXT_PIN_L2_TABLE      1
    321#define MMUEXT_PIN_L3_TABLE      2
    322#define MMUEXT_PIN_L4_TABLE      3
    323#define MMUEXT_UNPIN_TABLE       4
    324#define MMUEXT_NEW_BASEPTR       5
    325#define MMUEXT_TLB_FLUSH_LOCAL   6
    326#define MMUEXT_INVLPG_LOCAL      7
    327#define MMUEXT_TLB_FLUSH_MULTI   8
    328#define MMUEXT_INVLPG_MULTI      9
    329#define MMUEXT_TLB_FLUSH_ALL    10
    330#define MMUEXT_INVLPG_ALL       11
    331#define MMUEXT_FLUSH_CACHE      12
    332#define MMUEXT_SET_LDT          13
    333#define MMUEXT_NEW_USER_BASEPTR 15
    334#define MMUEXT_CLEAR_PAGE       16
    335#define MMUEXT_COPY_PAGE        17
    336#define MMUEXT_FLUSH_CACHE_GLOBAL 18
    337#define MMUEXT_MARK_SUPER       19
    338#define MMUEXT_UNMARK_SUPER     20
    339
    340#ifndef __ASSEMBLY__
    341struct mmuext_op {
    342	unsigned int cmd;
    343	union {
    344		/* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
    345		 * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
    346		xen_pfn_t mfn;
    347		/* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
    348		unsigned long linear_addr;
    349	} arg1;
    350	union {
    351		/* SET_LDT */
    352		unsigned int nr_ents;
    353		/* TLB_FLUSH_MULTI, INVLPG_MULTI */
    354		void *vcpumask;
    355		/* COPY_PAGE */
    356		xen_pfn_t src_mfn;
    357	} arg2;
    358};
    359DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
    360#endif
    361
    362/* These are passed as 'flags' to update_va_mapping. They can be ORed. */
    363/* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
    364/* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
    365#define UVMF_NONE               (0UL<<0) /* No flushing at all.   */
    366#define UVMF_TLB_FLUSH          (1UL<<0) /* Flush entire TLB(s).  */
    367#define UVMF_INVLPG             (2UL<<0) /* Flush only one entry. */
    368#define UVMF_FLUSHTYPE_MASK     (3UL<<0)
    369#define UVMF_MULTI              (0UL<<2) /* Flush subset of TLBs. */
    370#define UVMF_LOCAL              (0UL<<2) /* Flush local TLB.      */
    371#define UVMF_ALL                (1UL<<2) /* Flush all TLBs.       */
    372
    373/*
    374 * Commands to HYPERVISOR_console_io().
    375 */
    376#define CONSOLEIO_write         0
    377#define CONSOLEIO_read          1
    378
    379/*
    380 * Commands to HYPERVISOR_vm_assist().
    381 */
    382#define VMASST_CMD_enable                0
    383#define VMASST_CMD_disable               1
    384
    385/* x86/32 guests: simulate full 4GB segment limits. */
    386#define VMASST_TYPE_4gb_segments         0
    387
    388/* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
    389#define VMASST_TYPE_4gb_segments_notify  1
    390
    391/*
    392 * x86 guests: support writes to bottom-level PTEs.
    393 * NB1. Page-directory entries cannot be written.
    394 * NB2. Guest must continue to remove all writable mappings of PTEs.
    395 */
    396#define VMASST_TYPE_writable_pagetables  2
    397
    398/* x86/PAE guests: support PDPTs above 4GB. */
    399#define VMASST_TYPE_pae_extended_cr3     3
    400
    401/*
    402 * x86 guests: Sane behaviour for virtual iopl
    403 *  - virtual iopl updated from do_iret() hypercalls.
    404 *  - virtual iopl reported in bounce frames.
    405 *  - guest kernels assumed to be level 0 for the purpose of iopl checks.
    406 */
    407#define VMASST_TYPE_architectural_iopl   4
    408
    409/*
    410 * All guests: activate update indicator in vcpu_runstate_info
    411 * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
    412 * vcpu_runstate_info during updates of the runstate information.
    413 */
    414#define VMASST_TYPE_runstate_update_flag 5
    415
    416#define MAX_VMASST_TYPE 5
    417
    418#ifndef __ASSEMBLY__
    419
    420typedef uint16_t domid_t;
    421
    422/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
    423#define DOMID_FIRST_RESERVED (0x7FF0U)
    424
    425/* DOMID_SELF is used in certain contexts to refer to oneself. */
    426#define DOMID_SELF (0x7FF0U)
    427
    428/*
    429 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
    430 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
    431 * is useful to ensure that no mappings to the OS's own heap are accidentally
    432 * installed. (e.g., in Linux this could cause havoc as reference counts
    433 * aren't adjusted on the I/O-mapping code path).
    434 * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
    435 * be specified by any calling domain.
    436 */
    437#define DOMID_IO   (0x7FF1U)
    438
    439/*
    440 * DOMID_XEN is used to allow privileged domains to map restricted parts of
    441 * Xen's heap space (e.g., the machine_to_phys table).
    442 * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
    443 * the caller is privileged.
    444 */
    445#define DOMID_XEN  (0x7FF2U)
    446
    447/* DOMID_COW is used as the owner of sharable pages */
    448#define DOMID_COW  (0x7FF3U)
    449
    450/* DOMID_INVALID is used to identify pages with unknown owner. */
    451#define DOMID_INVALID (0x7FF4U)
    452
    453/* Idle domain. */
    454#define DOMID_IDLE (0x7FFFU)
    455
    456/*
    457 * Send an array of these to HYPERVISOR_mmu_update().
    458 * NB. The fields are natural pointer/address size for this architecture.
    459 */
    460struct mmu_update {
    461    uint64_t ptr;       /* Machine address of PTE. */
    462    uint64_t val;       /* New contents of PTE.    */
    463};
    464DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
    465
    466/*
    467 * Send an array of these to HYPERVISOR_multicall().
    468 * NB. The fields are logically the natural register size for this
    469 * architecture. In cases where xen_ulong_t is larger than this then
    470 * any unused bits in the upper portion must be zero.
    471 */
    472struct multicall_entry {
    473    xen_ulong_t op;
    474    xen_long_t result;
    475    xen_ulong_t args[6];
    476};
    477DEFINE_GUEST_HANDLE_STRUCT(multicall_entry);
    478
    479struct vcpu_time_info {
    480	/*
    481	 * Updates to the following values are preceded and followed
    482	 * by an increment of 'version'. The guest can therefore
    483	 * detect updates by looking for changes to 'version'. If the
    484	 * least-significant bit of the version number is set then an
    485	 * update is in progress and the guest must wait to read a
    486	 * consistent set of values.  The correct way to interact with
    487	 * the version number is similar to Linux's seqlock: see the
    488	 * implementations of read_seqbegin/read_seqretry.
    489	 */
    490	uint32_t version;
    491	uint32_t pad0;
    492	uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
    493	uint64_t system_time;     /* Time, in nanosecs, since boot.    */
    494	/*
    495	 * Current system time:
    496	 *   system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
    497	 * CPU frequency (Hz):
    498	 *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
    499	 */
    500	uint32_t tsc_to_system_mul;
    501	int8_t   tsc_shift;
    502	int8_t   pad1[3];
    503}; /* 32 bytes */
    504
    505struct vcpu_info {
    506	/*
    507	 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
    508	 * a pending notification for a particular VCPU. It is then cleared
    509	 * by the guest OS /before/ checking for pending work, thus avoiding
    510	 * a set-and-check race. Note that the mask is only accessed by Xen
    511	 * on the CPU that is currently hosting the VCPU. This means that the
    512	 * pending and mask flags can be updated by the guest without special
    513	 * synchronisation (i.e., no need for the x86 LOCK prefix).
    514	 * This may seem suboptimal because if the pending flag is set by
    515	 * a different CPU then an IPI may be scheduled even when the mask
    516	 * is set. However, note:
    517	 *  1. The task of 'interrupt holdoff' is covered by the per-event-
    518	 *     channel mask bits. A 'noisy' event that is continually being
    519	 *     triggered can be masked at source at this very precise
    520	 *     granularity.
    521	 *  2. The main purpose of the per-VCPU mask is therefore to restrict
    522	 *     reentrant execution: whether for concurrency control, or to
    523	 *     prevent unbounded stack usage. Whatever the purpose, we expect
    524	 *     that the mask will be asserted only for short periods at a time,
    525	 *     and so the likelihood of a 'spurious' IPI is suitably small.
    526	 * The mask is read before making an event upcall to the guest: a
    527	 * non-zero mask therefore guarantees that the VCPU will not receive
    528	 * an upcall activation. The mask is cleared when the VCPU requests
    529	 * to block: this avoids wakeup-waiting races.
    530	 */
    531	uint8_t evtchn_upcall_pending;
    532	uint8_t evtchn_upcall_mask;
    533	xen_ulong_t evtchn_pending_sel;
    534	struct arch_vcpu_info arch;
    535	struct pvclock_vcpu_time_info time;
    536}; /* 64 bytes (x86) */
    537
    538/*
    539 * Xen/kernel shared data -- pointer provided in start_info.
    540 * NB. We expect that this struct is smaller than a page.
    541 */
    542struct shared_info {
    543	struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
    544
    545	/*
    546	 * A domain can create "event channels" on which it can send and receive
    547	 * asynchronous event notifications. There are three classes of event that
    548	 * are delivered by this mechanism:
    549	 *  1. Bi-directional inter- and intra-domain connections. Domains must
    550	 *     arrange out-of-band to set up a connection (usually by allocating
    551	 *     an unbound 'listener' port and avertising that via a storage service
    552	 *     such as xenstore).
    553	 *  2. Physical interrupts. A domain with suitable hardware-access
    554	 *     privileges can bind an event-channel port to a physical interrupt
    555	 *     source.
    556	 *  3. Virtual interrupts ('events'). A domain can bind an event-channel
    557	 *     port to a virtual interrupt source, such as the virtual-timer
    558	 *     device or the emergency console.
    559	 *
    560	 * Event channels are addressed by a "port index". Each channel is
    561	 * associated with two bits of information:
    562	 *  1. PENDING -- notifies the domain that there is a pending notification
    563	 *     to be processed. This bit is cleared by the guest.
    564	 *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
    565	 *     will cause an asynchronous upcall to be scheduled. This bit is only
    566	 *     updated by the guest. It is read-only within Xen. If a channel
    567	 *     becomes pending while the channel is masked then the 'edge' is lost
    568	 *     (i.e., when the channel is unmasked, the guest must manually handle
    569	 *     pending notifications as no upcall will be scheduled by Xen).
    570	 *
    571	 * To expedite scanning of pending notifications, any 0->1 pending
    572	 * transition on an unmasked channel causes a corresponding bit in a
    573	 * per-vcpu selector word to be set. Each bit in the selector covers a
    574	 * 'C long' in the PENDING bitfield array.
    575	 */
    576	xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
    577	xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
    578
    579	/*
    580	 * Wallclock time: updated only by control software. Guests should base
    581	 * their gettimeofday() syscall on this wallclock-base value.
    582	 */
    583	struct pvclock_wall_clock wc;
    584#ifndef CONFIG_X86_32
    585	uint32_t wc_sec_hi;
    586#endif
    587	struct arch_shared_info arch;
    588
    589};
    590
    591/*
    592 * Start-of-day memory layout
    593 *
    594 *  1. The domain is started within contiguous virtual-memory region.
    595 *  2. The contiguous region begins and ends on an aligned 4MB boundary.
    596 *  3. This the order of bootstrap elements in the initial virtual region:
    597 *      a. relocated kernel image
    598 *      b. initial ram disk              [mod_start, mod_len]
    599 *         (may be omitted)
    600 *      c. list of allocated page frames [mfn_list, nr_pages]
    601 *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
    602 *      d. start_info_t structure        [register ESI (x86)]
    603 *         in case of dom0 this page contains the console info, too
    604 *      e. unless dom0: xenstore ring page
    605 *      f. unless dom0: console ring page
    606 *      g. bootstrap page tables         [pt_base, CR3 (x86)]
    607 *      h. bootstrap stack               [register ESP (x86)]
    608 *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
    609 *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
    610 *     layout for the domain. In particular, the bootstrap virtual-memory
    611 *     region is a 1:1 mapping to the first section of the pseudo-physical map.
    612 *  6. All bootstrap elements are mapped read-writable for the guest OS. The
    613 *     only exception is the bootstrap page table, which is mapped read-only.
    614 *  7. There is guaranteed to be at least 512kB padding after the final
    615 *     bootstrap element. If necessary, the bootstrap virtual region is
    616 *     extended by an extra 4MB to ensure this.
    617 */
    618
    619#define MAX_GUEST_CMDLINE 1024
    620struct start_info {
    621	/* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
    622	char magic[32];             /* "xen-<version>-<platform>".            */
    623	unsigned long nr_pages;     /* Total pages allocated to this domain.  */
    624	unsigned long shared_info;  /* MACHINE address of shared info struct. */
    625	uint32_t flags;             /* SIF_xxx flags.                         */
    626	xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
    627	uint32_t store_evtchn;      /* Event channel for store communication. */
    628	union {
    629		struct {
    630			xen_pfn_t mfn;      /* MACHINE page number of console page.   */
    631			uint32_t  evtchn;   /* Event channel for console page.        */
    632		} domU;
    633		struct {
    634			uint32_t info_off;  /* Offset of console_info struct.         */
    635			uint32_t info_size; /* Size of console_info struct from start.*/
    636		} dom0;
    637	} console;
    638	/* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
    639	unsigned long pt_base;      /* VIRTUAL address of page directory.     */
    640	unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
    641	unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
    642	unsigned long mod_start;    /* VIRTUAL address of pre-loaded module.  */
    643	unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
    644	int8_t cmd_line[MAX_GUEST_CMDLINE];
    645	/* The pfn range here covers both page table and p->m table frames.   */
    646	unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
    647	unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
    648};
    649
    650/* These flags are passed in the 'flags' field of start_info_t. */
    651#define SIF_PRIVILEGED      (1<<0)  /* Is the domain privileged? */
    652#define SIF_INITDOMAIN      (1<<1)  /* Is this the initial control domain? */
    653#define SIF_MULTIBOOT_MOD   (1<<2)  /* Is mod_start a multiboot module? */
    654#define SIF_MOD_START_PFN   (1<<3)  /* Is mod_start a PFN? */
    655#define SIF_VIRT_P2M_4TOOLS (1<<4)  /* Do Xen tools understand a virt. mapped */
    656				    /* P->M making the 3 level tree obsolete? */
    657#define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
    658
    659/*
    660 * A multiboot module is a package containing modules very similar to a
    661 * multiboot module array. The only differences are:
    662 * - the array of module descriptors is by convention simply at the beginning
    663 *   of the multiboot module,
    664 * - addresses in the module descriptors are based on the beginning of the
    665 *   multiboot module,
    666 * - the number of modules is determined by a termination descriptor that has
    667 *   mod_start == 0.
    668 *
    669 * This permits to both build it statically and reference it in a configuration
    670 * file, and let the PV guest easily rebase the addresses to virtual addresses
    671 * and at the same time count the number of modules.
    672 */
    673struct xen_multiboot_mod_list {
    674	/* Address of first byte of the module */
    675	uint32_t mod_start;
    676	/* Address of last byte of the module (inclusive) */
    677	uint32_t mod_end;
    678	/* Address of zero-terminated command line */
    679	uint32_t cmdline;
    680	/* Unused, must be zero */
    681	uint32_t pad;
    682};
    683/*
    684 * The console structure in start_info.console.dom0
    685 *
    686 * This structure includes a variety of information required to
    687 * have a working VGA/VESA console.
    688 */
    689struct dom0_vga_console_info {
    690	uint8_t video_type;
    691#define XEN_VGATYPE_TEXT_MODE_3 0x03
    692#define XEN_VGATYPE_VESA_LFB    0x23
    693#define XEN_VGATYPE_EFI_LFB     0x70
    694
    695	union {
    696		struct {
    697			/* Font height, in pixels. */
    698			uint16_t font_height;
    699			/* Cursor location (column, row). */
    700			uint16_t cursor_x, cursor_y;
    701			/* Number of rows and columns (dimensions in characters). */
    702			uint16_t rows, columns;
    703		} text_mode_3;
    704
    705		struct {
    706			/* Width and height, in pixels. */
    707			uint16_t width, height;
    708			/* Bytes per scan line. */
    709			uint16_t bytes_per_line;
    710			/* Bits per pixel. */
    711			uint16_t bits_per_pixel;
    712			/* LFB physical address, and size (in units of 64kB). */
    713			uint32_t lfb_base;
    714			uint32_t lfb_size;
    715			/* RGB mask offsets and sizes, as defined by VBE 1.2+ */
    716			uint8_t  red_pos, red_size;
    717			uint8_t  green_pos, green_size;
    718			uint8_t  blue_pos, blue_size;
    719			uint8_t  rsvd_pos, rsvd_size;
    720
    721			/* VESA capabilities (offset 0xa, VESA command 0x4f00). */
    722			uint32_t gbl_caps;
    723			/* Mode attributes (offset 0x0, VESA command 0x4f01). */
    724			uint16_t mode_attrs;
    725			uint16_t pad;
    726			/* high 32 bits of lfb_base */
    727			uint32_t ext_lfb_base;
    728		} vesa_lfb;
    729	} u;
    730};
    731
    732typedef uint64_t cpumap_t;
    733
    734typedef uint8_t xen_domain_handle_t[16];
    735
    736/* Turn a plain number into a C unsigned long constant. */
    737#define __mk_unsigned_long(x) x ## UL
    738#define mk_unsigned_long(x) __mk_unsigned_long(x)
    739
    740#define TMEM_SPEC_VERSION 1
    741
    742struct tmem_op {
    743	uint32_t cmd;
    744	int32_t pool_id;
    745	union {
    746		struct {  /* for cmd == TMEM_NEW_POOL */
    747			uint64_t uuid[2];
    748			uint32_t flags;
    749		} new;
    750		struct {
    751			uint64_t oid[3];
    752			uint32_t index;
    753			uint32_t tmem_offset;
    754			uint32_t pfn_offset;
    755			uint32_t len;
    756			GUEST_HANDLE(void) gmfn; /* guest machine page frame */
    757		} gen;
    758	} u;
    759};
    760
    761DEFINE_GUEST_HANDLE(u64);
    762
    763#else /* __ASSEMBLY__ */
    764
    765/* In assembly code we cannot use C numeric constant suffixes. */
    766#define mk_unsigned_long(x) x
    767
    768#endif /* !__ASSEMBLY__ */
    769
    770#endif /* __XEN_PUBLIC_XEN_H__ */