cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

auditsc.c (83577B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* auditsc.c -- System-call auditing support
      3 * Handles all system-call specific auditing features.
      4 *
      5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
      6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
      7 * Copyright (C) 2005, 2006 IBM Corporation
      8 * All Rights Reserved.
      9 *
     10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
     11 *
     12 * Many of the ideas implemented here are from Stephen C. Tweedie,
     13 * especially the idea of avoiding a copy by using getname.
     14 *
     15 * The method for actual interception of syscall entry and exit (not in
     16 * this file -- see entry.S) is based on a GPL'd patch written by
     17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
     18 *
     19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
     20 * 2006.
     21 *
     22 * The support of additional filter rules compares (>, <, >=, <=) was
     23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
     24 *
     25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
     26 * filesystem information.
     27 *
     28 * Subject and object context labeling support added by <danjones@us.ibm.com>
     29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
     30 */
     31
     32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     33
     34#include <linux/init.h>
     35#include <asm/types.h>
     36#include <linux/atomic.h>
     37#include <linux/fs.h>
     38#include <linux/namei.h>
     39#include <linux/mm.h>
     40#include <linux/export.h>
     41#include <linux/slab.h>
     42#include <linux/mount.h>
     43#include <linux/socket.h>
     44#include <linux/mqueue.h>
     45#include <linux/audit.h>
     46#include <linux/personality.h>
     47#include <linux/time.h>
     48#include <linux/netlink.h>
     49#include <linux/compiler.h>
     50#include <asm/unistd.h>
     51#include <linux/security.h>
     52#include <linux/list.h>
     53#include <linux/binfmts.h>
     54#include <linux/highmem.h>
     55#include <linux/syscalls.h>
     56#include <asm/syscall.h>
     57#include <linux/capability.h>
     58#include <linux/fs_struct.h>
     59#include <linux/compat.h>
     60#include <linux/ctype.h>
     61#include <linux/string.h>
     62#include <linux/uaccess.h>
     63#include <linux/fsnotify_backend.h>
     64#include <uapi/linux/limits.h>
     65#include <uapi/linux/netfilter/nf_tables.h>
     66#include <uapi/linux/openat2.h> // struct open_how
     67
     68#include "audit.h"
     69
     70/* flags stating the success for a syscall */
     71#define AUDITSC_INVALID 0
     72#define AUDITSC_SUCCESS 1
     73#define AUDITSC_FAILURE 2
     74
     75/* no execve audit message should be longer than this (userspace limits),
     76 * see the note near the top of audit_log_execve_info() about this value */
     77#define MAX_EXECVE_AUDIT_LEN 7500
     78
     79/* max length to print of cmdline/proctitle value during audit */
     80#define MAX_PROCTITLE_AUDIT_LEN 128
     81
     82/* number of audit rules */
     83int audit_n_rules;
     84
     85/* determines whether we collect data for signals sent */
     86int audit_signals;
     87
     88struct audit_aux_data {
     89	struct audit_aux_data	*next;
     90	int			type;
     91};
     92
     93/* Number of target pids per aux struct. */
     94#define AUDIT_AUX_PIDS	16
     95
     96struct audit_aux_data_pids {
     97	struct audit_aux_data	d;
     98	pid_t			target_pid[AUDIT_AUX_PIDS];
     99	kuid_t			target_auid[AUDIT_AUX_PIDS];
    100	kuid_t			target_uid[AUDIT_AUX_PIDS];
    101	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
    102	u32			target_sid[AUDIT_AUX_PIDS];
    103	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
    104	int			pid_count;
    105};
    106
    107struct audit_aux_data_bprm_fcaps {
    108	struct audit_aux_data	d;
    109	struct audit_cap_data	fcap;
    110	unsigned int		fcap_ver;
    111	struct audit_cap_data	old_pcap;
    112	struct audit_cap_data	new_pcap;
    113};
    114
    115struct audit_tree_refs {
    116	struct audit_tree_refs *next;
    117	struct audit_chunk *c[31];
    118};
    119
    120struct audit_nfcfgop_tab {
    121	enum audit_nfcfgop	op;
    122	const char		*s;
    123};
    124
    125static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
    126	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
    127	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
    128	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
    129	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
    130	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
    131	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
    132	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
    133	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
    134	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
    135	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
    136	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
    137	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
    138	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
    139	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
    140	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
    141	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
    142	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
    143	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
    144	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
    145	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
    146};
    147
    148static int audit_match_perm(struct audit_context *ctx, int mask)
    149{
    150	unsigned n;
    151
    152	if (unlikely(!ctx))
    153		return 0;
    154	n = ctx->major;
    155
    156	switch (audit_classify_syscall(ctx->arch, n)) {
    157	case AUDITSC_NATIVE:
    158		if ((mask & AUDIT_PERM_WRITE) &&
    159		     audit_match_class(AUDIT_CLASS_WRITE, n))
    160			return 1;
    161		if ((mask & AUDIT_PERM_READ) &&
    162		     audit_match_class(AUDIT_CLASS_READ, n))
    163			return 1;
    164		if ((mask & AUDIT_PERM_ATTR) &&
    165		     audit_match_class(AUDIT_CLASS_CHATTR, n))
    166			return 1;
    167		return 0;
    168	case AUDITSC_COMPAT: /* 32bit on biarch */
    169		if ((mask & AUDIT_PERM_WRITE) &&
    170		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
    171			return 1;
    172		if ((mask & AUDIT_PERM_READ) &&
    173		     audit_match_class(AUDIT_CLASS_READ_32, n))
    174			return 1;
    175		if ((mask & AUDIT_PERM_ATTR) &&
    176		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
    177			return 1;
    178		return 0;
    179	case AUDITSC_OPEN:
    180		return mask & ACC_MODE(ctx->argv[1]);
    181	case AUDITSC_OPENAT:
    182		return mask & ACC_MODE(ctx->argv[2]);
    183	case AUDITSC_SOCKETCALL:
    184		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
    185	case AUDITSC_EXECVE:
    186		return mask & AUDIT_PERM_EXEC;
    187	case AUDITSC_OPENAT2:
    188		return mask & ACC_MODE((u32)ctx->openat2.flags);
    189	default:
    190		return 0;
    191	}
    192}
    193
    194static int audit_match_filetype(struct audit_context *ctx, int val)
    195{
    196	struct audit_names *n;
    197	umode_t mode = (umode_t)val;
    198
    199	if (unlikely(!ctx))
    200		return 0;
    201
    202	list_for_each_entry(n, &ctx->names_list, list) {
    203		if ((n->ino != AUDIT_INO_UNSET) &&
    204		    ((n->mode & S_IFMT) == mode))
    205			return 1;
    206	}
    207
    208	return 0;
    209}
    210
    211/*
    212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
    213 * ->first_trees points to its beginning, ->trees - to the current end of data.
    214 * ->tree_count is the number of free entries in array pointed to by ->trees.
    215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
    216 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
    217 * it's going to remain 1-element for almost any setup) until we free context itself.
    218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
    219 */
    220
    221static void audit_set_auditable(struct audit_context *ctx)
    222{
    223	if (!ctx->prio) {
    224		ctx->prio = 1;
    225		ctx->current_state = AUDIT_STATE_RECORD;
    226	}
    227}
    228
    229static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
    230{
    231	struct audit_tree_refs *p = ctx->trees;
    232	int left = ctx->tree_count;
    233
    234	if (likely(left)) {
    235		p->c[--left] = chunk;
    236		ctx->tree_count = left;
    237		return 1;
    238	}
    239	if (!p)
    240		return 0;
    241	p = p->next;
    242	if (p) {
    243		p->c[30] = chunk;
    244		ctx->trees = p;
    245		ctx->tree_count = 30;
    246		return 1;
    247	}
    248	return 0;
    249}
    250
    251static int grow_tree_refs(struct audit_context *ctx)
    252{
    253	struct audit_tree_refs *p = ctx->trees;
    254
    255	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
    256	if (!ctx->trees) {
    257		ctx->trees = p;
    258		return 0;
    259	}
    260	if (p)
    261		p->next = ctx->trees;
    262	else
    263		ctx->first_trees = ctx->trees;
    264	ctx->tree_count = 31;
    265	return 1;
    266}
    267
    268static void unroll_tree_refs(struct audit_context *ctx,
    269		      struct audit_tree_refs *p, int count)
    270{
    271	struct audit_tree_refs *q;
    272	int n;
    273
    274	if (!p) {
    275		/* we started with empty chain */
    276		p = ctx->first_trees;
    277		count = 31;
    278		/* if the very first allocation has failed, nothing to do */
    279		if (!p)
    280			return;
    281	}
    282	n = count;
    283	for (q = p; q != ctx->trees; q = q->next, n = 31) {
    284		while (n--) {
    285			audit_put_chunk(q->c[n]);
    286			q->c[n] = NULL;
    287		}
    288	}
    289	while (n-- > ctx->tree_count) {
    290		audit_put_chunk(q->c[n]);
    291		q->c[n] = NULL;
    292	}
    293	ctx->trees = p;
    294	ctx->tree_count = count;
    295}
    296
    297static void free_tree_refs(struct audit_context *ctx)
    298{
    299	struct audit_tree_refs *p, *q;
    300
    301	for (p = ctx->first_trees; p; p = q) {
    302		q = p->next;
    303		kfree(p);
    304	}
    305}
    306
    307static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
    308{
    309	struct audit_tree_refs *p;
    310	int n;
    311
    312	if (!tree)
    313		return 0;
    314	/* full ones */
    315	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
    316		for (n = 0; n < 31; n++)
    317			if (audit_tree_match(p->c[n], tree))
    318				return 1;
    319	}
    320	/* partial */
    321	if (p) {
    322		for (n = ctx->tree_count; n < 31; n++)
    323			if (audit_tree_match(p->c[n], tree))
    324				return 1;
    325	}
    326	return 0;
    327}
    328
    329static int audit_compare_uid(kuid_t uid,
    330			     struct audit_names *name,
    331			     struct audit_field *f,
    332			     struct audit_context *ctx)
    333{
    334	struct audit_names *n;
    335	int rc;
    336
    337	if (name) {
    338		rc = audit_uid_comparator(uid, f->op, name->uid);
    339		if (rc)
    340			return rc;
    341	}
    342
    343	if (ctx) {
    344		list_for_each_entry(n, &ctx->names_list, list) {
    345			rc = audit_uid_comparator(uid, f->op, n->uid);
    346			if (rc)
    347				return rc;
    348		}
    349	}
    350	return 0;
    351}
    352
    353static int audit_compare_gid(kgid_t gid,
    354			     struct audit_names *name,
    355			     struct audit_field *f,
    356			     struct audit_context *ctx)
    357{
    358	struct audit_names *n;
    359	int rc;
    360
    361	if (name) {
    362		rc = audit_gid_comparator(gid, f->op, name->gid);
    363		if (rc)
    364			return rc;
    365	}
    366
    367	if (ctx) {
    368		list_for_each_entry(n, &ctx->names_list, list) {
    369			rc = audit_gid_comparator(gid, f->op, n->gid);
    370			if (rc)
    371				return rc;
    372		}
    373	}
    374	return 0;
    375}
    376
    377static int audit_field_compare(struct task_struct *tsk,
    378			       const struct cred *cred,
    379			       struct audit_field *f,
    380			       struct audit_context *ctx,
    381			       struct audit_names *name)
    382{
    383	switch (f->val) {
    384	/* process to file object comparisons */
    385	case AUDIT_COMPARE_UID_TO_OBJ_UID:
    386		return audit_compare_uid(cred->uid, name, f, ctx);
    387	case AUDIT_COMPARE_GID_TO_OBJ_GID:
    388		return audit_compare_gid(cred->gid, name, f, ctx);
    389	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
    390		return audit_compare_uid(cred->euid, name, f, ctx);
    391	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
    392		return audit_compare_gid(cred->egid, name, f, ctx);
    393	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
    394		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
    395	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
    396		return audit_compare_uid(cred->suid, name, f, ctx);
    397	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
    398		return audit_compare_gid(cred->sgid, name, f, ctx);
    399	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
    400		return audit_compare_uid(cred->fsuid, name, f, ctx);
    401	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
    402		return audit_compare_gid(cred->fsgid, name, f, ctx);
    403	/* uid comparisons */
    404	case AUDIT_COMPARE_UID_TO_AUID:
    405		return audit_uid_comparator(cred->uid, f->op,
    406					    audit_get_loginuid(tsk));
    407	case AUDIT_COMPARE_UID_TO_EUID:
    408		return audit_uid_comparator(cred->uid, f->op, cred->euid);
    409	case AUDIT_COMPARE_UID_TO_SUID:
    410		return audit_uid_comparator(cred->uid, f->op, cred->suid);
    411	case AUDIT_COMPARE_UID_TO_FSUID:
    412		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
    413	/* auid comparisons */
    414	case AUDIT_COMPARE_AUID_TO_EUID:
    415		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
    416					    cred->euid);
    417	case AUDIT_COMPARE_AUID_TO_SUID:
    418		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
    419					    cred->suid);
    420	case AUDIT_COMPARE_AUID_TO_FSUID:
    421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
    422					    cred->fsuid);
    423	/* euid comparisons */
    424	case AUDIT_COMPARE_EUID_TO_SUID:
    425		return audit_uid_comparator(cred->euid, f->op, cred->suid);
    426	case AUDIT_COMPARE_EUID_TO_FSUID:
    427		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
    428	/* suid comparisons */
    429	case AUDIT_COMPARE_SUID_TO_FSUID:
    430		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
    431	/* gid comparisons */
    432	case AUDIT_COMPARE_GID_TO_EGID:
    433		return audit_gid_comparator(cred->gid, f->op, cred->egid);
    434	case AUDIT_COMPARE_GID_TO_SGID:
    435		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
    436	case AUDIT_COMPARE_GID_TO_FSGID:
    437		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
    438	/* egid comparisons */
    439	case AUDIT_COMPARE_EGID_TO_SGID:
    440		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
    441	case AUDIT_COMPARE_EGID_TO_FSGID:
    442		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
    443	/* sgid comparison */
    444	case AUDIT_COMPARE_SGID_TO_FSGID:
    445		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
    446	default:
    447		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
    448		return 0;
    449	}
    450	return 0;
    451}
    452
    453/* Determine if any context name data matches a rule's watch data */
    454/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
    455 * otherwise.
    456 *
    457 * If task_creation is true, this is an explicit indication that we are
    458 * filtering a task rule at task creation time.  This and tsk == current are
    459 * the only situations where tsk->cred may be accessed without an rcu read lock.
    460 */
    461static int audit_filter_rules(struct task_struct *tsk,
    462			      struct audit_krule *rule,
    463			      struct audit_context *ctx,
    464			      struct audit_names *name,
    465			      enum audit_state *state,
    466			      bool task_creation)
    467{
    468	const struct cred *cred;
    469	int i, need_sid = 1;
    470	u32 sid;
    471	unsigned int sessionid;
    472
    473	if (ctx && rule->prio <= ctx->prio)
    474		return 0;
    475
    476	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
    477
    478	for (i = 0; i < rule->field_count; i++) {
    479		struct audit_field *f = &rule->fields[i];
    480		struct audit_names *n;
    481		int result = 0;
    482		pid_t pid;
    483
    484		switch (f->type) {
    485		case AUDIT_PID:
    486			pid = task_tgid_nr(tsk);
    487			result = audit_comparator(pid, f->op, f->val);
    488			break;
    489		case AUDIT_PPID:
    490			if (ctx) {
    491				if (!ctx->ppid)
    492					ctx->ppid = task_ppid_nr(tsk);
    493				result = audit_comparator(ctx->ppid, f->op, f->val);
    494			}
    495			break;
    496		case AUDIT_EXE:
    497			result = audit_exe_compare(tsk, rule->exe);
    498			if (f->op == Audit_not_equal)
    499				result = !result;
    500			break;
    501		case AUDIT_UID:
    502			result = audit_uid_comparator(cred->uid, f->op, f->uid);
    503			break;
    504		case AUDIT_EUID:
    505			result = audit_uid_comparator(cred->euid, f->op, f->uid);
    506			break;
    507		case AUDIT_SUID:
    508			result = audit_uid_comparator(cred->suid, f->op, f->uid);
    509			break;
    510		case AUDIT_FSUID:
    511			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
    512			break;
    513		case AUDIT_GID:
    514			result = audit_gid_comparator(cred->gid, f->op, f->gid);
    515			if (f->op == Audit_equal) {
    516				if (!result)
    517					result = groups_search(cred->group_info, f->gid);
    518			} else if (f->op == Audit_not_equal) {
    519				if (result)
    520					result = !groups_search(cred->group_info, f->gid);
    521			}
    522			break;
    523		case AUDIT_EGID:
    524			result = audit_gid_comparator(cred->egid, f->op, f->gid);
    525			if (f->op == Audit_equal) {
    526				if (!result)
    527					result = groups_search(cred->group_info, f->gid);
    528			} else if (f->op == Audit_not_equal) {
    529				if (result)
    530					result = !groups_search(cred->group_info, f->gid);
    531			}
    532			break;
    533		case AUDIT_SGID:
    534			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
    535			break;
    536		case AUDIT_FSGID:
    537			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
    538			break;
    539		case AUDIT_SESSIONID:
    540			sessionid = audit_get_sessionid(tsk);
    541			result = audit_comparator(sessionid, f->op, f->val);
    542			break;
    543		case AUDIT_PERS:
    544			result = audit_comparator(tsk->personality, f->op, f->val);
    545			break;
    546		case AUDIT_ARCH:
    547			if (ctx)
    548				result = audit_comparator(ctx->arch, f->op, f->val);
    549			break;
    550
    551		case AUDIT_EXIT:
    552			if (ctx && ctx->return_valid != AUDITSC_INVALID)
    553				result = audit_comparator(ctx->return_code, f->op, f->val);
    554			break;
    555		case AUDIT_SUCCESS:
    556			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
    557				if (f->val)
    558					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
    559				else
    560					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
    561			}
    562			break;
    563		case AUDIT_DEVMAJOR:
    564			if (name) {
    565				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
    566				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
    567					++result;
    568			} else if (ctx) {
    569				list_for_each_entry(n, &ctx->names_list, list) {
    570					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
    571					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
    572						++result;
    573						break;
    574					}
    575				}
    576			}
    577			break;
    578		case AUDIT_DEVMINOR:
    579			if (name) {
    580				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
    581				    audit_comparator(MINOR(name->rdev), f->op, f->val))
    582					++result;
    583			} else if (ctx) {
    584				list_for_each_entry(n, &ctx->names_list, list) {
    585					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
    586					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
    587						++result;
    588						break;
    589					}
    590				}
    591			}
    592			break;
    593		case AUDIT_INODE:
    594			if (name)
    595				result = audit_comparator(name->ino, f->op, f->val);
    596			else if (ctx) {
    597				list_for_each_entry(n, &ctx->names_list, list) {
    598					if (audit_comparator(n->ino, f->op, f->val)) {
    599						++result;
    600						break;
    601					}
    602				}
    603			}
    604			break;
    605		case AUDIT_OBJ_UID:
    606			if (name) {
    607				result = audit_uid_comparator(name->uid, f->op, f->uid);
    608			} else if (ctx) {
    609				list_for_each_entry(n, &ctx->names_list, list) {
    610					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
    611						++result;
    612						break;
    613					}
    614				}
    615			}
    616			break;
    617		case AUDIT_OBJ_GID:
    618			if (name) {
    619				result = audit_gid_comparator(name->gid, f->op, f->gid);
    620			} else if (ctx) {
    621				list_for_each_entry(n, &ctx->names_list, list) {
    622					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
    623						++result;
    624						break;
    625					}
    626				}
    627			}
    628			break;
    629		case AUDIT_WATCH:
    630			if (name) {
    631				result = audit_watch_compare(rule->watch,
    632							     name->ino,
    633							     name->dev);
    634				if (f->op == Audit_not_equal)
    635					result = !result;
    636			}
    637			break;
    638		case AUDIT_DIR:
    639			if (ctx) {
    640				result = match_tree_refs(ctx, rule->tree);
    641				if (f->op == Audit_not_equal)
    642					result = !result;
    643			}
    644			break;
    645		case AUDIT_LOGINUID:
    646			result = audit_uid_comparator(audit_get_loginuid(tsk),
    647						      f->op, f->uid);
    648			break;
    649		case AUDIT_LOGINUID_SET:
    650			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
    651			break;
    652		case AUDIT_SADDR_FAM:
    653			if (ctx && ctx->sockaddr)
    654				result = audit_comparator(ctx->sockaddr->ss_family,
    655							  f->op, f->val);
    656			break;
    657		case AUDIT_SUBJ_USER:
    658		case AUDIT_SUBJ_ROLE:
    659		case AUDIT_SUBJ_TYPE:
    660		case AUDIT_SUBJ_SEN:
    661		case AUDIT_SUBJ_CLR:
    662			/* NOTE: this may return negative values indicating
    663			   a temporary error.  We simply treat this as a
    664			   match for now to avoid losing information that
    665			   may be wanted.   An error message will also be
    666			   logged upon error */
    667			if (f->lsm_rule) {
    668				if (need_sid) {
    669					/* @tsk should always be equal to
    670					 * @current with the exception of
    671					 * fork()/copy_process() in which case
    672					 * the new @tsk creds are still a dup
    673					 * of @current's creds so we can still
    674					 * use security_current_getsecid_subj()
    675					 * here even though it always refs
    676					 * @current's creds
    677					 */
    678					security_current_getsecid_subj(&sid);
    679					need_sid = 0;
    680				}
    681				result = security_audit_rule_match(sid, f->type,
    682								   f->op,
    683								   f->lsm_rule);
    684			}
    685			break;
    686		case AUDIT_OBJ_USER:
    687		case AUDIT_OBJ_ROLE:
    688		case AUDIT_OBJ_TYPE:
    689		case AUDIT_OBJ_LEV_LOW:
    690		case AUDIT_OBJ_LEV_HIGH:
    691			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
    692			   also applies here */
    693			if (f->lsm_rule) {
    694				/* Find files that match */
    695				if (name) {
    696					result = security_audit_rule_match(
    697								name->osid,
    698								f->type,
    699								f->op,
    700								f->lsm_rule);
    701				} else if (ctx) {
    702					list_for_each_entry(n, &ctx->names_list, list) {
    703						if (security_audit_rule_match(
    704								n->osid,
    705								f->type,
    706								f->op,
    707								f->lsm_rule)) {
    708							++result;
    709							break;
    710						}
    711					}
    712				}
    713				/* Find ipc objects that match */
    714				if (!ctx || ctx->type != AUDIT_IPC)
    715					break;
    716				if (security_audit_rule_match(ctx->ipc.osid,
    717							      f->type, f->op,
    718							      f->lsm_rule))
    719					++result;
    720			}
    721			break;
    722		case AUDIT_ARG0:
    723		case AUDIT_ARG1:
    724		case AUDIT_ARG2:
    725		case AUDIT_ARG3:
    726			if (ctx)
    727				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
    728			break;
    729		case AUDIT_FILTERKEY:
    730			/* ignore this field for filtering */
    731			result = 1;
    732			break;
    733		case AUDIT_PERM:
    734			result = audit_match_perm(ctx, f->val);
    735			if (f->op == Audit_not_equal)
    736				result = !result;
    737			break;
    738		case AUDIT_FILETYPE:
    739			result = audit_match_filetype(ctx, f->val);
    740			if (f->op == Audit_not_equal)
    741				result = !result;
    742			break;
    743		case AUDIT_FIELD_COMPARE:
    744			result = audit_field_compare(tsk, cred, f, ctx, name);
    745			break;
    746		}
    747		if (!result)
    748			return 0;
    749	}
    750
    751	if (ctx) {
    752		if (rule->filterkey) {
    753			kfree(ctx->filterkey);
    754			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
    755		}
    756		ctx->prio = rule->prio;
    757	}
    758	switch (rule->action) {
    759	case AUDIT_NEVER:
    760		*state = AUDIT_STATE_DISABLED;
    761		break;
    762	case AUDIT_ALWAYS:
    763		*state = AUDIT_STATE_RECORD;
    764		break;
    765	}
    766	return 1;
    767}
    768
    769/* At process creation time, we can determine if system-call auditing is
    770 * completely disabled for this task.  Since we only have the task
    771 * structure at this point, we can only check uid and gid.
    772 */
    773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
    774{
    775	struct audit_entry *e;
    776	enum audit_state   state;
    777
    778	rcu_read_lock();
    779	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
    780		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
    781				       &state, true)) {
    782			if (state == AUDIT_STATE_RECORD)
    783				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
    784			rcu_read_unlock();
    785			return state;
    786		}
    787	}
    788	rcu_read_unlock();
    789	return AUDIT_STATE_BUILD;
    790}
    791
    792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
    793{
    794	int word, bit;
    795
    796	if (val > 0xffffffff)
    797		return false;
    798
    799	word = AUDIT_WORD(val);
    800	if (word >= AUDIT_BITMASK_SIZE)
    801		return false;
    802
    803	bit = AUDIT_BIT(val);
    804
    805	return rule->mask[word] & bit;
    806}
    807
    808/**
    809 * audit_filter_uring - apply filters to an io_uring operation
    810 * @tsk: associated task
    811 * @ctx: audit context
    812 */
    813static void audit_filter_uring(struct task_struct *tsk,
    814			       struct audit_context *ctx)
    815{
    816	struct audit_entry *e;
    817	enum audit_state state;
    818
    819	if (auditd_test_task(tsk))
    820		return;
    821
    822	rcu_read_lock();
    823	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
    824				list) {
    825		if (audit_in_mask(&e->rule, ctx->uring_op) &&
    826		    audit_filter_rules(tsk, &e->rule, ctx, NULL, &state,
    827				       false)) {
    828			rcu_read_unlock();
    829			ctx->current_state = state;
    830			return;
    831		}
    832	}
    833	rcu_read_unlock();
    834}
    835
    836/* At syscall exit time, this filter is called if the audit_state is
    837 * not low enough that auditing cannot take place, but is also not
    838 * high enough that we already know we have to write an audit record
    839 * (i.e., the state is AUDIT_STATE_BUILD).
    840 */
    841static void audit_filter_syscall(struct task_struct *tsk,
    842				 struct audit_context *ctx)
    843{
    844	struct audit_entry *e;
    845	enum audit_state state;
    846
    847	if (auditd_test_task(tsk))
    848		return;
    849
    850	rcu_read_lock();
    851	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
    852		if (audit_in_mask(&e->rule, ctx->major) &&
    853		    audit_filter_rules(tsk, &e->rule, ctx, NULL,
    854				       &state, false)) {
    855			rcu_read_unlock();
    856			ctx->current_state = state;
    857			return;
    858		}
    859	}
    860	rcu_read_unlock();
    861	return;
    862}
    863
    864/*
    865 * Given an audit_name check the inode hash table to see if they match.
    866 * Called holding the rcu read lock to protect the use of audit_inode_hash
    867 */
    868static int audit_filter_inode_name(struct task_struct *tsk,
    869				   struct audit_names *n,
    870				   struct audit_context *ctx) {
    871	int h = audit_hash_ino((u32)n->ino);
    872	struct list_head *list = &audit_inode_hash[h];
    873	struct audit_entry *e;
    874	enum audit_state state;
    875
    876	list_for_each_entry_rcu(e, list, list) {
    877		if (audit_in_mask(&e->rule, ctx->major) &&
    878		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
    879			ctx->current_state = state;
    880			return 1;
    881		}
    882	}
    883	return 0;
    884}
    885
    886/* At syscall exit time, this filter is called if any audit_names have been
    887 * collected during syscall processing.  We only check rules in sublists at hash
    888 * buckets applicable to the inode numbers in audit_names.
    889 * Regarding audit_state, same rules apply as for audit_filter_syscall().
    890 */
    891void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
    892{
    893	struct audit_names *n;
    894
    895	if (auditd_test_task(tsk))
    896		return;
    897
    898	rcu_read_lock();
    899
    900	list_for_each_entry(n, &ctx->names_list, list) {
    901		if (audit_filter_inode_name(tsk, n, ctx))
    902			break;
    903	}
    904	rcu_read_unlock();
    905}
    906
    907static inline void audit_proctitle_free(struct audit_context *context)
    908{
    909	kfree(context->proctitle.value);
    910	context->proctitle.value = NULL;
    911	context->proctitle.len = 0;
    912}
    913
    914static inline void audit_free_module(struct audit_context *context)
    915{
    916	if (context->type == AUDIT_KERN_MODULE) {
    917		kfree(context->module.name);
    918		context->module.name = NULL;
    919	}
    920}
    921static inline void audit_free_names(struct audit_context *context)
    922{
    923	struct audit_names *n, *next;
    924
    925	list_for_each_entry_safe(n, next, &context->names_list, list) {
    926		list_del(&n->list);
    927		if (n->name)
    928			putname(n->name);
    929		if (n->should_free)
    930			kfree(n);
    931	}
    932	context->name_count = 0;
    933	path_put(&context->pwd);
    934	context->pwd.dentry = NULL;
    935	context->pwd.mnt = NULL;
    936}
    937
    938static inline void audit_free_aux(struct audit_context *context)
    939{
    940	struct audit_aux_data *aux;
    941
    942	while ((aux = context->aux)) {
    943		context->aux = aux->next;
    944		kfree(aux);
    945	}
    946	context->aux = NULL;
    947	while ((aux = context->aux_pids)) {
    948		context->aux_pids = aux->next;
    949		kfree(aux);
    950	}
    951	context->aux_pids = NULL;
    952}
    953
    954/**
    955 * audit_reset_context - reset a audit_context structure
    956 * @ctx: the audit_context to reset
    957 *
    958 * All fields in the audit_context will be reset to an initial state, all
    959 * references held by fields will be dropped, and private memory will be
    960 * released.  When this function returns the audit_context will be suitable
    961 * for reuse, so long as the passed context is not NULL or a dummy context.
    962 */
    963static void audit_reset_context(struct audit_context *ctx)
    964{
    965	if (!ctx)
    966		return;
    967
    968	/* if ctx is non-null, reset the "ctx->state" regardless */
    969	ctx->context = AUDIT_CTX_UNUSED;
    970	if (ctx->dummy)
    971		return;
    972
    973	/*
    974	 * NOTE: It shouldn't matter in what order we release the fields, so
    975	 *       release them in the order in which they appear in the struct;
    976	 *       this gives us some hope of quickly making sure we are
    977	 *       resetting the audit_context properly.
    978	 *
    979	 *       Other things worth mentioning:
    980	 *       - we don't reset "dummy"
    981	 *       - we don't reset "state", we do reset "current_state"
    982	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
    983	 *       - much of this is likely overkill, but play it safe for now
    984	 *       - we really need to work on improving the audit_context struct
    985	 */
    986
    987	ctx->current_state = ctx->state;
    988	ctx->serial = 0;
    989	ctx->major = 0;
    990	ctx->uring_op = 0;
    991	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
    992	memset(ctx->argv, 0, sizeof(ctx->argv));
    993	ctx->return_code = 0;
    994	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
    995	ctx->return_valid = AUDITSC_INVALID;
    996	audit_free_names(ctx);
    997	if (ctx->state != AUDIT_STATE_RECORD) {
    998		kfree(ctx->filterkey);
    999		ctx->filterkey = NULL;
   1000	}
   1001	audit_free_aux(ctx);
   1002	kfree(ctx->sockaddr);
   1003	ctx->sockaddr = NULL;
   1004	ctx->sockaddr_len = 0;
   1005	ctx->pid = ctx->ppid = 0;
   1006	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
   1007	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
   1008	ctx->personality = 0;
   1009	ctx->arch = 0;
   1010	ctx->target_pid = 0;
   1011	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
   1012	ctx->target_sessionid = 0;
   1013	ctx->target_sid = 0;
   1014	ctx->target_comm[0] = '\0';
   1015	unroll_tree_refs(ctx, NULL, 0);
   1016	WARN_ON(!list_empty(&ctx->killed_trees));
   1017	audit_free_module(ctx);
   1018	ctx->fds[0] = -1;
   1019	audit_proctitle_free(ctx);
   1020	ctx->type = 0; /* reset last for audit_free_*() */
   1021}
   1022
   1023static inline struct audit_context *audit_alloc_context(enum audit_state state)
   1024{
   1025	struct audit_context *context;
   1026
   1027	context = kzalloc(sizeof(*context), GFP_KERNEL);
   1028	if (!context)
   1029		return NULL;
   1030	context->context = AUDIT_CTX_UNUSED;
   1031	context->state = state;
   1032	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
   1033	INIT_LIST_HEAD(&context->killed_trees);
   1034	INIT_LIST_HEAD(&context->names_list);
   1035	context->fds[0] = -1;
   1036	context->return_valid = AUDITSC_INVALID;
   1037	return context;
   1038}
   1039
   1040/**
   1041 * audit_alloc - allocate an audit context block for a task
   1042 * @tsk: task
   1043 *
   1044 * Filter on the task information and allocate a per-task audit context
   1045 * if necessary.  Doing so turns on system call auditing for the
   1046 * specified task.  This is called from copy_process, so no lock is
   1047 * needed.
   1048 */
   1049int audit_alloc(struct task_struct *tsk)
   1050{
   1051	struct audit_context *context;
   1052	enum audit_state     state;
   1053	char *key = NULL;
   1054
   1055	if (likely(!audit_ever_enabled))
   1056		return 0;
   1057
   1058	state = audit_filter_task(tsk, &key);
   1059	if (state == AUDIT_STATE_DISABLED) {
   1060		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
   1061		return 0;
   1062	}
   1063
   1064	if (!(context = audit_alloc_context(state))) {
   1065		kfree(key);
   1066		audit_log_lost("out of memory in audit_alloc");
   1067		return -ENOMEM;
   1068	}
   1069	context->filterkey = key;
   1070
   1071	audit_set_context(tsk, context);
   1072	set_task_syscall_work(tsk, SYSCALL_AUDIT);
   1073	return 0;
   1074}
   1075
   1076/**
   1077 * audit_alloc_kernel - allocate an audit_context for a kernel task
   1078 * @tsk: the kernel task
   1079 *
   1080 * Similar to the audit_alloc() function, but intended for kernel private
   1081 * threads.  Returns zero on success, negative values on failure.
   1082 */
   1083int audit_alloc_kernel(struct task_struct *tsk)
   1084{
   1085	/*
   1086	 * At the moment we are just going to call into audit_alloc() to
   1087	 * simplify the code, but there two things to keep in mind with this
   1088	 * approach:
   1089	 *
   1090	 * 1. Filtering internal kernel tasks is a bit laughable in almost all
   1091	 * cases, but there is at least one case where there is a benefit:
   1092	 * the '-a task,never' case allows the admin to effectively disable
   1093	 * task auditing at runtime.
   1094	 *
   1095	 * 2. The {set,clear}_task_syscall_work() ops likely have zero effect
   1096	 * on these internal kernel tasks, but they probably don't hurt either.
   1097	 */
   1098	return audit_alloc(tsk);
   1099}
   1100
   1101static inline void audit_free_context(struct audit_context *context)
   1102{
   1103	/* resetting is extra work, but it is likely just noise */
   1104	audit_reset_context(context);
   1105	free_tree_refs(context);
   1106	kfree(context->filterkey);
   1107	kfree(context);
   1108}
   1109
   1110static int audit_log_pid_context(struct audit_context *context, pid_t pid,
   1111				 kuid_t auid, kuid_t uid, unsigned int sessionid,
   1112				 u32 sid, char *comm)
   1113{
   1114	struct audit_buffer *ab;
   1115	char *ctx = NULL;
   1116	u32 len;
   1117	int rc = 0;
   1118
   1119	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
   1120	if (!ab)
   1121		return rc;
   1122
   1123	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
   1124			 from_kuid(&init_user_ns, auid),
   1125			 from_kuid(&init_user_ns, uid), sessionid);
   1126	if (sid) {
   1127		if (security_secid_to_secctx(sid, &ctx, &len)) {
   1128			audit_log_format(ab, " obj=(none)");
   1129			rc = 1;
   1130		} else {
   1131			audit_log_format(ab, " obj=%s", ctx);
   1132			security_release_secctx(ctx, len);
   1133		}
   1134	}
   1135	audit_log_format(ab, " ocomm=");
   1136	audit_log_untrustedstring(ab, comm);
   1137	audit_log_end(ab);
   1138
   1139	return rc;
   1140}
   1141
   1142static void audit_log_execve_info(struct audit_context *context,
   1143				  struct audit_buffer **ab)
   1144{
   1145	long len_max;
   1146	long len_rem;
   1147	long len_full;
   1148	long len_buf;
   1149	long len_abuf = 0;
   1150	long len_tmp;
   1151	bool require_data;
   1152	bool encode;
   1153	unsigned int iter;
   1154	unsigned int arg;
   1155	char *buf_head;
   1156	char *buf;
   1157	const char __user *p = (const char __user *)current->mm->arg_start;
   1158
   1159	/* NOTE: this buffer needs to be large enough to hold all the non-arg
   1160	 *       data we put in the audit record for this argument (see the
   1161	 *       code below) ... at this point in time 96 is plenty */
   1162	char abuf[96];
   1163
   1164	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
   1165	 *       current value of 7500 is not as important as the fact that it
   1166	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
   1167	 *       room if we go over a little bit in the logging below */
   1168	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
   1169	len_max = MAX_EXECVE_AUDIT_LEN;
   1170
   1171	/* scratch buffer to hold the userspace args */
   1172	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
   1173	if (!buf_head) {
   1174		audit_panic("out of memory for argv string");
   1175		return;
   1176	}
   1177	buf = buf_head;
   1178
   1179	audit_log_format(*ab, "argc=%d", context->execve.argc);
   1180
   1181	len_rem = len_max;
   1182	len_buf = 0;
   1183	len_full = 0;
   1184	require_data = true;
   1185	encode = false;
   1186	iter = 0;
   1187	arg = 0;
   1188	do {
   1189		/* NOTE: we don't ever want to trust this value for anything
   1190		 *       serious, but the audit record format insists we
   1191		 *       provide an argument length for really long arguments,
   1192		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
   1193		 *       to use strncpy_from_user() to obtain this value for
   1194		 *       recording in the log, although we don't use it
   1195		 *       anywhere here to avoid a double-fetch problem */
   1196		if (len_full == 0)
   1197			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
   1198
   1199		/* read more data from userspace */
   1200		if (require_data) {
   1201			/* can we make more room in the buffer? */
   1202			if (buf != buf_head) {
   1203				memmove(buf_head, buf, len_buf);
   1204				buf = buf_head;
   1205			}
   1206
   1207			/* fetch as much as we can of the argument */
   1208			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
   1209						    len_max - len_buf);
   1210			if (len_tmp == -EFAULT) {
   1211				/* unable to copy from userspace */
   1212				send_sig(SIGKILL, current, 0);
   1213				goto out;
   1214			} else if (len_tmp == (len_max - len_buf)) {
   1215				/* buffer is not large enough */
   1216				require_data = true;
   1217				/* NOTE: if we are going to span multiple
   1218				 *       buffers force the encoding so we stand
   1219				 *       a chance at a sane len_full value and
   1220				 *       consistent record encoding */
   1221				encode = true;
   1222				len_full = len_full * 2;
   1223				p += len_tmp;
   1224			} else {
   1225				require_data = false;
   1226				if (!encode)
   1227					encode = audit_string_contains_control(
   1228								buf, len_tmp);
   1229				/* try to use a trusted value for len_full */
   1230				if (len_full < len_max)
   1231					len_full = (encode ?
   1232						    len_tmp * 2 : len_tmp);
   1233				p += len_tmp + 1;
   1234			}
   1235			len_buf += len_tmp;
   1236			buf_head[len_buf] = '\0';
   1237
   1238			/* length of the buffer in the audit record? */
   1239			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
   1240		}
   1241
   1242		/* write as much as we can to the audit log */
   1243		if (len_buf >= 0) {
   1244			/* NOTE: some magic numbers here - basically if we
   1245			 *       can't fit a reasonable amount of data into the
   1246			 *       existing audit buffer, flush it and start with
   1247			 *       a new buffer */
   1248			if ((sizeof(abuf) + 8) > len_rem) {
   1249				len_rem = len_max;
   1250				audit_log_end(*ab);
   1251				*ab = audit_log_start(context,
   1252						      GFP_KERNEL, AUDIT_EXECVE);
   1253				if (!*ab)
   1254					goto out;
   1255			}
   1256
   1257			/* create the non-arg portion of the arg record */
   1258			len_tmp = 0;
   1259			if (require_data || (iter > 0) ||
   1260			    ((len_abuf + sizeof(abuf)) > len_rem)) {
   1261				if (iter == 0) {
   1262					len_tmp += snprintf(&abuf[len_tmp],
   1263							sizeof(abuf) - len_tmp,
   1264							" a%d_len=%lu",
   1265							arg, len_full);
   1266				}
   1267				len_tmp += snprintf(&abuf[len_tmp],
   1268						    sizeof(abuf) - len_tmp,
   1269						    " a%d[%d]=", arg, iter++);
   1270			} else
   1271				len_tmp += snprintf(&abuf[len_tmp],
   1272						    sizeof(abuf) - len_tmp,
   1273						    " a%d=", arg);
   1274			WARN_ON(len_tmp >= sizeof(abuf));
   1275			abuf[sizeof(abuf) - 1] = '\0';
   1276
   1277			/* log the arg in the audit record */
   1278			audit_log_format(*ab, "%s", abuf);
   1279			len_rem -= len_tmp;
   1280			len_tmp = len_buf;
   1281			if (encode) {
   1282				if (len_abuf > len_rem)
   1283					len_tmp = len_rem / 2; /* encoding */
   1284				audit_log_n_hex(*ab, buf, len_tmp);
   1285				len_rem -= len_tmp * 2;
   1286				len_abuf -= len_tmp * 2;
   1287			} else {
   1288				if (len_abuf > len_rem)
   1289					len_tmp = len_rem - 2; /* quotes */
   1290				audit_log_n_string(*ab, buf, len_tmp);
   1291				len_rem -= len_tmp + 2;
   1292				/* don't subtract the "2" because we still need
   1293				 * to add quotes to the remaining string */
   1294				len_abuf -= len_tmp;
   1295			}
   1296			len_buf -= len_tmp;
   1297			buf += len_tmp;
   1298		}
   1299
   1300		/* ready to move to the next argument? */
   1301		if ((len_buf == 0) && !require_data) {
   1302			arg++;
   1303			iter = 0;
   1304			len_full = 0;
   1305			require_data = true;
   1306			encode = false;
   1307		}
   1308	} while (arg < context->execve.argc);
   1309
   1310	/* NOTE: the caller handles the final audit_log_end() call */
   1311
   1312out:
   1313	kfree(buf_head);
   1314}
   1315
   1316static void audit_log_cap(struct audit_buffer *ab, char *prefix,
   1317			  kernel_cap_t *cap)
   1318{
   1319	int i;
   1320
   1321	if (cap_isclear(*cap)) {
   1322		audit_log_format(ab, " %s=0", prefix);
   1323		return;
   1324	}
   1325	audit_log_format(ab, " %s=", prefix);
   1326	CAP_FOR_EACH_U32(i)
   1327		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
   1328}
   1329
   1330static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
   1331{
   1332	if (name->fcap_ver == -1) {
   1333		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
   1334		return;
   1335	}
   1336	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
   1337	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
   1338	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
   1339			 name->fcap.fE, name->fcap_ver,
   1340			 from_kuid(&init_user_ns, name->fcap.rootid));
   1341}
   1342
   1343static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
   1344{
   1345	const struct audit_ntp_data *ntp = &context->time.ntp_data;
   1346	const struct timespec64 *tk = &context->time.tk_injoffset;
   1347	static const char * const ntp_name[] = {
   1348		"offset",
   1349		"freq",
   1350		"status",
   1351		"tai",
   1352		"tick",
   1353		"adjust",
   1354	};
   1355	int type;
   1356
   1357	if (context->type == AUDIT_TIME_ADJNTPVAL) {
   1358		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
   1359			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
   1360				if (!*ab) {
   1361					*ab = audit_log_start(context,
   1362							GFP_KERNEL,
   1363							AUDIT_TIME_ADJNTPVAL);
   1364					if (!*ab)
   1365						return;
   1366				}
   1367				audit_log_format(*ab, "op=%s old=%lli new=%lli",
   1368						 ntp_name[type],
   1369						 ntp->vals[type].oldval,
   1370						 ntp->vals[type].newval);
   1371				audit_log_end(*ab);
   1372				*ab = NULL;
   1373			}
   1374		}
   1375	}
   1376	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
   1377		if (!*ab) {
   1378			*ab = audit_log_start(context, GFP_KERNEL,
   1379					      AUDIT_TIME_INJOFFSET);
   1380			if (!*ab)
   1381				return;
   1382		}
   1383		audit_log_format(*ab, "sec=%lli nsec=%li",
   1384				 (long long)tk->tv_sec, tk->tv_nsec);
   1385		audit_log_end(*ab);
   1386		*ab = NULL;
   1387	}
   1388}
   1389
   1390static void show_special(struct audit_context *context, int *call_panic)
   1391{
   1392	struct audit_buffer *ab;
   1393	int i;
   1394
   1395	ab = audit_log_start(context, GFP_KERNEL, context->type);
   1396	if (!ab)
   1397		return;
   1398
   1399	switch (context->type) {
   1400	case AUDIT_SOCKETCALL: {
   1401		int nargs = context->socketcall.nargs;
   1402
   1403		audit_log_format(ab, "nargs=%d", nargs);
   1404		for (i = 0; i < nargs; i++)
   1405			audit_log_format(ab, " a%d=%lx", i,
   1406				context->socketcall.args[i]);
   1407		break; }
   1408	case AUDIT_IPC: {
   1409		u32 osid = context->ipc.osid;
   1410
   1411		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
   1412				 from_kuid(&init_user_ns, context->ipc.uid),
   1413				 from_kgid(&init_user_ns, context->ipc.gid),
   1414				 context->ipc.mode);
   1415		if (osid) {
   1416			char *ctx = NULL;
   1417			u32 len;
   1418
   1419			if (security_secid_to_secctx(osid, &ctx, &len)) {
   1420				audit_log_format(ab, " osid=%u", osid);
   1421				*call_panic = 1;
   1422			} else {
   1423				audit_log_format(ab, " obj=%s", ctx);
   1424				security_release_secctx(ctx, len);
   1425			}
   1426		}
   1427		if (context->ipc.has_perm) {
   1428			audit_log_end(ab);
   1429			ab = audit_log_start(context, GFP_KERNEL,
   1430					     AUDIT_IPC_SET_PERM);
   1431			if (unlikely(!ab))
   1432				return;
   1433			audit_log_format(ab,
   1434				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
   1435				context->ipc.qbytes,
   1436				context->ipc.perm_uid,
   1437				context->ipc.perm_gid,
   1438				context->ipc.perm_mode);
   1439		}
   1440		break; }
   1441	case AUDIT_MQ_OPEN:
   1442		audit_log_format(ab,
   1443			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
   1444			"mq_msgsize=%ld mq_curmsgs=%ld",
   1445			context->mq_open.oflag, context->mq_open.mode,
   1446			context->mq_open.attr.mq_flags,
   1447			context->mq_open.attr.mq_maxmsg,
   1448			context->mq_open.attr.mq_msgsize,
   1449			context->mq_open.attr.mq_curmsgs);
   1450		break;
   1451	case AUDIT_MQ_SENDRECV:
   1452		audit_log_format(ab,
   1453			"mqdes=%d msg_len=%zd msg_prio=%u "
   1454			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
   1455			context->mq_sendrecv.mqdes,
   1456			context->mq_sendrecv.msg_len,
   1457			context->mq_sendrecv.msg_prio,
   1458			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
   1459			context->mq_sendrecv.abs_timeout.tv_nsec);
   1460		break;
   1461	case AUDIT_MQ_NOTIFY:
   1462		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
   1463				context->mq_notify.mqdes,
   1464				context->mq_notify.sigev_signo);
   1465		break;
   1466	case AUDIT_MQ_GETSETATTR: {
   1467		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
   1468
   1469		audit_log_format(ab,
   1470			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
   1471			"mq_curmsgs=%ld ",
   1472			context->mq_getsetattr.mqdes,
   1473			attr->mq_flags, attr->mq_maxmsg,
   1474			attr->mq_msgsize, attr->mq_curmsgs);
   1475		break; }
   1476	case AUDIT_CAPSET:
   1477		audit_log_format(ab, "pid=%d", context->capset.pid);
   1478		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
   1479		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
   1480		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
   1481		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
   1482		break;
   1483	case AUDIT_MMAP:
   1484		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
   1485				 context->mmap.flags);
   1486		break;
   1487	case AUDIT_OPENAT2:
   1488		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
   1489				 context->openat2.flags,
   1490				 context->openat2.mode,
   1491				 context->openat2.resolve);
   1492		break;
   1493	case AUDIT_EXECVE:
   1494		audit_log_execve_info(context, &ab);
   1495		break;
   1496	case AUDIT_KERN_MODULE:
   1497		audit_log_format(ab, "name=");
   1498		if (context->module.name) {
   1499			audit_log_untrustedstring(ab, context->module.name);
   1500		} else
   1501			audit_log_format(ab, "(null)");
   1502
   1503		break;
   1504	case AUDIT_TIME_ADJNTPVAL:
   1505	case AUDIT_TIME_INJOFFSET:
   1506		/* this call deviates from the rest, eating the buffer */
   1507		audit_log_time(context, &ab);
   1508		break;
   1509	}
   1510	audit_log_end(ab);
   1511}
   1512
   1513static inline int audit_proctitle_rtrim(char *proctitle, int len)
   1514{
   1515	char *end = proctitle + len - 1;
   1516
   1517	while (end > proctitle && !isprint(*end))
   1518		end--;
   1519
   1520	/* catch the case where proctitle is only 1 non-print character */
   1521	len = end - proctitle + 1;
   1522	len -= isprint(proctitle[len-1]) == 0;
   1523	return len;
   1524}
   1525
   1526/*
   1527 * audit_log_name - produce AUDIT_PATH record from struct audit_names
   1528 * @context: audit_context for the task
   1529 * @n: audit_names structure with reportable details
   1530 * @path: optional path to report instead of audit_names->name
   1531 * @record_num: record number to report when handling a list of names
   1532 * @call_panic: optional pointer to int that will be updated if secid fails
   1533 */
   1534static void audit_log_name(struct audit_context *context, struct audit_names *n,
   1535		    const struct path *path, int record_num, int *call_panic)
   1536{
   1537	struct audit_buffer *ab;
   1538
   1539	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
   1540	if (!ab)
   1541		return;
   1542
   1543	audit_log_format(ab, "item=%d", record_num);
   1544
   1545	if (path)
   1546		audit_log_d_path(ab, " name=", path);
   1547	else if (n->name) {
   1548		switch (n->name_len) {
   1549		case AUDIT_NAME_FULL:
   1550			/* log the full path */
   1551			audit_log_format(ab, " name=");
   1552			audit_log_untrustedstring(ab, n->name->name);
   1553			break;
   1554		case 0:
   1555			/* name was specified as a relative path and the
   1556			 * directory component is the cwd
   1557			 */
   1558			if (context->pwd.dentry && context->pwd.mnt)
   1559				audit_log_d_path(ab, " name=", &context->pwd);
   1560			else
   1561				audit_log_format(ab, " name=(null)");
   1562			break;
   1563		default:
   1564			/* log the name's directory component */
   1565			audit_log_format(ab, " name=");
   1566			audit_log_n_untrustedstring(ab, n->name->name,
   1567						    n->name_len);
   1568		}
   1569	} else
   1570		audit_log_format(ab, " name=(null)");
   1571
   1572	if (n->ino != AUDIT_INO_UNSET)
   1573		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
   1574				 n->ino,
   1575				 MAJOR(n->dev),
   1576				 MINOR(n->dev),
   1577				 n->mode,
   1578				 from_kuid(&init_user_ns, n->uid),
   1579				 from_kgid(&init_user_ns, n->gid),
   1580				 MAJOR(n->rdev),
   1581				 MINOR(n->rdev));
   1582	if (n->osid != 0) {
   1583		char *ctx = NULL;
   1584		u32 len;
   1585
   1586		if (security_secid_to_secctx(
   1587			n->osid, &ctx, &len)) {
   1588			audit_log_format(ab, " osid=%u", n->osid);
   1589			if (call_panic)
   1590				*call_panic = 2;
   1591		} else {
   1592			audit_log_format(ab, " obj=%s", ctx);
   1593			security_release_secctx(ctx, len);
   1594		}
   1595	}
   1596
   1597	/* log the audit_names record type */
   1598	switch (n->type) {
   1599	case AUDIT_TYPE_NORMAL:
   1600		audit_log_format(ab, " nametype=NORMAL");
   1601		break;
   1602	case AUDIT_TYPE_PARENT:
   1603		audit_log_format(ab, " nametype=PARENT");
   1604		break;
   1605	case AUDIT_TYPE_CHILD_DELETE:
   1606		audit_log_format(ab, " nametype=DELETE");
   1607		break;
   1608	case AUDIT_TYPE_CHILD_CREATE:
   1609		audit_log_format(ab, " nametype=CREATE");
   1610		break;
   1611	default:
   1612		audit_log_format(ab, " nametype=UNKNOWN");
   1613		break;
   1614	}
   1615
   1616	audit_log_fcaps(ab, n);
   1617	audit_log_end(ab);
   1618}
   1619
   1620static void audit_log_proctitle(void)
   1621{
   1622	int res;
   1623	char *buf;
   1624	char *msg = "(null)";
   1625	int len = strlen(msg);
   1626	struct audit_context *context = audit_context();
   1627	struct audit_buffer *ab;
   1628
   1629	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
   1630	if (!ab)
   1631		return;	/* audit_panic or being filtered */
   1632
   1633	audit_log_format(ab, "proctitle=");
   1634
   1635	/* Not  cached */
   1636	if (!context->proctitle.value) {
   1637		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
   1638		if (!buf)
   1639			goto out;
   1640		/* Historically called this from procfs naming */
   1641		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
   1642		if (res == 0) {
   1643			kfree(buf);
   1644			goto out;
   1645		}
   1646		res = audit_proctitle_rtrim(buf, res);
   1647		if (res == 0) {
   1648			kfree(buf);
   1649			goto out;
   1650		}
   1651		context->proctitle.value = buf;
   1652		context->proctitle.len = res;
   1653	}
   1654	msg = context->proctitle.value;
   1655	len = context->proctitle.len;
   1656out:
   1657	audit_log_n_untrustedstring(ab, msg, len);
   1658	audit_log_end(ab);
   1659}
   1660
   1661/**
   1662 * audit_log_uring - generate a AUDIT_URINGOP record
   1663 * @ctx: the audit context
   1664 */
   1665static void audit_log_uring(struct audit_context *ctx)
   1666{
   1667	struct audit_buffer *ab;
   1668	const struct cred *cred;
   1669
   1670	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
   1671	if (!ab)
   1672		return;
   1673	cred = current_cred();
   1674	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
   1675	if (ctx->return_valid != AUDITSC_INVALID)
   1676		audit_log_format(ab, " success=%s exit=%ld",
   1677				 (ctx->return_valid == AUDITSC_SUCCESS ?
   1678				  "yes" : "no"),
   1679				 ctx->return_code);
   1680	audit_log_format(ab,
   1681			 " items=%d"
   1682			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
   1683			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
   1684			 ctx->name_count,
   1685			 task_ppid_nr(current), task_tgid_nr(current),
   1686			 from_kuid(&init_user_ns, cred->uid),
   1687			 from_kgid(&init_user_ns, cred->gid),
   1688			 from_kuid(&init_user_ns, cred->euid),
   1689			 from_kuid(&init_user_ns, cred->suid),
   1690			 from_kuid(&init_user_ns, cred->fsuid),
   1691			 from_kgid(&init_user_ns, cred->egid),
   1692			 from_kgid(&init_user_ns, cred->sgid),
   1693			 from_kgid(&init_user_ns, cred->fsgid));
   1694	audit_log_task_context(ab);
   1695	audit_log_key(ab, ctx->filterkey);
   1696	audit_log_end(ab);
   1697}
   1698
   1699static void audit_log_exit(void)
   1700{
   1701	int i, call_panic = 0;
   1702	struct audit_context *context = audit_context();
   1703	struct audit_buffer *ab;
   1704	struct audit_aux_data *aux;
   1705	struct audit_names *n;
   1706
   1707	context->personality = current->personality;
   1708
   1709	switch (context->context) {
   1710	case AUDIT_CTX_SYSCALL:
   1711		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
   1712		if (!ab)
   1713			return;
   1714		audit_log_format(ab, "arch=%x syscall=%d",
   1715				 context->arch, context->major);
   1716		if (context->personality != PER_LINUX)
   1717			audit_log_format(ab, " per=%lx", context->personality);
   1718		if (context->return_valid != AUDITSC_INVALID)
   1719			audit_log_format(ab, " success=%s exit=%ld",
   1720					 (context->return_valid == AUDITSC_SUCCESS ?
   1721					  "yes" : "no"),
   1722					 context->return_code);
   1723		audit_log_format(ab,
   1724				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
   1725				 context->argv[0],
   1726				 context->argv[1],
   1727				 context->argv[2],
   1728				 context->argv[3],
   1729				 context->name_count);
   1730		audit_log_task_info(ab);
   1731		audit_log_key(ab, context->filterkey);
   1732		audit_log_end(ab);
   1733		break;
   1734	case AUDIT_CTX_URING:
   1735		audit_log_uring(context);
   1736		break;
   1737	default:
   1738		BUG();
   1739		break;
   1740	}
   1741
   1742	for (aux = context->aux; aux; aux = aux->next) {
   1743
   1744		ab = audit_log_start(context, GFP_KERNEL, aux->type);
   1745		if (!ab)
   1746			continue; /* audit_panic has been called */
   1747
   1748		switch (aux->type) {
   1749
   1750		case AUDIT_BPRM_FCAPS: {
   1751			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
   1752
   1753			audit_log_format(ab, "fver=%x", axs->fcap_ver);
   1754			audit_log_cap(ab, "fp", &axs->fcap.permitted);
   1755			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
   1756			audit_log_format(ab, " fe=%d", axs->fcap.fE);
   1757			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
   1758			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
   1759			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
   1760			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
   1761			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
   1762			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
   1763			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
   1764			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
   1765			audit_log_format(ab, " frootid=%d",
   1766					 from_kuid(&init_user_ns,
   1767						   axs->fcap.rootid));
   1768			break; }
   1769
   1770		}
   1771		audit_log_end(ab);
   1772	}
   1773
   1774	if (context->type)
   1775		show_special(context, &call_panic);
   1776
   1777	if (context->fds[0] >= 0) {
   1778		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
   1779		if (ab) {
   1780			audit_log_format(ab, "fd0=%d fd1=%d",
   1781					context->fds[0], context->fds[1]);
   1782			audit_log_end(ab);
   1783		}
   1784	}
   1785
   1786	if (context->sockaddr_len) {
   1787		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
   1788		if (ab) {
   1789			audit_log_format(ab, "saddr=");
   1790			audit_log_n_hex(ab, (void *)context->sockaddr,
   1791					context->sockaddr_len);
   1792			audit_log_end(ab);
   1793		}
   1794	}
   1795
   1796	for (aux = context->aux_pids; aux; aux = aux->next) {
   1797		struct audit_aux_data_pids *axs = (void *)aux;
   1798
   1799		for (i = 0; i < axs->pid_count; i++)
   1800			if (audit_log_pid_context(context, axs->target_pid[i],
   1801						  axs->target_auid[i],
   1802						  axs->target_uid[i],
   1803						  axs->target_sessionid[i],
   1804						  axs->target_sid[i],
   1805						  axs->target_comm[i]))
   1806				call_panic = 1;
   1807	}
   1808
   1809	if (context->target_pid &&
   1810	    audit_log_pid_context(context, context->target_pid,
   1811				  context->target_auid, context->target_uid,
   1812				  context->target_sessionid,
   1813				  context->target_sid, context->target_comm))
   1814			call_panic = 1;
   1815
   1816	if (context->pwd.dentry && context->pwd.mnt) {
   1817		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
   1818		if (ab) {
   1819			audit_log_d_path(ab, "cwd=", &context->pwd);
   1820			audit_log_end(ab);
   1821		}
   1822	}
   1823
   1824	i = 0;
   1825	list_for_each_entry(n, &context->names_list, list) {
   1826		if (n->hidden)
   1827			continue;
   1828		audit_log_name(context, n, NULL, i++, &call_panic);
   1829	}
   1830
   1831	if (context->context == AUDIT_CTX_SYSCALL)
   1832		audit_log_proctitle();
   1833
   1834	/* Send end of event record to help user space know we are finished */
   1835	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
   1836	if (ab)
   1837		audit_log_end(ab);
   1838	if (call_panic)
   1839		audit_panic("error in audit_log_exit()");
   1840}
   1841
   1842/**
   1843 * __audit_free - free a per-task audit context
   1844 * @tsk: task whose audit context block to free
   1845 *
   1846 * Called from copy_process, do_exit, and the io_uring code
   1847 */
   1848void __audit_free(struct task_struct *tsk)
   1849{
   1850	struct audit_context *context = tsk->audit_context;
   1851
   1852	if (!context)
   1853		return;
   1854
   1855	/* this may generate CONFIG_CHANGE records */
   1856	if (!list_empty(&context->killed_trees))
   1857		audit_kill_trees(context);
   1858
   1859	/* We are called either by do_exit() or the fork() error handling code;
   1860	 * in the former case tsk == current and in the latter tsk is a
   1861	 * random task_struct that doesn't doesn't have any meaningful data we
   1862	 * need to log via audit_log_exit().
   1863	 */
   1864	if (tsk == current && !context->dummy) {
   1865		context->return_valid = AUDITSC_INVALID;
   1866		context->return_code = 0;
   1867		if (context->context == AUDIT_CTX_SYSCALL) {
   1868			audit_filter_syscall(tsk, context);
   1869			audit_filter_inodes(tsk, context);
   1870			if (context->current_state == AUDIT_STATE_RECORD)
   1871				audit_log_exit();
   1872		} else if (context->context == AUDIT_CTX_URING) {
   1873			/* TODO: verify this case is real and valid */
   1874			audit_filter_uring(tsk, context);
   1875			audit_filter_inodes(tsk, context);
   1876			if (context->current_state == AUDIT_STATE_RECORD)
   1877				audit_log_uring(context);
   1878		}
   1879	}
   1880
   1881	audit_set_context(tsk, NULL);
   1882	audit_free_context(context);
   1883}
   1884
   1885/**
   1886 * audit_return_fixup - fixup the return codes in the audit_context
   1887 * @ctx: the audit_context
   1888 * @success: true/false value to indicate if the operation succeeded or not
   1889 * @code: operation return code
   1890 *
   1891 * We need to fixup the return code in the audit logs if the actual return
   1892 * codes are later going to be fixed by the arch specific signal handlers.
   1893 */
   1894static void audit_return_fixup(struct audit_context *ctx,
   1895			       int success, long code)
   1896{
   1897	/*
   1898	 * This is actually a test for:
   1899	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
   1900	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
   1901	 *
   1902	 * but is faster than a bunch of ||
   1903	 */
   1904	if (unlikely(code <= -ERESTARTSYS) &&
   1905	    (code >= -ERESTART_RESTARTBLOCK) &&
   1906	    (code != -ENOIOCTLCMD))
   1907		ctx->return_code = -EINTR;
   1908	else
   1909		ctx->return_code  = code;
   1910	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
   1911}
   1912
   1913/**
   1914 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
   1915 * @op: the io_uring opcode
   1916 *
   1917 * This is similar to audit_syscall_entry() but is intended for use by io_uring
   1918 * operations.  This function should only ever be called from
   1919 * audit_uring_entry() as we rely on the audit context checking present in that
   1920 * function.
   1921 */
   1922void __audit_uring_entry(u8 op)
   1923{
   1924	struct audit_context *ctx = audit_context();
   1925
   1926	if (ctx->state == AUDIT_STATE_DISABLED)
   1927		return;
   1928
   1929	/*
   1930	 * NOTE: It's possible that we can be called from the process' context
   1931	 *       before it returns to userspace, and before audit_syscall_exit()
   1932	 *       is called.  In this case there is not much to do, just record
   1933	 *       the io_uring details and return.
   1934	 */
   1935	ctx->uring_op = op;
   1936	if (ctx->context == AUDIT_CTX_SYSCALL)
   1937		return;
   1938
   1939	ctx->dummy = !audit_n_rules;
   1940	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
   1941		ctx->prio = 0;
   1942
   1943	ctx->context = AUDIT_CTX_URING;
   1944	ctx->current_state = ctx->state;
   1945	ktime_get_coarse_real_ts64(&ctx->ctime);
   1946}
   1947
   1948/**
   1949 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
   1950 * @success: true/false value to indicate if the operation succeeded or not
   1951 * @code: operation return code
   1952 *
   1953 * This is similar to audit_syscall_exit() but is intended for use by io_uring
   1954 * operations.  This function should only ever be called from
   1955 * audit_uring_exit() as we rely on the audit context checking present in that
   1956 * function.
   1957 */
   1958void __audit_uring_exit(int success, long code)
   1959{
   1960	struct audit_context *ctx = audit_context();
   1961
   1962	if (ctx->dummy) {
   1963		if (ctx->context != AUDIT_CTX_URING)
   1964			return;
   1965		goto out;
   1966	}
   1967
   1968	if (ctx->context == AUDIT_CTX_SYSCALL) {
   1969		/*
   1970		 * NOTE: See the note in __audit_uring_entry() about the case
   1971		 *       where we may be called from process context before we
   1972		 *       return to userspace via audit_syscall_exit().  In this
   1973		 *       case we simply emit a URINGOP record and bail, the
   1974		 *       normal syscall exit handling will take care of
   1975		 *       everything else.
   1976		 *       It is also worth mentioning that when we are called,
   1977		 *       the current process creds may differ from the creds
   1978		 *       used during the normal syscall processing; keep that
   1979		 *       in mind if/when we move the record generation code.
   1980		 */
   1981
   1982		/*
   1983		 * We need to filter on the syscall info here to decide if we
   1984		 * should emit a URINGOP record.  I know it seems odd but this
   1985		 * solves the problem where users have a filter to block *all*
   1986		 * syscall records in the "exit" filter; we want to preserve
   1987		 * the behavior here.
   1988		 */
   1989		audit_filter_syscall(current, ctx);
   1990		if (ctx->current_state != AUDIT_STATE_RECORD)
   1991			audit_filter_uring(current, ctx);
   1992		audit_filter_inodes(current, ctx);
   1993		if (ctx->current_state != AUDIT_STATE_RECORD)
   1994			return;
   1995
   1996		audit_log_uring(ctx);
   1997		return;
   1998	}
   1999
   2000	/* this may generate CONFIG_CHANGE records */
   2001	if (!list_empty(&ctx->killed_trees))
   2002		audit_kill_trees(ctx);
   2003
   2004	/* run through both filters to ensure we set the filterkey properly */
   2005	audit_filter_uring(current, ctx);
   2006	audit_filter_inodes(current, ctx);
   2007	if (ctx->current_state != AUDIT_STATE_RECORD)
   2008		goto out;
   2009	audit_return_fixup(ctx, success, code);
   2010	audit_log_exit();
   2011
   2012out:
   2013	audit_reset_context(ctx);
   2014}
   2015
   2016/**
   2017 * __audit_syscall_entry - fill in an audit record at syscall entry
   2018 * @major: major syscall type (function)
   2019 * @a1: additional syscall register 1
   2020 * @a2: additional syscall register 2
   2021 * @a3: additional syscall register 3
   2022 * @a4: additional syscall register 4
   2023 *
   2024 * Fill in audit context at syscall entry.  This only happens if the
   2025 * audit context was created when the task was created and the state or
   2026 * filters demand the audit context be built.  If the state from the
   2027 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
   2028 * then the record will be written at syscall exit time (otherwise, it
   2029 * will only be written if another part of the kernel requests that it
   2030 * be written).
   2031 */
   2032void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
   2033			   unsigned long a3, unsigned long a4)
   2034{
   2035	struct audit_context *context = audit_context();
   2036	enum audit_state     state;
   2037
   2038	if (!audit_enabled || !context)
   2039		return;
   2040
   2041	WARN_ON(context->context != AUDIT_CTX_UNUSED);
   2042	WARN_ON(context->name_count);
   2043	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
   2044		audit_panic("unrecoverable error in audit_syscall_entry()");
   2045		return;
   2046	}
   2047
   2048	state = context->state;
   2049	if (state == AUDIT_STATE_DISABLED)
   2050		return;
   2051
   2052	context->dummy = !audit_n_rules;
   2053	if (!context->dummy && state == AUDIT_STATE_BUILD) {
   2054		context->prio = 0;
   2055		if (auditd_test_task(current))
   2056			return;
   2057	}
   2058
   2059	context->arch	    = syscall_get_arch(current);
   2060	context->major      = major;
   2061	context->argv[0]    = a1;
   2062	context->argv[1]    = a2;
   2063	context->argv[2]    = a3;
   2064	context->argv[3]    = a4;
   2065	context->context = AUDIT_CTX_SYSCALL;
   2066	context->current_state  = state;
   2067	ktime_get_coarse_real_ts64(&context->ctime);
   2068}
   2069
   2070/**
   2071 * __audit_syscall_exit - deallocate audit context after a system call
   2072 * @success: success value of the syscall
   2073 * @return_code: return value of the syscall
   2074 *
   2075 * Tear down after system call.  If the audit context has been marked as
   2076 * auditable (either because of the AUDIT_STATE_RECORD state from
   2077 * filtering, or because some other part of the kernel wrote an audit
   2078 * message), then write out the syscall information.  In call cases,
   2079 * free the names stored from getname().
   2080 */
   2081void __audit_syscall_exit(int success, long return_code)
   2082{
   2083	struct audit_context *context = audit_context();
   2084
   2085	if (!context || context->dummy ||
   2086	    context->context != AUDIT_CTX_SYSCALL)
   2087		goto out;
   2088
   2089	/* this may generate CONFIG_CHANGE records */
   2090	if (!list_empty(&context->killed_trees))
   2091		audit_kill_trees(context);
   2092
   2093	/* run through both filters to ensure we set the filterkey properly */
   2094	audit_filter_syscall(current, context);
   2095	audit_filter_inodes(current, context);
   2096	if (context->current_state < AUDIT_STATE_RECORD)
   2097		goto out;
   2098
   2099	audit_return_fixup(context, success, return_code);
   2100	audit_log_exit();
   2101
   2102out:
   2103	audit_reset_context(context);
   2104}
   2105
   2106static inline void handle_one(const struct inode *inode)
   2107{
   2108	struct audit_context *context;
   2109	struct audit_tree_refs *p;
   2110	struct audit_chunk *chunk;
   2111	int count;
   2112
   2113	if (likely(!inode->i_fsnotify_marks))
   2114		return;
   2115	context = audit_context();
   2116	p = context->trees;
   2117	count = context->tree_count;
   2118	rcu_read_lock();
   2119	chunk = audit_tree_lookup(inode);
   2120	rcu_read_unlock();
   2121	if (!chunk)
   2122		return;
   2123	if (likely(put_tree_ref(context, chunk)))
   2124		return;
   2125	if (unlikely(!grow_tree_refs(context))) {
   2126		pr_warn("out of memory, audit has lost a tree reference\n");
   2127		audit_set_auditable(context);
   2128		audit_put_chunk(chunk);
   2129		unroll_tree_refs(context, p, count);
   2130		return;
   2131	}
   2132	put_tree_ref(context, chunk);
   2133}
   2134
   2135static void handle_path(const struct dentry *dentry)
   2136{
   2137	struct audit_context *context;
   2138	struct audit_tree_refs *p;
   2139	const struct dentry *d, *parent;
   2140	struct audit_chunk *drop;
   2141	unsigned long seq;
   2142	int count;
   2143
   2144	context = audit_context();
   2145	p = context->trees;
   2146	count = context->tree_count;
   2147retry:
   2148	drop = NULL;
   2149	d = dentry;
   2150	rcu_read_lock();
   2151	seq = read_seqbegin(&rename_lock);
   2152	for(;;) {
   2153		struct inode *inode = d_backing_inode(d);
   2154
   2155		if (inode && unlikely(inode->i_fsnotify_marks)) {
   2156			struct audit_chunk *chunk;
   2157
   2158			chunk = audit_tree_lookup(inode);
   2159			if (chunk) {
   2160				if (unlikely(!put_tree_ref(context, chunk))) {
   2161					drop = chunk;
   2162					break;
   2163				}
   2164			}
   2165		}
   2166		parent = d->d_parent;
   2167		if (parent == d)
   2168			break;
   2169		d = parent;
   2170	}
   2171	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
   2172		rcu_read_unlock();
   2173		if (!drop) {
   2174			/* just a race with rename */
   2175			unroll_tree_refs(context, p, count);
   2176			goto retry;
   2177		}
   2178		audit_put_chunk(drop);
   2179		if (grow_tree_refs(context)) {
   2180			/* OK, got more space */
   2181			unroll_tree_refs(context, p, count);
   2182			goto retry;
   2183		}
   2184		/* too bad */
   2185		pr_warn("out of memory, audit has lost a tree reference\n");
   2186		unroll_tree_refs(context, p, count);
   2187		audit_set_auditable(context);
   2188		return;
   2189	}
   2190	rcu_read_unlock();
   2191}
   2192
   2193static struct audit_names *audit_alloc_name(struct audit_context *context,
   2194						unsigned char type)
   2195{
   2196	struct audit_names *aname;
   2197
   2198	if (context->name_count < AUDIT_NAMES) {
   2199		aname = &context->preallocated_names[context->name_count];
   2200		memset(aname, 0, sizeof(*aname));
   2201	} else {
   2202		aname = kzalloc(sizeof(*aname), GFP_NOFS);
   2203		if (!aname)
   2204			return NULL;
   2205		aname->should_free = true;
   2206	}
   2207
   2208	aname->ino = AUDIT_INO_UNSET;
   2209	aname->type = type;
   2210	list_add_tail(&aname->list, &context->names_list);
   2211
   2212	context->name_count++;
   2213	if (!context->pwd.dentry)
   2214		get_fs_pwd(current->fs, &context->pwd);
   2215	return aname;
   2216}
   2217
   2218/**
   2219 * __audit_reusename - fill out filename with info from existing entry
   2220 * @uptr: userland ptr to pathname
   2221 *
   2222 * Search the audit_names list for the current audit context. If there is an
   2223 * existing entry with a matching "uptr" then return the filename
   2224 * associated with that audit_name. If not, return NULL.
   2225 */
   2226struct filename *
   2227__audit_reusename(const __user char *uptr)
   2228{
   2229	struct audit_context *context = audit_context();
   2230	struct audit_names *n;
   2231
   2232	list_for_each_entry(n, &context->names_list, list) {
   2233		if (!n->name)
   2234			continue;
   2235		if (n->name->uptr == uptr) {
   2236			n->name->refcnt++;
   2237			return n->name;
   2238		}
   2239	}
   2240	return NULL;
   2241}
   2242
   2243/**
   2244 * __audit_getname - add a name to the list
   2245 * @name: name to add
   2246 *
   2247 * Add a name to the list of audit names for this context.
   2248 * Called from fs/namei.c:getname().
   2249 */
   2250void __audit_getname(struct filename *name)
   2251{
   2252	struct audit_context *context = audit_context();
   2253	struct audit_names *n;
   2254
   2255	if (context->context == AUDIT_CTX_UNUSED)
   2256		return;
   2257
   2258	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
   2259	if (!n)
   2260		return;
   2261
   2262	n->name = name;
   2263	n->name_len = AUDIT_NAME_FULL;
   2264	name->aname = n;
   2265	name->refcnt++;
   2266}
   2267
   2268static inline int audit_copy_fcaps(struct audit_names *name,
   2269				   const struct dentry *dentry)
   2270{
   2271	struct cpu_vfs_cap_data caps;
   2272	int rc;
   2273
   2274	if (!dentry)
   2275		return 0;
   2276
   2277	rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
   2278	if (rc)
   2279		return rc;
   2280
   2281	name->fcap.permitted = caps.permitted;
   2282	name->fcap.inheritable = caps.inheritable;
   2283	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
   2284	name->fcap.rootid = caps.rootid;
   2285	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
   2286				VFS_CAP_REVISION_SHIFT;
   2287
   2288	return 0;
   2289}
   2290
   2291/* Copy inode data into an audit_names. */
   2292static void audit_copy_inode(struct audit_names *name,
   2293			     const struct dentry *dentry,
   2294			     struct inode *inode, unsigned int flags)
   2295{
   2296	name->ino   = inode->i_ino;
   2297	name->dev   = inode->i_sb->s_dev;
   2298	name->mode  = inode->i_mode;
   2299	name->uid   = inode->i_uid;
   2300	name->gid   = inode->i_gid;
   2301	name->rdev  = inode->i_rdev;
   2302	security_inode_getsecid(inode, &name->osid);
   2303	if (flags & AUDIT_INODE_NOEVAL) {
   2304		name->fcap_ver = -1;
   2305		return;
   2306	}
   2307	audit_copy_fcaps(name, dentry);
   2308}
   2309
   2310/**
   2311 * __audit_inode - store the inode and device from a lookup
   2312 * @name: name being audited
   2313 * @dentry: dentry being audited
   2314 * @flags: attributes for this particular entry
   2315 */
   2316void __audit_inode(struct filename *name, const struct dentry *dentry,
   2317		   unsigned int flags)
   2318{
   2319	struct audit_context *context = audit_context();
   2320	struct inode *inode = d_backing_inode(dentry);
   2321	struct audit_names *n;
   2322	bool parent = flags & AUDIT_INODE_PARENT;
   2323	struct audit_entry *e;
   2324	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
   2325	int i;
   2326
   2327	if (context->context == AUDIT_CTX_UNUSED)
   2328		return;
   2329
   2330	rcu_read_lock();
   2331	list_for_each_entry_rcu(e, list, list) {
   2332		for (i = 0; i < e->rule.field_count; i++) {
   2333			struct audit_field *f = &e->rule.fields[i];
   2334
   2335			if (f->type == AUDIT_FSTYPE
   2336			    && audit_comparator(inode->i_sb->s_magic,
   2337						f->op, f->val)
   2338			    && e->rule.action == AUDIT_NEVER) {
   2339				rcu_read_unlock();
   2340				return;
   2341			}
   2342		}
   2343	}
   2344	rcu_read_unlock();
   2345
   2346	if (!name)
   2347		goto out_alloc;
   2348
   2349	/*
   2350	 * If we have a pointer to an audit_names entry already, then we can
   2351	 * just use it directly if the type is correct.
   2352	 */
   2353	n = name->aname;
   2354	if (n) {
   2355		if (parent) {
   2356			if (n->type == AUDIT_TYPE_PARENT ||
   2357			    n->type == AUDIT_TYPE_UNKNOWN)
   2358				goto out;
   2359		} else {
   2360			if (n->type != AUDIT_TYPE_PARENT)
   2361				goto out;
   2362		}
   2363	}
   2364
   2365	list_for_each_entry_reverse(n, &context->names_list, list) {
   2366		if (n->ino) {
   2367			/* valid inode number, use that for the comparison */
   2368			if (n->ino != inode->i_ino ||
   2369			    n->dev != inode->i_sb->s_dev)
   2370				continue;
   2371		} else if (n->name) {
   2372			/* inode number has not been set, check the name */
   2373			if (strcmp(n->name->name, name->name))
   2374				continue;
   2375		} else
   2376			/* no inode and no name (?!) ... this is odd ... */
   2377			continue;
   2378
   2379		/* match the correct record type */
   2380		if (parent) {
   2381			if (n->type == AUDIT_TYPE_PARENT ||
   2382			    n->type == AUDIT_TYPE_UNKNOWN)
   2383				goto out;
   2384		} else {
   2385			if (n->type != AUDIT_TYPE_PARENT)
   2386				goto out;
   2387		}
   2388	}
   2389
   2390out_alloc:
   2391	/* unable to find an entry with both a matching name and type */
   2392	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
   2393	if (!n)
   2394		return;
   2395	if (name) {
   2396		n->name = name;
   2397		name->refcnt++;
   2398	}
   2399
   2400out:
   2401	if (parent) {
   2402		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
   2403		n->type = AUDIT_TYPE_PARENT;
   2404		if (flags & AUDIT_INODE_HIDDEN)
   2405			n->hidden = true;
   2406	} else {
   2407		n->name_len = AUDIT_NAME_FULL;
   2408		n->type = AUDIT_TYPE_NORMAL;
   2409	}
   2410	handle_path(dentry);
   2411	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
   2412}
   2413
   2414void __audit_file(const struct file *file)
   2415{
   2416	__audit_inode(NULL, file->f_path.dentry, 0);
   2417}
   2418
   2419/**
   2420 * __audit_inode_child - collect inode info for created/removed objects
   2421 * @parent: inode of dentry parent
   2422 * @dentry: dentry being audited
   2423 * @type:   AUDIT_TYPE_* value that we're looking for
   2424 *
   2425 * For syscalls that create or remove filesystem objects, audit_inode
   2426 * can only collect information for the filesystem object's parent.
   2427 * This call updates the audit context with the child's information.
   2428 * Syscalls that create a new filesystem object must be hooked after
   2429 * the object is created.  Syscalls that remove a filesystem object
   2430 * must be hooked prior, in order to capture the target inode during
   2431 * unsuccessful attempts.
   2432 */
   2433void __audit_inode_child(struct inode *parent,
   2434			 const struct dentry *dentry,
   2435			 const unsigned char type)
   2436{
   2437	struct audit_context *context = audit_context();
   2438	struct inode *inode = d_backing_inode(dentry);
   2439	const struct qstr *dname = &dentry->d_name;
   2440	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
   2441	struct audit_entry *e;
   2442	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
   2443	int i;
   2444
   2445	if (context->context == AUDIT_CTX_UNUSED)
   2446		return;
   2447
   2448	rcu_read_lock();
   2449	list_for_each_entry_rcu(e, list, list) {
   2450		for (i = 0; i < e->rule.field_count; i++) {
   2451			struct audit_field *f = &e->rule.fields[i];
   2452
   2453			if (f->type == AUDIT_FSTYPE
   2454			    && audit_comparator(parent->i_sb->s_magic,
   2455						f->op, f->val)
   2456			    && e->rule.action == AUDIT_NEVER) {
   2457				rcu_read_unlock();
   2458				return;
   2459			}
   2460		}
   2461	}
   2462	rcu_read_unlock();
   2463
   2464	if (inode)
   2465		handle_one(inode);
   2466
   2467	/* look for a parent entry first */
   2468	list_for_each_entry(n, &context->names_list, list) {
   2469		if (!n->name ||
   2470		    (n->type != AUDIT_TYPE_PARENT &&
   2471		     n->type != AUDIT_TYPE_UNKNOWN))
   2472			continue;
   2473
   2474		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
   2475		    !audit_compare_dname_path(dname,
   2476					      n->name->name, n->name_len)) {
   2477			if (n->type == AUDIT_TYPE_UNKNOWN)
   2478				n->type = AUDIT_TYPE_PARENT;
   2479			found_parent = n;
   2480			break;
   2481		}
   2482	}
   2483
   2484	/* is there a matching child entry? */
   2485	list_for_each_entry(n, &context->names_list, list) {
   2486		/* can only match entries that have a name */
   2487		if (!n->name ||
   2488		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
   2489			continue;
   2490
   2491		if (!strcmp(dname->name, n->name->name) ||
   2492		    !audit_compare_dname_path(dname, n->name->name,
   2493						found_parent ?
   2494						found_parent->name_len :
   2495						AUDIT_NAME_FULL)) {
   2496			if (n->type == AUDIT_TYPE_UNKNOWN)
   2497				n->type = type;
   2498			found_child = n;
   2499			break;
   2500		}
   2501	}
   2502
   2503	if (!found_parent) {
   2504		/* create a new, "anonymous" parent record */
   2505		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
   2506		if (!n)
   2507			return;
   2508		audit_copy_inode(n, NULL, parent, 0);
   2509	}
   2510
   2511	if (!found_child) {
   2512		found_child = audit_alloc_name(context, type);
   2513		if (!found_child)
   2514			return;
   2515
   2516		/* Re-use the name belonging to the slot for a matching parent
   2517		 * directory. All names for this context are relinquished in
   2518		 * audit_free_names() */
   2519		if (found_parent) {
   2520			found_child->name = found_parent->name;
   2521			found_child->name_len = AUDIT_NAME_FULL;
   2522			found_child->name->refcnt++;
   2523		}
   2524	}
   2525
   2526	if (inode)
   2527		audit_copy_inode(found_child, dentry, inode, 0);
   2528	else
   2529		found_child->ino = AUDIT_INO_UNSET;
   2530}
   2531EXPORT_SYMBOL_GPL(__audit_inode_child);
   2532
   2533/**
   2534 * auditsc_get_stamp - get local copies of audit_context values
   2535 * @ctx: audit_context for the task
   2536 * @t: timespec64 to store time recorded in the audit_context
   2537 * @serial: serial value that is recorded in the audit_context
   2538 *
   2539 * Also sets the context as auditable.
   2540 */
   2541int auditsc_get_stamp(struct audit_context *ctx,
   2542		       struct timespec64 *t, unsigned int *serial)
   2543{
   2544	if (ctx->context == AUDIT_CTX_UNUSED)
   2545		return 0;
   2546	if (!ctx->serial)
   2547		ctx->serial = audit_serial();
   2548	t->tv_sec  = ctx->ctime.tv_sec;
   2549	t->tv_nsec = ctx->ctime.tv_nsec;
   2550	*serial    = ctx->serial;
   2551	if (!ctx->prio) {
   2552		ctx->prio = 1;
   2553		ctx->current_state = AUDIT_STATE_RECORD;
   2554	}
   2555	return 1;
   2556}
   2557
   2558/**
   2559 * __audit_mq_open - record audit data for a POSIX MQ open
   2560 * @oflag: open flag
   2561 * @mode: mode bits
   2562 * @attr: queue attributes
   2563 *
   2564 */
   2565void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
   2566{
   2567	struct audit_context *context = audit_context();
   2568
   2569	if (attr)
   2570		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
   2571	else
   2572		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
   2573
   2574	context->mq_open.oflag = oflag;
   2575	context->mq_open.mode = mode;
   2576
   2577	context->type = AUDIT_MQ_OPEN;
   2578}
   2579
   2580/**
   2581 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
   2582 * @mqdes: MQ descriptor
   2583 * @msg_len: Message length
   2584 * @msg_prio: Message priority
   2585 * @abs_timeout: Message timeout in absolute time
   2586 *
   2587 */
   2588void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
   2589			const struct timespec64 *abs_timeout)
   2590{
   2591	struct audit_context *context = audit_context();
   2592	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
   2593
   2594	if (abs_timeout)
   2595		memcpy(p, abs_timeout, sizeof(*p));
   2596	else
   2597		memset(p, 0, sizeof(*p));
   2598
   2599	context->mq_sendrecv.mqdes = mqdes;
   2600	context->mq_sendrecv.msg_len = msg_len;
   2601	context->mq_sendrecv.msg_prio = msg_prio;
   2602
   2603	context->type = AUDIT_MQ_SENDRECV;
   2604}
   2605
   2606/**
   2607 * __audit_mq_notify - record audit data for a POSIX MQ notify
   2608 * @mqdes: MQ descriptor
   2609 * @notification: Notification event
   2610 *
   2611 */
   2612
   2613void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
   2614{
   2615	struct audit_context *context = audit_context();
   2616
   2617	if (notification)
   2618		context->mq_notify.sigev_signo = notification->sigev_signo;
   2619	else
   2620		context->mq_notify.sigev_signo = 0;
   2621
   2622	context->mq_notify.mqdes = mqdes;
   2623	context->type = AUDIT_MQ_NOTIFY;
   2624}
   2625
   2626/**
   2627 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
   2628 * @mqdes: MQ descriptor
   2629 * @mqstat: MQ flags
   2630 *
   2631 */
   2632void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
   2633{
   2634	struct audit_context *context = audit_context();
   2635
   2636	context->mq_getsetattr.mqdes = mqdes;
   2637	context->mq_getsetattr.mqstat = *mqstat;
   2638	context->type = AUDIT_MQ_GETSETATTR;
   2639}
   2640
   2641/**
   2642 * __audit_ipc_obj - record audit data for ipc object
   2643 * @ipcp: ipc permissions
   2644 *
   2645 */
   2646void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
   2647{
   2648	struct audit_context *context = audit_context();
   2649
   2650	context->ipc.uid = ipcp->uid;
   2651	context->ipc.gid = ipcp->gid;
   2652	context->ipc.mode = ipcp->mode;
   2653	context->ipc.has_perm = 0;
   2654	security_ipc_getsecid(ipcp, &context->ipc.osid);
   2655	context->type = AUDIT_IPC;
   2656}
   2657
   2658/**
   2659 * __audit_ipc_set_perm - record audit data for new ipc permissions
   2660 * @qbytes: msgq bytes
   2661 * @uid: msgq user id
   2662 * @gid: msgq group id
   2663 * @mode: msgq mode (permissions)
   2664 *
   2665 * Called only after audit_ipc_obj().
   2666 */
   2667void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
   2668{
   2669	struct audit_context *context = audit_context();
   2670
   2671	context->ipc.qbytes = qbytes;
   2672	context->ipc.perm_uid = uid;
   2673	context->ipc.perm_gid = gid;
   2674	context->ipc.perm_mode = mode;
   2675	context->ipc.has_perm = 1;
   2676}
   2677
   2678void __audit_bprm(struct linux_binprm *bprm)
   2679{
   2680	struct audit_context *context = audit_context();
   2681
   2682	context->type = AUDIT_EXECVE;
   2683	context->execve.argc = bprm->argc;
   2684}
   2685
   2686
   2687/**
   2688 * __audit_socketcall - record audit data for sys_socketcall
   2689 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
   2690 * @args: args array
   2691 *
   2692 */
   2693int __audit_socketcall(int nargs, unsigned long *args)
   2694{
   2695	struct audit_context *context = audit_context();
   2696
   2697	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
   2698		return -EINVAL;
   2699	context->type = AUDIT_SOCKETCALL;
   2700	context->socketcall.nargs = nargs;
   2701	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
   2702	return 0;
   2703}
   2704
   2705/**
   2706 * __audit_fd_pair - record audit data for pipe and socketpair
   2707 * @fd1: the first file descriptor
   2708 * @fd2: the second file descriptor
   2709 *
   2710 */
   2711void __audit_fd_pair(int fd1, int fd2)
   2712{
   2713	struct audit_context *context = audit_context();
   2714
   2715	context->fds[0] = fd1;
   2716	context->fds[1] = fd2;
   2717}
   2718
   2719/**
   2720 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
   2721 * @len: data length in user space
   2722 * @a: data address in kernel space
   2723 *
   2724 * Returns 0 for success or NULL context or < 0 on error.
   2725 */
   2726int __audit_sockaddr(int len, void *a)
   2727{
   2728	struct audit_context *context = audit_context();
   2729
   2730	if (!context->sockaddr) {
   2731		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
   2732
   2733		if (!p)
   2734			return -ENOMEM;
   2735		context->sockaddr = p;
   2736	}
   2737
   2738	context->sockaddr_len = len;
   2739	memcpy(context->sockaddr, a, len);
   2740	return 0;
   2741}
   2742
   2743void __audit_ptrace(struct task_struct *t)
   2744{
   2745	struct audit_context *context = audit_context();
   2746
   2747	context->target_pid = task_tgid_nr(t);
   2748	context->target_auid = audit_get_loginuid(t);
   2749	context->target_uid = task_uid(t);
   2750	context->target_sessionid = audit_get_sessionid(t);
   2751	security_task_getsecid_obj(t, &context->target_sid);
   2752	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
   2753}
   2754
   2755/**
   2756 * audit_signal_info_syscall - record signal info for syscalls
   2757 * @t: task being signaled
   2758 *
   2759 * If the audit subsystem is being terminated, record the task (pid)
   2760 * and uid that is doing that.
   2761 */
   2762int audit_signal_info_syscall(struct task_struct *t)
   2763{
   2764	struct audit_aux_data_pids *axp;
   2765	struct audit_context *ctx = audit_context();
   2766	kuid_t t_uid = task_uid(t);
   2767
   2768	if (!audit_signals || audit_dummy_context())
   2769		return 0;
   2770
   2771	/* optimize the common case by putting first signal recipient directly
   2772	 * in audit_context */
   2773	if (!ctx->target_pid) {
   2774		ctx->target_pid = task_tgid_nr(t);
   2775		ctx->target_auid = audit_get_loginuid(t);
   2776		ctx->target_uid = t_uid;
   2777		ctx->target_sessionid = audit_get_sessionid(t);
   2778		security_task_getsecid_obj(t, &ctx->target_sid);
   2779		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
   2780		return 0;
   2781	}
   2782
   2783	axp = (void *)ctx->aux_pids;
   2784	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
   2785		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
   2786		if (!axp)
   2787			return -ENOMEM;
   2788
   2789		axp->d.type = AUDIT_OBJ_PID;
   2790		axp->d.next = ctx->aux_pids;
   2791		ctx->aux_pids = (void *)axp;
   2792	}
   2793	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
   2794
   2795	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
   2796	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
   2797	axp->target_uid[axp->pid_count] = t_uid;
   2798	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
   2799	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
   2800	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
   2801	axp->pid_count++;
   2802
   2803	return 0;
   2804}
   2805
   2806/**
   2807 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
   2808 * @bprm: pointer to the bprm being processed
   2809 * @new: the proposed new credentials
   2810 * @old: the old credentials
   2811 *
   2812 * Simply check if the proc already has the caps given by the file and if not
   2813 * store the priv escalation info for later auditing at the end of the syscall
   2814 *
   2815 * -Eric
   2816 */
   2817int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
   2818			   const struct cred *new, const struct cred *old)
   2819{
   2820	struct audit_aux_data_bprm_fcaps *ax;
   2821	struct audit_context *context = audit_context();
   2822	struct cpu_vfs_cap_data vcaps;
   2823
   2824	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
   2825	if (!ax)
   2826		return -ENOMEM;
   2827
   2828	ax->d.type = AUDIT_BPRM_FCAPS;
   2829	ax->d.next = context->aux;
   2830	context->aux = (void *)ax;
   2831
   2832	get_vfs_caps_from_disk(&init_user_ns,
   2833			       bprm->file->f_path.dentry, &vcaps);
   2834
   2835	ax->fcap.permitted = vcaps.permitted;
   2836	ax->fcap.inheritable = vcaps.inheritable;
   2837	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
   2838	ax->fcap.rootid = vcaps.rootid;
   2839	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
   2840
   2841	ax->old_pcap.permitted   = old->cap_permitted;
   2842	ax->old_pcap.inheritable = old->cap_inheritable;
   2843	ax->old_pcap.effective   = old->cap_effective;
   2844	ax->old_pcap.ambient     = old->cap_ambient;
   2845
   2846	ax->new_pcap.permitted   = new->cap_permitted;
   2847	ax->new_pcap.inheritable = new->cap_inheritable;
   2848	ax->new_pcap.effective   = new->cap_effective;
   2849	ax->new_pcap.ambient     = new->cap_ambient;
   2850	return 0;
   2851}
   2852
   2853/**
   2854 * __audit_log_capset - store information about the arguments to the capset syscall
   2855 * @new: the new credentials
   2856 * @old: the old (current) credentials
   2857 *
   2858 * Record the arguments userspace sent to sys_capset for later printing by the
   2859 * audit system if applicable
   2860 */
   2861void __audit_log_capset(const struct cred *new, const struct cred *old)
   2862{
   2863	struct audit_context *context = audit_context();
   2864
   2865	context->capset.pid = task_tgid_nr(current);
   2866	context->capset.cap.effective   = new->cap_effective;
   2867	context->capset.cap.inheritable = new->cap_effective;
   2868	context->capset.cap.permitted   = new->cap_permitted;
   2869	context->capset.cap.ambient     = new->cap_ambient;
   2870	context->type = AUDIT_CAPSET;
   2871}
   2872
   2873void __audit_mmap_fd(int fd, int flags)
   2874{
   2875	struct audit_context *context = audit_context();
   2876
   2877	context->mmap.fd = fd;
   2878	context->mmap.flags = flags;
   2879	context->type = AUDIT_MMAP;
   2880}
   2881
   2882void __audit_openat2_how(struct open_how *how)
   2883{
   2884	struct audit_context *context = audit_context();
   2885
   2886	context->openat2.flags = how->flags;
   2887	context->openat2.mode = how->mode;
   2888	context->openat2.resolve = how->resolve;
   2889	context->type = AUDIT_OPENAT2;
   2890}
   2891
   2892void __audit_log_kern_module(char *name)
   2893{
   2894	struct audit_context *context = audit_context();
   2895
   2896	context->module.name = kstrdup(name, GFP_KERNEL);
   2897	if (!context->module.name)
   2898		audit_log_lost("out of memory in __audit_log_kern_module");
   2899	context->type = AUDIT_KERN_MODULE;
   2900}
   2901
   2902void __audit_fanotify(unsigned int response)
   2903{
   2904	audit_log(audit_context(), GFP_KERNEL,
   2905		AUDIT_FANOTIFY,	"resp=%u", response);
   2906}
   2907
   2908void __audit_tk_injoffset(struct timespec64 offset)
   2909{
   2910	struct audit_context *context = audit_context();
   2911
   2912	/* only set type if not already set by NTP */
   2913	if (!context->type)
   2914		context->type = AUDIT_TIME_INJOFFSET;
   2915	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
   2916}
   2917
   2918void __audit_ntp_log(const struct audit_ntp_data *ad)
   2919{
   2920	struct audit_context *context = audit_context();
   2921	int type;
   2922
   2923	for (type = 0; type < AUDIT_NTP_NVALS; type++)
   2924		if (ad->vals[type].newval != ad->vals[type].oldval) {
   2925			/* unconditionally set type, overwriting TK */
   2926			context->type = AUDIT_TIME_ADJNTPVAL;
   2927			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
   2928			break;
   2929		}
   2930}
   2931
   2932void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
   2933		       enum audit_nfcfgop op, gfp_t gfp)
   2934{
   2935	struct audit_buffer *ab;
   2936	char comm[sizeof(current->comm)];
   2937
   2938	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
   2939	if (!ab)
   2940		return;
   2941	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
   2942			 name, af, nentries, audit_nfcfgs[op].s);
   2943
   2944	audit_log_format(ab, " pid=%u", task_pid_nr(current));
   2945	audit_log_task_context(ab); /* subj= */
   2946	audit_log_format(ab, " comm=");
   2947	audit_log_untrustedstring(ab, get_task_comm(comm, current));
   2948	audit_log_end(ab);
   2949}
   2950EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
   2951
   2952static void audit_log_task(struct audit_buffer *ab)
   2953{
   2954	kuid_t auid, uid;
   2955	kgid_t gid;
   2956	unsigned int sessionid;
   2957	char comm[sizeof(current->comm)];
   2958
   2959	auid = audit_get_loginuid(current);
   2960	sessionid = audit_get_sessionid(current);
   2961	current_uid_gid(&uid, &gid);
   2962
   2963	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
   2964			 from_kuid(&init_user_ns, auid),
   2965			 from_kuid(&init_user_ns, uid),
   2966			 from_kgid(&init_user_ns, gid),
   2967			 sessionid);
   2968	audit_log_task_context(ab);
   2969	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
   2970	audit_log_untrustedstring(ab, get_task_comm(comm, current));
   2971	audit_log_d_path_exe(ab, current->mm);
   2972}
   2973
   2974/**
   2975 * audit_core_dumps - record information about processes that end abnormally
   2976 * @signr: signal value
   2977 *
   2978 * If a process ends with a core dump, something fishy is going on and we
   2979 * should record the event for investigation.
   2980 */
   2981void audit_core_dumps(long signr)
   2982{
   2983	struct audit_buffer *ab;
   2984
   2985	if (!audit_enabled)
   2986		return;
   2987
   2988	if (signr == SIGQUIT)	/* don't care for those */
   2989		return;
   2990
   2991	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
   2992	if (unlikely(!ab))
   2993		return;
   2994	audit_log_task(ab);
   2995	audit_log_format(ab, " sig=%ld res=1", signr);
   2996	audit_log_end(ab);
   2997}
   2998
   2999/**
   3000 * audit_seccomp - record information about a seccomp action
   3001 * @syscall: syscall number
   3002 * @signr: signal value
   3003 * @code: the seccomp action
   3004 *
   3005 * Record the information associated with a seccomp action. Event filtering for
   3006 * seccomp actions that are not to be logged is done in seccomp_log().
   3007 * Therefore, this function forces auditing independent of the audit_enabled
   3008 * and dummy context state because seccomp actions should be logged even when
   3009 * audit is not in use.
   3010 */
   3011void audit_seccomp(unsigned long syscall, long signr, int code)
   3012{
   3013	struct audit_buffer *ab;
   3014
   3015	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
   3016	if (unlikely(!ab))
   3017		return;
   3018	audit_log_task(ab);
   3019	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
   3020			 signr, syscall_get_arch(current), syscall,
   3021			 in_compat_syscall(), KSTK_EIP(current), code);
   3022	audit_log_end(ab);
   3023}
   3024
   3025void audit_seccomp_actions_logged(const char *names, const char *old_names,
   3026				  int res)
   3027{
   3028	struct audit_buffer *ab;
   3029
   3030	if (!audit_enabled)
   3031		return;
   3032
   3033	ab = audit_log_start(audit_context(), GFP_KERNEL,
   3034			     AUDIT_CONFIG_CHANGE);
   3035	if (unlikely(!ab))
   3036		return;
   3037
   3038	audit_log_format(ab,
   3039			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
   3040			 names, old_names, res);
   3041	audit_log_end(ab);
   3042}
   3043
   3044struct list_head *audit_killed_trees(void)
   3045{
   3046	struct audit_context *ctx = audit_context();
   3047	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
   3048		return NULL;
   3049	return &ctx->killed_trees;
   3050}