cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

audit_tree.c (26187B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include "audit.h"
      3#include <linux/fsnotify_backend.h>
      4#include <linux/namei.h>
      5#include <linux/mount.h>
      6#include <linux/kthread.h>
      7#include <linux/refcount.h>
      8#include <linux/slab.h>
      9
     10struct audit_tree;
     11struct audit_chunk;
     12
     13struct audit_tree {
     14	refcount_t count;
     15	int goner;
     16	struct audit_chunk *root;
     17	struct list_head chunks;
     18	struct list_head rules;
     19	struct list_head list;
     20	struct list_head same_root;
     21	struct rcu_head head;
     22	char pathname[];
     23};
     24
     25struct audit_chunk {
     26	struct list_head hash;
     27	unsigned long key;
     28	struct fsnotify_mark *mark;
     29	struct list_head trees;		/* with root here */
     30	int count;
     31	atomic_long_t refs;
     32	struct rcu_head head;
     33	struct audit_node {
     34		struct list_head list;
     35		struct audit_tree *owner;
     36		unsigned index;		/* index; upper bit indicates 'will prune' */
     37	} owners[];
     38};
     39
     40struct audit_tree_mark {
     41	struct fsnotify_mark mark;
     42	struct audit_chunk *chunk;
     43};
     44
     45static LIST_HEAD(tree_list);
     46static LIST_HEAD(prune_list);
     47static struct task_struct *prune_thread;
     48
     49/*
     50 * One struct chunk is attached to each inode of interest through
     51 * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
     52 * untagging, the mark is stable as long as there is chunk attached. The
     53 * association between mark and chunk is protected by hash_lock and
     54 * audit_tree_group->mark_mutex. Thus as long as we hold
     55 * audit_tree_group->mark_mutex and check that the mark is alive by
     56 * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
     57 * the current chunk.
     58 *
     59 * Rules have pointer to struct audit_tree.
     60 * Rules have struct list_head rlist forming a list of rules over
     61 * the same tree.
     62 * References to struct chunk are collected at audit_inode{,_child}()
     63 * time and used in AUDIT_TREE rule matching.
     64 * These references are dropped at the same time we are calling
     65 * audit_free_names(), etc.
     66 *
     67 * Cyclic lists galore:
     68 * tree.chunks anchors chunk.owners[].list			hash_lock
     69 * tree.rules anchors rule.rlist				audit_filter_mutex
     70 * chunk.trees anchors tree.same_root				hash_lock
     71 * chunk.hash is a hash with middle bits of watch.inode as
     72 * a hash function.						RCU, hash_lock
     73 *
     74 * tree is refcounted; one reference for "some rules on rules_list refer to
     75 * it", one for each chunk with pointer to it.
     76 *
     77 * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
     78 * one chunk reference. This reference is dropped either when a mark is going
     79 * to be freed (corresponding inode goes away) or when chunk attached to the
     80 * mark gets replaced. This reference must be dropped using
     81 * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
     82 * grace period as it protects RCU readers of the hash table.
     83 *
     84 * node.index allows to get from node.list to containing chunk.
     85 * MSB of that sucker is stolen to mark taggings that we might have to
     86 * revert - several operations have very unpleasant cleanup logics and
     87 * that makes a difference.  Some.
     88 */
     89
     90static struct fsnotify_group *audit_tree_group;
     91static struct kmem_cache *audit_tree_mark_cachep __read_mostly;
     92
     93static struct audit_tree *alloc_tree(const char *s)
     94{
     95	struct audit_tree *tree;
     96
     97	tree = kmalloc(struct_size(tree, pathname, strlen(s) + 1), GFP_KERNEL);
     98	if (tree) {
     99		refcount_set(&tree->count, 1);
    100		tree->goner = 0;
    101		INIT_LIST_HEAD(&tree->chunks);
    102		INIT_LIST_HEAD(&tree->rules);
    103		INIT_LIST_HEAD(&tree->list);
    104		INIT_LIST_HEAD(&tree->same_root);
    105		tree->root = NULL;
    106		strcpy(tree->pathname, s);
    107	}
    108	return tree;
    109}
    110
    111static inline void get_tree(struct audit_tree *tree)
    112{
    113	refcount_inc(&tree->count);
    114}
    115
    116static inline void put_tree(struct audit_tree *tree)
    117{
    118	if (refcount_dec_and_test(&tree->count))
    119		kfree_rcu(tree, head);
    120}
    121
    122/* to avoid bringing the entire thing in audit.h */
    123const char *audit_tree_path(struct audit_tree *tree)
    124{
    125	return tree->pathname;
    126}
    127
    128static void free_chunk(struct audit_chunk *chunk)
    129{
    130	int i;
    131
    132	for (i = 0; i < chunk->count; i++) {
    133		if (chunk->owners[i].owner)
    134			put_tree(chunk->owners[i].owner);
    135	}
    136	kfree(chunk);
    137}
    138
    139void audit_put_chunk(struct audit_chunk *chunk)
    140{
    141	if (atomic_long_dec_and_test(&chunk->refs))
    142		free_chunk(chunk);
    143}
    144
    145static void __put_chunk(struct rcu_head *rcu)
    146{
    147	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
    148	audit_put_chunk(chunk);
    149}
    150
    151/*
    152 * Drop reference to the chunk that was held by the mark. This is the reference
    153 * that gets dropped after we've removed the chunk from the hash table and we
    154 * use it to make sure chunk cannot be freed before RCU grace period expires.
    155 */
    156static void audit_mark_put_chunk(struct audit_chunk *chunk)
    157{
    158	call_rcu(&chunk->head, __put_chunk);
    159}
    160
    161static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
    162{
    163	return container_of(mark, struct audit_tree_mark, mark);
    164}
    165
    166static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
    167{
    168	return audit_mark(mark)->chunk;
    169}
    170
    171static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
    172{
    173	kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
    174}
    175
    176static struct fsnotify_mark *alloc_mark(void)
    177{
    178	struct audit_tree_mark *amark;
    179
    180	amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
    181	if (!amark)
    182		return NULL;
    183	fsnotify_init_mark(&amark->mark, audit_tree_group);
    184	amark->mark.mask = FS_IN_IGNORED;
    185	return &amark->mark;
    186}
    187
    188static struct audit_chunk *alloc_chunk(int count)
    189{
    190	struct audit_chunk *chunk;
    191	int i;
    192
    193	chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL);
    194	if (!chunk)
    195		return NULL;
    196
    197	INIT_LIST_HEAD(&chunk->hash);
    198	INIT_LIST_HEAD(&chunk->trees);
    199	chunk->count = count;
    200	atomic_long_set(&chunk->refs, 1);
    201	for (i = 0; i < count; i++) {
    202		INIT_LIST_HEAD(&chunk->owners[i].list);
    203		chunk->owners[i].index = i;
    204	}
    205	return chunk;
    206}
    207
    208enum {HASH_SIZE = 128};
    209static struct list_head chunk_hash_heads[HASH_SIZE];
    210static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
    211
    212/* Function to return search key in our hash from inode. */
    213static unsigned long inode_to_key(const struct inode *inode)
    214{
    215	/* Use address pointed to by connector->obj as the key */
    216	return (unsigned long)&inode->i_fsnotify_marks;
    217}
    218
    219static inline struct list_head *chunk_hash(unsigned long key)
    220{
    221	unsigned long n = key / L1_CACHE_BYTES;
    222	return chunk_hash_heads + n % HASH_SIZE;
    223}
    224
    225/* hash_lock & mark->group->mark_mutex is held by caller */
    226static void insert_hash(struct audit_chunk *chunk)
    227{
    228	struct list_head *list;
    229
    230	/*
    231	 * Make sure chunk is fully initialized before making it visible in the
    232	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
    233	 * audit_tree_lookup().
    234	 */
    235	smp_wmb();
    236	WARN_ON_ONCE(!chunk->key);
    237	list = chunk_hash(chunk->key);
    238	list_add_rcu(&chunk->hash, list);
    239}
    240
    241/* called under rcu_read_lock */
    242struct audit_chunk *audit_tree_lookup(const struct inode *inode)
    243{
    244	unsigned long key = inode_to_key(inode);
    245	struct list_head *list = chunk_hash(key);
    246	struct audit_chunk *p;
    247
    248	list_for_each_entry_rcu(p, list, hash) {
    249		/*
    250		 * We use a data dependency barrier in READ_ONCE() to make sure
    251		 * the chunk we see is fully initialized.
    252		 */
    253		if (READ_ONCE(p->key) == key) {
    254			atomic_long_inc(&p->refs);
    255			return p;
    256		}
    257	}
    258	return NULL;
    259}
    260
    261bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
    262{
    263	int n;
    264	for (n = 0; n < chunk->count; n++)
    265		if (chunk->owners[n].owner == tree)
    266			return true;
    267	return false;
    268}
    269
    270/* tagging and untagging inodes with trees */
    271
    272static struct audit_chunk *find_chunk(struct audit_node *p)
    273{
    274	int index = p->index & ~(1U<<31);
    275	p -= index;
    276	return container_of(p, struct audit_chunk, owners[0]);
    277}
    278
    279static void replace_mark_chunk(struct fsnotify_mark *mark,
    280			       struct audit_chunk *chunk)
    281{
    282	struct audit_chunk *old;
    283
    284	assert_spin_locked(&hash_lock);
    285	old = mark_chunk(mark);
    286	audit_mark(mark)->chunk = chunk;
    287	if (chunk)
    288		chunk->mark = mark;
    289	if (old)
    290		old->mark = NULL;
    291}
    292
    293static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
    294{
    295	struct audit_tree *owner;
    296	int i, j;
    297
    298	new->key = old->key;
    299	list_splice_init(&old->trees, &new->trees);
    300	list_for_each_entry(owner, &new->trees, same_root)
    301		owner->root = new;
    302	for (i = j = 0; j < old->count; i++, j++) {
    303		if (!old->owners[j].owner) {
    304			i--;
    305			continue;
    306		}
    307		owner = old->owners[j].owner;
    308		new->owners[i].owner = owner;
    309		new->owners[i].index = old->owners[j].index - j + i;
    310		if (!owner) /* result of earlier fallback */
    311			continue;
    312		get_tree(owner);
    313		list_replace_init(&old->owners[j].list, &new->owners[i].list);
    314	}
    315	replace_mark_chunk(old->mark, new);
    316	/*
    317	 * Make sure chunk is fully initialized before making it visible in the
    318	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
    319	 * audit_tree_lookup().
    320	 */
    321	smp_wmb();
    322	list_replace_rcu(&old->hash, &new->hash);
    323}
    324
    325static void remove_chunk_node(struct audit_chunk *chunk, struct audit_node *p)
    326{
    327	struct audit_tree *owner = p->owner;
    328
    329	if (owner->root == chunk) {
    330		list_del_init(&owner->same_root);
    331		owner->root = NULL;
    332	}
    333	list_del_init(&p->list);
    334	p->owner = NULL;
    335	put_tree(owner);
    336}
    337
    338static int chunk_count_trees(struct audit_chunk *chunk)
    339{
    340	int i;
    341	int ret = 0;
    342
    343	for (i = 0; i < chunk->count; i++)
    344		if (chunk->owners[i].owner)
    345			ret++;
    346	return ret;
    347}
    348
    349static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
    350{
    351	struct audit_chunk *new;
    352	int size;
    353
    354	fsnotify_group_lock(audit_tree_group);
    355	/*
    356	 * mark_mutex stabilizes chunk attached to the mark so we can check
    357	 * whether it didn't change while we've dropped hash_lock.
    358	 */
    359	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
    360	    mark_chunk(mark) != chunk)
    361		goto out_mutex;
    362
    363	size = chunk_count_trees(chunk);
    364	if (!size) {
    365		spin_lock(&hash_lock);
    366		list_del_init(&chunk->trees);
    367		list_del_rcu(&chunk->hash);
    368		replace_mark_chunk(mark, NULL);
    369		spin_unlock(&hash_lock);
    370		fsnotify_detach_mark(mark);
    371		fsnotify_group_unlock(audit_tree_group);
    372		audit_mark_put_chunk(chunk);
    373		fsnotify_free_mark(mark);
    374		return;
    375	}
    376
    377	new = alloc_chunk(size);
    378	if (!new)
    379		goto out_mutex;
    380
    381	spin_lock(&hash_lock);
    382	/*
    383	 * This has to go last when updating chunk as once replace_chunk() is
    384	 * called, new RCU readers can see the new chunk.
    385	 */
    386	replace_chunk(new, chunk);
    387	spin_unlock(&hash_lock);
    388	fsnotify_group_unlock(audit_tree_group);
    389	audit_mark_put_chunk(chunk);
    390	return;
    391
    392out_mutex:
    393	fsnotify_group_unlock(audit_tree_group);
    394}
    395
    396/* Call with group->mark_mutex held, releases it */
    397static int create_chunk(struct inode *inode, struct audit_tree *tree)
    398{
    399	struct fsnotify_mark *mark;
    400	struct audit_chunk *chunk = alloc_chunk(1);
    401
    402	if (!chunk) {
    403		fsnotify_group_unlock(audit_tree_group);
    404		return -ENOMEM;
    405	}
    406
    407	mark = alloc_mark();
    408	if (!mark) {
    409		fsnotify_group_unlock(audit_tree_group);
    410		kfree(chunk);
    411		return -ENOMEM;
    412	}
    413
    414	if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
    415		fsnotify_group_unlock(audit_tree_group);
    416		fsnotify_put_mark(mark);
    417		kfree(chunk);
    418		return -ENOSPC;
    419	}
    420
    421	spin_lock(&hash_lock);
    422	if (tree->goner) {
    423		spin_unlock(&hash_lock);
    424		fsnotify_detach_mark(mark);
    425		fsnotify_group_unlock(audit_tree_group);
    426		fsnotify_free_mark(mark);
    427		fsnotify_put_mark(mark);
    428		kfree(chunk);
    429		return 0;
    430	}
    431	replace_mark_chunk(mark, chunk);
    432	chunk->owners[0].index = (1U << 31);
    433	chunk->owners[0].owner = tree;
    434	get_tree(tree);
    435	list_add(&chunk->owners[0].list, &tree->chunks);
    436	if (!tree->root) {
    437		tree->root = chunk;
    438		list_add(&tree->same_root, &chunk->trees);
    439	}
    440	chunk->key = inode_to_key(inode);
    441	/*
    442	 * Inserting into the hash table has to go last as once we do that RCU
    443	 * readers can see the chunk.
    444	 */
    445	insert_hash(chunk);
    446	spin_unlock(&hash_lock);
    447	fsnotify_group_unlock(audit_tree_group);
    448	/*
    449	 * Drop our initial reference. When mark we point to is getting freed,
    450	 * we get notification through ->freeing_mark callback and cleanup
    451	 * chunk pointing to this mark.
    452	 */
    453	fsnotify_put_mark(mark);
    454	return 0;
    455}
    456
    457/* the first tagged inode becomes root of tree */
    458static int tag_chunk(struct inode *inode, struct audit_tree *tree)
    459{
    460	struct fsnotify_mark *mark;
    461	struct audit_chunk *chunk, *old;
    462	struct audit_node *p;
    463	int n;
    464
    465	fsnotify_group_lock(audit_tree_group);
    466	mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group);
    467	if (!mark)
    468		return create_chunk(inode, tree);
    469
    470	/*
    471	 * Found mark is guaranteed to be attached and mark_mutex protects mark
    472	 * from getting detached and thus it makes sure there is chunk attached
    473	 * to the mark.
    474	 */
    475	/* are we already there? */
    476	spin_lock(&hash_lock);
    477	old = mark_chunk(mark);
    478	for (n = 0; n < old->count; n++) {
    479		if (old->owners[n].owner == tree) {
    480			spin_unlock(&hash_lock);
    481			fsnotify_group_unlock(audit_tree_group);
    482			fsnotify_put_mark(mark);
    483			return 0;
    484		}
    485	}
    486	spin_unlock(&hash_lock);
    487
    488	chunk = alloc_chunk(old->count + 1);
    489	if (!chunk) {
    490		fsnotify_group_unlock(audit_tree_group);
    491		fsnotify_put_mark(mark);
    492		return -ENOMEM;
    493	}
    494
    495	spin_lock(&hash_lock);
    496	if (tree->goner) {
    497		spin_unlock(&hash_lock);
    498		fsnotify_group_unlock(audit_tree_group);
    499		fsnotify_put_mark(mark);
    500		kfree(chunk);
    501		return 0;
    502	}
    503	p = &chunk->owners[chunk->count - 1];
    504	p->index = (chunk->count - 1) | (1U<<31);
    505	p->owner = tree;
    506	get_tree(tree);
    507	list_add(&p->list, &tree->chunks);
    508	if (!tree->root) {
    509		tree->root = chunk;
    510		list_add(&tree->same_root, &chunk->trees);
    511	}
    512	/*
    513	 * This has to go last when updating chunk as once replace_chunk() is
    514	 * called, new RCU readers can see the new chunk.
    515	 */
    516	replace_chunk(chunk, old);
    517	spin_unlock(&hash_lock);
    518	fsnotify_group_unlock(audit_tree_group);
    519	fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
    520	audit_mark_put_chunk(old);
    521
    522	return 0;
    523}
    524
    525static void audit_tree_log_remove_rule(struct audit_context *context,
    526				       struct audit_krule *rule)
    527{
    528	struct audit_buffer *ab;
    529
    530	if (!audit_enabled)
    531		return;
    532	ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
    533	if (unlikely(!ab))
    534		return;
    535	audit_log_format(ab, "op=remove_rule dir=");
    536	audit_log_untrustedstring(ab, rule->tree->pathname);
    537	audit_log_key(ab, rule->filterkey);
    538	audit_log_format(ab, " list=%d res=1", rule->listnr);
    539	audit_log_end(ab);
    540}
    541
    542static void kill_rules(struct audit_context *context, struct audit_tree *tree)
    543{
    544	struct audit_krule *rule, *next;
    545	struct audit_entry *entry;
    546
    547	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
    548		entry = container_of(rule, struct audit_entry, rule);
    549
    550		list_del_init(&rule->rlist);
    551		if (rule->tree) {
    552			/* not a half-baked one */
    553			audit_tree_log_remove_rule(context, rule);
    554			if (entry->rule.exe)
    555				audit_remove_mark(entry->rule.exe);
    556			rule->tree = NULL;
    557			list_del_rcu(&entry->list);
    558			list_del(&entry->rule.list);
    559			call_rcu(&entry->rcu, audit_free_rule_rcu);
    560		}
    561	}
    562}
    563
    564/*
    565 * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
    566 * chunks. The function expects tagged chunks are all at the beginning of the
    567 * chunks list.
    568 */
    569static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
    570{
    571	spin_lock(&hash_lock);
    572	while (!list_empty(&victim->chunks)) {
    573		struct audit_node *p;
    574		struct audit_chunk *chunk;
    575		struct fsnotify_mark *mark;
    576
    577		p = list_first_entry(&victim->chunks, struct audit_node, list);
    578		/* have we run out of marked? */
    579		if (tagged && !(p->index & (1U<<31)))
    580			break;
    581		chunk = find_chunk(p);
    582		mark = chunk->mark;
    583		remove_chunk_node(chunk, p);
    584		/* Racing with audit_tree_freeing_mark()? */
    585		if (!mark)
    586			continue;
    587		fsnotify_get_mark(mark);
    588		spin_unlock(&hash_lock);
    589
    590		untag_chunk(chunk, mark);
    591		fsnotify_put_mark(mark);
    592
    593		spin_lock(&hash_lock);
    594	}
    595	spin_unlock(&hash_lock);
    596}
    597
    598/*
    599 * finish killing struct audit_tree
    600 */
    601static void prune_one(struct audit_tree *victim)
    602{
    603	prune_tree_chunks(victim, false);
    604	put_tree(victim);
    605}
    606
    607/* trim the uncommitted chunks from tree */
    608
    609static void trim_marked(struct audit_tree *tree)
    610{
    611	struct list_head *p, *q;
    612	spin_lock(&hash_lock);
    613	if (tree->goner) {
    614		spin_unlock(&hash_lock);
    615		return;
    616	}
    617	/* reorder */
    618	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
    619		struct audit_node *node = list_entry(p, struct audit_node, list);
    620		q = p->next;
    621		if (node->index & (1U<<31)) {
    622			list_del_init(p);
    623			list_add(p, &tree->chunks);
    624		}
    625	}
    626	spin_unlock(&hash_lock);
    627
    628	prune_tree_chunks(tree, true);
    629
    630	spin_lock(&hash_lock);
    631	if (!tree->root && !tree->goner) {
    632		tree->goner = 1;
    633		spin_unlock(&hash_lock);
    634		mutex_lock(&audit_filter_mutex);
    635		kill_rules(audit_context(), tree);
    636		list_del_init(&tree->list);
    637		mutex_unlock(&audit_filter_mutex);
    638		prune_one(tree);
    639	} else {
    640		spin_unlock(&hash_lock);
    641	}
    642}
    643
    644static void audit_schedule_prune(void);
    645
    646/* called with audit_filter_mutex */
    647int audit_remove_tree_rule(struct audit_krule *rule)
    648{
    649	struct audit_tree *tree;
    650	tree = rule->tree;
    651	if (tree) {
    652		spin_lock(&hash_lock);
    653		list_del_init(&rule->rlist);
    654		if (list_empty(&tree->rules) && !tree->goner) {
    655			tree->root = NULL;
    656			list_del_init(&tree->same_root);
    657			tree->goner = 1;
    658			list_move(&tree->list, &prune_list);
    659			rule->tree = NULL;
    660			spin_unlock(&hash_lock);
    661			audit_schedule_prune();
    662			return 1;
    663		}
    664		rule->tree = NULL;
    665		spin_unlock(&hash_lock);
    666		return 1;
    667	}
    668	return 0;
    669}
    670
    671static int compare_root(struct vfsmount *mnt, void *arg)
    672{
    673	return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
    674	       (unsigned long)arg;
    675}
    676
    677void audit_trim_trees(void)
    678{
    679	struct list_head cursor;
    680
    681	mutex_lock(&audit_filter_mutex);
    682	list_add(&cursor, &tree_list);
    683	while (cursor.next != &tree_list) {
    684		struct audit_tree *tree;
    685		struct path path;
    686		struct vfsmount *root_mnt;
    687		struct audit_node *node;
    688		int err;
    689
    690		tree = container_of(cursor.next, struct audit_tree, list);
    691		get_tree(tree);
    692		list_move(&cursor, &tree->list);
    693		mutex_unlock(&audit_filter_mutex);
    694
    695		err = kern_path(tree->pathname, 0, &path);
    696		if (err)
    697			goto skip_it;
    698
    699		root_mnt = collect_mounts(&path);
    700		path_put(&path);
    701		if (IS_ERR(root_mnt))
    702			goto skip_it;
    703
    704		spin_lock(&hash_lock);
    705		list_for_each_entry(node, &tree->chunks, list) {
    706			struct audit_chunk *chunk = find_chunk(node);
    707			/* this could be NULL if the watch is dying else where... */
    708			node->index |= 1U<<31;
    709			if (iterate_mounts(compare_root,
    710					   (void *)(chunk->key),
    711					   root_mnt))
    712				node->index &= ~(1U<<31);
    713		}
    714		spin_unlock(&hash_lock);
    715		trim_marked(tree);
    716		drop_collected_mounts(root_mnt);
    717skip_it:
    718		put_tree(tree);
    719		mutex_lock(&audit_filter_mutex);
    720	}
    721	list_del(&cursor);
    722	mutex_unlock(&audit_filter_mutex);
    723}
    724
    725int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
    726{
    727
    728	if (pathname[0] != '/' ||
    729	    (rule->listnr != AUDIT_FILTER_EXIT &&
    730	     rule->listnr != AUDIT_FILTER_URING_EXIT) ||
    731	    op != Audit_equal ||
    732	    rule->inode_f || rule->watch || rule->tree)
    733		return -EINVAL;
    734	rule->tree = alloc_tree(pathname);
    735	if (!rule->tree)
    736		return -ENOMEM;
    737	return 0;
    738}
    739
    740void audit_put_tree(struct audit_tree *tree)
    741{
    742	put_tree(tree);
    743}
    744
    745static int tag_mount(struct vfsmount *mnt, void *arg)
    746{
    747	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
    748}
    749
    750/*
    751 * That gets run when evict_chunk() ends up needing to kill audit_tree.
    752 * Runs from a separate thread.
    753 */
    754static int prune_tree_thread(void *unused)
    755{
    756	for (;;) {
    757		if (list_empty(&prune_list)) {
    758			set_current_state(TASK_INTERRUPTIBLE);
    759			schedule();
    760		}
    761
    762		audit_ctl_lock();
    763		mutex_lock(&audit_filter_mutex);
    764
    765		while (!list_empty(&prune_list)) {
    766			struct audit_tree *victim;
    767
    768			victim = list_entry(prune_list.next,
    769					struct audit_tree, list);
    770			list_del_init(&victim->list);
    771
    772			mutex_unlock(&audit_filter_mutex);
    773
    774			prune_one(victim);
    775
    776			mutex_lock(&audit_filter_mutex);
    777		}
    778
    779		mutex_unlock(&audit_filter_mutex);
    780		audit_ctl_unlock();
    781	}
    782	return 0;
    783}
    784
    785static int audit_launch_prune(void)
    786{
    787	if (prune_thread)
    788		return 0;
    789	prune_thread = kthread_run(prune_tree_thread, NULL,
    790				"audit_prune_tree");
    791	if (IS_ERR(prune_thread)) {
    792		pr_err("cannot start thread audit_prune_tree");
    793		prune_thread = NULL;
    794		return -ENOMEM;
    795	}
    796	return 0;
    797}
    798
    799/* called with audit_filter_mutex */
    800int audit_add_tree_rule(struct audit_krule *rule)
    801{
    802	struct audit_tree *seed = rule->tree, *tree;
    803	struct path path;
    804	struct vfsmount *mnt;
    805	int err;
    806
    807	rule->tree = NULL;
    808	list_for_each_entry(tree, &tree_list, list) {
    809		if (!strcmp(seed->pathname, tree->pathname)) {
    810			put_tree(seed);
    811			rule->tree = tree;
    812			list_add(&rule->rlist, &tree->rules);
    813			return 0;
    814		}
    815	}
    816	tree = seed;
    817	list_add(&tree->list, &tree_list);
    818	list_add(&rule->rlist, &tree->rules);
    819	/* do not set rule->tree yet */
    820	mutex_unlock(&audit_filter_mutex);
    821
    822	if (unlikely(!prune_thread)) {
    823		err = audit_launch_prune();
    824		if (err)
    825			goto Err;
    826	}
    827
    828	err = kern_path(tree->pathname, 0, &path);
    829	if (err)
    830		goto Err;
    831	mnt = collect_mounts(&path);
    832	path_put(&path);
    833	if (IS_ERR(mnt)) {
    834		err = PTR_ERR(mnt);
    835		goto Err;
    836	}
    837
    838	get_tree(tree);
    839	err = iterate_mounts(tag_mount, tree, mnt);
    840	drop_collected_mounts(mnt);
    841
    842	if (!err) {
    843		struct audit_node *node;
    844		spin_lock(&hash_lock);
    845		list_for_each_entry(node, &tree->chunks, list)
    846			node->index &= ~(1U<<31);
    847		spin_unlock(&hash_lock);
    848	} else {
    849		trim_marked(tree);
    850		goto Err;
    851	}
    852
    853	mutex_lock(&audit_filter_mutex);
    854	if (list_empty(&rule->rlist)) {
    855		put_tree(tree);
    856		return -ENOENT;
    857	}
    858	rule->tree = tree;
    859	put_tree(tree);
    860
    861	return 0;
    862Err:
    863	mutex_lock(&audit_filter_mutex);
    864	list_del_init(&tree->list);
    865	list_del_init(&tree->rules);
    866	put_tree(tree);
    867	return err;
    868}
    869
    870int audit_tag_tree(char *old, char *new)
    871{
    872	struct list_head cursor, barrier;
    873	int failed = 0;
    874	struct path path1, path2;
    875	struct vfsmount *tagged;
    876	int err;
    877
    878	err = kern_path(new, 0, &path2);
    879	if (err)
    880		return err;
    881	tagged = collect_mounts(&path2);
    882	path_put(&path2);
    883	if (IS_ERR(tagged))
    884		return PTR_ERR(tagged);
    885
    886	err = kern_path(old, 0, &path1);
    887	if (err) {
    888		drop_collected_mounts(tagged);
    889		return err;
    890	}
    891
    892	mutex_lock(&audit_filter_mutex);
    893	list_add(&barrier, &tree_list);
    894	list_add(&cursor, &barrier);
    895
    896	while (cursor.next != &tree_list) {
    897		struct audit_tree *tree;
    898		int good_one = 0;
    899
    900		tree = container_of(cursor.next, struct audit_tree, list);
    901		get_tree(tree);
    902		list_move(&cursor, &tree->list);
    903		mutex_unlock(&audit_filter_mutex);
    904
    905		err = kern_path(tree->pathname, 0, &path2);
    906		if (!err) {
    907			good_one = path_is_under(&path1, &path2);
    908			path_put(&path2);
    909		}
    910
    911		if (!good_one) {
    912			put_tree(tree);
    913			mutex_lock(&audit_filter_mutex);
    914			continue;
    915		}
    916
    917		failed = iterate_mounts(tag_mount, tree, tagged);
    918		if (failed) {
    919			put_tree(tree);
    920			mutex_lock(&audit_filter_mutex);
    921			break;
    922		}
    923
    924		mutex_lock(&audit_filter_mutex);
    925		spin_lock(&hash_lock);
    926		if (!tree->goner) {
    927			list_move(&tree->list, &tree_list);
    928		}
    929		spin_unlock(&hash_lock);
    930		put_tree(tree);
    931	}
    932
    933	while (barrier.prev != &tree_list) {
    934		struct audit_tree *tree;
    935
    936		tree = container_of(barrier.prev, struct audit_tree, list);
    937		get_tree(tree);
    938		list_move(&tree->list, &barrier);
    939		mutex_unlock(&audit_filter_mutex);
    940
    941		if (!failed) {
    942			struct audit_node *node;
    943			spin_lock(&hash_lock);
    944			list_for_each_entry(node, &tree->chunks, list)
    945				node->index &= ~(1U<<31);
    946			spin_unlock(&hash_lock);
    947		} else {
    948			trim_marked(tree);
    949		}
    950
    951		put_tree(tree);
    952		mutex_lock(&audit_filter_mutex);
    953	}
    954	list_del(&barrier);
    955	list_del(&cursor);
    956	mutex_unlock(&audit_filter_mutex);
    957	path_put(&path1);
    958	drop_collected_mounts(tagged);
    959	return failed;
    960}
    961
    962
    963static void audit_schedule_prune(void)
    964{
    965	wake_up_process(prune_thread);
    966}
    967
    968/*
    969 * ... and that one is done if evict_chunk() decides to delay until the end
    970 * of syscall.  Runs synchronously.
    971 */
    972void audit_kill_trees(struct audit_context *context)
    973{
    974	struct list_head *list = &context->killed_trees;
    975
    976	audit_ctl_lock();
    977	mutex_lock(&audit_filter_mutex);
    978
    979	while (!list_empty(list)) {
    980		struct audit_tree *victim;
    981
    982		victim = list_entry(list->next, struct audit_tree, list);
    983		kill_rules(context, victim);
    984		list_del_init(&victim->list);
    985
    986		mutex_unlock(&audit_filter_mutex);
    987
    988		prune_one(victim);
    989
    990		mutex_lock(&audit_filter_mutex);
    991	}
    992
    993	mutex_unlock(&audit_filter_mutex);
    994	audit_ctl_unlock();
    995}
    996
    997/*
    998 *  Here comes the stuff asynchronous to auditctl operations
    999 */
   1000
   1001static void evict_chunk(struct audit_chunk *chunk)
   1002{
   1003	struct audit_tree *owner;
   1004	struct list_head *postponed = audit_killed_trees();
   1005	int need_prune = 0;
   1006	int n;
   1007
   1008	mutex_lock(&audit_filter_mutex);
   1009	spin_lock(&hash_lock);
   1010	while (!list_empty(&chunk->trees)) {
   1011		owner = list_entry(chunk->trees.next,
   1012				   struct audit_tree, same_root);
   1013		owner->goner = 1;
   1014		owner->root = NULL;
   1015		list_del_init(&owner->same_root);
   1016		spin_unlock(&hash_lock);
   1017		if (!postponed) {
   1018			kill_rules(audit_context(), owner);
   1019			list_move(&owner->list, &prune_list);
   1020			need_prune = 1;
   1021		} else {
   1022			list_move(&owner->list, postponed);
   1023		}
   1024		spin_lock(&hash_lock);
   1025	}
   1026	list_del_rcu(&chunk->hash);
   1027	for (n = 0; n < chunk->count; n++)
   1028		list_del_init(&chunk->owners[n].list);
   1029	spin_unlock(&hash_lock);
   1030	mutex_unlock(&audit_filter_mutex);
   1031	if (need_prune)
   1032		audit_schedule_prune();
   1033}
   1034
   1035static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask,
   1036				   struct inode *inode, struct inode *dir,
   1037				   const struct qstr *file_name, u32 cookie)
   1038{
   1039	return 0;
   1040}
   1041
   1042static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
   1043				    struct fsnotify_group *group)
   1044{
   1045	struct audit_chunk *chunk;
   1046
   1047	fsnotify_group_lock(mark->group);
   1048	spin_lock(&hash_lock);
   1049	chunk = mark_chunk(mark);
   1050	replace_mark_chunk(mark, NULL);
   1051	spin_unlock(&hash_lock);
   1052	fsnotify_group_unlock(mark->group);
   1053	if (chunk) {
   1054		evict_chunk(chunk);
   1055		audit_mark_put_chunk(chunk);
   1056	}
   1057
   1058	/*
   1059	 * We are guaranteed to have at least one reference to the mark from
   1060	 * either the inode or the caller of fsnotify_destroy_mark().
   1061	 */
   1062	BUG_ON(refcount_read(&mark->refcnt) < 1);
   1063}
   1064
   1065static const struct fsnotify_ops audit_tree_ops = {
   1066	.handle_inode_event = audit_tree_handle_event,
   1067	.freeing_mark = audit_tree_freeing_mark,
   1068	.free_mark = audit_tree_destroy_watch,
   1069};
   1070
   1071static int __init audit_tree_init(void)
   1072{
   1073	int i;
   1074
   1075	audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
   1076
   1077	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops, 0);
   1078	if (IS_ERR(audit_tree_group))
   1079		audit_panic("cannot initialize fsnotify group for rectree watches");
   1080
   1081	for (i = 0; i < HASH_SIZE; i++)
   1082		INIT_LIST_HEAD(&chunk_hash_heads[i]);
   1083
   1084	return 0;
   1085}
   1086__initcall(audit_tree_init);