cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

audit.c (66362B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* audit.c -- Auditing support
      3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
      4 * System-call specific features have moved to auditsc.c
      5 *
      6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
      7 * All Rights Reserved.
      8 *
      9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
     10 *
     11 * Goals: 1) Integrate fully with Security Modules.
     12 *	  2) Minimal run-time overhead:
     13 *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
     14 *	     b) Small when syscall auditing is enabled and no audit record
     15 *		is generated (defer as much work as possible to record
     16 *		generation time):
     17 *		i) context is allocated,
     18 *		ii) names from getname are stored without a copy, and
     19 *		iii) inode information stored from path_lookup.
     20 *	  3) Ability to disable syscall auditing at boot time (audit=0).
     21 *	  4) Usable by other parts of the kernel (if audit_log* is called,
     22 *	     then a syscall record will be generated automatically for the
     23 *	     current syscall).
     24 *	  5) Netlink interface to user-space.
     25 *	  6) Support low-overhead kernel-based filtering to minimize the
     26 *	     information that must be passed to user-space.
     27 *
     28 * Audit userspace, documentation, tests, and bug/issue trackers:
     29 * 	https://github.com/linux-audit
     30 */
     31
     32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     33
     34#include <linux/file.h>
     35#include <linux/init.h>
     36#include <linux/types.h>
     37#include <linux/atomic.h>
     38#include <linux/mm.h>
     39#include <linux/export.h>
     40#include <linux/slab.h>
     41#include <linux/err.h>
     42#include <linux/kthread.h>
     43#include <linux/kernel.h>
     44#include <linux/syscalls.h>
     45#include <linux/spinlock.h>
     46#include <linux/rcupdate.h>
     47#include <linux/mutex.h>
     48#include <linux/gfp.h>
     49#include <linux/pid.h>
     50
     51#include <linux/audit.h>
     52
     53#include <net/sock.h>
     54#include <net/netlink.h>
     55#include <linux/skbuff.h>
     56#ifdef CONFIG_SECURITY
     57#include <linux/security.h>
     58#endif
     59#include <linux/freezer.h>
     60#include <linux/pid_namespace.h>
     61#include <net/netns/generic.h>
     62
     63#include "audit.h"
     64
     65/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
     66 * (Initialization happens after skb_init is called.) */
     67#define AUDIT_DISABLED		-1
     68#define AUDIT_UNINITIALIZED	0
     69#define AUDIT_INITIALIZED	1
     70static int	audit_initialized = AUDIT_UNINITIALIZED;
     71
     72u32		audit_enabled = AUDIT_OFF;
     73bool		audit_ever_enabled = !!AUDIT_OFF;
     74
     75EXPORT_SYMBOL_GPL(audit_enabled);
     76
     77/* Default state when kernel boots without any parameters. */
     78static u32	audit_default = AUDIT_OFF;
     79
     80/* If auditing cannot proceed, audit_failure selects what happens. */
     81static u32	audit_failure = AUDIT_FAIL_PRINTK;
     82
     83/* private audit network namespace index */
     84static unsigned int audit_net_id;
     85
     86/**
     87 * struct audit_net - audit private network namespace data
     88 * @sk: communication socket
     89 */
     90struct audit_net {
     91	struct sock *sk;
     92};
     93
     94/**
     95 * struct auditd_connection - kernel/auditd connection state
     96 * @pid: auditd PID
     97 * @portid: netlink portid
     98 * @net: the associated network namespace
     99 * @rcu: RCU head
    100 *
    101 * Description:
    102 * This struct is RCU protected; you must either hold the RCU lock for reading
    103 * or the associated spinlock for writing.
    104 */
    105struct auditd_connection {
    106	struct pid *pid;
    107	u32 portid;
    108	struct net *net;
    109	struct rcu_head rcu;
    110};
    111static struct auditd_connection __rcu *auditd_conn;
    112static DEFINE_SPINLOCK(auditd_conn_lock);
    113
    114/* If audit_rate_limit is non-zero, limit the rate of sending audit records
    115 * to that number per second.  This prevents DoS attacks, but results in
    116 * audit records being dropped. */
    117static u32	audit_rate_limit;
    118
    119/* Number of outstanding audit_buffers allowed.
    120 * When set to zero, this means unlimited. */
    121static u32	audit_backlog_limit = 64;
    122#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
    123static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
    124
    125/* The identity of the user shutting down the audit system. */
    126static kuid_t		audit_sig_uid = INVALID_UID;
    127static pid_t		audit_sig_pid = -1;
    128static u32		audit_sig_sid;
    129
    130/* Records can be lost in several ways:
    131   0) [suppressed in audit_alloc]
    132   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
    133   2) out of memory in audit_log_move [alloc_skb]
    134   3) suppressed due to audit_rate_limit
    135   4) suppressed due to audit_backlog_limit
    136*/
    137static atomic_t	audit_lost = ATOMIC_INIT(0);
    138
    139/* Monotonically increasing sum of time the kernel has spent
    140 * waiting while the backlog limit is exceeded.
    141 */
    142static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
    143
    144/* Hash for inode-based rules */
    145struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
    146
    147static struct kmem_cache *audit_buffer_cache;
    148
    149/* queue msgs to send via kauditd_task */
    150static struct sk_buff_head audit_queue;
    151/* queue msgs due to temporary unicast send problems */
    152static struct sk_buff_head audit_retry_queue;
    153/* queue msgs waiting for new auditd connection */
    154static struct sk_buff_head audit_hold_queue;
    155
    156/* queue servicing thread */
    157static struct task_struct *kauditd_task;
    158static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
    159
    160/* waitqueue for callers who are blocked on the audit backlog */
    161static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
    162
    163static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
    164				   .mask = -1,
    165				   .features = 0,
    166				   .lock = 0,};
    167
    168static char *audit_feature_names[2] = {
    169	"only_unset_loginuid",
    170	"loginuid_immutable",
    171};
    172
    173/**
    174 * struct audit_ctl_mutex - serialize requests from userspace
    175 * @lock: the mutex used for locking
    176 * @owner: the task which owns the lock
    177 *
    178 * Description:
    179 * This is the lock struct used to ensure we only process userspace requests
    180 * in an orderly fashion.  We can't simply use a mutex/lock here because we
    181 * need to track lock ownership so we don't end up blocking the lock owner in
    182 * audit_log_start() or similar.
    183 */
    184static struct audit_ctl_mutex {
    185	struct mutex lock;
    186	void *owner;
    187} audit_cmd_mutex;
    188
    189/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
    190 * audit records.  Since printk uses a 1024 byte buffer, this buffer
    191 * should be at least that large. */
    192#define AUDIT_BUFSIZ 1024
    193
    194/* The audit_buffer is used when formatting an audit record.  The caller
    195 * locks briefly to get the record off the freelist or to allocate the
    196 * buffer, and locks briefly to send the buffer to the netlink layer or
    197 * to place it on a transmit queue.  Multiple audit_buffers can be in
    198 * use simultaneously. */
    199struct audit_buffer {
    200	struct sk_buff       *skb;	/* formatted skb ready to send */
    201	struct audit_context *ctx;	/* NULL or associated context */
    202	gfp_t		     gfp_mask;
    203};
    204
    205struct audit_reply {
    206	__u32 portid;
    207	struct net *net;
    208	struct sk_buff *skb;
    209};
    210
    211/**
    212 * auditd_test_task - Check to see if a given task is an audit daemon
    213 * @task: the task to check
    214 *
    215 * Description:
    216 * Return 1 if the task is a registered audit daemon, 0 otherwise.
    217 */
    218int auditd_test_task(struct task_struct *task)
    219{
    220	int rc;
    221	struct auditd_connection *ac;
    222
    223	rcu_read_lock();
    224	ac = rcu_dereference(auditd_conn);
    225	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
    226	rcu_read_unlock();
    227
    228	return rc;
    229}
    230
    231/**
    232 * audit_ctl_lock - Take the audit control lock
    233 */
    234void audit_ctl_lock(void)
    235{
    236	mutex_lock(&audit_cmd_mutex.lock);
    237	audit_cmd_mutex.owner = current;
    238}
    239
    240/**
    241 * audit_ctl_unlock - Drop the audit control lock
    242 */
    243void audit_ctl_unlock(void)
    244{
    245	audit_cmd_mutex.owner = NULL;
    246	mutex_unlock(&audit_cmd_mutex.lock);
    247}
    248
    249/**
    250 * audit_ctl_owner_current - Test to see if the current task owns the lock
    251 *
    252 * Description:
    253 * Return true if the current task owns the audit control lock, false if it
    254 * doesn't own the lock.
    255 */
    256static bool audit_ctl_owner_current(void)
    257{
    258	return (current == audit_cmd_mutex.owner);
    259}
    260
    261/**
    262 * auditd_pid_vnr - Return the auditd PID relative to the namespace
    263 *
    264 * Description:
    265 * Returns the PID in relation to the namespace, 0 on failure.
    266 */
    267static pid_t auditd_pid_vnr(void)
    268{
    269	pid_t pid;
    270	const struct auditd_connection *ac;
    271
    272	rcu_read_lock();
    273	ac = rcu_dereference(auditd_conn);
    274	if (!ac || !ac->pid)
    275		pid = 0;
    276	else
    277		pid = pid_vnr(ac->pid);
    278	rcu_read_unlock();
    279
    280	return pid;
    281}
    282
    283/**
    284 * audit_get_sk - Return the audit socket for the given network namespace
    285 * @net: the destination network namespace
    286 *
    287 * Description:
    288 * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
    289 * that a reference is held for the network namespace while the sock is in use.
    290 */
    291static struct sock *audit_get_sk(const struct net *net)
    292{
    293	struct audit_net *aunet;
    294
    295	if (!net)
    296		return NULL;
    297
    298	aunet = net_generic(net, audit_net_id);
    299	return aunet->sk;
    300}
    301
    302void audit_panic(const char *message)
    303{
    304	switch (audit_failure) {
    305	case AUDIT_FAIL_SILENT:
    306		break;
    307	case AUDIT_FAIL_PRINTK:
    308		if (printk_ratelimit())
    309			pr_err("%s\n", message);
    310		break;
    311	case AUDIT_FAIL_PANIC:
    312		panic("audit: %s\n", message);
    313		break;
    314	}
    315}
    316
    317static inline int audit_rate_check(void)
    318{
    319	static unsigned long	last_check = 0;
    320	static int		messages   = 0;
    321	static DEFINE_SPINLOCK(lock);
    322	unsigned long		flags;
    323	unsigned long		now;
    324	unsigned long		elapsed;
    325	int			retval	   = 0;
    326
    327	if (!audit_rate_limit) return 1;
    328
    329	spin_lock_irqsave(&lock, flags);
    330	if (++messages < audit_rate_limit) {
    331		retval = 1;
    332	} else {
    333		now     = jiffies;
    334		elapsed = now - last_check;
    335		if (elapsed > HZ) {
    336			last_check = now;
    337			messages   = 0;
    338			retval     = 1;
    339		}
    340	}
    341	spin_unlock_irqrestore(&lock, flags);
    342
    343	return retval;
    344}
    345
    346/**
    347 * audit_log_lost - conditionally log lost audit message event
    348 * @message: the message stating reason for lost audit message
    349 *
    350 * Emit at least 1 message per second, even if audit_rate_check is
    351 * throttling.
    352 * Always increment the lost messages counter.
    353*/
    354void audit_log_lost(const char *message)
    355{
    356	static unsigned long	last_msg = 0;
    357	static DEFINE_SPINLOCK(lock);
    358	unsigned long		flags;
    359	unsigned long		now;
    360	int			print;
    361
    362	atomic_inc(&audit_lost);
    363
    364	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
    365
    366	if (!print) {
    367		spin_lock_irqsave(&lock, flags);
    368		now = jiffies;
    369		if (now - last_msg > HZ) {
    370			print = 1;
    371			last_msg = now;
    372		}
    373		spin_unlock_irqrestore(&lock, flags);
    374	}
    375
    376	if (print) {
    377		if (printk_ratelimit())
    378			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
    379				atomic_read(&audit_lost),
    380				audit_rate_limit,
    381				audit_backlog_limit);
    382		audit_panic(message);
    383	}
    384}
    385
    386static int audit_log_config_change(char *function_name, u32 new, u32 old,
    387				   int allow_changes)
    388{
    389	struct audit_buffer *ab;
    390	int rc = 0;
    391
    392	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
    393	if (unlikely(!ab))
    394		return rc;
    395	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
    396	audit_log_session_info(ab);
    397	rc = audit_log_task_context(ab);
    398	if (rc)
    399		allow_changes = 0; /* Something weird, deny request */
    400	audit_log_format(ab, " res=%d", allow_changes);
    401	audit_log_end(ab);
    402	return rc;
    403}
    404
    405static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
    406{
    407	int allow_changes, rc = 0;
    408	u32 old = *to_change;
    409
    410	/* check if we are locked */
    411	if (audit_enabled == AUDIT_LOCKED)
    412		allow_changes = 0;
    413	else
    414		allow_changes = 1;
    415
    416	if (audit_enabled != AUDIT_OFF) {
    417		rc = audit_log_config_change(function_name, new, old, allow_changes);
    418		if (rc)
    419			allow_changes = 0;
    420	}
    421
    422	/* If we are allowed, make the change */
    423	if (allow_changes == 1)
    424		*to_change = new;
    425	/* Not allowed, update reason */
    426	else if (rc == 0)
    427		rc = -EPERM;
    428	return rc;
    429}
    430
    431static int audit_set_rate_limit(u32 limit)
    432{
    433	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
    434}
    435
    436static int audit_set_backlog_limit(u32 limit)
    437{
    438	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
    439}
    440
    441static int audit_set_backlog_wait_time(u32 timeout)
    442{
    443	return audit_do_config_change("audit_backlog_wait_time",
    444				      &audit_backlog_wait_time, timeout);
    445}
    446
    447static int audit_set_enabled(u32 state)
    448{
    449	int rc;
    450	if (state > AUDIT_LOCKED)
    451		return -EINVAL;
    452
    453	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
    454	if (!rc)
    455		audit_ever_enabled |= !!state;
    456
    457	return rc;
    458}
    459
    460static int audit_set_failure(u32 state)
    461{
    462	if (state != AUDIT_FAIL_SILENT
    463	    && state != AUDIT_FAIL_PRINTK
    464	    && state != AUDIT_FAIL_PANIC)
    465		return -EINVAL;
    466
    467	return audit_do_config_change("audit_failure", &audit_failure, state);
    468}
    469
    470/**
    471 * auditd_conn_free - RCU helper to release an auditd connection struct
    472 * @rcu: RCU head
    473 *
    474 * Description:
    475 * Drop any references inside the auditd connection tracking struct and free
    476 * the memory.
    477 */
    478static void auditd_conn_free(struct rcu_head *rcu)
    479{
    480	struct auditd_connection *ac;
    481
    482	ac = container_of(rcu, struct auditd_connection, rcu);
    483	put_pid(ac->pid);
    484	put_net(ac->net);
    485	kfree(ac);
    486}
    487
    488/**
    489 * auditd_set - Set/Reset the auditd connection state
    490 * @pid: auditd PID
    491 * @portid: auditd netlink portid
    492 * @net: auditd network namespace pointer
    493 *
    494 * Description:
    495 * This function will obtain and drop network namespace references as
    496 * necessary.  Returns zero on success, negative values on failure.
    497 */
    498static int auditd_set(struct pid *pid, u32 portid, struct net *net)
    499{
    500	unsigned long flags;
    501	struct auditd_connection *ac_old, *ac_new;
    502
    503	if (!pid || !net)
    504		return -EINVAL;
    505
    506	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
    507	if (!ac_new)
    508		return -ENOMEM;
    509	ac_new->pid = get_pid(pid);
    510	ac_new->portid = portid;
    511	ac_new->net = get_net(net);
    512
    513	spin_lock_irqsave(&auditd_conn_lock, flags);
    514	ac_old = rcu_dereference_protected(auditd_conn,
    515					   lockdep_is_held(&auditd_conn_lock));
    516	rcu_assign_pointer(auditd_conn, ac_new);
    517	spin_unlock_irqrestore(&auditd_conn_lock, flags);
    518
    519	if (ac_old)
    520		call_rcu(&ac_old->rcu, auditd_conn_free);
    521
    522	return 0;
    523}
    524
    525/**
    526 * kauditd_printk_skb - Print the audit record to the ring buffer
    527 * @skb: audit record
    528 *
    529 * Whatever the reason, this packet may not make it to the auditd connection
    530 * so write it via printk so the information isn't completely lost.
    531 */
    532static void kauditd_printk_skb(struct sk_buff *skb)
    533{
    534	struct nlmsghdr *nlh = nlmsg_hdr(skb);
    535	char *data = nlmsg_data(nlh);
    536
    537	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
    538		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
    539}
    540
    541/**
    542 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
    543 * @skb: audit record
    544 * @error: error code (unused)
    545 *
    546 * Description:
    547 * This should only be used by the kauditd_thread when it fails to flush the
    548 * hold queue.
    549 */
    550static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
    551{
    552	/* put the record back in the queue */
    553	skb_queue_tail(&audit_hold_queue, skb);
    554}
    555
    556/**
    557 * kauditd_hold_skb - Queue an audit record, waiting for auditd
    558 * @skb: audit record
    559 * @error: error code
    560 *
    561 * Description:
    562 * Queue the audit record, waiting for an instance of auditd.  When this
    563 * function is called we haven't given up yet on sending the record, but things
    564 * are not looking good.  The first thing we want to do is try to write the
    565 * record via printk and then see if we want to try and hold on to the record
    566 * and queue it, if we have room.  If we want to hold on to the record, but we
    567 * don't have room, record a record lost message.
    568 */
    569static void kauditd_hold_skb(struct sk_buff *skb, int error)
    570{
    571	/* at this point it is uncertain if we will ever send this to auditd so
    572	 * try to send the message via printk before we go any further */
    573	kauditd_printk_skb(skb);
    574
    575	/* can we just silently drop the message? */
    576	if (!audit_default)
    577		goto drop;
    578
    579	/* the hold queue is only for when the daemon goes away completely,
    580	 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
    581	 * record on the retry queue unless it's full, in which case drop it
    582	 */
    583	if (error == -EAGAIN) {
    584		if (!audit_backlog_limit ||
    585		    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
    586			skb_queue_tail(&audit_retry_queue, skb);
    587			return;
    588		}
    589		audit_log_lost("kauditd retry queue overflow");
    590		goto drop;
    591	}
    592
    593	/* if we have room in the hold queue, queue the message */
    594	if (!audit_backlog_limit ||
    595	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
    596		skb_queue_tail(&audit_hold_queue, skb);
    597		return;
    598	}
    599
    600	/* we have no other options - drop the message */
    601	audit_log_lost("kauditd hold queue overflow");
    602drop:
    603	kfree_skb(skb);
    604}
    605
    606/**
    607 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
    608 * @skb: audit record
    609 * @error: error code (unused)
    610 *
    611 * Description:
    612 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
    613 * but for some reason we are having problems sending it audit records so
    614 * queue the given record and attempt to resend.
    615 */
    616static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
    617{
    618	if (!audit_backlog_limit ||
    619	    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
    620		skb_queue_tail(&audit_retry_queue, skb);
    621		return;
    622	}
    623
    624	/* we have to drop the record, send it via printk as a last effort */
    625	kauditd_printk_skb(skb);
    626	audit_log_lost("kauditd retry queue overflow");
    627	kfree_skb(skb);
    628}
    629
    630/**
    631 * auditd_reset - Disconnect the auditd connection
    632 * @ac: auditd connection state
    633 *
    634 * Description:
    635 * Break the auditd/kauditd connection and move all the queued records into the
    636 * hold queue in case auditd reconnects.  It is important to note that the @ac
    637 * pointer should never be dereferenced inside this function as it may be NULL
    638 * or invalid, you can only compare the memory address!  If @ac is NULL then
    639 * the connection will always be reset.
    640 */
    641static void auditd_reset(const struct auditd_connection *ac)
    642{
    643	unsigned long flags;
    644	struct sk_buff *skb;
    645	struct auditd_connection *ac_old;
    646
    647	/* if it isn't already broken, break the connection */
    648	spin_lock_irqsave(&auditd_conn_lock, flags);
    649	ac_old = rcu_dereference_protected(auditd_conn,
    650					   lockdep_is_held(&auditd_conn_lock));
    651	if (ac && ac != ac_old) {
    652		/* someone already registered a new auditd connection */
    653		spin_unlock_irqrestore(&auditd_conn_lock, flags);
    654		return;
    655	}
    656	rcu_assign_pointer(auditd_conn, NULL);
    657	spin_unlock_irqrestore(&auditd_conn_lock, flags);
    658
    659	if (ac_old)
    660		call_rcu(&ac_old->rcu, auditd_conn_free);
    661
    662	/* flush the retry queue to the hold queue, but don't touch the main
    663	 * queue since we need to process that normally for multicast */
    664	while ((skb = skb_dequeue(&audit_retry_queue)))
    665		kauditd_hold_skb(skb, -ECONNREFUSED);
    666}
    667
    668/**
    669 * auditd_send_unicast_skb - Send a record via unicast to auditd
    670 * @skb: audit record
    671 *
    672 * Description:
    673 * Send a skb to the audit daemon, returns positive/zero values on success and
    674 * negative values on failure; in all cases the skb will be consumed by this
    675 * function.  If the send results in -ECONNREFUSED the connection with auditd
    676 * will be reset.  This function may sleep so callers should not hold any locks
    677 * where this would cause a problem.
    678 */
    679static int auditd_send_unicast_skb(struct sk_buff *skb)
    680{
    681	int rc;
    682	u32 portid;
    683	struct net *net;
    684	struct sock *sk;
    685	struct auditd_connection *ac;
    686
    687	/* NOTE: we can't call netlink_unicast while in the RCU section so
    688	 *       take a reference to the network namespace and grab local
    689	 *       copies of the namespace, the sock, and the portid; the
    690	 *       namespace and sock aren't going to go away while we hold a
    691	 *       reference and if the portid does become invalid after the RCU
    692	 *       section netlink_unicast() should safely return an error */
    693
    694	rcu_read_lock();
    695	ac = rcu_dereference(auditd_conn);
    696	if (!ac) {
    697		rcu_read_unlock();
    698		kfree_skb(skb);
    699		rc = -ECONNREFUSED;
    700		goto err;
    701	}
    702	net = get_net(ac->net);
    703	sk = audit_get_sk(net);
    704	portid = ac->portid;
    705	rcu_read_unlock();
    706
    707	rc = netlink_unicast(sk, skb, portid, 0);
    708	put_net(net);
    709	if (rc < 0)
    710		goto err;
    711
    712	return rc;
    713
    714err:
    715	if (ac && rc == -ECONNREFUSED)
    716		auditd_reset(ac);
    717	return rc;
    718}
    719
    720/**
    721 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
    722 * @sk: the sending sock
    723 * @portid: the netlink destination
    724 * @queue: the skb queue to process
    725 * @retry_limit: limit on number of netlink unicast failures
    726 * @skb_hook: per-skb hook for additional processing
    727 * @err_hook: hook called if the skb fails the netlink unicast send
    728 *
    729 * Description:
    730 * Run through the given queue and attempt to send the audit records to auditd,
    731 * returns zero on success, negative values on failure.  It is up to the caller
    732 * to ensure that the @sk is valid for the duration of this function.
    733 *
    734 */
    735static int kauditd_send_queue(struct sock *sk, u32 portid,
    736			      struct sk_buff_head *queue,
    737			      unsigned int retry_limit,
    738			      void (*skb_hook)(struct sk_buff *skb),
    739			      void (*err_hook)(struct sk_buff *skb, int error))
    740{
    741	int rc = 0;
    742	struct sk_buff *skb = NULL;
    743	struct sk_buff *skb_tail;
    744	unsigned int failed = 0;
    745
    746	/* NOTE: kauditd_thread takes care of all our locking, we just use
    747	 *       the netlink info passed to us (e.g. sk and portid) */
    748
    749	skb_tail = skb_peek_tail(queue);
    750	while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
    751		/* call the skb_hook for each skb we touch */
    752		if (skb_hook)
    753			(*skb_hook)(skb);
    754
    755		/* can we send to anyone via unicast? */
    756		if (!sk) {
    757			if (err_hook)
    758				(*err_hook)(skb, -ECONNREFUSED);
    759			continue;
    760		}
    761
    762retry:
    763		/* grab an extra skb reference in case of error */
    764		skb_get(skb);
    765		rc = netlink_unicast(sk, skb, portid, 0);
    766		if (rc < 0) {
    767			/* send failed - try a few times unless fatal error */
    768			if (++failed >= retry_limit ||
    769			    rc == -ECONNREFUSED || rc == -EPERM) {
    770				sk = NULL;
    771				if (err_hook)
    772					(*err_hook)(skb, rc);
    773				if (rc == -EAGAIN)
    774					rc = 0;
    775				/* continue to drain the queue */
    776				continue;
    777			} else
    778				goto retry;
    779		} else {
    780			/* skb sent - drop the extra reference and continue */
    781			consume_skb(skb);
    782			failed = 0;
    783		}
    784	}
    785
    786	return (rc >= 0 ? 0 : rc);
    787}
    788
    789/*
    790 * kauditd_send_multicast_skb - Send a record to any multicast listeners
    791 * @skb: audit record
    792 *
    793 * Description:
    794 * Write a multicast message to anyone listening in the initial network
    795 * namespace.  This function doesn't consume an skb as might be expected since
    796 * it has to copy it anyways.
    797 */
    798static void kauditd_send_multicast_skb(struct sk_buff *skb)
    799{
    800	struct sk_buff *copy;
    801	struct sock *sock = audit_get_sk(&init_net);
    802	struct nlmsghdr *nlh;
    803
    804	/* NOTE: we are not taking an additional reference for init_net since
    805	 *       we don't have to worry about it going away */
    806
    807	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
    808		return;
    809
    810	/*
    811	 * The seemingly wasteful skb_copy() rather than bumping the refcount
    812	 * using skb_get() is necessary because non-standard mods are made to
    813	 * the skb by the original kaudit unicast socket send routine.  The
    814	 * existing auditd daemon assumes this breakage.  Fixing this would
    815	 * require co-ordinating a change in the established protocol between
    816	 * the kaudit kernel subsystem and the auditd userspace code.  There is
    817	 * no reason for new multicast clients to continue with this
    818	 * non-compliance.
    819	 */
    820	copy = skb_copy(skb, GFP_KERNEL);
    821	if (!copy)
    822		return;
    823	nlh = nlmsg_hdr(copy);
    824	nlh->nlmsg_len = skb->len;
    825
    826	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
    827}
    828
    829/**
    830 * kauditd_thread - Worker thread to send audit records to userspace
    831 * @dummy: unused
    832 */
    833static int kauditd_thread(void *dummy)
    834{
    835	int rc;
    836	u32 portid = 0;
    837	struct net *net = NULL;
    838	struct sock *sk = NULL;
    839	struct auditd_connection *ac;
    840
    841#define UNICAST_RETRIES 5
    842
    843	set_freezable();
    844	while (!kthread_should_stop()) {
    845		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
    846		rcu_read_lock();
    847		ac = rcu_dereference(auditd_conn);
    848		if (!ac) {
    849			rcu_read_unlock();
    850			goto main_queue;
    851		}
    852		net = get_net(ac->net);
    853		sk = audit_get_sk(net);
    854		portid = ac->portid;
    855		rcu_read_unlock();
    856
    857		/* attempt to flush the hold queue */
    858		rc = kauditd_send_queue(sk, portid,
    859					&audit_hold_queue, UNICAST_RETRIES,
    860					NULL, kauditd_rehold_skb);
    861		if (rc < 0) {
    862			sk = NULL;
    863			auditd_reset(ac);
    864			goto main_queue;
    865		}
    866
    867		/* attempt to flush the retry queue */
    868		rc = kauditd_send_queue(sk, portid,
    869					&audit_retry_queue, UNICAST_RETRIES,
    870					NULL, kauditd_hold_skb);
    871		if (rc < 0) {
    872			sk = NULL;
    873			auditd_reset(ac);
    874			goto main_queue;
    875		}
    876
    877main_queue:
    878		/* process the main queue - do the multicast send and attempt
    879		 * unicast, dump failed record sends to the retry queue; if
    880		 * sk == NULL due to previous failures we will just do the
    881		 * multicast send and move the record to the hold queue */
    882		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
    883					kauditd_send_multicast_skb,
    884					(sk ?
    885					 kauditd_retry_skb : kauditd_hold_skb));
    886		if (ac && rc < 0)
    887			auditd_reset(ac);
    888		sk = NULL;
    889
    890		/* drop our netns reference, no auditd sends past this line */
    891		if (net) {
    892			put_net(net);
    893			net = NULL;
    894		}
    895
    896		/* we have processed all the queues so wake everyone */
    897		wake_up(&audit_backlog_wait);
    898
    899		/* NOTE: we want to wake up if there is anything on the queue,
    900		 *       regardless of if an auditd is connected, as we need to
    901		 *       do the multicast send and rotate records from the
    902		 *       main queue to the retry/hold queues */
    903		wait_event_freezable(kauditd_wait,
    904				     (skb_queue_len(&audit_queue) ? 1 : 0));
    905	}
    906
    907	return 0;
    908}
    909
    910int audit_send_list_thread(void *_dest)
    911{
    912	struct audit_netlink_list *dest = _dest;
    913	struct sk_buff *skb;
    914	struct sock *sk = audit_get_sk(dest->net);
    915
    916	/* wait for parent to finish and send an ACK */
    917	audit_ctl_lock();
    918	audit_ctl_unlock();
    919
    920	while ((skb = __skb_dequeue(&dest->q)) != NULL)
    921		netlink_unicast(sk, skb, dest->portid, 0);
    922
    923	put_net(dest->net);
    924	kfree(dest);
    925
    926	return 0;
    927}
    928
    929struct sk_buff *audit_make_reply(int seq, int type, int done,
    930				 int multi, const void *payload, int size)
    931{
    932	struct sk_buff	*skb;
    933	struct nlmsghdr	*nlh;
    934	void		*data;
    935	int		flags = multi ? NLM_F_MULTI : 0;
    936	int		t     = done  ? NLMSG_DONE  : type;
    937
    938	skb = nlmsg_new(size, GFP_KERNEL);
    939	if (!skb)
    940		return NULL;
    941
    942	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
    943	if (!nlh)
    944		goto out_kfree_skb;
    945	data = nlmsg_data(nlh);
    946	memcpy(data, payload, size);
    947	return skb;
    948
    949out_kfree_skb:
    950	kfree_skb(skb);
    951	return NULL;
    952}
    953
    954static void audit_free_reply(struct audit_reply *reply)
    955{
    956	if (!reply)
    957		return;
    958
    959	kfree_skb(reply->skb);
    960	if (reply->net)
    961		put_net(reply->net);
    962	kfree(reply);
    963}
    964
    965static int audit_send_reply_thread(void *arg)
    966{
    967	struct audit_reply *reply = (struct audit_reply *)arg;
    968
    969	audit_ctl_lock();
    970	audit_ctl_unlock();
    971
    972	/* Ignore failure. It'll only happen if the sender goes away,
    973	   because our timeout is set to infinite. */
    974	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
    975	reply->skb = NULL;
    976	audit_free_reply(reply);
    977	return 0;
    978}
    979
    980/**
    981 * audit_send_reply - send an audit reply message via netlink
    982 * @request_skb: skb of request we are replying to (used to target the reply)
    983 * @seq: sequence number
    984 * @type: audit message type
    985 * @done: done (last) flag
    986 * @multi: multi-part message flag
    987 * @payload: payload data
    988 * @size: payload size
    989 *
    990 * Allocates a skb, builds the netlink message, and sends it to the port id.
    991 */
    992static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
    993			     int multi, const void *payload, int size)
    994{
    995	struct task_struct *tsk;
    996	struct audit_reply *reply;
    997
    998	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
    999	if (!reply)
   1000		return;
   1001
   1002	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
   1003	if (!reply->skb)
   1004		goto err;
   1005	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
   1006	reply->portid = NETLINK_CB(request_skb).portid;
   1007
   1008	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
   1009	if (IS_ERR(tsk))
   1010		goto err;
   1011
   1012	return;
   1013
   1014err:
   1015	audit_free_reply(reply);
   1016}
   1017
   1018/*
   1019 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
   1020 * control messages.
   1021 */
   1022static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
   1023{
   1024	int err = 0;
   1025
   1026	/* Only support initial user namespace for now. */
   1027	/*
   1028	 * We return ECONNREFUSED because it tricks userspace into thinking
   1029	 * that audit was not configured into the kernel.  Lots of users
   1030	 * configure their PAM stack (because that's what the distro does)
   1031	 * to reject login if unable to send messages to audit.  If we return
   1032	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
   1033	 * configured in and will let login proceed.  If we return EPERM
   1034	 * userspace will reject all logins.  This should be removed when we
   1035	 * support non init namespaces!!
   1036	 */
   1037	if (current_user_ns() != &init_user_ns)
   1038		return -ECONNREFUSED;
   1039
   1040	switch (msg_type) {
   1041	case AUDIT_LIST:
   1042	case AUDIT_ADD:
   1043	case AUDIT_DEL:
   1044		return -EOPNOTSUPP;
   1045	case AUDIT_GET:
   1046	case AUDIT_SET:
   1047	case AUDIT_GET_FEATURE:
   1048	case AUDIT_SET_FEATURE:
   1049	case AUDIT_LIST_RULES:
   1050	case AUDIT_ADD_RULE:
   1051	case AUDIT_DEL_RULE:
   1052	case AUDIT_SIGNAL_INFO:
   1053	case AUDIT_TTY_GET:
   1054	case AUDIT_TTY_SET:
   1055	case AUDIT_TRIM:
   1056	case AUDIT_MAKE_EQUIV:
   1057		/* Only support auditd and auditctl in initial pid namespace
   1058		 * for now. */
   1059		if (task_active_pid_ns(current) != &init_pid_ns)
   1060			return -EPERM;
   1061
   1062		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
   1063			err = -EPERM;
   1064		break;
   1065	case AUDIT_USER:
   1066	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
   1067	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
   1068		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
   1069			err = -EPERM;
   1070		break;
   1071	default:  /* bad msg */
   1072		err = -EINVAL;
   1073	}
   1074
   1075	return err;
   1076}
   1077
   1078static void audit_log_common_recv_msg(struct audit_context *context,
   1079					struct audit_buffer **ab, u16 msg_type)
   1080{
   1081	uid_t uid = from_kuid(&init_user_ns, current_uid());
   1082	pid_t pid = task_tgid_nr(current);
   1083
   1084	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
   1085		*ab = NULL;
   1086		return;
   1087	}
   1088
   1089	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
   1090	if (unlikely(!*ab))
   1091		return;
   1092	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
   1093	audit_log_session_info(*ab);
   1094	audit_log_task_context(*ab);
   1095}
   1096
   1097static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
   1098					   u16 msg_type)
   1099{
   1100	audit_log_common_recv_msg(NULL, ab, msg_type);
   1101}
   1102
   1103int is_audit_feature_set(int i)
   1104{
   1105	return af.features & AUDIT_FEATURE_TO_MASK(i);
   1106}
   1107
   1108
   1109static int audit_get_feature(struct sk_buff *skb)
   1110{
   1111	u32 seq;
   1112
   1113	seq = nlmsg_hdr(skb)->nlmsg_seq;
   1114
   1115	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
   1116
   1117	return 0;
   1118}
   1119
   1120static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
   1121				     u32 old_lock, u32 new_lock, int res)
   1122{
   1123	struct audit_buffer *ab;
   1124
   1125	if (audit_enabled == AUDIT_OFF)
   1126		return;
   1127
   1128	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
   1129	if (!ab)
   1130		return;
   1131	audit_log_task_info(ab);
   1132	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
   1133			 audit_feature_names[which], !!old_feature, !!new_feature,
   1134			 !!old_lock, !!new_lock, res);
   1135	audit_log_end(ab);
   1136}
   1137
   1138static int audit_set_feature(struct audit_features *uaf)
   1139{
   1140	int i;
   1141
   1142	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
   1143
   1144	/* if there is ever a version 2 we should handle that here */
   1145
   1146	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
   1147		u32 feature = AUDIT_FEATURE_TO_MASK(i);
   1148		u32 old_feature, new_feature, old_lock, new_lock;
   1149
   1150		/* if we are not changing this feature, move along */
   1151		if (!(feature & uaf->mask))
   1152			continue;
   1153
   1154		old_feature = af.features & feature;
   1155		new_feature = uaf->features & feature;
   1156		new_lock = (uaf->lock | af.lock) & feature;
   1157		old_lock = af.lock & feature;
   1158
   1159		/* are we changing a locked feature? */
   1160		if (old_lock && (new_feature != old_feature)) {
   1161			audit_log_feature_change(i, old_feature, new_feature,
   1162						 old_lock, new_lock, 0);
   1163			return -EPERM;
   1164		}
   1165	}
   1166	/* nothing invalid, do the changes */
   1167	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
   1168		u32 feature = AUDIT_FEATURE_TO_MASK(i);
   1169		u32 old_feature, new_feature, old_lock, new_lock;
   1170
   1171		/* if we are not changing this feature, move along */
   1172		if (!(feature & uaf->mask))
   1173			continue;
   1174
   1175		old_feature = af.features & feature;
   1176		new_feature = uaf->features & feature;
   1177		old_lock = af.lock & feature;
   1178		new_lock = (uaf->lock | af.lock) & feature;
   1179
   1180		if (new_feature != old_feature)
   1181			audit_log_feature_change(i, old_feature, new_feature,
   1182						 old_lock, new_lock, 1);
   1183
   1184		if (new_feature)
   1185			af.features |= feature;
   1186		else
   1187			af.features &= ~feature;
   1188		af.lock |= new_lock;
   1189	}
   1190
   1191	return 0;
   1192}
   1193
   1194static int audit_replace(struct pid *pid)
   1195{
   1196	pid_t pvnr;
   1197	struct sk_buff *skb;
   1198
   1199	pvnr = pid_vnr(pid);
   1200	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
   1201	if (!skb)
   1202		return -ENOMEM;
   1203	return auditd_send_unicast_skb(skb);
   1204}
   1205
   1206static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
   1207{
   1208	u32			seq;
   1209	void			*data;
   1210	int			data_len;
   1211	int			err;
   1212	struct audit_buffer	*ab;
   1213	u16			msg_type = nlh->nlmsg_type;
   1214	struct audit_sig_info   *sig_data;
   1215	char			*ctx = NULL;
   1216	u32			len;
   1217
   1218	err = audit_netlink_ok(skb, msg_type);
   1219	if (err)
   1220		return err;
   1221
   1222	seq  = nlh->nlmsg_seq;
   1223	data = nlmsg_data(nlh);
   1224	data_len = nlmsg_len(nlh);
   1225
   1226	switch (msg_type) {
   1227	case AUDIT_GET: {
   1228		struct audit_status	s;
   1229		memset(&s, 0, sizeof(s));
   1230		s.enabled		   = audit_enabled;
   1231		s.failure		   = audit_failure;
   1232		/* NOTE: use pid_vnr() so the PID is relative to the current
   1233		 *       namespace */
   1234		s.pid			   = auditd_pid_vnr();
   1235		s.rate_limit		   = audit_rate_limit;
   1236		s.backlog_limit		   = audit_backlog_limit;
   1237		s.lost			   = atomic_read(&audit_lost);
   1238		s.backlog		   = skb_queue_len(&audit_queue);
   1239		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
   1240		s.backlog_wait_time	   = audit_backlog_wait_time;
   1241		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
   1242		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
   1243		break;
   1244	}
   1245	case AUDIT_SET: {
   1246		struct audit_status	s;
   1247		memset(&s, 0, sizeof(s));
   1248		/* guard against past and future API changes */
   1249		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
   1250		if (s.mask & AUDIT_STATUS_ENABLED) {
   1251			err = audit_set_enabled(s.enabled);
   1252			if (err < 0)
   1253				return err;
   1254		}
   1255		if (s.mask & AUDIT_STATUS_FAILURE) {
   1256			err = audit_set_failure(s.failure);
   1257			if (err < 0)
   1258				return err;
   1259		}
   1260		if (s.mask & AUDIT_STATUS_PID) {
   1261			/* NOTE: we are using the vnr PID functions below
   1262			 *       because the s.pid value is relative to the
   1263			 *       namespace of the caller; at present this
   1264			 *       doesn't matter much since you can really only
   1265			 *       run auditd from the initial pid namespace, but
   1266			 *       something to keep in mind if this changes */
   1267			pid_t new_pid = s.pid;
   1268			pid_t auditd_pid;
   1269			struct pid *req_pid = task_tgid(current);
   1270
   1271			/* Sanity check - PID values must match. Setting
   1272			 * pid to 0 is how auditd ends auditing. */
   1273			if (new_pid && (new_pid != pid_vnr(req_pid)))
   1274				return -EINVAL;
   1275
   1276			/* test the auditd connection */
   1277			audit_replace(req_pid);
   1278
   1279			auditd_pid = auditd_pid_vnr();
   1280			if (auditd_pid) {
   1281				/* replacing a healthy auditd is not allowed */
   1282				if (new_pid) {
   1283					audit_log_config_change("audit_pid",
   1284							new_pid, auditd_pid, 0);
   1285					return -EEXIST;
   1286				}
   1287				/* only current auditd can unregister itself */
   1288				if (pid_vnr(req_pid) != auditd_pid) {
   1289					audit_log_config_change("audit_pid",
   1290							new_pid, auditd_pid, 0);
   1291					return -EACCES;
   1292				}
   1293			}
   1294
   1295			if (new_pid) {
   1296				/* register a new auditd connection */
   1297				err = auditd_set(req_pid,
   1298						 NETLINK_CB(skb).portid,
   1299						 sock_net(NETLINK_CB(skb).sk));
   1300				if (audit_enabled != AUDIT_OFF)
   1301					audit_log_config_change("audit_pid",
   1302								new_pid,
   1303								auditd_pid,
   1304								err ? 0 : 1);
   1305				if (err)
   1306					return err;
   1307
   1308				/* try to process any backlog */
   1309				wake_up_interruptible(&kauditd_wait);
   1310			} else {
   1311				if (audit_enabled != AUDIT_OFF)
   1312					audit_log_config_change("audit_pid",
   1313								new_pid,
   1314								auditd_pid, 1);
   1315
   1316				/* unregister the auditd connection */
   1317				auditd_reset(NULL);
   1318			}
   1319		}
   1320		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
   1321			err = audit_set_rate_limit(s.rate_limit);
   1322			if (err < 0)
   1323				return err;
   1324		}
   1325		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
   1326			err = audit_set_backlog_limit(s.backlog_limit);
   1327			if (err < 0)
   1328				return err;
   1329		}
   1330		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
   1331			if (sizeof(s) > (size_t)nlh->nlmsg_len)
   1332				return -EINVAL;
   1333			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
   1334				return -EINVAL;
   1335			err = audit_set_backlog_wait_time(s.backlog_wait_time);
   1336			if (err < 0)
   1337				return err;
   1338		}
   1339		if (s.mask == AUDIT_STATUS_LOST) {
   1340			u32 lost = atomic_xchg(&audit_lost, 0);
   1341
   1342			audit_log_config_change("lost", 0, lost, 1);
   1343			return lost;
   1344		}
   1345		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
   1346			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
   1347
   1348			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
   1349			return actual;
   1350		}
   1351		break;
   1352	}
   1353	case AUDIT_GET_FEATURE:
   1354		err = audit_get_feature(skb);
   1355		if (err)
   1356			return err;
   1357		break;
   1358	case AUDIT_SET_FEATURE:
   1359		if (data_len < sizeof(struct audit_features))
   1360			return -EINVAL;
   1361		err = audit_set_feature(data);
   1362		if (err)
   1363			return err;
   1364		break;
   1365	case AUDIT_USER:
   1366	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
   1367	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
   1368		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
   1369			return 0;
   1370		/* exit early if there isn't at least one character to print */
   1371		if (data_len < 2)
   1372			return -EINVAL;
   1373
   1374		err = audit_filter(msg_type, AUDIT_FILTER_USER);
   1375		if (err == 1) { /* match or error */
   1376			char *str = data;
   1377
   1378			err = 0;
   1379			if (msg_type == AUDIT_USER_TTY) {
   1380				err = tty_audit_push();
   1381				if (err)
   1382					break;
   1383			}
   1384			audit_log_user_recv_msg(&ab, msg_type);
   1385			if (msg_type != AUDIT_USER_TTY) {
   1386				/* ensure NULL termination */
   1387				str[data_len - 1] = '\0';
   1388				audit_log_format(ab, " msg='%.*s'",
   1389						 AUDIT_MESSAGE_TEXT_MAX,
   1390						 str);
   1391			} else {
   1392				audit_log_format(ab, " data=");
   1393				if (data_len > 0 && str[data_len - 1] == '\0')
   1394					data_len--;
   1395				audit_log_n_untrustedstring(ab, str, data_len);
   1396			}
   1397			audit_log_end(ab);
   1398		}
   1399		break;
   1400	case AUDIT_ADD_RULE:
   1401	case AUDIT_DEL_RULE:
   1402		if (data_len < sizeof(struct audit_rule_data))
   1403			return -EINVAL;
   1404		if (audit_enabled == AUDIT_LOCKED) {
   1405			audit_log_common_recv_msg(audit_context(), &ab,
   1406						  AUDIT_CONFIG_CHANGE);
   1407			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
   1408					 msg_type == AUDIT_ADD_RULE ?
   1409						"add_rule" : "remove_rule",
   1410					 audit_enabled);
   1411			audit_log_end(ab);
   1412			return -EPERM;
   1413		}
   1414		err = audit_rule_change(msg_type, seq, data, data_len);
   1415		break;
   1416	case AUDIT_LIST_RULES:
   1417		err = audit_list_rules_send(skb, seq);
   1418		break;
   1419	case AUDIT_TRIM:
   1420		audit_trim_trees();
   1421		audit_log_common_recv_msg(audit_context(), &ab,
   1422					  AUDIT_CONFIG_CHANGE);
   1423		audit_log_format(ab, " op=trim res=1");
   1424		audit_log_end(ab);
   1425		break;
   1426	case AUDIT_MAKE_EQUIV: {
   1427		void *bufp = data;
   1428		u32 sizes[2];
   1429		size_t msglen = data_len;
   1430		char *old, *new;
   1431
   1432		err = -EINVAL;
   1433		if (msglen < 2 * sizeof(u32))
   1434			break;
   1435		memcpy(sizes, bufp, 2 * sizeof(u32));
   1436		bufp += 2 * sizeof(u32);
   1437		msglen -= 2 * sizeof(u32);
   1438		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
   1439		if (IS_ERR(old)) {
   1440			err = PTR_ERR(old);
   1441			break;
   1442		}
   1443		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
   1444		if (IS_ERR(new)) {
   1445			err = PTR_ERR(new);
   1446			kfree(old);
   1447			break;
   1448		}
   1449		/* OK, here comes... */
   1450		err = audit_tag_tree(old, new);
   1451
   1452		audit_log_common_recv_msg(audit_context(), &ab,
   1453					  AUDIT_CONFIG_CHANGE);
   1454		audit_log_format(ab, " op=make_equiv old=");
   1455		audit_log_untrustedstring(ab, old);
   1456		audit_log_format(ab, " new=");
   1457		audit_log_untrustedstring(ab, new);
   1458		audit_log_format(ab, " res=%d", !err);
   1459		audit_log_end(ab);
   1460		kfree(old);
   1461		kfree(new);
   1462		break;
   1463	}
   1464	case AUDIT_SIGNAL_INFO:
   1465		len = 0;
   1466		if (audit_sig_sid) {
   1467			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
   1468			if (err)
   1469				return err;
   1470		}
   1471		sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
   1472		if (!sig_data) {
   1473			if (audit_sig_sid)
   1474				security_release_secctx(ctx, len);
   1475			return -ENOMEM;
   1476		}
   1477		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
   1478		sig_data->pid = audit_sig_pid;
   1479		if (audit_sig_sid) {
   1480			memcpy(sig_data->ctx, ctx, len);
   1481			security_release_secctx(ctx, len);
   1482		}
   1483		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
   1484				 sig_data, struct_size(sig_data, ctx, len));
   1485		kfree(sig_data);
   1486		break;
   1487	case AUDIT_TTY_GET: {
   1488		struct audit_tty_status s;
   1489		unsigned int t;
   1490
   1491		t = READ_ONCE(current->signal->audit_tty);
   1492		s.enabled = t & AUDIT_TTY_ENABLE;
   1493		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
   1494
   1495		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
   1496		break;
   1497	}
   1498	case AUDIT_TTY_SET: {
   1499		struct audit_tty_status s, old;
   1500		struct audit_buffer	*ab;
   1501		unsigned int t;
   1502
   1503		memset(&s, 0, sizeof(s));
   1504		/* guard against past and future API changes */
   1505		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
   1506		/* check if new data is valid */
   1507		if ((s.enabled != 0 && s.enabled != 1) ||
   1508		    (s.log_passwd != 0 && s.log_passwd != 1))
   1509			err = -EINVAL;
   1510
   1511		if (err)
   1512			t = READ_ONCE(current->signal->audit_tty);
   1513		else {
   1514			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
   1515			t = xchg(&current->signal->audit_tty, t);
   1516		}
   1517		old.enabled = t & AUDIT_TTY_ENABLE;
   1518		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
   1519
   1520		audit_log_common_recv_msg(audit_context(), &ab,
   1521					  AUDIT_CONFIG_CHANGE);
   1522		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
   1523				 " old-log_passwd=%d new-log_passwd=%d res=%d",
   1524				 old.enabled, s.enabled, old.log_passwd,
   1525				 s.log_passwd, !err);
   1526		audit_log_end(ab);
   1527		break;
   1528	}
   1529	default:
   1530		err = -EINVAL;
   1531		break;
   1532	}
   1533
   1534	return err < 0 ? err : 0;
   1535}
   1536
   1537/**
   1538 * audit_receive - receive messages from a netlink control socket
   1539 * @skb: the message buffer
   1540 *
   1541 * Parse the provided skb and deal with any messages that may be present,
   1542 * malformed skbs are discarded.
   1543 */
   1544static void audit_receive(struct sk_buff  *skb)
   1545{
   1546	struct nlmsghdr *nlh;
   1547	/*
   1548	 * len MUST be signed for nlmsg_next to be able to dec it below 0
   1549	 * if the nlmsg_len was not aligned
   1550	 */
   1551	int len;
   1552	int err;
   1553
   1554	nlh = nlmsg_hdr(skb);
   1555	len = skb->len;
   1556
   1557	audit_ctl_lock();
   1558	while (nlmsg_ok(nlh, len)) {
   1559		err = audit_receive_msg(skb, nlh);
   1560		/* if err or if this message says it wants a response */
   1561		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
   1562			netlink_ack(skb, nlh, err, NULL);
   1563
   1564		nlh = nlmsg_next(nlh, &len);
   1565	}
   1566	audit_ctl_unlock();
   1567
   1568	/* can't block with the ctrl lock, so penalize the sender now */
   1569	if (audit_backlog_limit &&
   1570	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
   1571		DECLARE_WAITQUEUE(wait, current);
   1572
   1573		/* wake kauditd to try and flush the queue */
   1574		wake_up_interruptible(&kauditd_wait);
   1575
   1576		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
   1577		set_current_state(TASK_UNINTERRUPTIBLE);
   1578		schedule_timeout(audit_backlog_wait_time);
   1579		remove_wait_queue(&audit_backlog_wait, &wait);
   1580	}
   1581}
   1582
   1583/* Log information about who is connecting to the audit multicast socket */
   1584static void audit_log_multicast(int group, const char *op, int err)
   1585{
   1586	const struct cred *cred;
   1587	struct tty_struct *tty;
   1588	char comm[sizeof(current->comm)];
   1589	struct audit_buffer *ab;
   1590
   1591	if (!audit_enabled)
   1592		return;
   1593
   1594	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
   1595	if (!ab)
   1596		return;
   1597
   1598	cred = current_cred();
   1599	tty = audit_get_tty();
   1600	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
   1601			 task_pid_nr(current),
   1602			 from_kuid(&init_user_ns, cred->uid),
   1603			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
   1604			 tty ? tty_name(tty) : "(none)",
   1605			 audit_get_sessionid(current));
   1606	audit_put_tty(tty);
   1607	audit_log_task_context(ab); /* subj= */
   1608	audit_log_format(ab, " comm=");
   1609	audit_log_untrustedstring(ab, get_task_comm(comm, current));
   1610	audit_log_d_path_exe(ab, current->mm); /* exe= */
   1611	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
   1612	audit_log_end(ab);
   1613}
   1614
   1615/* Run custom bind function on netlink socket group connect or bind requests. */
   1616static int audit_multicast_bind(struct net *net, int group)
   1617{
   1618	int err = 0;
   1619
   1620	if (!capable(CAP_AUDIT_READ))
   1621		err = -EPERM;
   1622	audit_log_multicast(group, "connect", err);
   1623	return err;
   1624}
   1625
   1626static void audit_multicast_unbind(struct net *net, int group)
   1627{
   1628	audit_log_multicast(group, "disconnect", 0);
   1629}
   1630
   1631static int __net_init audit_net_init(struct net *net)
   1632{
   1633	struct netlink_kernel_cfg cfg = {
   1634		.input	= audit_receive,
   1635		.bind	= audit_multicast_bind,
   1636		.unbind	= audit_multicast_unbind,
   1637		.flags	= NL_CFG_F_NONROOT_RECV,
   1638		.groups	= AUDIT_NLGRP_MAX,
   1639	};
   1640
   1641	struct audit_net *aunet = net_generic(net, audit_net_id);
   1642
   1643	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
   1644	if (aunet->sk == NULL) {
   1645		audit_panic("cannot initialize netlink socket in namespace");
   1646		return -ENOMEM;
   1647	}
   1648	/* limit the timeout in case auditd is blocked/stopped */
   1649	aunet->sk->sk_sndtimeo = HZ / 10;
   1650
   1651	return 0;
   1652}
   1653
   1654static void __net_exit audit_net_exit(struct net *net)
   1655{
   1656	struct audit_net *aunet = net_generic(net, audit_net_id);
   1657
   1658	/* NOTE: you would think that we would want to check the auditd
   1659	 * connection and potentially reset it here if it lives in this
   1660	 * namespace, but since the auditd connection tracking struct holds a
   1661	 * reference to this namespace (see auditd_set()) we are only ever
   1662	 * going to get here after that connection has been released */
   1663
   1664	netlink_kernel_release(aunet->sk);
   1665}
   1666
   1667static struct pernet_operations audit_net_ops __net_initdata = {
   1668	.init = audit_net_init,
   1669	.exit = audit_net_exit,
   1670	.id = &audit_net_id,
   1671	.size = sizeof(struct audit_net),
   1672};
   1673
   1674/* Initialize audit support at boot time. */
   1675static int __init audit_init(void)
   1676{
   1677	int i;
   1678
   1679	if (audit_initialized == AUDIT_DISABLED)
   1680		return 0;
   1681
   1682	audit_buffer_cache = kmem_cache_create("audit_buffer",
   1683					       sizeof(struct audit_buffer),
   1684					       0, SLAB_PANIC, NULL);
   1685
   1686	skb_queue_head_init(&audit_queue);
   1687	skb_queue_head_init(&audit_retry_queue);
   1688	skb_queue_head_init(&audit_hold_queue);
   1689
   1690	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
   1691		INIT_LIST_HEAD(&audit_inode_hash[i]);
   1692
   1693	mutex_init(&audit_cmd_mutex.lock);
   1694	audit_cmd_mutex.owner = NULL;
   1695
   1696	pr_info("initializing netlink subsys (%s)\n",
   1697		audit_default ? "enabled" : "disabled");
   1698	register_pernet_subsys(&audit_net_ops);
   1699
   1700	audit_initialized = AUDIT_INITIALIZED;
   1701
   1702	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
   1703	if (IS_ERR(kauditd_task)) {
   1704		int err = PTR_ERR(kauditd_task);
   1705		panic("audit: failed to start the kauditd thread (%d)\n", err);
   1706	}
   1707
   1708	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
   1709		"state=initialized audit_enabled=%u res=1",
   1710		 audit_enabled);
   1711
   1712	return 0;
   1713}
   1714postcore_initcall(audit_init);
   1715
   1716/*
   1717 * Process kernel command-line parameter at boot time.
   1718 * audit={0|off} or audit={1|on}.
   1719 */
   1720static int __init audit_enable(char *str)
   1721{
   1722	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
   1723		audit_default = AUDIT_OFF;
   1724	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
   1725		audit_default = AUDIT_ON;
   1726	else {
   1727		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
   1728		audit_default = AUDIT_ON;
   1729	}
   1730
   1731	if (audit_default == AUDIT_OFF)
   1732		audit_initialized = AUDIT_DISABLED;
   1733	if (audit_set_enabled(audit_default))
   1734		pr_err("audit: error setting audit state (%d)\n",
   1735		       audit_default);
   1736
   1737	pr_info("%s\n", audit_default ?
   1738		"enabled (after initialization)" : "disabled (until reboot)");
   1739
   1740	return 1;
   1741}
   1742__setup("audit=", audit_enable);
   1743
   1744/* Process kernel command-line parameter at boot time.
   1745 * audit_backlog_limit=<n> */
   1746static int __init audit_backlog_limit_set(char *str)
   1747{
   1748	u32 audit_backlog_limit_arg;
   1749
   1750	pr_info("audit_backlog_limit: ");
   1751	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
   1752		pr_cont("using default of %u, unable to parse %s\n",
   1753			audit_backlog_limit, str);
   1754		return 1;
   1755	}
   1756
   1757	audit_backlog_limit = audit_backlog_limit_arg;
   1758	pr_cont("%d\n", audit_backlog_limit);
   1759
   1760	return 1;
   1761}
   1762__setup("audit_backlog_limit=", audit_backlog_limit_set);
   1763
   1764static void audit_buffer_free(struct audit_buffer *ab)
   1765{
   1766	if (!ab)
   1767		return;
   1768
   1769	kfree_skb(ab->skb);
   1770	kmem_cache_free(audit_buffer_cache, ab);
   1771}
   1772
   1773static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
   1774					       gfp_t gfp_mask, int type)
   1775{
   1776	struct audit_buffer *ab;
   1777
   1778	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
   1779	if (!ab)
   1780		return NULL;
   1781
   1782	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
   1783	if (!ab->skb)
   1784		goto err;
   1785	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
   1786		goto err;
   1787
   1788	ab->ctx = ctx;
   1789	ab->gfp_mask = gfp_mask;
   1790
   1791	return ab;
   1792
   1793err:
   1794	audit_buffer_free(ab);
   1795	return NULL;
   1796}
   1797
   1798/**
   1799 * audit_serial - compute a serial number for the audit record
   1800 *
   1801 * Compute a serial number for the audit record.  Audit records are
   1802 * written to user-space as soon as they are generated, so a complete
   1803 * audit record may be written in several pieces.  The timestamp of the
   1804 * record and this serial number are used by the user-space tools to
   1805 * determine which pieces belong to the same audit record.  The
   1806 * (timestamp,serial) tuple is unique for each syscall and is live from
   1807 * syscall entry to syscall exit.
   1808 *
   1809 * NOTE: Another possibility is to store the formatted records off the
   1810 * audit context (for those records that have a context), and emit them
   1811 * all at syscall exit.  However, this could delay the reporting of
   1812 * significant errors until syscall exit (or never, if the system
   1813 * halts).
   1814 */
   1815unsigned int audit_serial(void)
   1816{
   1817	static atomic_t serial = ATOMIC_INIT(0);
   1818
   1819	return atomic_inc_return(&serial);
   1820}
   1821
   1822static inline void audit_get_stamp(struct audit_context *ctx,
   1823				   struct timespec64 *t, unsigned int *serial)
   1824{
   1825	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
   1826		ktime_get_coarse_real_ts64(t);
   1827		*serial = audit_serial();
   1828	}
   1829}
   1830
   1831/**
   1832 * audit_log_start - obtain an audit buffer
   1833 * @ctx: audit_context (may be NULL)
   1834 * @gfp_mask: type of allocation
   1835 * @type: audit message type
   1836 *
   1837 * Returns audit_buffer pointer on success or NULL on error.
   1838 *
   1839 * Obtain an audit buffer.  This routine does locking to obtain the
   1840 * audit buffer, but then no locking is required for calls to
   1841 * audit_log_*format.  If the task (ctx) is a task that is currently in a
   1842 * syscall, then the syscall is marked as auditable and an audit record
   1843 * will be written at syscall exit.  If there is no associated task, then
   1844 * task context (ctx) should be NULL.
   1845 */
   1846struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
   1847				     int type)
   1848{
   1849	struct audit_buffer *ab;
   1850	struct timespec64 t;
   1851	unsigned int serial;
   1852
   1853	if (audit_initialized != AUDIT_INITIALIZED)
   1854		return NULL;
   1855
   1856	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
   1857		return NULL;
   1858
   1859	/* NOTE: don't ever fail/sleep on these two conditions:
   1860	 * 1. auditd generated record - since we need auditd to drain the
   1861	 *    queue; also, when we are checking for auditd, compare PIDs using
   1862	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
   1863	 *    using a PID anchored in the caller's namespace
   1864	 * 2. generator holding the audit_cmd_mutex - we don't want to block
   1865	 *    while holding the mutex, although we do penalize the sender
   1866	 *    later in audit_receive() when it is safe to block
   1867	 */
   1868	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
   1869		long stime = audit_backlog_wait_time;
   1870
   1871		while (audit_backlog_limit &&
   1872		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
   1873			/* wake kauditd to try and flush the queue */
   1874			wake_up_interruptible(&kauditd_wait);
   1875
   1876			/* sleep if we are allowed and we haven't exhausted our
   1877			 * backlog wait limit */
   1878			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
   1879				long rtime = stime;
   1880
   1881				DECLARE_WAITQUEUE(wait, current);
   1882
   1883				add_wait_queue_exclusive(&audit_backlog_wait,
   1884							 &wait);
   1885				set_current_state(TASK_UNINTERRUPTIBLE);
   1886				stime = schedule_timeout(rtime);
   1887				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
   1888				remove_wait_queue(&audit_backlog_wait, &wait);
   1889			} else {
   1890				if (audit_rate_check() && printk_ratelimit())
   1891					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
   1892						skb_queue_len(&audit_queue),
   1893						audit_backlog_limit);
   1894				audit_log_lost("backlog limit exceeded");
   1895				return NULL;
   1896			}
   1897		}
   1898	}
   1899
   1900	ab = audit_buffer_alloc(ctx, gfp_mask, type);
   1901	if (!ab) {
   1902		audit_log_lost("out of memory in audit_log_start");
   1903		return NULL;
   1904	}
   1905
   1906	audit_get_stamp(ab->ctx, &t, &serial);
   1907	/* cancel dummy context to enable supporting records */
   1908	if (ctx)
   1909		ctx->dummy = 0;
   1910	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
   1911			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
   1912
   1913	return ab;
   1914}
   1915
   1916/**
   1917 * audit_expand - expand skb in the audit buffer
   1918 * @ab: audit_buffer
   1919 * @extra: space to add at tail of the skb
   1920 *
   1921 * Returns 0 (no space) on failed expansion, or available space if
   1922 * successful.
   1923 */
   1924static inline int audit_expand(struct audit_buffer *ab, int extra)
   1925{
   1926	struct sk_buff *skb = ab->skb;
   1927	int oldtail = skb_tailroom(skb);
   1928	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
   1929	int newtail = skb_tailroom(skb);
   1930
   1931	if (ret < 0) {
   1932		audit_log_lost("out of memory in audit_expand");
   1933		return 0;
   1934	}
   1935
   1936	skb->truesize += newtail - oldtail;
   1937	return newtail;
   1938}
   1939
   1940/*
   1941 * Format an audit message into the audit buffer.  If there isn't enough
   1942 * room in the audit buffer, more room will be allocated and vsnprint
   1943 * will be called a second time.  Currently, we assume that a printk
   1944 * can't format message larger than 1024 bytes, so we don't either.
   1945 */
   1946static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
   1947			      va_list args)
   1948{
   1949	int len, avail;
   1950	struct sk_buff *skb;
   1951	va_list args2;
   1952
   1953	if (!ab)
   1954		return;
   1955
   1956	BUG_ON(!ab->skb);
   1957	skb = ab->skb;
   1958	avail = skb_tailroom(skb);
   1959	if (avail == 0) {
   1960		avail = audit_expand(ab, AUDIT_BUFSIZ);
   1961		if (!avail)
   1962			goto out;
   1963	}
   1964	va_copy(args2, args);
   1965	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
   1966	if (len >= avail) {
   1967		/* The printk buffer is 1024 bytes long, so if we get
   1968		 * here and AUDIT_BUFSIZ is at least 1024, then we can
   1969		 * log everything that printk could have logged. */
   1970		avail = audit_expand(ab,
   1971			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
   1972		if (!avail)
   1973			goto out_va_end;
   1974		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
   1975	}
   1976	if (len > 0)
   1977		skb_put(skb, len);
   1978out_va_end:
   1979	va_end(args2);
   1980out:
   1981	return;
   1982}
   1983
   1984/**
   1985 * audit_log_format - format a message into the audit buffer.
   1986 * @ab: audit_buffer
   1987 * @fmt: format string
   1988 * @...: optional parameters matching @fmt string
   1989 *
   1990 * All the work is done in audit_log_vformat.
   1991 */
   1992void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
   1993{
   1994	va_list args;
   1995
   1996	if (!ab)
   1997		return;
   1998	va_start(args, fmt);
   1999	audit_log_vformat(ab, fmt, args);
   2000	va_end(args);
   2001}
   2002
   2003/**
   2004 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
   2005 * @ab: the audit_buffer
   2006 * @buf: buffer to convert to hex
   2007 * @len: length of @buf to be converted
   2008 *
   2009 * No return value; failure to expand is silently ignored.
   2010 *
   2011 * This function will take the passed buf and convert it into a string of
   2012 * ascii hex digits. The new string is placed onto the skb.
   2013 */
   2014void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
   2015		size_t len)
   2016{
   2017	int i, avail, new_len;
   2018	unsigned char *ptr;
   2019	struct sk_buff *skb;
   2020
   2021	if (!ab)
   2022		return;
   2023
   2024	BUG_ON(!ab->skb);
   2025	skb = ab->skb;
   2026	avail = skb_tailroom(skb);
   2027	new_len = len<<1;
   2028	if (new_len >= avail) {
   2029		/* Round the buffer request up to the next multiple */
   2030		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
   2031		avail = audit_expand(ab, new_len);
   2032		if (!avail)
   2033			return;
   2034	}
   2035
   2036	ptr = skb_tail_pointer(skb);
   2037	for (i = 0; i < len; i++)
   2038		ptr = hex_byte_pack_upper(ptr, buf[i]);
   2039	*ptr = 0;
   2040	skb_put(skb, len << 1); /* new string is twice the old string */
   2041}
   2042
   2043/*
   2044 * Format a string of no more than slen characters into the audit buffer,
   2045 * enclosed in quote marks.
   2046 */
   2047void audit_log_n_string(struct audit_buffer *ab, const char *string,
   2048			size_t slen)
   2049{
   2050	int avail, new_len;
   2051	unsigned char *ptr;
   2052	struct sk_buff *skb;
   2053
   2054	if (!ab)
   2055		return;
   2056
   2057	BUG_ON(!ab->skb);
   2058	skb = ab->skb;
   2059	avail = skb_tailroom(skb);
   2060	new_len = slen + 3;	/* enclosing quotes + null terminator */
   2061	if (new_len > avail) {
   2062		avail = audit_expand(ab, new_len);
   2063		if (!avail)
   2064			return;
   2065	}
   2066	ptr = skb_tail_pointer(skb);
   2067	*ptr++ = '"';
   2068	memcpy(ptr, string, slen);
   2069	ptr += slen;
   2070	*ptr++ = '"';
   2071	*ptr = 0;
   2072	skb_put(skb, slen + 2);	/* don't include null terminator */
   2073}
   2074
   2075/**
   2076 * audit_string_contains_control - does a string need to be logged in hex
   2077 * @string: string to be checked
   2078 * @len: max length of the string to check
   2079 */
   2080bool audit_string_contains_control(const char *string, size_t len)
   2081{
   2082	const unsigned char *p;
   2083	for (p = string; p < (const unsigned char *)string + len; p++) {
   2084		if (*p == '"' || *p < 0x21 || *p > 0x7e)
   2085			return true;
   2086	}
   2087	return false;
   2088}
   2089
   2090/**
   2091 * audit_log_n_untrustedstring - log a string that may contain random characters
   2092 * @ab: audit_buffer
   2093 * @len: length of string (not including trailing null)
   2094 * @string: string to be logged
   2095 *
   2096 * This code will escape a string that is passed to it if the string
   2097 * contains a control character, unprintable character, double quote mark,
   2098 * or a space. Unescaped strings will start and end with a double quote mark.
   2099 * Strings that are escaped are printed in hex (2 digits per char).
   2100 *
   2101 * The caller specifies the number of characters in the string to log, which may
   2102 * or may not be the entire string.
   2103 */
   2104void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
   2105				 size_t len)
   2106{
   2107	if (audit_string_contains_control(string, len))
   2108		audit_log_n_hex(ab, string, len);
   2109	else
   2110		audit_log_n_string(ab, string, len);
   2111}
   2112
   2113/**
   2114 * audit_log_untrustedstring - log a string that may contain random characters
   2115 * @ab: audit_buffer
   2116 * @string: string to be logged
   2117 *
   2118 * Same as audit_log_n_untrustedstring(), except that strlen is used to
   2119 * determine string length.
   2120 */
   2121void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
   2122{
   2123	audit_log_n_untrustedstring(ab, string, strlen(string));
   2124}
   2125
   2126/* This is a helper-function to print the escaped d_path */
   2127void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
   2128		      const struct path *path)
   2129{
   2130	char *p, *pathname;
   2131
   2132	if (prefix)
   2133		audit_log_format(ab, "%s", prefix);
   2134
   2135	/* We will allow 11 spaces for ' (deleted)' to be appended */
   2136	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
   2137	if (!pathname) {
   2138		audit_log_format(ab, "\"<no_memory>\"");
   2139		return;
   2140	}
   2141	p = d_path(path, pathname, PATH_MAX+11);
   2142	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
   2143		/* FIXME: can we save some information here? */
   2144		audit_log_format(ab, "\"<too_long>\"");
   2145	} else
   2146		audit_log_untrustedstring(ab, p);
   2147	kfree(pathname);
   2148}
   2149
   2150void audit_log_session_info(struct audit_buffer *ab)
   2151{
   2152	unsigned int sessionid = audit_get_sessionid(current);
   2153	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
   2154
   2155	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
   2156}
   2157
   2158void audit_log_key(struct audit_buffer *ab, char *key)
   2159{
   2160	audit_log_format(ab, " key=");
   2161	if (key)
   2162		audit_log_untrustedstring(ab, key);
   2163	else
   2164		audit_log_format(ab, "(null)");
   2165}
   2166
   2167int audit_log_task_context(struct audit_buffer *ab)
   2168{
   2169	char *ctx = NULL;
   2170	unsigned len;
   2171	int error;
   2172	u32 sid;
   2173
   2174	security_current_getsecid_subj(&sid);
   2175	if (!sid)
   2176		return 0;
   2177
   2178	error = security_secid_to_secctx(sid, &ctx, &len);
   2179	if (error) {
   2180		if (error != -EINVAL)
   2181			goto error_path;
   2182		return 0;
   2183	}
   2184
   2185	audit_log_format(ab, " subj=%s", ctx);
   2186	security_release_secctx(ctx, len);
   2187	return 0;
   2188
   2189error_path:
   2190	audit_panic("error in audit_log_task_context");
   2191	return error;
   2192}
   2193EXPORT_SYMBOL(audit_log_task_context);
   2194
   2195void audit_log_d_path_exe(struct audit_buffer *ab,
   2196			  struct mm_struct *mm)
   2197{
   2198	struct file *exe_file;
   2199
   2200	if (!mm)
   2201		goto out_null;
   2202
   2203	exe_file = get_mm_exe_file(mm);
   2204	if (!exe_file)
   2205		goto out_null;
   2206
   2207	audit_log_d_path(ab, " exe=", &exe_file->f_path);
   2208	fput(exe_file);
   2209	return;
   2210out_null:
   2211	audit_log_format(ab, " exe=(null)");
   2212}
   2213
   2214struct tty_struct *audit_get_tty(void)
   2215{
   2216	struct tty_struct *tty = NULL;
   2217	unsigned long flags;
   2218
   2219	spin_lock_irqsave(&current->sighand->siglock, flags);
   2220	if (current->signal)
   2221		tty = tty_kref_get(current->signal->tty);
   2222	spin_unlock_irqrestore(&current->sighand->siglock, flags);
   2223	return tty;
   2224}
   2225
   2226void audit_put_tty(struct tty_struct *tty)
   2227{
   2228	tty_kref_put(tty);
   2229}
   2230
   2231void audit_log_task_info(struct audit_buffer *ab)
   2232{
   2233	const struct cred *cred;
   2234	char comm[sizeof(current->comm)];
   2235	struct tty_struct *tty;
   2236
   2237	if (!ab)
   2238		return;
   2239
   2240	cred = current_cred();
   2241	tty = audit_get_tty();
   2242	audit_log_format(ab,
   2243			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
   2244			 " euid=%u suid=%u fsuid=%u"
   2245			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
   2246			 task_ppid_nr(current),
   2247			 task_tgid_nr(current),
   2248			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
   2249			 from_kuid(&init_user_ns, cred->uid),
   2250			 from_kgid(&init_user_ns, cred->gid),
   2251			 from_kuid(&init_user_ns, cred->euid),
   2252			 from_kuid(&init_user_ns, cred->suid),
   2253			 from_kuid(&init_user_ns, cred->fsuid),
   2254			 from_kgid(&init_user_ns, cred->egid),
   2255			 from_kgid(&init_user_ns, cred->sgid),
   2256			 from_kgid(&init_user_ns, cred->fsgid),
   2257			 tty ? tty_name(tty) : "(none)",
   2258			 audit_get_sessionid(current));
   2259	audit_put_tty(tty);
   2260	audit_log_format(ab, " comm=");
   2261	audit_log_untrustedstring(ab, get_task_comm(comm, current));
   2262	audit_log_d_path_exe(ab, current->mm);
   2263	audit_log_task_context(ab);
   2264}
   2265EXPORT_SYMBOL(audit_log_task_info);
   2266
   2267/**
   2268 * audit_log_path_denied - report a path restriction denial
   2269 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
   2270 * @operation: specific operation name
   2271 */
   2272void audit_log_path_denied(int type, const char *operation)
   2273{
   2274	struct audit_buffer *ab;
   2275
   2276	if (!audit_enabled || audit_dummy_context())
   2277		return;
   2278
   2279	/* Generate log with subject, operation, outcome. */
   2280	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
   2281	if (!ab)
   2282		return;
   2283	audit_log_format(ab, "op=%s", operation);
   2284	audit_log_task_info(ab);
   2285	audit_log_format(ab, " res=0");
   2286	audit_log_end(ab);
   2287}
   2288
   2289/* global counter which is incremented every time something logs in */
   2290static atomic_t session_id = ATOMIC_INIT(0);
   2291
   2292static int audit_set_loginuid_perm(kuid_t loginuid)
   2293{
   2294	/* if we are unset, we don't need privs */
   2295	if (!audit_loginuid_set(current))
   2296		return 0;
   2297	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
   2298	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
   2299		return -EPERM;
   2300	/* it is set, you need permission */
   2301	if (!capable(CAP_AUDIT_CONTROL))
   2302		return -EPERM;
   2303	/* reject if this is not an unset and we don't allow that */
   2304	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
   2305				 && uid_valid(loginuid))
   2306		return -EPERM;
   2307	return 0;
   2308}
   2309
   2310static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
   2311				   unsigned int oldsessionid,
   2312				   unsigned int sessionid, int rc)
   2313{
   2314	struct audit_buffer *ab;
   2315	uid_t uid, oldloginuid, loginuid;
   2316	struct tty_struct *tty;
   2317
   2318	if (!audit_enabled)
   2319		return;
   2320
   2321	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
   2322	if (!ab)
   2323		return;
   2324
   2325	uid = from_kuid(&init_user_ns, task_uid(current));
   2326	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
   2327	loginuid = from_kuid(&init_user_ns, kloginuid);
   2328	tty = audit_get_tty();
   2329
   2330	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
   2331	audit_log_task_context(ab);
   2332	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
   2333			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
   2334			 oldsessionid, sessionid, !rc);
   2335	audit_put_tty(tty);
   2336	audit_log_end(ab);
   2337}
   2338
   2339/**
   2340 * audit_set_loginuid - set current task's loginuid
   2341 * @loginuid: loginuid value
   2342 *
   2343 * Returns 0.
   2344 *
   2345 * Called (set) from fs/proc/base.c::proc_loginuid_write().
   2346 */
   2347int audit_set_loginuid(kuid_t loginuid)
   2348{
   2349	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
   2350	kuid_t oldloginuid;
   2351	int rc;
   2352
   2353	oldloginuid = audit_get_loginuid(current);
   2354	oldsessionid = audit_get_sessionid(current);
   2355
   2356	rc = audit_set_loginuid_perm(loginuid);
   2357	if (rc)
   2358		goto out;
   2359
   2360	/* are we setting or clearing? */
   2361	if (uid_valid(loginuid)) {
   2362		sessionid = (unsigned int)atomic_inc_return(&session_id);
   2363		if (unlikely(sessionid == AUDIT_SID_UNSET))
   2364			sessionid = (unsigned int)atomic_inc_return(&session_id);
   2365	}
   2366
   2367	current->sessionid = sessionid;
   2368	current->loginuid = loginuid;
   2369out:
   2370	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
   2371	return rc;
   2372}
   2373
   2374/**
   2375 * audit_signal_info - record signal info for shutting down audit subsystem
   2376 * @sig: signal value
   2377 * @t: task being signaled
   2378 *
   2379 * If the audit subsystem is being terminated, record the task (pid)
   2380 * and uid that is doing that.
   2381 */
   2382int audit_signal_info(int sig, struct task_struct *t)
   2383{
   2384	kuid_t uid = current_uid(), auid;
   2385
   2386	if (auditd_test_task(t) &&
   2387	    (sig == SIGTERM || sig == SIGHUP ||
   2388	     sig == SIGUSR1 || sig == SIGUSR2)) {
   2389		audit_sig_pid = task_tgid_nr(current);
   2390		auid = audit_get_loginuid(current);
   2391		if (uid_valid(auid))
   2392			audit_sig_uid = auid;
   2393		else
   2394			audit_sig_uid = uid;
   2395		security_current_getsecid_subj(&audit_sig_sid);
   2396	}
   2397
   2398	return audit_signal_info_syscall(t);
   2399}
   2400
   2401/**
   2402 * audit_log_end - end one audit record
   2403 * @ab: the audit_buffer
   2404 *
   2405 * We can not do a netlink send inside an irq context because it blocks (last
   2406 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
   2407 * queue and a kthread is scheduled to remove them from the queue outside the
   2408 * irq context.  May be called in any context.
   2409 */
   2410void audit_log_end(struct audit_buffer *ab)
   2411{
   2412	struct sk_buff *skb;
   2413	struct nlmsghdr *nlh;
   2414
   2415	if (!ab)
   2416		return;
   2417
   2418	if (audit_rate_check()) {
   2419		skb = ab->skb;
   2420		ab->skb = NULL;
   2421
   2422		/* setup the netlink header, see the comments in
   2423		 * kauditd_send_multicast_skb() for length quirks */
   2424		nlh = nlmsg_hdr(skb);
   2425		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
   2426
   2427		/* queue the netlink packet and poke the kauditd thread */
   2428		skb_queue_tail(&audit_queue, skb);
   2429		wake_up_interruptible(&kauditd_wait);
   2430	} else
   2431		audit_log_lost("rate limit exceeded");
   2432
   2433	audit_buffer_free(ab);
   2434}
   2435
   2436/**
   2437 * audit_log - Log an audit record
   2438 * @ctx: audit context
   2439 * @gfp_mask: type of allocation
   2440 * @type: audit message type
   2441 * @fmt: format string to use
   2442 * @...: variable parameters matching the format string
   2443 *
   2444 * This is a convenience function that calls audit_log_start,
   2445 * audit_log_vformat, and audit_log_end.  It may be called
   2446 * in any context.
   2447 */
   2448void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
   2449	       const char *fmt, ...)
   2450{
   2451	struct audit_buffer *ab;
   2452	va_list args;
   2453
   2454	ab = audit_log_start(ctx, gfp_mask, type);
   2455	if (ab) {
   2456		va_start(args, fmt);
   2457		audit_log_vformat(ab, fmt, args);
   2458		va_end(args);
   2459		audit_log_end(ab);
   2460	}
   2461}
   2462
   2463EXPORT_SYMBOL(audit_log_start);
   2464EXPORT_SYMBOL(audit_log_end);
   2465EXPORT_SYMBOL(audit_log_format);
   2466EXPORT_SYMBOL(audit_log);