cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mqueue.c (44808B)


      1/*
      2 * POSIX message queues filesystem for Linux.
      3 *
      4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
      5 *                          Michal Wronski          (michal.wronski@gmail.com)
      6 *
      7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
      8 * Lockless receive & send, fd based notify:
      9 *			    Manfred Spraul	    (manfred@colorfullife.com)
     10 *
     11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
     12 *
     13 * This file is released under the GPL.
     14 */
     15
     16#include <linux/capability.h>
     17#include <linux/init.h>
     18#include <linux/pagemap.h>
     19#include <linux/file.h>
     20#include <linux/mount.h>
     21#include <linux/fs_context.h>
     22#include <linux/namei.h>
     23#include <linux/sysctl.h>
     24#include <linux/poll.h>
     25#include <linux/mqueue.h>
     26#include <linux/msg.h>
     27#include <linux/skbuff.h>
     28#include <linux/vmalloc.h>
     29#include <linux/netlink.h>
     30#include <linux/syscalls.h>
     31#include <linux/audit.h>
     32#include <linux/signal.h>
     33#include <linux/mutex.h>
     34#include <linux/nsproxy.h>
     35#include <linux/pid.h>
     36#include <linux/ipc_namespace.h>
     37#include <linux/user_namespace.h>
     38#include <linux/slab.h>
     39#include <linux/sched/wake_q.h>
     40#include <linux/sched/signal.h>
     41#include <linux/sched/user.h>
     42
     43#include <net/sock.h>
     44#include "util.h"
     45
     46struct mqueue_fs_context {
     47	struct ipc_namespace	*ipc_ns;
     48	bool			 newns;	/* Set if newly created ipc namespace */
     49};
     50
     51#define MQUEUE_MAGIC	0x19800202
     52#define DIRENT_SIZE	20
     53#define FILENT_SIZE	80
     54
     55#define SEND		0
     56#define RECV		1
     57
     58#define STATE_NONE	0
     59#define STATE_READY	1
     60
     61struct posix_msg_tree_node {
     62	struct rb_node		rb_node;
     63	struct list_head	msg_list;
     64	int			priority;
     65};
     66
     67/*
     68 * Locking:
     69 *
     70 * Accesses to a message queue are synchronized by acquiring info->lock.
     71 *
     72 * There are two notable exceptions:
     73 * - The actual wakeup of a sleeping task is performed using the wake_q
     74 *   framework. info->lock is already released when wake_up_q is called.
     75 * - The exit codepaths after sleeping check ext_wait_queue->state without
     76 *   any locks. If it is STATE_READY, then the syscall is completed without
     77 *   acquiring info->lock.
     78 *
     79 * MQ_BARRIER:
     80 * To achieve proper release/acquire memory barrier pairing, the state is set to
     81 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
     82 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
     83 *
     84 * This prevents the following races:
     85 *
     86 * 1) With the simple wake_q_add(), the task could be gone already before
     87 *    the increase of the reference happens
     88 * Thread A
     89 *				Thread B
     90 * WRITE_ONCE(wait.state, STATE_NONE);
     91 * schedule_hrtimeout()
     92 *				wake_q_add(A)
     93 *				if (cmpxchg()) // success
     94 *				   ->state = STATE_READY (reordered)
     95 * <timeout returns>
     96 * if (wait.state == STATE_READY) return;
     97 * sysret to user space
     98 * sys_exit()
     99 *				get_task_struct() // UaF
    100 *
    101 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
    102 * the smp_store_release() that does ->state = STATE_READY.
    103 *
    104 * 2) Without proper _release/_acquire barriers, the woken up task
    105 *    could read stale data
    106 *
    107 * Thread A
    108 *				Thread B
    109 * do_mq_timedreceive
    110 * WRITE_ONCE(wait.state, STATE_NONE);
    111 * schedule_hrtimeout()
    112 *				state = STATE_READY;
    113 * <timeout returns>
    114 * if (wait.state == STATE_READY) return;
    115 * msg_ptr = wait.msg;		// Access to stale data!
    116 *				receiver->msg = message; (reordered)
    117 *
    118 * Solution: use _release and _acquire barriers.
    119 *
    120 * 3) There is intentionally no barrier when setting current->state
    121 *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
    122 *    release memory barrier, and the wakeup is triggered when holding
    123 *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
    124 *    acquire memory barrier.
    125 */
    126
    127struct ext_wait_queue {		/* queue of sleeping tasks */
    128	struct task_struct *task;
    129	struct list_head list;
    130	struct msg_msg *msg;	/* ptr of loaded message */
    131	int state;		/* one of STATE_* values */
    132};
    133
    134struct mqueue_inode_info {
    135	spinlock_t lock;
    136	struct inode vfs_inode;
    137	wait_queue_head_t wait_q;
    138
    139	struct rb_root msg_tree;
    140	struct rb_node *msg_tree_rightmost;
    141	struct posix_msg_tree_node *node_cache;
    142	struct mq_attr attr;
    143
    144	struct sigevent notify;
    145	struct pid *notify_owner;
    146	u32 notify_self_exec_id;
    147	struct user_namespace *notify_user_ns;
    148	struct ucounts *ucounts;	/* user who created, for accounting */
    149	struct sock *notify_sock;
    150	struct sk_buff *notify_cookie;
    151
    152	/* for tasks waiting for free space and messages, respectively */
    153	struct ext_wait_queue e_wait_q[2];
    154
    155	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
    156};
    157
    158static struct file_system_type mqueue_fs_type;
    159static const struct inode_operations mqueue_dir_inode_operations;
    160static const struct file_operations mqueue_file_operations;
    161static const struct super_operations mqueue_super_ops;
    162static const struct fs_context_operations mqueue_fs_context_ops;
    163static void remove_notification(struct mqueue_inode_info *info);
    164
    165static struct kmem_cache *mqueue_inode_cachep;
    166
    167static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
    168{
    169	return container_of(inode, struct mqueue_inode_info, vfs_inode);
    170}
    171
    172/*
    173 * This routine should be called with the mq_lock held.
    174 */
    175static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
    176{
    177	return get_ipc_ns(inode->i_sb->s_fs_info);
    178}
    179
    180static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
    181{
    182	struct ipc_namespace *ns;
    183
    184	spin_lock(&mq_lock);
    185	ns = __get_ns_from_inode(inode);
    186	spin_unlock(&mq_lock);
    187	return ns;
    188}
    189
    190/* Auxiliary functions to manipulate messages' list */
    191static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
    192{
    193	struct rb_node **p, *parent = NULL;
    194	struct posix_msg_tree_node *leaf;
    195	bool rightmost = true;
    196
    197	p = &info->msg_tree.rb_node;
    198	while (*p) {
    199		parent = *p;
    200		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
    201
    202		if (likely(leaf->priority == msg->m_type))
    203			goto insert_msg;
    204		else if (msg->m_type < leaf->priority) {
    205			p = &(*p)->rb_left;
    206			rightmost = false;
    207		} else
    208			p = &(*p)->rb_right;
    209	}
    210	if (info->node_cache) {
    211		leaf = info->node_cache;
    212		info->node_cache = NULL;
    213	} else {
    214		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
    215		if (!leaf)
    216			return -ENOMEM;
    217		INIT_LIST_HEAD(&leaf->msg_list);
    218	}
    219	leaf->priority = msg->m_type;
    220
    221	if (rightmost)
    222		info->msg_tree_rightmost = &leaf->rb_node;
    223
    224	rb_link_node(&leaf->rb_node, parent, p);
    225	rb_insert_color(&leaf->rb_node, &info->msg_tree);
    226insert_msg:
    227	info->attr.mq_curmsgs++;
    228	info->qsize += msg->m_ts;
    229	list_add_tail(&msg->m_list, &leaf->msg_list);
    230	return 0;
    231}
    232
    233static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
    234				  struct mqueue_inode_info *info)
    235{
    236	struct rb_node *node = &leaf->rb_node;
    237
    238	if (info->msg_tree_rightmost == node)
    239		info->msg_tree_rightmost = rb_prev(node);
    240
    241	rb_erase(node, &info->msg_tree);
    242	if (info->node_cache)
    243		kfree(leaf);
    244	else
    245		info->node_cache = leaf;
    246}
    247
    248static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
    249{
    250	struct rb_node *parent = NULL;
    251	struct posix_msg_tree_node *leaf;
    252	struct msg_msg *msg;
    253
    254try_again:
    255	/*
    256	 * During insert, low priorities go to the left and high to the
    257	 * right.  On receive, we want the highest priorities first, so
    258	 * walk all the way to the right.
    259	 */
    260	parent = info->msg_tree_rightmost;
    261	if (!parent) {
    262		if (info->attr.mq_curmsgs) {
    263			pr_warn_once("Inconsistency in POSIX message queue, "
    264				     "no tree element, but supposedly messages "
    265				     "should exist!\n");
    266			info->attr.mq_curmsgs = 0;
    267		}
    268		return NULL;
    269	}
    270	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
    271	if (unlikely(list_empty(&leaf->msg_list))) {
    272		pr_warn_once("Inconsistency in POSIX message queue, "
    273			     "empty leaf node but we haven't implemented "
    274			     "lazy leaf delete!\n");
    275		msg_tree_erase(leaf, info);
    276		goto try_again;
    277	} else {
    278		msg = list_first_entry(&leaf->msg_list,
    279				       struct msg_msg, m_list);
    280		list_del(&msg->m_list);
    281		if (list_empty(&leaf->msg_list)) {
    282			msg_tree_erase(leaf, info);
    283		}
    284	}
    285	info->attr.mq_curmsgs--;
    286	info->qsize -= msg->m_ts;
    287	return msg;
    288}
    289
    290static struct inode *mqueue_get_inode(struct super_block *sb,
    291		struct ipc_namespace *ipc_ns, umode_t mode,
    292		struct mq_attr *attr)
    293{
    294	struct inode *inode;
    295	int ret = -ENOMEM;
    296
    297	inode = new_inode(sb);
    298	if (!inode)
    299		goto err;
    300
    301	inode->i_ino = get_next_ino();
    302	inode->i_mode = mode;
    303	inode->i_uid = current_fsuid();
    304	inode->i_gid = current_fsgid();
    305	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
    306
    307	if (S_ISREG(mode)) {
    308		struct mqueue_inode_info *info;
    309		unsigned long mq_bytes, mq_treesize;
    310
    311		inode->i_fop = &mqueue_file_operations;
    312		inode->i_size = FILENT_SIZE;
    313		/* mqueue specific info */
    314		info = MQUEUE_I(inode);
    315		spin_lock_init(&info->lock);
    316		init_waitqueue_head(&info->wait_q);
    317		INIT_LIST_HEAD(&info->e_wait_q[0].list);
    318		INIT_LIST_HEAD(&info->e_wait_q[1].list);
    319		info->notify_owner = NULL;
    320		info->notify_user_ns = NULL;
    321		info->qsize = 0;
    322		info->ucounts = NULL;	/* set when all is ok */
    323		info->msg_tree = RB_ROOT;
    324		info->msg_tree_rightmost = NULL;
    325		info->node_cache = NULL;
    326		memset(&info->attr, 0, sizeof(info->attr));
    327		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
    328					   ipc_ns->mq_msg_default);
    329		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
    330					    ipc_ns->mq_msgsize_default);
    331		if (attr) {
    332			info->attr.mq_maxmsg = attr->mq_maxmsg;
    333			info->attr.mq_msgsize = attr->mq_msgsize;
    334		}
    335		/*
    336		 * We used to allocate a static array of pointers and account
    337		 * the size of that array as well as one msg_msg struct per
    338		 * possible message into the queue size. That's no longer
    339		 * accurate as the queue is now an rbtree and will grow and
    340		 * shrink depending on usage patterns.  We can, however, still
    341		 * account one msg_msg struct per message, but the nodes are
    342		 * allocated depending on priority usage, and most programs
    343		 * only use one, or a handful, of priorities.  However, since
    344		 * this is pinned memory, we need to assume worst case, so
    345		 * that means the min(mq_maxmsg, max_priorities) * struct
    346		 * posix_msg_tree_node.
    347		 */
    348
    349		ret = -EINVAL;
    350		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
    351			goto out_inode;
    352		if (capable(CAP_SYS_RESOURCE)) {
    353			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
    354			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
    355				goto out_inode;
    356		} else {
    357			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
    358					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
    359				goto out_inode;
    360		}
    361		ret = -EOVERFLOW;
    362		/* check for overflow */
    363		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
    364			goto out_inode;
    365		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
    366			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
    367			sizeof(struct posix_msg_tree_node);
    368		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
    369		if (mq_bytes + mq_treesize < mq_bytes)
    370			goto out_inode;
    371		mq_bytes += mq_treesize;
    372		info->ucounts = get_ucounts(current_ucounts());
    373		if (info->ucounts) {
    374			long msgqueue;
    375
    376			spin_lock(&mq_lock);
    377			msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
    378			if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
    379				dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
    380				spin_unlock(&mq_lock);
    381				put_ucounts(info->ucounts);
    382				info->ucounts = NULL;
    383				/* mqueue_evict_inode() releases info->messages */
    384				ret = -EMFILE;
    385				goto out_inode;
    386			}
    387			spin_unlock(&mq_lock);
    388		}
    389	} else if (S_ISDIR(mode)) {
    390		inc_nlink(inode);
    391		/* Some things misbehave if size == 0 on a directory */
    392		inode->i_size = 2 * DIRENT_SIZE;
    393		inode->i_op = &mqueue_dir_inode_operations;
    394		inode->i_fop = &simple_dir_operations;
    395	}
    396
    397	return inode;
    398out_inode:
    399	iput(inode);
    400err:
    401	return ERR_PTR(ret);
    402}
    403
    404static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
    405{
    406	struct inode *inode;
    407	struct ipc_namespace *ns = sb->s_fs_info;
    408
    409	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
    410	sb->s_blocksize = PAGE_SIZE;
    411	sb->s_blocksize_bits = PAGE_SHIFT;
    412	sb->s_magic = MQUEUE_MAGIC;
    413	sb->s_op = &mqueue_super_ops;
    414
    415	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
    416	if (IS_ERR(inode))
    417		return PTR_ERR(inode);
    418
    419	sb->s_root = d_make_root(inode);
    420	if (!sb->s_root)
    421		return -ENOMEM;
    422	return 0;
    423}
    424
    425static int mqueue_get_tree(struct fs_context *fc)
    426{
    427	struct mqueue_fs_context *ctx = fc->fs_private;
    428
    429	/*
    430	 * With a newly created ipc namespace, we don't need to do a search
    431	 * for an ipc namespace match, but we still need to set s_fs_info.
    432	 */
    433	if (ctx->newns) {
    434		fc->s_fs_info = ctx->ipc_ns;
    435		return get_tree_nodev(fc, mqueue_fill_super);
    436	}
    437	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
    438}
    439
    440static void mqueue_fs_context_free(struct fs_context *fc)
    441{
    442	struct mqueue_fs_context *ctx = fc->fs_private;
    443
    444	put_ipc_ns(ctx->ipc_ns);
    445	kfree(ctx);
    446}
    447
    448static int mqueue_init_fs_context(struct fs_context *fc)
    449{
    450	struct mqueue_fs_context *ctx;
    451
    452	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
    453	if (!ctx)
    454		return -ENOMEM;
    455
    456	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
    457	put_user_ns(fc->user_ns);
    458	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
    459	fc->fs_private = ctx;
    460	fc->ops = &mqueue_fs_context_ops;
    461	return 0;
    462}
    463
    464/*
    465 * mq_init_ns() is currently the only caller of mq_create_mount().
    466 * So the ns parameter is always a newly created ipc namespace.
    467 */
    468static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
    469{
    470	struct mqueue_fs_context *ctx;
    471	struct fs_context *fc;
    472	struct vfsmount *mnt;
    473
    474	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
    475	if (IS_ERR(fc))
    476		return ERR_CAST(fc);
    477
    478	ctx = fc->fs_private;
    479	ctx->newns = true;
    480	put_ipc_ns(ctx->ipc_ns);
    481	ctx->ipc_ns = get_ipc_ns(ns);
    482	put_user_ns(fc->user_ns);
    483	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
    484
    485	mnt = fc_mount(fc);
    486	put_fs_context(fc);
    487	return mnt;
    488}
    489
    490static void init_once(void *foo)
    491{
    492	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
    493
    494	inode_init_once(&p->vfs_inode);
    495}
    496
    497static struct inode *mqueue_alloc_inode(struct super_block *sb)
    498{
    499	struct mqueue_inode_info *ei;
    500
    501	ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL);
    502	if (!ei)
    503		return NULL;
    504	return &ei->vfs_inode;
    505}
    506
    507static void mqueue_free_inode(struct inode *inode)
    508{
    509	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
    510}
    511
    512static void mqueue_evict_inode(struct inode *inode)
    513{
    514	struct mqueue_inode_info *info;
    515	struct ipc_namespace *ipc_ns;
    516	struct msg_msg *msg, *nmsg;
    517	LIST_HEAD(tmp_msg);
    518
    519	clear_inode(inode);
    520
    521	if (S_ISDIR(inode->i_mode))
    522		return;
    523
    524	ipc_ns = get_ns_from_inode(inode);
    525	info = MQUEUE_I(inode);
    526	spin_lock(&info->lock);
    527	while ((msg = msg_get(info)) != NULL)
    528		list_add_tail(&msg->m_list, &tmp_msg);
    529	kfree(info->node_cache);
    530	spin_unlock(&info->lock);
    531
    532	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
    533		list_del(&msg->m_list);
    534		free_msg(msg);
    535	}
    536
    537	if (info->ucounts) {
    538		unsigned long mq_bytes, mq_treesize;
    539
    540		/* Total amount of bytes accounted for the mqueue */
    541		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
    542			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
    543			sizeof(struct posix_msg_tree_node);
    544
    545		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
    546					  info->attr.mq_msgsize);
    547
    548		spin_lock(&mq_lock);
    549		dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
    550		/*
    551		 * get_ns_from_inode() ensures that the
    552		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
    553		 * to which we now hold a reference, or it is NULL.
    554		 * We can't put it here under mq_lock, though.
    555		 */
    556		if (ipc_ns)
    557			ipc_ns->mq_queues_count--;
    558		spin_unlock(&mq_lock);
    559		put_ucounts(info->ucounts);
    560		info->ucounts = NULL;
    561	}
    562	if (ipc_ns)
    563		put_ipc_ns(ipc_ns);
    564}
    565
    566static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
    567{
    568	struct inode *dir = dentry->d_parent->d_inode;
    569	struct inode *inode;
    570	struct mq_attr *attr = arg;
    571	int error;
    572	struct ipc_namespace *ipc_ns;
    573
    574	spin_lock(&mq_lock);
    575	ipc_ns = __get_ns_from_inode(dir);
    576	if (!ipc_ns) {
    577		error = -EACCES;
    578		goto out_unlock;
    579	}
    580
    581	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
    582	    !capable(CAP_SYS_RESOURCE)) {
    583		error = -ENOSPC;
    584		goto out_unlock;
    585	}
    586	ipc_ns->mq_queues_count++;
    587	spin_unlock(&mq_lock);
    588
    589	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
    590	if (IS_ERR(inode)) {
    591		error = PTR_ERR(inode);
    592		spin_lock(&mq_lock);
    593		ipc_ns->mq_queues_count--;
    594		goto out_unlock;
    595	}
    596
    597	put_ipc_ns(ipc_ns);
    598	dir->i_size += DIRENT_SIZE;
    599	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
    600
    601	d_instantiate(dentry, inode);
    602	dget(dentry);
    603	return 0;
    604out_unlock:
    605	spin_unlock(&mq_lock);
    606	if (ipc_ns)
    607		put_ipc_ns(ipc_ns);
    608	return error;
    609}
    610
    611static int mqueue_create(struct user_namespace *mnt_userns, struct inode *dir,
    612			 struct dentry *dentry, umode_t mode, bool excl)
    613{
    614	return mqueue_create_attr(dentry, mode, NULL);
    615}
    616
    617static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
    618{
    619	struct inode *inode = d_inode(dentry);
    620
    621	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
    622	dir->i_size -= DIRENT_SIZE;
    623	drop_nlink(inode);
    624	dput(dentry);
    625	return 0;
    626}
    627
    628/*
    629*	This is routine for system read from queue file.
    630*	To avoid mess with doing here some sort of mq_receive we allow
    631*	to read only queue size & notification info (the only values
    632*	that are interesting from user point of view and aren't accessible
    633*	through std routines)
    634*/
    635static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
    636				size_t count, loff_t *off)
    637{
    638	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
    639	char buffer[FILENT_SIZE];
    640	ssize_t ret;
    641
    642	spin_lock(&info->lock);
    643	snprintf(buffer, sizeof(buffer),
    644			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
    645			info->qsize,
    646			info->notify_owner ? info->notify.sigev_notify : 0,
    647			(info->notify_owner &&
    648			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
    649				info->notify.sigev_signo : 0,
    650			pid_vnr(info->notify_owner));
    651	spin_unlock(&info->lock);
    652	buffer[sizeof(buffer)-1] = '\0';
    653
    654	ret = simple_read_from_buffer(u_data, count, off, buffer,
    655				strlen(buffer));
    656	if (ret <= 0)
    657		return ret;
    658
    659	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
    660	return ret;
    661}
    662
    663static int mqueue_flush_file(struct file *filp, fl_owner_t id)
    664{
    665	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
    666
    667	spin_lock(&info->lock);
    668	if (task_tgid(current) == info->notify_owner)
    669		remove_notification(info);
    670
    671	spin_unlock(&info->lock);
    672	return 0;
    673}
    674
    675static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
    676{
    677	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
    678	__poll_t retval = 0;
    679
    680	poll_wait(filp, &info->wait_q, poll_tab);
    681
    682	spin_lock(&info->lock);
    683	if (info->attr.mq_curmsgs)
    684		retval = EPOLLIN | EPOLLRDNORM;
    685
    686	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
    687		retval |= EPOLLOUT | EPOLLWRNORM;
    688	spin_unlock(&info->lock);
    689
    690	return retval;
    691}
    692
    693/* Adds current to info->e_wait_q[sr] before element with smaller prio */
    694static void wq_add(struct mqueue_inode_info *info, int sr,
    695			struct ext_wait_queue *ewp)
    696{
    697	struct ext_wait_queue *walk;
    698
    699	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
    700		if (walk->task->prio <= current->prio) {
    701			list_add_tail(&ewp->list, &walk->list);
    702			return;
    703		}
    704	}
    705	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
    706}
    707
    708/*
    709 * Puts current task to sleep. Caller must hold queue lock. After return
    710 * lock isn't held.
    711 * sr: SEND or RECV
    712 */
    713static int wq_sleep(struct mqueue_inode_info *info, int sr,
    714		    ktime_t *timeout, struct ext_wait_queue *ewp)
    715	__releases(&info->lock)
    716{
    717	int retval;
    718	signed long time;
    719
    720	wq_add(info, sr, ewp);
    721
    722	for (;;) {
    723		/* memory barrier not required, we hold info->lock */
    724		__set_current_state(TASK_INTERRUPTIBLE);
    725
    726		spin_unlock(&info->lock);
    727		time = schedule_hrtimeout_range_clock(timeout, 0,
    728			HRTIMER_MODE_ABS, CLOCK_REALTIME);
    729
    730		if (READ_ONCE(ewp->state) == STATE_READY) {
    731			/* see MQ_BARRIER for purpose/pairing */
    732			smp_acquire__after_ctrl_dep();
    733			retval = 0;
    734			goto out;
    735		}
    736		spin_lock(&info->lock);
    737
    738		/* we hold info->lock, so no memory barrier required */
    739		if (READ_ONCE(ewp->state) == STATE_READY) {
    740			retval = 0;
    741			goto out_unlock;
    742		}
    743		if (signal_pending(current)) {
    744			retval = -ERESTARTSYS;
    745			break;
    746		}
    747		if (time == 0) {
    748			retval = -ETIMEDOUT;
    749			break;
    750		}
    751	}
    752	list_del(&ewp->list);
    753out_unlock:
    754	spin_unlock(&info->lock);
    755out:
    756	return retval;
    757}
    758
    759/*
    760 * Returns waiting task that should be serviced first or NULL if none exists
    761 */
    762static struct ext_wait_queue *wq_get_first_waiter(
    763		struct mqueue_inode_info *info, int sr)
    764{
    765	struct list_head *ptr;
    766
    767	ptr = info->e_wait_q[sr].list.prev;
    768	if (ptr == &info->e_wait_q[sr].list)
    769		return NULL;
    770	return list_entry(ptr, struct ext_wait_queue, list);
    771}
    772
    773
    774static inline void set_cookie(struct sk_buff *skb, char code)
    775{
    776	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
    777}
    778
    779/*
    780 * The next function is only to split too long sys_mq_timedsend
    781 */
    782static void __do_notify(struct mqueue_inode_info *info)
    783{
    784	/* notification
    785	 * invoked when there is registered process and there isn't process
    786	 * waiting synchronously for message AND state of queue changed from
    787	 * empty to not empty. Here we are sure that no one is waiting
    788	 * synchronously. */
    789	if (info->notify_owner &&
    790	    info->attr.mq_curmsgs == 1) {
    791		switch (info->notify.sigev_notify) {
    792		case SIGEV_NONE:
    793			break;
    794		case SIGEV_SIGNAL: {
    795			struct kernel_siginfo sig_i;
    796			struct task_struct *task;
    797
    798			/* do_mq_notify() accepts sigev_signo == 0, why?? */
    799			if (!info->notify.sigev_signo)
    800				break;
    801
    802			clear_siginfo(&sig_i);
    803			sig_i.si_signo = info->notify.sigev_signo;
    804			sig_i.si_errno = 0;
    805			sig_i.si_code = SI_MESGQ;
    806			sig_i.si_value = info->notify.sigev_value;
    807			rcu_read_lock();
    808			/* map current pid/uid into info->owner's namespaces */
    809			sig_i.si_pid = task_tgid_nr_ns(current,
    810						ns_of_pid(info->notify_owner));
    811			sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
    812						current_uid());
    813			/*
    814			 * We can't use kill_pid_info(), this signal should
    815			 * bypass check_kill_permission(). It is from kernel
    816			 * but si_fromuser() can't know this.
    817			 * We do check the self_exec_id, to avoid sending
    818			 * signals to programs that don't expect them.
    819			 */
    820			task = pid_task(info->notify_owner, PIDTYPE_TGID);
    821			if (task && task->self_exec_id ==
    822						info->notify_self_exec_id) {
    823				do_send_sig_info(info->notify.sigev_signo,
    824						&sig_i, task, PIDTYPE_TGID);
    825			}
    826			rcu_read_unlock();
    827			break;
    828		}
    829		case SIGEV_THREAD:
    830			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
    831			netlink_sendskb(info->notify_sock, info->notify_cookie);
    832			break;
    833		}
    834		/* after notification unregisters process */
    835		put_pid(info->notify_owner);
    836		put_user_ns(info->notify_user_ns);
    837		info->notify_owner = NULL;
    838		info->notify_user_ns = NULL;
    839	}
    840	wake_up(&info->wait_q);
    841}
    842
    843static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
    844			   struct timespec64 *ts)
    845{
    846	if (get_timespec64(ts, u_abs_timeout))
    847		return -EFAULT;
    848	if (!timespec64_valid(ts))
    849		return -EINVAL;
    850	return 0;
    851}
    852
    853static void remove_notification(struct mqueue_inode_info *info)
    854{
    855	if (info->notify_owner != NULL &&
    856	    info->notify.sigev_notify == SIGEV_THREAD) {
    857		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
    858		netlink_sendskb(info->notify_sock, info->notify_cookie);
    859	}
    860	put_pid(info->notify_owner);
    861	put_user_ns(info->notify_user_ns);
    862	info->notify_owner = NULL;
    863	info->notify_user_ns = NULL;
    864}
    865
    866static int prepare_open(struct dentry *dentry, int oflag, int ro,
    867			umode_t mode, struct filename *name,
    868			struct mq_attr *attr)
    869{
    870	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
    871						  MAY_READ | MAY_WRITE };
    872	int acc;
    873
    874	if (d_really_is_negative(dentry)) {
    875		if (!(oflag & O_CREAT))
    876			return -ENOENT;
    877		if (ro)
    878			return ro;
    879		audit_inode_parent_hidden(name, dentry->d_parent);
    880		return vfs_mkobj(dentry, mode & ~current_umask(),
    881				  mqueue_create_attr, attr);
    882	}
    883	/* it already existed */
    884	audit_inode(name, dentry, 0);
    885	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
    886		return -EEXIST;
    887	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
    888		return -EINVAL;
    889	acc = oflag2acc[oflag & O_ACCMODE];
    890	return inode_permission(&init_user_ns, d_inode(dentry), acc);
    891}
    892
    893static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
    894		      struct mq_attr *attr)
    895{
    896	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
    897	struct dentry *root = mnt->mnt_root;
    898	struct filename *name;
    899	struct path path;
    900	int fd, error;
    901	int ro;
    902
    903	audit_mq_open(oflag, mode, attr);
    904
    905	if (IS_ERR(name = getname(u_name)))
    906		return PTR_ERR(name);
    907
    908	fd = get_unused_fd_flags(O_CLOEXEC);
    909	if (fd < 0)
    910		goto out_putname;
    911
    912	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
    913	inode_lock(d_inode(root));
    914	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
    915	if (IS_ERR(path.dentry)) {
    916		error = PTR_ERR(path.dentry);
    917		goto out_putfd;
    918	}
    919	path.mnt = mntget(mnt);
    920	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
    921	if (!error) {
    922		struct file *file = dentry_open(&path, oflag, current_cred());
    923		if (!IS_ERR(file))
    924			fd_install(fd, file);
    925		else
    926			error = PTR_ERR(file);
    927	}
    928	path_put(&path);
    929out_putfd:
    930	if (error) {
    931		put_unused_fd(fd);
    932		fd = error;
    933	}
    934	inode_unlock(d_inode(root));
    935	if (!ro)
    936		mnt_drop_write(mnt);
    937out_putname:
    938	putname(name);
    939	return fd;
    940}
    941
    942SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
    943		struct mq_attr __user *, u_attr)
    944{
    945	struct mq_attr attr;
    946	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
    947		return -EFAULT;
    948
    949	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
    950}
    951
    952SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
    953{
    954	int err;
    955	struct filename *name;
    956	struct dentry *dentry;
    957	struct inode *inode = NULL;
    958	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
    959	struct vfsmount *mnt = ipc_ns->mq_mnt;
    960
    961	name = getname(u_name);
    962	if (IS_ERR(name))
    963		return PTR_ERR(name);
    964
    965	audit_inode_parent_hidden(name, mnt->mnt_root);
    966	err = mnt_want_write(mnt);
    967	if (err)
    968		goto out_name;
    969	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
    970	dentry = lookup_one_len(name->name, mnt->mnt_root,
    971				strlen(name->name));
    972	if (IS_ERR(dentry)) {
    973		err = PTR_ERR(dentry);
    974		goto out_unlock;
    975	}
    976
    977	inode = d_inode(dentry);
    978	if (!inode) {
    979		err = -ENOENT;
    980	} else {
    981		ihold(inode);
    982		err = vfs_unlink(&init_user_ns, d_inode(dentry->d_parent),
    983				 dentry, NULL);
    984	}
    985	dput(dentry);
    986
    987out_unlock:
    988	inode_unlock(d_inode(mnt->mnt_root));
    989	if (inode)
    990		iput(inode);
    991	mnt_drop_write(mnt);
    992out_name:
    993	putname(name);
    994
    995	return err;
    996}
    997
    998/* Pipelined send and receive functions.
    999 *
   1000 * If a receiver finds no waiting message, then it registers itself in the
   1001 * list of waiting receivers. A sender checks that list before adding the new
   1002 * message into the message array. If there is a waiting receiver, then it
   1003 * bypasses the message array and directly hands the message over to the
   1004 * receiver. The receiver accepts the message and returns without grabbing the
   1005 * queue spinlock:
   1006 *
   1007 * - Set pointer to message.
   1008 * - Queue the receiver task for later wakeup (without the info->lock).
   1009 * - Update its state to STATE_READY. Now the receiver can continue.
   1010 * - Wake up the process after the lock is dropped. Should the process wake up
   1011 *   before this wakeup (due to a timeout or a signal) it will either see
   1012 *   STATE_READY and continue or acquire the lock to check the state again.
   1013 *
   1014 * The same algorithm is used for senders.
   1015 */
   1016
   1017static inline void __pipelined_op(struct wake_q_head *wake_q,
   1018				  struct mqueue_inode_info *info,
   1019				  struct ext_wait_queue *this)
   1020{
   1021	struct task_struct *task;
   1022
   1023	list_del(&this->list);
   1024	task = get_task_struct(this->task);
   1025
   1026	/* see MQ_BARRIER for purpose/pairing */
   1027	smp_store_release(&this->state, STATE_READY);
   1028	wake_q_add_safe(wake_q, task);
   1029}
   1030
   1031/* pipelined_send() - send a message directly to the task waiting in
   1032 * sys_mq_timedreceive() (without inserting message into a queue).
   1033 */
   1034static inline void pipelined_send(struct wake_q_head *wake_q,
   1035				  struct mqueue_inode_info *info,
   1036				  struct msg_msg *message,
   1037				  struct ext_wait_queue *receiver)
   1038{
   1039	receiver->msg = message;
   1040	__pipelined_op(wake_q, info, receiver);
   1041}
   1042
   1043/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
   1044 * gets its message and put to the queue (we have one free place for sure). */
   1045static inline void pipelined_receive(struct wake_q_head *wake_q,
   1046				     struct mqueue_inode_info *info)
   1047{
   1048	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
   1049
   1050	if (!sender) {
   1051		/* for poll */
   1052		wake_up_interruptible(&info->wait_q);
   1053		return;
   1054	}
   1055	if (msg_insert(sender->msg, info))
   1056		return;
   1057
   1058	__pipelined_op(wake_q, info, sender);
   1059}
   1060
   1061static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
   1062		size_t msg_len, unsigned int msg_prio,
   1063		struct timespec64 *ts)
   1064{
   1065	struct fd f;
   1066	struct inode *inode;
   1067	struct ext_wait_queue wait;
   1068	struct ext_wait_queue *receiver;
   1069	struct msg_msg *msg_ptr;
   1070	struct mqueue_inode_info *info;
   1071	ktime_t expires, *timeout = NULL;
   1072	struct posix_msg_tree_node *new_leaf = NULL;
   1073	int ret = 0;
   1074	DEFINE_WAKE_Q(wake_q);
   1075
   1076	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
   1077		return -EINVAL;
   1078
   1079	if (ts) {
   1080		expires = timespec64_to_ktime(*ts);
   1081		timeout = &expires;
   1082	}
   1083
   1084	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
   1085
   1086	f = fdget(mqdes);
   1087	if (unlikely(!f.file)) {
   1088		ret = -EBADF;
   1089		goto out;
   1090	}
   1091
   1092	inode = file_inode(f.file);
   1093	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
   1094		ret = -EBADF;
   1095		goto out_fput;
   1096	}
   1097	info = MQUEUE_I(inode);
   1098	audit_file(f.file);
   1099
   1100	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
   1101		ret = -EBADF;
   1102		goto out_fput;
   1103	}
   1104
   1105	if (unlikely(msg_len > info->attr.mq_msgsize)) {
   1106		ret = -EMSGSIZE;
   1107		goto out_fput;
   1108	}
   1109
   1110	/* First try to allocate memory, before doing anything with
   1111	 * existing queues. */
   1112	msg_ptr = load_msg(u_msg_ptr, msg_len);
   1113	if (IS_ERR(msg_ptr)) {
   1114		ret = PTR_ERR(msg_ptr);
   1115		goto out_fput;
   1116	}
   1117	msg_ptr->m_ts = msg_len;
   1118	msg_ptr->m_type = msg_prio;
   1119
   1120	/*
   1121	 * msg_insert really wants us to have a valid, spare node struct so
   1122	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
   1123	 * fall back to that if necessary.
   1124	 */
   1125	if (!info->node_cache)
   1126		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
   1127
   1128	spin_lock(&info->lock);
   1129
   1130	if (!info->node_cache && new_leaf) {
   1131		/* Save our speculative allocation into the cache */
   1132		INIT_LIST_HEAD(&new_leaf->msg_list);
   1133		info->node_cache = new_leaf;
   1134		new_leaf = NULL;
   1135	} else {
   1136		kfree(new_leaf);
   1137	}
   1138
   1139	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
   1140		if (f.file->f_flags & O_NONBLOCK) {
   1141			ret = -EAGAIN;
   1142		} else {
   1143			wait.task = current;
   1144			wait.msg = (void *) msg_ptr;
   1145
   1146			/* memory barrier not required, we hold info->lock */
   1147			WRITE_ONCE(wait.state, STATE_NONE);
   1148			ret = wq_sleep(info, SEND, timeout, &wait);
   1149			/*
   1150			 * wq_sleep must be called with info->lock held, and
   1151			 * returns with the lock released
   1152			 */
   1153			goto out_free;
   1154		}
   1155	} else {
   1156		receiver = wq_get_first_waiter(info, RECV);
   1157		if (receiver) {
   1158			pipelined_send(&wake_q, info, msg_ptr, receiver);
   1159		} else {
   1160			/* adds message to the queue */
   1161			ret = msg_insert(msg_ptr, info);
   1162			if (ret)
   1163				goto out_unlock;
   1164			__do_notify(info);
   1165		}
   1166		inode->i_atime = inode->i_mtime = inode->i_ctime =
   1167				current_time(inode);
   1168	}
   1169out_unlock:
   1170	spin_unlock(&info->lock);
   1171	wake_up_q(&wake_q);
   1172out_free:
   1173	if (ret)
   1174		free_msg(msg_ptr);
   1175out_fput:
   1176	fdput(f);
   1177out:
   1178	return ret;
   1179}
   1180
   1181static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
   1182		size_t msg_len, unsigned int __user *u_msg_prio,
   1183		struct timespec64 *ts)
   1184{
   1185	ssize_t ret;
   1186	struct msg_msg *msg_ptr;
   1187	struct fd f;
   1188	struct inode *inode;
   1189	struct mqueue_inode_info *info;
   1190	struct ext_wait_queue wait;
   1191	ktime_t expires, *timeout = NULL;
   1192	struct posix_msg_tree_node *new_leaf = NULL;
   1193
   1194	if (ts) {
   1195		expires = timespec64_to_ktime(*ts);
   1196		timeout = &expires;
   1197	}
   1198
   1199	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
   1200
   1201	f = fdget(mqdes);
   1202	if (unlikely(!f.file)) {
   1203		ret = -EBADF;
   1204		goto out;
   1205	}
   1206
   1207	inode = file_inode(f.file);
   1208	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
   1209		ret = -EBADF;
   1210		goto out_fput;
   1211	}
   1212	info = MQUEUE_I(inode);
   1213	audit_file(f.file);
   1214
   1215	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
   1216		ret = -EBADF;
   1217		goto out_fput;
   1218	}
   1219
   1220	/* checks if buffer is big enough */
   1221	if (unlikely(msg_len < info->attr.mq_msgsize)) {
   1222		ret = -EMSGSIZE;
   1223		goto out_fput;
   1224	}
   1225
   1226	/*
   1227	 * msg_insert really wants us to have a valid, spare node struct so
   1228	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
   1229	 * fall back to that if necessary.
   1230	 */
   1231	if (!info->node_cache)
   1232		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
   1233
   1234	spin_lock(&info->lock);
   1235
   1236	if (!info->node_cache && new_leaf) {
   1237		/* Save our speculative allocation into the cache */
   1238		INIT_LIST_HEAD(&new_leaf->msg_list);
   1239		info->node_cache = new_leaf;
   1240	} else {
   1241		kfree(new_leaf);
   1242	}
   1243
   1244	if (info->attr.mq_curmsgs == 0) {
   1245		if (f.file->f_flags & O_NONBLOCK) {
   1246			spin_unlock(&info->lock);
   1247			ret = -EAGAIN;
   1248		} else {
   1249			wait.task = current;
   1250
   1251			/* memory barrier not required, we hold info->lock */
   1252			WRITE_ONCE(wait.state, STATE_NONE);
   1253			ret = wq_sleep(info, RECV, timeout, &wait);
   1254			msg_ptr = wait.msg;
   1255		}
   1256	} else {
   1257		DEFINE_WAKE_Q(wake_q);
   1258
   1259		msg_ptr = msg_get(info);
   1260
   1261		inode->i_atime = inode->i_mtime = inode->i_ctime =
   1262				current_time(inode);
   1263
   1264		/* There is now free space in queue. */
   1265		pipelined_receive(&wake_q, info);
   1266		spin_unlock(&info->lock);
   1267		wake_up_q(&wake_q);
   1268		ret = 0;
   1269	}
   1270	if (ret == 0) {
   1271		ret = msg_ptr->m_ts;
   1272
   1273		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
   1274			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
   1275			ret = -EFAULT;
   1276		}
   1277		free_msg(msg_ptr);
   1278	}
   1279out_fput:
   1280	fdput(f);
   1281out:
   1282	return ret;
   1283}
   1284
   1285SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
   1286		size_t, msg_len, unsigned int, msg_prio,
   1287		const struct __kernel_timespec __user *, u_abs_timeout)
   1288{
   1289	struct timespec64 ts, *p = NULL;
   1290	if (u_abs_timeout) {
   1291		int res = prepare_timeout(u_abs_timeout, &ts);
   1292		if (res)
   1293			return res;
   1294		p = &ts;
   1295	}
   1296	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
   1297}
   1298
   1299SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
   1300		size_t, msg_len, unsigned int __user *, u_msg_prio,
   1301		const struct __kernel_timespec __user *, u_abs_timeout)
   1302{
   1303	struct timespec64 ts, *p = NULL;
   1304	if (u_abs_timeout) {
   1305		int res = prepare_timeout(u_abs_timeout, &ts);
   1306		if (res)
   1307			return res;
   1308		p = &ts;
   1309	}
   1310	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
   1311}
   1312
   1313/*
   1314 * Notes: the case when user wants us to deregister (with NULL as pointer)
   1315 * and he isn't currently owner of notification, will be silently discarded.
   1316 * It isn't explicitly defined in the POSIX.
   1317 */
   1318static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
   1319{
   1320	int ret;
   1321	struct fd f;
   1322	struct sock *sock;
   1323	struct inode *inode;
   1324	struct mqueue_inode_info *info;
   1325	struct sk_buff *nc;
   1326
   1327	audit_mq_notify(mqdes, notification);
   1328
   1329	nc = NULL;
   1330	sock = NULL;
   1331	if (notification != NULL) {
   1332		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
   1333			     notification->sigev_notify != SIGEV_SIGNAL &&
   1334			     notification->sigev_notify != SIGEV_THREAD))
   1335			return -EINVAL;
   1336		if (notification->sigev_notify == SIGEV_SIGNAL &&
   1337			!valid_signal(notification->sigev_signo)) {
   1338			return -EINVAL;
   1339		}
   1340		if (notification->sigev_notify == SIGEV_THREAD) {
   1341			long timeo;
   1342
   1343			/* create the notify skb */
   1344			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
   1345			if (!nc)
   1346				return -ENOMEM;
   1347
   1348			if (copy_from_user(nc->data,
   1349					notification->sigev_value.sival_ptr,
   1350					NOTIFY_COOKIE_LEN)) {
   1351				ret = -EFAULT;
   1352				goto free_skb;
   1353			}
   1354
   1355			/* TODO: add a header? */
   1356			skb_put(nc, NOTIFY_COOKIE_LEN);
   1357			/* and attach it to the socket */
   1358retry:
   1359			f = fdget(notification->sigev_signo);
   1360			if (!f.file) {
   1361				ret = -EBADF;
   1362				goto out;
   1363			}
   1364			sock = netlink_getsockbyfilp(f.file);
   1365			fdput(f);
   1366			if (IS_ERR(sock)) {
   1367				ret = PTR_ERR(sock);
   1368				goto free_skb;
   1369			}
   1370
   1371			timeo = MAX_SCHEDULE_TIMEOUT;
   1372			ret = netlink_attachskb(sock, nc, &timeo, NULL);
   1373			if (ret == 1) {
   1374				sock = NULL;
   1375				goto retry;
   1376			}
   1377			if (ret)
   1378				return ret;
   1379		}
   1380	}
   1381
   1382	f = fdget(mqdes);
   1383	if (!f.file) {
   1384		ret = -EBADF;
   1385		goto out;
   1386	}
   1387
   1388	inode = file_inode(f.file);
   1389	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
   1390		ret = -EBADF;
   1391		goto out_fput;
   1392	}
   1393	info = MQUEUE_I(inode);
   1394
   1395	ret = 0;
   1396	spin_lock(&info->lock);
   1397	if (notification == NULL) {
   1398		if (info->notify_owner == task_tgid(current)) {
   1399			remove_notification(info);
   1400			inode->i_atime = inode->i_ctime = current_time(inode);
   1401		}
   1402	} else if (info->notify_owner != NULL) {
   1403		ret = -EBUSY;
   1404	} else {
   1405		switch (notification->sigev_notify) {
   1406		case SIGEV_NONE:
   1407			info->notify.sigev_notify = SIGEV_NONE;
   1408			break;
   1409		case SIGEV_THREAD:
   1410			info->notify_sock = sock;
   1411			info->notify_cookie = nc;
   1412			sock = NULL;
   1413			nc = NULL;
   1414			info->notify.sigev_notify = SIGEV_THREAD;
   1415			break;
   1416		case SIGEV_SIGNAL:
   1417			info->notify.sigev_signo = notification->sigev_signo;
   1418			info->notify.sigev_value = notification->sigev_value;
   1419			info->notify.sigev_notify = SIGEV_SIGNAL;
   1420			info->notify_self_exec_id = current->self_exec_id;
   1421			break;
   1422		}
   1423
   1424		info->notify_owner = get_pid(task_tgid(current));
   1425		info->notify_user_ns = get_user_ns(current_user_ns());
   1426		inode->i_atime = inode->i_ctime = current_time(inode);
   1427	}
   1428	spin_unlock(&info->lock);
   1429out_fput:
   1430	fdput(f);
   1431out:
   1432	if (sock)
   1433		netlink_detachskb(sock, nc);
   1434	else
   1435free_skb:
   1436		dev_kfree_skb(nc);
   1437
   1438	return ret;
   1439}
   1440
   1441SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
   1442		const struct sigevent __user *, u_notification)
   1443{
   1444	struct sigevent n, *p = NULL;
   1445	if (u_notification) {
   1446		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
   1447			return -EFAULT;
   1448		p = &n;
   1449	}
   1450	return do_mq_notify(mqdes, p);
   1451}
   1452
   1453static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
   1454{
   1455	struct fd f;
   1456	struct inode *inode;
   1457	struct mqueue_inode_info *info;
   1458
   1459	if (new && (new->mq_flags & (~O_NONBLOCK)))
   1460		return -EINVAL;
   1461
   1462	f = fdget(mqdes);
   1463	if (!f.file)
   1464		return -EBADF;
   1465
   1466	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
   1467		fdput(f);
   1468		return -EBADF;
   1469	}
   1470
   1471	inode = file_inode(f.file);
   1472	info = MQUEUE_I(inode);
   1473
   1474	spin_lock(&info->lock);
   1475
   1476	if (old) {
   1477		*old = info->attr;
   1478		old->mq_flags = f.file->f_flags & O_NONBLOCK;
   1479	}
   1480	if (new) {
   1481		audit_mq_getsetattr(mqdes, new);
   1482		spin_lock(&f.file->f_lock);
   1483		if (new->mq_flags & O_NONBLOCK)
   1484			f.file->f_flags |= O_NONBLOCK;
   1485		else
   1486			f.file->f_flags &= ~O_NONBLOCK;
   1487		spin_unlock(&f.file->f_lock);
   1488
   1489		inode->i_atime = inode->i_ctime = current_time(inode);
   1490	}
   1491
   1492	spin_unlock(&info->lock);
   1493	fdput(f);
   1494	return 0;
   1495}
   1496
   1497SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
   1498		const struct mq_attr __user *, u_mqstat,
   1499		struct mq_attr __user *, u_omqstat)
   1500{
   1501	int ret;
   1502	struct mq_attr mqstat, omqstat;
   1503	struct mq_attr *new = NULL, *old = NULL;
   1504
   1505	if (u_mqstat) {
   1506		new = &mqstat;
   1507		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
   1508			return -EFAULT;
   1509	}
   1510	if (u_omqstat)
   1511		old = &omqstat;
   1512
   1513	ret = do_mq_getsetattr(mqdes, new, old);
   1514	if (ret || !old)
   1515		return ret;
   1516
   1517	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
   1518		return -EFAULT;
   1519	return 0;
   1520}
   1521
   1522#ifdef CONFIG_COMPAT
   1523
   1524struct compat_mq_attr {
   1525	compat_long_t mq_flags;      /* message queue flags		     */
   1526	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
   1527	compat_long_t mq_msgsize;    /* maximum message size		     */
   1528	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
   1529	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
   1530};
   1531
   1532static inline int get_compat_mq_attr(struct mq_attr *attr,
   1533			const struct compat_mq_attr __user *uattr)
   1534{
   1535	struct compat_mq_attr v;
   1536
   1537	if (copy_from_user(&v, uattr, sizeof(*uattr)))
   1538		return -EFAULT;
   1539
   1540	memset(attr, 0, sizeof(*attr));
   1541	attr->mq_flags = v.mq_flags;
   1542	attr->mq_maxmsg = v.mq_maxmsg;
   1543	attr->mq_msgsize = v.mq_msgsize;
   1544	attr->mq_curmsgs = v.mq_curmsgs;
   1545	return 0;
   1546}
   1547
   1548static inline int put_compat_mq_attr(const struct mq_attr *attr,
   1549			struct compat_mq_attr __user *uattr)
   1550{
   1551	struct compat_mq_attr v;
   1552
   1553	memset(&v, 0, sizeof(v));
   1554	v.mq_flags = attr->mq_flags;
   1555	v.mq_maxmsg = attr->mq_maxmsg;
   1556	v.mq_msgsize = attr->mq_msgsize;
   1557	v.mq_curmsgs = attr->mq_curmsgs;
   1558	if (copy_to_user(uattr, &v, sizeof(*uattr)))
   1559		return -EFAULT;
   1560	return 0;
   1561}
   1562
   1563COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
   1564		       int, oflag, compat_mode_t, mode,
   1565		       struct compat_mq_attr __user *, u_attr)
   1566{
   1567	struct mq_attr attr, *p = NULL;
   1568	if (u_attr && oflag & O_CREAT) {
   1569		p = &attr;
   1570		if (get_compat_mq_attr(&attr, u_attr))
   1571			return -EFAULT;
   1572	}
   1573	return do_mq_open(u_name, oflag, mode, p);
   1574}
   1575
   1576COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
   1577		       const struct compat_sigevent __user *, u_notification)
   1578{
   1579	struct sigevent n, *p = NULL;
   1580	if (u_notification) {
   1581		if (get_compat_sigevent(&n, u_notification))
   1582			return -EFAULT;
   1583		if (n.sigev_notify == SIGEV_THREAD)
   1584			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
   1585		p = &n;
   1586	}
   1587	return do_mq_notify(mqdes, p);
   1588}
   1589
   1590COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
   1591		       const struct compat_mq_attr __user *, u_mqstat,
   1592		       struct compat_mq_attr __user *, u_omqstat)
   1593{
   1594	int ret;
   1595	struct mq_attr mqstat, omqstat;
   1596	struct mq_attr *new = NULL, *old = NULL;
   1597
   1598	if (u_mqstat) {
   1599		new = &mqstat;
   1600		if (get_compat_mq_attr(new, u_mqstat))
   1601			return -EFAULT;
   1602	}
   1603	if (u_omqstat)
   1604		old = &omqstat;
   1605
   1606	ret = do_mq_getsetattr(mqdes, new, old);
   1607	if (ret || !old)
   1608		return ret;
   1609
   1610	if (put_compat_mq_attr(old, u_omqstat))
   1611		return -EFAULT;
   1612	return 0;
   1613}
   1614#endif
   1615
   1616#ifdef CONFIG_COMPAT_32BIT_TIME
   1617static int compat_prepare_timeout(const struct old_timespec32 __user *p,
   1618				   struct timespec64 *ts)
   1619{
   1620	if (get_old_timespec32(ts, p))
   1621		return -EFAULT;
   1622	if (!timespec64_valid(ts))
   1623		return -EINVAL;
   1624	return 0;
   1625}
   1626
   1627SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
   1628		const char __user *, u_msg_ptr,
   1629		unsigned int, msg_len, unsigned int, msg_prio,
   1630		const struct old_timespec32 __user *, u_abs_timeout)
   1631{
   1632	struct timespec64 ts, *p = NULL;
   1633	if (u_abs_timeout) {
   1634		int res = compat_prepare_timeout(u_abs_timeout, &ts);
   1635		if (res)
   1636			return res;
   1637		p = &ts;
   1638	}
   1639	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
   1640}
   1641
   1642SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
   1643		char __user *, u_msg_ptr,
   1644		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
   1645		const struct old_timespec32 __user *, u_abs_timeout)
   1646{
   1647	struct timespec64 ts, *p = NULL;
   1648	if (u_abs_timeout) {
   1649		int res = compat_prepare_timeout(u_abs_timeout, &ts);
   1650		if (res)
   1651			return res;
   1652		p = &ts;
   1653	}
   1654	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
   1655}
   1656#endif
   1657
   1658static const struct inode_operations mqueue_dir_inode_operations = {
   1659	.lookup = simple_lookup,
   1660	.create = mqueue_create,
   1661	.unlink = mqueue_unlink,
   1662};
   1663
   1664static const struct file_operations mqueue_file_operations = {
   1665	.flush = mqueue_flush_file,
   1666	.poll = mqueue_poll_file,
   1667	.read = mqueue_read_file,
   1668	.llseek = default_llseek,
   1669};
   1670
   1671static const struct super_operations mqueue_super_ops = {
   1672	.alloc_inode = mqueue_alloc_inode,
   1673	.free_inode = mqueue_free_inode,
   1674	.evict_inode = mqueue_evict_inode,
   1675	.statfs = simple_statfs,
   1676};
   1677
   1678static const struct fs_context_operations mqueue_fs_context_ops = {
   1679	.free		= mqueue_fs_context_free,
   1680	.get_tree	= mqueue_get_tree,
   1681};
   1682
   1683static struct file_system_type mqueue_fs_type = {
   1684	.name			= "mqueue",
   1685	.init_fs_context	= mqueue_init_fs_context,
   1686	.kill_sb		= kill_litter_super,
   1687	.fs_flags		= FS_USERNS_MOUNT,
   1688};
   1689
   1690int mq_init_ns(struct ipc_namespace *ns)
   1691{
   1692	struct vfsmount *m;
   1693
   1694	ns->mq_queues_count  = 0;
   1695	ns->mq_queues_max    = DFLT_QUEUESMAX;
   1696	ns->mq_msg_max       = DFLT_MSGMAX;
   1697	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
   1698	ns->mq_msg_default   = DFLT_MSG;
   1699	ns->mq_msgsize_default  = DFLT_MSGSIZE;
   1700
   1701	m = mq_create_mount(ns);
   1702	if (IS_ERR(m))
   1703		return PTR_ERR(m);
   1704	ns->mq_mnt = m;
   1705	return 0;
   1706}
   1707
   1708void mq_clear_sbinfo(struct ipc_namespace *ns)
   1709{
   1710	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
   1711}
   1712
   1713void mq_put_mnt(struct ipc_namespace *ns)
   1714{
   1715	kern_unmount(ns->mq_mnt);
   1716}
   1717
   1718static int __init init_mqueue_fs(void)
   1719{
   1720	int error;
   1721
   1722	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
   1723				sizeof(struct mqueue_inode_info), 0,
   1724				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
   1725	if (mqueue_inode_cachep == NULL)
   1726		return -ENOMEM;
   1727
   1728	if (!setup_mq_sysctls(&init_ipc_ns)) {
   1729		pr_warn("sysctl registration failed\n");
   1730		return -ENOMEM;
   1731	}
   1732
   1733	error = register_filesystem(&mqueue_fs_type);
   1734	if (error)
   1735		goto out_sysctl;
   1736
   1737	spin_lock_init(&mq_lock);
   1738
   1739	error = mq_init_ns(&init_ipc_ns);
   1740	if (error)
   1741		goto out_filesystem;
   1742
   1743	return 0;
   1744
   1745out_filesystem:
   1746	unregister_filesystem(&mqueue_fs_type);
   1747out_sysctl:
   1748	kmem_cache_destroy(mqueue_inode_cachep);
   1749	return error;
   1750}
   1751
   1752device_initcall(init_mqueue_fs);