cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

btf.c (204817B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright (c) 2018 Facebook */
      3
      4#include <uapi/linux/btf.h>
      5#include <uapi/linux/bpf.h>
      6#include <uapi/linux/bpf_perf_event.h>
      7#include <uapi/linux/types.h>
      8#include <linux/seq_file.h>
      9#include <linux/compiler.h>
     10#include <linux/ctype.h>
     11#include <linux/errno.h>
     12#include <linux/slab.h>
     13#include <linux/anon_inodes.h>
     14#include <linux/file.h>
     15#include <linux/uaccess.h>
     16#include <linux/kernel.h>
     17#include <linux/idr.h>
     18#include <linux/sort.h>
     19#include <linux/bpf_verifier.h>
     20#include <linux/btf.h>
     21#include <linux/btf_ids.h>
     22#include <linux/skmsg.h>
     23#include <linux/perf_event.h>
     24#include <linux/bsearch.h>
     25#include <linux/kobject.h>
     26#include <linux/sysfs.h>
     27#include <net/sock.h>
     28#include "../tools/lib/bpf/relo_core.h"
     29
     30/* BTF (BPF Type Format) is the meta data format which describes
     31 * the data types of BPF program/map.  Hence, it basically focus
     32 * on the C programming language which the modern BPF is primary
     33 * using.
     34 *
     35 * ELF Section:
     36 * ~~~~~~~~~~~
     37 * The BTF data is stored under the ".BTF" ELF section
     38 *
     39 * struct btf_type:
     40 * ~~~~~~~~~~~~~~~
     41 * Each 'struct btf_type' object describes a C data type.
     42 * Depending on the type it is describing, a 'struct btf_type'
     43 * object may be followed by more data.  F.e.
     44 * To describe an array, 'struct btf_type' is followed by
     45 * 'struct btf_array'.
     46 *
     47 * 'struct btf_type' and any extra data following it are
     48 * 4 bytes aligned.
     49 *
     50 * Type section:
     51 * ~~~~~~~~~~~~~
     52 * The BTF type section contains a list of 'struct btf_type' objects.
     53 * Each one describes a C type.  Recall from the above section
     54 * that a 'struct btf_type' object could be immediately followed by extra
     55 * data in order to describe some particular C types.
     56 *
     57 * type_id:
     58 * ~~~~~~~
     59 * Each btf_type object is identified by a type_id.  The type_id
     60 * is implicitly implied by the location of the btf_type object in
     61 * the BTF type section.  The first one has type_id 1.  The second
     62 * one has type_id 2...etc.  Hence, an earlier btf_type has
     63 * a smaller type_id.
     64 *
     65 * A btf_type object may refer to another btf_type object by using
     66 * type_id (i.e. the "type" in the "struct btf_type").
     67 *
     68 * NOTE that we cannot assume any reference-order.
     69 * A btf_type object can refer to an earlier btf_type object
     70 * but it can also refer to a later btf_type object.
     71 *
     72 * For example, to describe "const void *".  A btf_type
     73 * object describing "const" may refer to another btf_type
     74 * object describing "void *".  This type-reference is done
     75 * by specifying type_id:
     76 *
     77 * [1] CONST (anon) type_id=2
     78 * [2] PTR (anon) type_id=0
     79 *
     80 * The above is the btf_verifier debug log:
     81 *   - Each line started with "[?]" is a btf_type object
     82 *   - [?] is the type_id of the btf_type object.
     83 *   - CONST/PTR is the BTF_KIND_XXX
     84 *   - "(anon)" is the name of the type.  It just
     85 *     happens that CONST and PTR has no name.
     86 *   - type_id=XXX is the 'u32 type' in btf_type
     87 *
     88 * NOTE: "void" has type_id 0
     89 *
     90 * String section:
     91 * ~~~~~~~~~~~~~~
     92 * The BTF string section contains the names used by the type section.
     93 * Each string is referred by an "offset" from the beginning of the
     94 * string section.
     95 *
     96 * Each string is '\0' terminated.
     97 *
     98 * The first character in the string section must be '\0'
     99 * which is used to mean 'anonymous'. Some btf_type may not
    100 * have a name.
    101 */
    102
    103/* BTF verification:
    104 *
    105 * To verify BTF data, two passes are needed.
    106 *
    107 * Pass #1
    108 * ~~~~~~~
    109 * The first pass is to collect all btf_type objects to
    110 * an array: "btf->types".
    111 *
    112 * Depending on the C type that a btf_type is describing,
    113 * a btf_type may be followed by extra data.  We don't know
    114 * how many btf_type is there, and more importantly we don't
    115 * know where each btf_type is located in the type section.
    116 *
    117 * Without knowing the location of each type_id, most verifications
    118 * cannot be done.  e.g. an earlier btf_type may refer to a later
    119 * btf_type (recall the "const void *" above), so we cannot
    120 * check this type-reference in the first pass.
    121 *
    122 * In the first pass, it still does some verifications (e.g.
    123 * checking the name is a valid offset to the string section).
    124 *
    125 * Pass #2
    126 * ~~~~~~~
    127 * The main focus is to resolve a btf_type that is referring
    128 * to another type.
    129 *
    130 * We have to ensure the referring type:
    131 * 1) does exist in the BTF (i.e. in btf->types[])
    132 * 2) does not cause a loop:
    133 *	struct A {
    134 *		struct B b;
    135 *	};
    136 *
    137 *	struct B {
    138 *		struct A a;
    139 *	};
    140 *
    141 * btf_type_needs_resolve() decides if a btf_type needs
    142 * to be resolved.
    143 *
    144 * The needs_resolve type implements the "resolve()" ops which
    145 * essentially does a DFS and detects backedge.
    146 *
    147 * During resolve (or DFS), different C types have different
    148 * "RESOLVED" conditions.
    149 *
    150 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
    151 * members because a member is always referring to another
    152 * type.  A struct's member can be treated as "RESOLVED" if
    153 * it is referring to a BTF_KIND_PTR.  Otherwise, the
    154 * following valid C struct would be rejected:
    155 *
    156 *	struct A {
    157 *		int m;
    158 *		struct A *a;
    159 *	};
    160 *
    161 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
    162 * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
    163 * detect a pointer loop, e.g.:
    164 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
    165 *                        ^                                         |
    166 *                        +-----------------------------------------+
    167 *
    168 */
    169
    170#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
    171#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
    172#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
    173#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
    174#define BITS_ROUNDUP_BYTES(bits) \
    175	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
    176
    177#define BTF_INFO_MASK 0x9f00ffff
    178#define BTF_INT_MASK 0x0fffffff
    179#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
    180#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
    181
    182/* 16MB for 64k structs and each has 16 members and
    183 * a few MB spaces for the string section.
    184 * The hard limit is S32_MAX.
    185 */
    186#define BTF_MAX_SIZE (16 * 1024 * 1024)
    187
    188#define for_each_member_from(i, from, struct_type, member)		\
    189	for (i = from, member = btf_type_member(struct_type) + from;	\
    190	     i < btf_type_vlen(struct_type);				\
    191	     i++, member++)
    192
    193#define for_each_vsi_from(i, from, struct_type, member)				\
    194	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
    195	     i < btf_type_vlen(struct_type);					\
    196	     i++, member++)
    197
    198DEFINE_IDR(btf_idr);
    199DEFINE_SPINLOCK(btf_idr_lock);
    200
    201enum btf_kfunc_hook {
    202	BTF_KFUNC_HOOK_XDP,
    203	BTF_KFUNC_HOOK_TC,
    204	BTF_KFUNC_HOOK_STRUCT_OPS,
    205	BTF_KFUNC_HOOK_TRACING,
    206	BTF_KFUNC_HOOK_SYSCALL,
    207	BTF_KFUNC_HOOK_MAX,
    208};
    209
    210enum {
    211	BTF_KFUNC_SET_MAX_CNT = 32,
    212	BTF_DTOR_KFUNC_MAX_CNT = 256,
    213};
    214
    215struct btf_kfunc_set_tab {
    216	struct btf_id_set *sets[BTF_KFUNC_HOOK_MAX][BTF_KFUNC_TYPE_MAX];
    217};
    218
    219struct btf_id_dtor_kfunc_tab {
    220	u32 cnt;
    221	struct btf_id_dtor_kfunc dtors[];
    222};
    223
    224struct btf {
    225	void *data;
    226	struct btf_type **types;
    227	u32 *resolved_ids;
    228	u32 *resolved_sizes;
    229	const char *strings;
    230	void *nohdr_data;
    231	struct btf_header hdr;
    232	u32 nr_types; /* includes VOID for base BTF */
    233	u32 types_size;
    234	u32 data_size;
    235	refcount_t refcnt;
    236	u32 id;
    237	struct rcu_head rcu;
    238	struct btf_kfunc_set_tab *kfunc_set_tab;
    239	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
    240
    241	/* split BTF support */
    242	struct btf *base_btf;
    243	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
    244	u32 start_str_off; /* first string offset (0 for base BTF) */
    245	char name[MODULE_NAME_LEN];
    246	bool kernel_btf;
    247};
    248
    249enum verifier_phase {
    250	CHECK_META,
    251	CHECK_TYPE,
    252};
    253
    254struct resolve_vertex {
    255	const struct btf_type *t;
    256	u32 type_id;
    257	u16 next_member;
    258};
    259
    260enum visit_state {
    261	NOT_VISITED,
    262	VISITED,
    263	RESOLVED,
    264};
    265
    266enum resolve_mode {
    267	RESOLVE_TBD,	/* To Be Determined */
    268	RESOLVE_PTR,	/* Resolving for Pointer */
    269	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
    270					 * or array
    271					 */
    272};
    273
    274#define MAX_RESOLVE_DEPTH 32
    275
    276struct btf_sec_info {
    277	u32 off;
    278	u32 len;
    279};
    280
    281struct btf_verifier_env {
    282	struct btf *btf;
    283	u8 *visit_states;
    284	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
    285	struct bpf_verifier_log log;
    286	u32 log_type_id;
    287	u32 top_stack;
    288	enum verifier_phase phase;
    289	enum resolve_mode resolve_mode;
    290};
    291
    292static const char * const btf_kind_str[NR_BTF_KINDS] = {
    293	[BTF_KIND_UNKN]		= "UNKNOWN",
    294	[BTF_KIND_INT]		= "INT",
    295	[BTF_KIND_PTR]		= "PTR",
    296	[BTF_KIND_ARRAY]	= "ARRAY",
    297	[BTF_KIND_STRUCT]	= "STRUCT",
    298	[BTF_KIND_UNION]	= "UNION",
    299	[BTF_KIND_ENUM]		= "ENUM",
    300	[BTF_KIND_FWD]		= "FWD",
    301	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
    302	[BTF_KIND_VOLATILE]	= "VOLATILE",
    303	[BTF_KIND_CONST]	= "CONST",
    304	[BTF_KIND_RESTRICT]	= "RESTRICT",
    305	[BTF_KIND_FUNC]		= "FUNC",
    306	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
    307	[BTF_KIND_VAR]		= "VAR",
    308	[BTF_KIND_DATASEC]	= "DATASEC",
    309	[BTF_KIND_FLOAT]	= "FLOAT",
    310	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
    311	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
    312};
    313
    314const char *btf_type_str(const struct btf_type *t)
    315{
    316	return btf_kind_str[BTF_INFO_KIND(t->info)];
    317}
    318
    319/* Chunk size we use in safe copy of data to be shown. */
    320#define BTF_SHOW_OBJ_SAFE_SIZE		32
    321
    322/*
    323 * This is the maximum size of a base type value (equivalent to a
    324 * 128-bit int); if we are at the end of our safe buffer and have
    325 * less than 16 bytes space we can't be assured of being able
    326 * to copy the next type safely, so in such cases we will initiate
    327 * a new copy.
    328 */
    329#define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
    330
    331/* Type name size */
    332#define BTF_SHOW_NAME_SIZE		80
    333
    334/*
    335 * Common data to all BTF show operations. Private show functions can add
    336 * their own data to a structure containing a struct btf_show and consult it
    337 * in the show callback.  See btf_type_show() below.
    338 *
    339 * One challenge with showing nested data is we want to skip 0-valued
    340 * data, but in order to figure out whether a nested object is all zeros
    341 * we need to walk through it.  As a result, we need to make two passes
    342 * when handling structs, unions and arrays; the first path simply looks
    343 * for nonzero data, while the second actually does the display.  The first
    344 * pass is signalled by show->state.depth_check being set, and if we
    345 * encounter a non-zero value we set show->state.depth_to_show to
    346 * the depth at which we encountered it.  When we have completed the
    347 * first pass, we will know if anything needs to be displayed if
    348 * depth_to_show > depth.  See btf_[struct,array]_show() for the
    349 * implementation of this.
    350 *
    351 * Another problem is we want to ensure the data for display is safe to
    352 * access.  To support this, the anonymous "struct {} obj" tracks the data
    353 * object and our safe copy of it.  We copy portions of the data needed
    354 * to the object "copy" buffer, but because its size is limited to
    355 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
    356 * traverse larger objects for display.
    357 *
    358 * The various data type show functions all start with a call to
    359 * btf_show_start_type() which returns a pointer to the safe copy
    360 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
    361 * raw data itself).  btf_show_obj_safe() is responsible for
    362 * using copy_from_kernel_nofault() to update the safe data if necessary
    363 * as we traverse the object's data.  skbuff-like semantics are
    364 * used:
    365 *
    366 * - obj.head points to the start of the toplevel object for display
    367 * - obj.size is the size of the toplevel object
    368 * - obj.data points to the current point in the original data at
    369 *   which our safe data starts.  obj.data will advance as we copy
    370 *   portions of the data.
    371 *
    372 * In most cases a single copy will suffice, but larger data structures
    373 * such as "struct task_struct" will require many copies.  The logic in
    374 * btf_show_obj_safe() handles the logic that determines if a new
    375 * copy_from_kernel_nofault() is needed.
    376 */
    377struct btf_show {
    378	u64 flags;
    379	void *target;	/* target of show operation (seq file, buffer) */
    380	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
    381	const struct btf *btf;
    382	/* below are used during iteration */
    383	struct {
    384		u8 depth;
    385		u8 depth_to_show;
    386		u8 depth_check;
    387		u8 array_member:1,
    388		   array_terminated:1;
    389		u16 array_encoding;
    390		u32 type_id;
    391		int status;			/* non-zero for error */
    392		const struct btf_type *type;
    393		const struct btf_member *member;
    394		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
    395	} state;
    396	struct {
    397		u32 size;
    398		void *head;
    399		void *data;
    400		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
    401	} obj;
    402};
    403
    404struct btf_kind_operations {
    405	s32 (*check_meta)(struct btf_verifier_env *env,
    406			  const struct btf_type *t,
    407			  u32 meta_left);
    408	int (*resolve)(struct btf_verifier_env *env,
    409		       const struct resolve_vertex *v);
    410	int (*check_member)(struct btf_verifier_env *env,
    411			    const struct btf_type *struct_type,
    412			    const struct btf_member *member,
    413			    const struct btf_type *member_type);
    414	int (*check_kflag_member)(struct btf_verifier_env *env,
    415				  const struct btf_type *struct_type,
    416				  const struct btf_member *member,
    417				  const struct btf_type *member_type);
    418	void (*log_details)(struct btf_verifier_env *env,
    419			    const struct btf_type *t);
    420	void (*show)(const struct btf *btf, const struct btf_type *t,
    421			 u32 type_id, void *data, u8 bits_offsets,
    422			 struct btf_show *show);
    423};
    424
    425static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
    426static struct btf_type btf_void;
    427
    428static int btf_resolve(struct btf_verifier_env *env,
    429		       const struct btf_type *t, u32 type_id);
    430
    431static int btf_func_check(struct btf_verifier_env *env,
    432			  const struct btf_type *t);
    433
    434static bool btf_type_is_modifier(const struct btf_type *t)
    435{
    436	/* Some of them is not strictly a C modifier
    437	 * but they are grouped into the same bucket
    438	 * for BTF concern:
    439	 *   A type (t) that refers to another
    440	 *   type through t->type AND its size cannot
    441	 *   be determined without following the t->type.
    442	 *
    443	 * ptr does not fall into this bucket
    444	 * because its size is always sizeof(void *).
    445	 */
    446	switch (BTF_INFO_KIND(t->info)) {
    447	case BTF_KIND_TYPEDEF:
    448	case BTF_KIND_VOLATILE:
    449	case BTF_KIND_CONST:
    450	case BTF_KIND_RESTRICT:
    451	case BTF_KIND_TYPE_TAG:
    452		return true;
    453	}
    454
    455	return false;
    456}
    457
    458bool btf_type_is_void(const struct btf_type *t)
    459{
    460	return t == &btf_void;
    461}
    462
    463static bool btf_type_is_fwd(const struct btf_type *t)
    464{
    465	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
    466}
    467
    468static bool btf_type_nosize(const struct btf_type *t)
    469{
    470	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
    471	       btf_type_is_func(t) || btf_type_is_func_proto(t);
    472}
    473
    474static bool btf_type_nosize_or_null(const struct btf_type *t)
    475{
    476	return !t || btf_type_nosize(t);
    477}
    478
    479static bool __btf_type_is_struct(const struct btf_type *t)
    480{
    481	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
    482}
    483
    484static bool btf_type_is_array(const struct btf_type *t)
    485{
    486	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
    487}
    488
    489static bool btf_type_is_datasec(const struct btf_type *t)
    490{
    491	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
    492}
    493
    494static bool btf_type_is_decl_tag(const struct btf_type *t)
    495{
    496	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
    497}
    498
    499static bool btf_type_is_decl_tag_target(const struct btf_type *t)
    500{
    501	return btf_type_is_func(t) || btf_type_is_struct(t) ||
    502	       btf_type_is_var(t) || btf_type_is_typedef(t);
    503}
    504
    505u32 btf_nr_types(const struct btf *btf)
    506{
    507	u32 total = 0;
    508
    509	while (btf) {
    510		total += btf->nr_types;
    511		btf = btf->base_btf;
    512	}
    513
    514	return total;
    515}
    516
    517s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
    518{
    519	const struct btf_type *t;
    520	const char *tname;
    521	u32 i, total;
    522
    523	total = btf_nr_types(btf);
    524	for (i = 1; i < total; i++) {
    525		t = btf_type_by_id(btf, i);
    526		if (BTF_INFO_KIND(t->info) != kind)
    527			continue;
    528
    529		tname = btf_name_by_offset(btf, t->name_off);
    530		if (!strcmp(tname, name))
    531			return i;
    532	}
    533
    534	return -ENOENT;
    535}
    536
    537static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
    538{
    539	struct btf *btf;
    540	s32 ret;
    541	int id;
    542
    543	btf = bpf_get_btf_vmlinux();
    544	if (IS_ERR(btf))
    545		return PTR_ERR(btf);
    546	if (!btf)
    547		return -EINVAL;
    548
    549	ret = btf_find_by_name_kind(btf, name, kind);
    550	/* ret is never zero, since btf_find_by_name_kind returns
    551	 * positive btf_id or negative error.
    552	 */
    553	if (ret > 0) {
    554		btf_get(btf);
    555		*btf_p = btf;
    556		return ret;
    557	}
    558
    559	/* If name is not found in vmlinux's BTF then search in module's BTFs */
    560	spin_lock_bh(&btf_idr_lock);
    561	idr_for_each_entry(&btf_idr, btf, id) {
    562		if (!btf_is_module(btf))
    563			continue;
    564		/* linear search could be slow hence unlock/lock
    565		 * the IDR to avoiding holding it for too long
    566		 */
    567		btf_get(btf);
    568		spin_unlock_bh(&btf_idr_lock);
    569		ret = btf_find_by_name_kind(btf, name, kind);
    570		if (ret > 0) {
    571			*btf_p = btf;
    572			return ret;
    573		}
    574		spin_lock_bh(&btf_idr_lock);
    575		btf_put(btf);
    576	}
    577	spin_unlock_bh(&btf_idr_lock);
    578	return ret;
    579}
    580
    581const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
    582					       u32 id, u32 *res_id)
    583{
    584	const struct btf_type *t = btf_type_by_id(btf, id);
    585
    586	while (btf_type_is_modifier(t)) {
    587		id = t->type;
    588		t = btf_type_by_id(btf, t->type);
    589	}
    590
    591	if (res_id)
    592		*res_id = id;
    593
    594	return t;
    595}
    596
    597const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
    598					    u32 id, u32 *res_id)
    599{
    600	const struct btf_type *t;
    601
    602	t = btf_type_skip_modifiers(btf, id, NULL);
    603	if (!btf_type_is_ptr(t))
    604		return NULL;
    605
    606	return btf_type_skip_modifiers(btf, t->type, res_id);
    607}
    608
    609const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
    610						 u32 id, u32 *res_id)
    611{
    612	const struct btf_type *ptype;
    613
    614	ptype = btf_type_resolve_ptr(btf, id, res_id);
    615	if (ptype && btf_type_is_func_proto(ptype))
    616		return ptype;
    617
    618	return NULL;
    619}
    620
    621/* Types that act only as a source, not sink or intermediate
    622 * type when resolving.
    623 */
    624static bool btf_type_is_resolve_source_only(const struct btf_type *t)
    625{
    626	return btf_type_is_var(t) ||
    627	       btf_type_is_decl_tag(t) ||
    628	       btf_type_is_datasec(t);
    629}
    630
    631/* What types need to be resolved?
    632 *
    633 * btf_type_is_modifier() is an obvious one.
    634 *
    635 * btf_type_is_struct() because its member refers to
    636 * another type (through member->type).
    637 *
    638 * btf_type_is_var() because the variable refers to
    639 * another type. btf_type_is_datasec() holds multiple
    640 * btf_type_is_var() types that need resolving.
    641 *
    642 * btf_type_is_array() because its element (array->type)
    643 * refers to another type.  Array can be thought of a
    644 * special case of struct while array just has the same
    645 * member-type repeated by array->nelems of times.
    646 */
    647static bool btf_type_needs_resolve(const struct btf_type *t)
    648{
    649	return btf_type_is_modifier(t) ||
    650	       btf_type_is_ptr(t) ||
    651	       btf_type_is_struct(t) ||
    652	       btf_type_is_array(t) ||
    653	       btf_type_is_var(t) ||
    654	       btf_type_is_func(t) ||
    655	       btf_type_is_decl_tag(t) ||
    656	       btf_type_is_datasec(t);
    657}
    658
    659/* t->size can be used */
    660static bool btf_type_has_size(const struct btf_type *t)
    661{
    662	switch (BTF_INFO_KIND(t->info)) {
    663	case BTF_KIND_INT:
    664	case BTF_KIND_STRUCT:
    665	case BTF_KIND_UNION:
    666	case BTF_KIND_ENUM:
    667	case BTF_KIND_DATASEC:
    668	case BTF_KIND_FLOAT:
    669		return true;
    670	}
    671
    672	return false;
    673}
    674
    675static const char *btf_int_encoding_str(u8 encoding)
    676{
    677	if (encoding == 0)
    678		return "(none)";
    679	else if (encoding == BTF_INT_SIGNED)
    680		return "SIGNED";
    681	else if (encoding == BTF_INT_CHAR)
    682		return "CHAR";
    683	else if (encoding == BTF_INT_BOOL)
    684		return "BOOL";
    685	else
    686		return "UNKN";
    687}
    688
    689static u32 btf_type_int(const struct btf_type *t)
    690{
    691	return *(u32 *)(t + 1);
    692}
    693
    694static const struct btf_array *btf_type_array(const struct btf_type *t)
    695{
    696	return (const struct btf_array *)(t + 1);
    697}
    698
    699static const struct btf_enum *btf_type_enum(const struct btf_type *t)
    700{
    701	return (const struct btf_enum *)(t + 1);
    702}
    703
    704static const struct btf_var *btf_type_var(const struct btf_type *t)
    705{
    706	return (const struct btf_var *)(t + 1);
    707}
    708
    709static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
    710{
    711	return (const struct btf_decl_tag *)(t + 1);
    712}
    713
    714static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
    715{
    716	return kind_ops[BTF_INFO_KIND(t->info)];
    717}
    718
    719static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
    720{
    721	if (!BTF_STR_OFFSET_VALID(offset))
    722		return false;
    723
    724	while (offset < btf->start_str_off)
    725		btf = btf->base_btf;
    726
    727	offset -= btf->start_str_off;
    728	return offset < btf->hdr.str_len;
    729}
    730
    731static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
    732{
    733	if ((first ? !isalpha(c) :
    734		     !isalnum(c)) &&
    735	    c != '_' &&
    736	    ((c == '.' && !dot_ok) ||
    737	      c != '.'))
    738		return false;
    739	return true;
    740}
    741
    742static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
    743{
    744	while (offset < btf->start_str_off)
    745		btf = btf->base_btf;
    746
    747	offset -= btf->start_str_off;
    748	if (offset < btf->hdr.str_len)
    749		return &btf->strings[offset];
    750
    751	return NULL;
    752}
    753
    754static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
    755{
    756	/* offset must be valid */
    757	const char *src = btf_str_by_offset(btf, offset);
    758	const char *src_limit;
    759
    760	if (!__btf_name_char_ok(*src, true, dot_ok))
    761		return false;
    762
    763	/* set a limit on identifier length */
    764	src_limit = src + KSYM_NAME_LEN;
    765	src++;
    766	while (*src && src < src_limit) {
    767		if (!__btf_name_char_ok(*src, false, dot_ok))
    768			return false;
    769		src++;
    770	}
    771
    772	return !*src;
    773}
    774
    775/* Only C-style identifier is permitted. This can be relaxed if
    776 * necessary.
    777 */
    778static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
    779{
    780	return __btf_name_valid(btf, offset, false);
    781}
    782
    783static bool btf_name_valid_section(const struct btf *btf, u32 offset)
    784{
    785	return __btf_name_valid(btf, offset, true);
    786}
    787
    788static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
    789{
    790	const char *name;
    791
    792	if (!offset)
    793		return "(anon)";
    794
    795	name = btf_str_by_offset(btf, offset);
    796	return name ?: "(invalid-name-offset)";
    797}
    798
    799const char *btf_name_by_offset(const struct btf *btf, u32 offset)
    800{
    801	return btf_str_by_offset(btf, offset);
    802}
    803
    804const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
    805{
    806	while (type_id < btf->start_id)
    807		btf = btf->base_btf;
    808
    809	type_id -= btf->start_id;
    810	if (type_id >= btf->nr_types)
    811		return NULL;
    812	return btf->types[type_id];
    813}
    814
    815/*
    816 * Regular int is not a bit field and it must be either
    817 * u8/u16/u32/u64 or __int128.
    818 */
    819static bool btf_type_int_is_regular(const struct btf_type *t)
    820{
    821	u8 nr_bits, nr_bytes;
    822	u32 int_data;
    823
    824	int_data = btf_type_int(t);
    825	nr_bits = BTF_INT_BITS(int_data);
    826	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
    827	if (BITS_PER_BYTE_MASKED(nr_bits) ||
    828	    BTF_INT_OFFSET(int_data) ||
    829	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
    830	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
    831	     nr_bytes != (2 * sizeof(u64)))) {
    832		return false;
    833	}
    834
    835	return true;
    836}
    837
    838/*
    839 * Check that given struct member is a regular int with expected
    840 * offset and size.
    841 */
    842bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
    843			   const struct btf_member *m,
    844			   u32 expected_offset, u32 expected_size)
    845{
    846	const struct btf_type *t;
    847	u32 id, int_data;
    848	u8 nr_bits;
    849
    850	id = m->type;
    851	t = btf_type_id_size(btf, &id, NULL);
    852	if (!t || !btf_type_is_int(t))
    853		return false;
    854
    855	int_data = btf_type_int(t);
    856	nr_bits = BTF_INT_BITS(int_data);
    857	if (btf_type_kflag(s)) {
    858		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
    859		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
    860
    861		/* if kflag set, int should be a regular int and
    862		 * bit offset should be at byte boundary.
    863		 */
    864		return !bitfield_size &&
    865		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
    866		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
    867	}
    868
    869	if (BTF_INT_OFFSET(int_data) ||
    870	    BITS_PER_BYTE_MASKED(m->offset) ||
    871	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
    872	    BITS_PER_BYTE_MASKED(nr_bits) ||
    873	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
    874		return false;
    875
    876	return true;
    877}
    878
    879/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
    880static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
    881						       u32 id)
    882{
    883	const struct btf_type *t = btf_type_by_id(btf, id);
    884
    885	while (btf_type_is_modifier(t) &&
    886	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
    887		t = btf_type_by_id(btf, t->type);
    888	}
    889
    890	return t;
    891}
    892
    893#define BTF_SHOW_MAX_ITER	10
    894
    895#define BTF_KIND_BIT(kind)	(1ULL << kind)
    896
    897/*
    898 * Populate show->state.name with type name information.
    899 * Format of type name is
    900 *
    901 * [.member_name = ] (type_name)
    902 */
    903static const char *btf_show_name(struct btf_show *show)
    904{
    905	/* BTF_MAX_ITER array suffixes "[]" */
    906	const char *array_suffixes = "[][][][][][][][][][]";
    907	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
    908	/* BTF_MAX_ITER pointer suffixes "*" */
    909	const char *ptr_suffixes = "**********";
    910	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
    911	const char *name = NULL, *prefix = "", *parens = "";
    912	const struct btf_member *m = show->state.member;
    913	const struct btf_type *t;
    914	const struct btf_array *array;
    915	u32 id = show->state.type_id;
    916	const char *member = NULL;
    917	bool show_member = false;
    918	u64 kinds = 0;
    919	int i;
    920
    921	show->state.name[0] = '\0';
    922
    923	/*
    924	 * Don't show type name if we're showing an array member;
    925	 * in that case we show the array type so don't need to repeat
    926	 * ourselves for each member.
    927	 */
    928	if (show->state.array_member)
    929		return "";
    930
    931	/* Retrieve member name, if any. */
    932	if (m) {
    933		member = btf_name_by_offset(show->btf, m->name_off);
    934		show_member = strlen(member) > 0;
    935		id = m->type;
    936	}
    937
    938	/*
    939	 * Start with type_id, as we have resolved the struct btf_type *
    940	 * via btf_modifier_show() past the parent typedef to the child
    941	 * struct, int etc it is defined as.  In such cases, the type_id
    942	 * still represents the starting type while the struct btf_type *
    943	 * in our show->state points at the resolved type of the typedef.
    944	 */
    945	t = btf_type_by_id(show->btf, id);
    946	if (!t)
    947		return "";
    948
    949	/*
    950	 * The goal here is to build up the right number of pointer and
    951	 * array suffixes while ensuring the type name for a typedef
    952	 * is represented.  Along the way we accumulate a list of
    953	 * BTF kinds we have encountered, since these will inform later
    954	 * display; for example, pointer types will not require an
    955	 * opening "{" for struct, we will just display the pointer value.
    956	 *
    957	 * We also want to accumulate the right number of pointer or array
    958	 * indices in the format string while iterating until we get to
    959	 * the typedef/pointee/array member target type.
    960	 *
    961	 * We start by pointing at the end of pointer and array suffix
    962	 * strings; as we accumulate pointers and arrays we move the pointer
    963	 * or array string backwards so it will show the expected number of
    964	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
    965	 * and/or arrays and typedefs are supported as a precaution.
    966	 *
    967	 * We also want to get typedef name while proceeding to resolve
    968	 * type it points to so that we can add parentheses if it is a
    969	 * "typedef struct" etc.
    970	 */
    971	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
    972
    973		switch (BTF_INFO_KIND(t->info)) {
    974		case BTF_KIND_TYPEDEF:
    975			if (!name)
    976				name = btf_name_by_offset(show->btf,
    977							       t->name_off);
    978			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
    979			id = t->type;
    980			break;
    981		case BTF_KIND_ARRAY:
    982			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
    983			parens = "[";
    984			if (!t)
    985				return "";
    986			array = btf_type_array(t);
    987			if (array_suffix > array_suffixes)
    988				array_suffix -= 2;
    989			id = array->type;
    990			break;
    991		case BTF_KIND_PTR:
    992			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
    993			if (ptr_suffix > ptr_suffixes)
    994				ptr_suffix -= 1;
    995			id = t->type;
    996			break;
    997		default:
    998			id = 0;
    999			break;
   1000		}
   1001		if (!id)
   1002			break;
   1003		t = btf_type_skip_qualifiers(show->btf, id);
   1004	}
   1005	/* We may not be able to represent this type; bail to be safe */
   1006	if (i == BTF_SHOW_MAX_ITER)
   1007		return "";
   1008
   1009	if (!name)
   1010		name = btf_name_by_offset(show->btf, t->name_off);
   1011
   1012	switch (BTF_INFO_KIND(t->info)) {
   1013	case BTF_KIND_STRUCT:
   1014	case BTF_KIND_UNION:
   1015		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
   1016			 "struct" : "union";
   1017		/* if it's an array of struct/union, parens is already set */
   1018		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
   1019			parens = "{";
   1020		break;
   1021	case BTF_KIND_ENUM:
   1022		prefix = "enum";
   1023		break;
   1024	default:
   1025		break;
   1026	}
   1027
   1028	/* pointer does not require parens */
   1029	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
   1030		parens = "";
   1031	/* typedef does not require struct/union/enum prefix */
   1032	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
   1033		prefix = "";
   1034
   1035	if (!name)
   1036		name = "";
   1037
   1038	/* Even if we don't want type name info, we want parentheses etc */
   1039	if (show->flags & BTF_SHOW_NONAME)
   1040		snprintf(show->state.name, sizeof(show->state.name), "%s",
   1041			 parens);
   1042	else
   1043		snprintf(show->state.name, sizeof(show->state.name),
   1044			 "%s%s%s(%s%s%s%s%s%s)%s",
   1045			 /* first 3 strings comprise ".member = " */
   1046			 show_member ? "." : "",
   1047			 show_member ? member : "",
   1048			 show_member ? " = " : "",
   1049			 /* ...next is our prefix (struct, enum, etc) */
   1050			 prefix,
   1051			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
   1052			 /* ...this is the type name itself */
   1053			 name,
   1054			 /* ...suffixed by the appropriate '*', '[]' suffixes */
   1055			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
   1056			 array_suffix, parens);
   1057
   1058	return show->state.name;
   1059}
   1060
   1061static const char *__btf_show_indent(struct btf_show *show)
   1062{
   1063	const char *indents = "                                ";
   1064	const char *indent = &indents[strlen(indents)];
   1065
   1066	if ((indent - show->state.depth) >= indents)
   1067		return indent - show->state.depth;
   1068	return indents;
   1069}
   1070
   1071static const char *btf_show_indent(struct btf_show *show)
   1072{
   1073	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
   1074}
   1075
   1076static const char *btf_show_newline(struct btf_show *show)
   1077{
   1078	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
   1079}
   1080
   1081static const char *btf_show_delim(struct btf_show *show)
   1082{
   1083	if (show->state.depth == 0)
   1084		return "";
   1085
   1086	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
   1087		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
   1088		return "|";
   1089
   1090	return ",";
   1091}
   1092
   1093__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
   1094{
   1095	va_list args;
   1096
   1097	if (!show->state.depth_check) {
   1098		va_start(args, fmt);
   1099		show->showfn(show, fmt, args);
   1100		va_end(args);
   1101	}
   1102}
   1103
   1104/* Macros are used here as btf_show_type_value[s]() prepends and appends
   1105 * format specifiers to the format specifier passed in; these do the work of
   1106 * adding indentation, delimiters etc while the caller simply has to specify
   1107 * the type value(s) in the format specifier + value(s).
   1108 */
   1109#define btf_show_type_value(show, fmt, value)				       \
   1110	do {								       \
   1111		if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \
   1112		    show->state.depth == 0) {				       \
   1113			btf_show(show, "%s%s" fmt "%s%s",		       \
   1114				 btf_show_indent(show),			       \
   1115				 btf_show_name(show),			       \
   1116				 value, btf_show_delim(show),		       \
   1117				 btf_show_newline(show));		       \
   1118			if (show->state.depth > show->state.depth_to_show)     \
   1119				show->state.depth_to_show = show->state.depth; \
   1120		}							       \
   1121	} while (0)
   1122
   1123#define btf_show_type_values(show, fmt, ...)				       \
   1124	do {								       \
   1125		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
   1126			 btf_show_name(show),				       \
   1127			 __VA_ARGS__, btf_show_delim(show),		       \
   1128			 btf_show_newline(show));			       \
   1129		if (show->state.depth > show->state.depth_to_show)	       \
   1130			show->state.depth_to_show = show->state.depth;	       \
   1131	} while (0)
   1132
   1133/* How much is left to copy to safe buffer after @data? */
   1134static int btf_show_obj_size_left(struct btf_show *show, void *data)
   1135{
   1136	return show->obj.head + show->obj.size - data;
   1137}
   1138
   1139/* Is object pointed to by @data of @size already copied to our safe buffer? */
   1140static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
   1141{
   1142	return data >= show->obj.data &&
   1143	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
   1144}
   1145
   1146/*
   1147 * If object pointed to by @data of @size falls within our safe buffer, return
   1148 * the equivalent pointer to the same safe data.  Assumes
   1149 * copy_from_kernel_nofault() has already happened and our safe buffer is
   1150 * populated.
   1151 */
   1152static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
   1153{
   1154	if (btf_show_obj_is_safe(show, data, size))
   1155		return show->obj.safe + (data - show->obj.data);
   1156	return NULL;
   1157}
   1158
   1159/*
   1160 * Return a safe-to-access version of data pointed to by @data.
   1161 * We do this by copying the relevant amount of information
   1162 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
   1163 *
   1164 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
   1165 * safe copy is needed.
   1166 *
   1167 * Otherwise we need to determine if we have the required amount
   1168 * of data (determined by the @data pointer and the size of the
   1169 * largest base type we can encounter (represented by
   1170 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
   1171 * that we will be able to print some of the current object,
   1172 * and if more is needed a copy will be triggered.
   1173 * Some objects such as structs will not fit into the buffer;
   1174 * in such cases additional copies when we iterate over their
   1175 * members may be needed.
   1176 *
   1177 * btf_show_obj_safe() is used to return a safe buffer for
   1178 * btf_show_start_type(); this ensures that as we recurse into
   1179 * nested types we always have safe data for the given type.
   1180 * This approach is somewhat wasteful; it's possible for example
   1181 * that when iterating over a large union we'll end up copying the
   1182 * same data repeatedly, but the goal is safety not performance.
   1183 * We use stack data as opposed to per-CPU buffers because the
   1184 * iteration over a type can take some time, and preemption handling
   1185 * would greatly complicate use of the safe buffer.
   1186 */
   1187static void *btf_show_obj_safe(struct btf_show *show,
   1188			       const struct btf_type *t,
   1189			       void *data)
   1190{
   1191	const struct btf_type *rt;
   1192	int size_left, size;
   1193	void *safe = NULL;
   1194
   1195	if (show->flags & BTF_SHOW_UNSAFE)
   1196		return data;
   1197
   1198	rt = btf_resolve_size(show->btf, t, &size);
   1199	if (IS_ERR(rt)) {
   1200		show->state.status = PTR_ERR(rt);
   1201		return NULL;
   1202	}
   1203
   1204	/*
   1205	 * Is this toplevel object? If so, set total object size and
   1206	 * initialize pointers.  Otherwise check if we still fall within
   1207	 * our safe object data.
   1208	 */
   1209	if (show->state.depth == 0) {
   1210		show->obj.size = size;
   1211		show->obj.head = data;
   1212	} else {
   1213		/*
   1214		 * If the size of the current object is > our remaining
   1215		 * safe buffer we _may_ need to do a new copy.  However
   1216		 * consider the case of a nested struct; it's size pushes
   1217		 * us over the safe buffer limit, but showing any individual
   1218		 * struct members does not.  In such cases, we don't need
   1219		 * to initiate a fresh copy yet; however we definitely need
   1220		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
   1221		 * in our buffer, regardless of the current object size.
   1222		 * The logic here is that as we resolve types we will
   1223		 * hit a base type at some point, and we need to be sure
   1224		 * the next chunk of data is safely available to display
   1225		 * that type info safely.  We cannot rely on the size of
   1226		 * the current object here because it may be much larger
   1227		 * than our current buffer (e.g. task_struct is 8k).
   1228		 * All we want to do here is ensure that we can print the
   1229		 * next basic type, which we can if either
   1230		 * - the current type size is within the safe buffer; or
   1231		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
   1232		 *   the safe buffer.
   1233		 */
   1234		safe = __btf_show_obj_safe(show, data,
   1235					   min(size,
   1236					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
   1237	}
   1238
   1239	/*
   1240	 * We need a new copy to our safe object, either because we haven't
   1241	 * yet copied and are initializing safe data, or because the data
   1242	 * we want falls outside the boundaries of the safe object.
   1243	 */
   1244	if (!safe) {
   1245		size_left = btf_show_obj_size_left(show, data);
   1246		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
   1247			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
   1248		show->state.status = copy_from_kernel_nofault(show->obj.safe,
   1249							      data, size_left);
   1250		if (!show->state.status) {
   1251			show->obj.data = data;
   1252			safe = show->obj.safe;
   1253		}
   1254	}
   1255
   1256	return safe;
   1257}
   1258
   1259/*
   1260 * Set the type we are starting to show and return a safe data pointer
   1261 * to be used for showing the associated data.
   1262 */
   1263static void *btf_show_start_type(struct btf_show *show,
   1264				 const struct btf_type *t,
   1265				 u32 type_id, void *data)
   1266{
   1267	show->state.type = t;
   1268	show->state.type_id = type_id;
   1269	show->state.name[0] = '\0';
   1270
   1271	return btf_show_obj_safe(show, t, data);
   1272}
   1273
   1274static void btf_show_end_type(struct btf_show *show)
   1275{
   1276	show->state.type = NULL;
   1277	show->state.type_id = 0;
   1278	show->state.name[0] = '\0';
   1279}
   1280
   1281static void *btf_show_start_aggr_type(struct btf_show *show,
   1282				      const struct btf_type *t,
   1283				      u32 type_id, void *data)
   1284{
   1285	void *safe_data = btf_show_start_type(show, t, type_id, data);
   1286
   1287	if (!safe_data)
   1288		return safe_data;
   1289
   1290	btf_show(show, "%s%s%s", btf_show_indent(show),
   1291		 btf_show_name(show),
   1292		 btf_show_newline(show));
   1293	show->state.depth++;
   1294	return safe_data;
   1295}
   1296
   1297static void btf_show_end_aggr_type(struct btf_show *show,
   1298				   const char *suffix)
   1299{
   1300	show->state.depth--;
   1301	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
   1302		 btf_show_delim(show), btf_show_newline(show));
   1303	btf_show_end_type(show);
   1304}
   1305
   1306static void btf_show_start_member(struct btf_show *show,
   1307				  const struct btf_member *m)
   1308{
   1309	show->state.member = m;
   1310}
   1311
   1312static void btf_show_start_array_member(struct btf_show *show)
   1313{
   1314	show->state.array_member = 1;
   1315	btf_show_start_member(show, NULL);
   1316}
   1317
   1318static void btf_show_end_member(struct btf_show *show)
   1319{
   1320	show->state.member = NULL;
   1321}
   1322
   1323static void btf_show_end_array_member(struct btf_show *show)
   1324{
   1325	show->state.array_member = 0;
   1326	btf_show_end_member(show);
   1327}
   1328
   1329static void *btf_show_start_array_type(struct btf_show *show,
   1330				       const struct btf_type *t,
   1331				       u32 type_id,
   1332				       u16 array_encoding,
   1333				       void *data)
   1334{
   1335	show->state.array_encoding = array_encoding;
   1336	show->state.array_terminated = 0;
   1337	return btf_show_start_aggr_type(show, t, type_id, data);
   1338}
   1339
   1340static void btf_show_end_array_type(struct btf_show *show)
   1341{
   1342	show->state.array_encoding = 0;
   1343	show->state.array_terminated = 0;
   1344	btf_show_end_aggr_type(show, "]");
   1345}
   1346
   1347static void *btf_show_start_struct_type(struct btf_show *show,
   1348					const struct btf_type *t,
   1349					u32 type_id,
   1350					void *data)
   1351{
   1352	return btf_show_start_aggr_type(show, t, type_id, data);
   1353}
   1354
   1355static void btf_show_end_struct_type(struct btf_show *show)
   1356{
   1357	btf_show_end_aggr_type(show, "}");
   1358}
   1359
   1360__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
   1361					      const char *fmt, ...)
   1362{
   1363	va_list args;
   1364
   1365	va_start(args, fmt);
   1366	bpf_verifier_vlog(log, fmt, args);
   1367	va_end(args);
   1368}
   1369
   1370__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
   1371					    const char *fmt, ...)
   1372{
   1373	struct bpf_verifier_log *log = &env->log;
   1374	va_list args;
   1375
   1376	if (!bpf_verifier_log_needed(log))
   1377		return;
   1378
   1379	va_start(args, fmt);
   1380	bpf_verifier_vlog(log, fmt, args);
   1381	va_end(args);
   1382}
   1383
   1384__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
   1385						   const struct btf_type *t,
   1386						   bool log_details,
   1387						   const char *fmt, ...)
   1388{
   1389	struct bpf_verifier_log *log = &env->log;
   1390	u8 kind = BTF_INFO_KIND(t->info);
   1391	struct btf *btf = env->btf;
   1392	va_list args;
   1393
   1394	if (!bpf_verifier_log_needed(log))
   1395		return;
   1396
   1397	/* btf verifier prints all types it is processing via
   1398	 * btf_verifier_log_type(..., fmt = NULL).
   1399	 * Skip those prints for in-kernel BTF verification.
   1400	 */
   1401	if (log->level == BPF_LOG_KERNEL && !fmt)
   1402		return;
   1403
   1404	__btf_verifier_log(log, "[%u] %s %s%s",
   1405			   env->log_type_id,
   1406			   btf_kind_str[kind],
   1407			   __btf_name_by_offset(btf, t->name_off),
   1408			   log_details ? " " : "");
   1409
   1410	if (log_details)
   1411		btf_type_ops(t)->log_details(env, t);
   1412
   1413	if (fmt && *fmt) {
   1414		__btf_verifier_log(log, " ");
   1415		va_start(args, fmt);
   1416		bpf_verifier_vlog(log, fmt, args);
   1417		va_end(args);
   1418	}
   1419
   1420	__btf_verifier_log(log, "\n");
   1421}
   1422
   1423#define btf_verifier_log_type(env, t, ...) \
   1424	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
   1425#define btf_verifier_log_basic(env, t, ...) \
   1426	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
   1427
   1428__printf(4, 5)
   1429static void btf_verifier_log_member(struct btf_verifier_env *env,
   1430				    const struct btf_type *struct_type,
   1431				    const struct btf_member *member,
   1432				    const char *fmt, ...)
   1433{
   1434	struct bpf_verifier_log *log = &env->log;
   1435	struct btf *btf = env->btf;
   1436	va_list args;
   1437
   1438	if (!bpf_verifier_log_needed(log))
   1439		return;
   1440
   1441	if (log->level == BPF_LOG_KERNEL && !fmt)
   1442		return;
   1443	/* The CHECK_META phase already did a btf dump.
   1444	 *
   1445	 * If member is logged again, it must hit an error in
   1446	 * parsing this member.  It is useful to print out which
   1447	 * struct this member belongs to.
   1448	 */
   1449	if (env->phase != CHECK_META)
   1450		btf_verifier_log_type(env, struct_type, NULL);
   1451
   1452	if (btf_type_kflag(struct_type))
   1453		__btf_verifier_log(log,
   1454				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
   1455				   __btf_name_by_offset(btf, member->name_off),
   1456				   member->type,
   1457				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
   1458				   BTF_MEMBER_BIT_OFFSET(member->offset));
   1459	else
   1460		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
   1461				   __btf_name_by_offset(btf, member->name_off),
   1462				   member->type, member->offset);
   1463
   1464	if (fmt && *fmt) {
   1465		__btf_verifier_log(log, " ");
   1466		va_start(args, fmt);
   1467		bpf_verifier_vlog(log, fmt, args);
   1468		va_end(args);
   1469	}
   1470
   1471	__btf_verifier_log(log, "\n");
   1472}
   1473
   1474__printf(4, 5)
   1475static void btf_verifier_log_vsi(struct btf_verifier_env *env,
   1476				 const struct btf_type *datasec_type,
   1477				 const struct btf_var_secinfo *vsi,
   1478				 const char *fmt, ...)
   1479{
   1480	struct bpf_verifier_log *log = &env->log;
   1481	va_list args;
   1482
   1483	if (!bpf_verifier_log_needed(log))
   1484		return;
   1485	if (log->level == BPF_LOG_KERNEL && !fmt)
   1486		return;
   1487	if (env->phase != CHECK_META)
   1488		btf_verifier_log_type(env, datasec_type, NULL);
   1489
   1490	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
   1491			   vsi->type, vsi->offset, vsi->size);
   1492	if (fmt && *fmt) {
   1493		__btf_verifier_log(log, " ");
   1494		va_start(args, fmt);
   1495		bpf_verifier_vlog(log, fmt, args);
   1496		va_end(args);
   1497	}
   1498
   1499	__btf_verifier_log(log, "\n");
   1500}
   1501
   1502static void btf_verifier_log_hdr(struct btf_verifier_env *env,
   1503				 u32 btf_data_size)
   1504{
   1505	struct bpf_verifier_log *log = &env->log;
   1506	const struct btf *btf = env->btf;
   1507	const struct btf_header *hdr;
   1508
   1509	if (!bpf_verifier_log_needed(log))
   1510		return;
   1511
   1512	if (log->level == BPF_LOG_KERNEL)
   1513		return;
   1514	hdr = &btf->hdr;
   1515	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
   1516	__btf_verifier_log(log, "version: %u\n", hdr->version);
   1517	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
   1518	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
   1519	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
   1520	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
   1521	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
   1522	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
   1523	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
   1524}
   1525
   1526static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
   1527{
   1528	struct btf *btf = env->btf;
   1529
   1530	if (btf->types_size == btf->nr_types) {
   1531		/* Expand 'types' array */
   1532
   1533		struct btf_type **new_types;
   1534		u32 expand_by, new_size;
   1535
   1536		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
   1537			btf_verifier_log(env, "Exceeded max num of types");
   1538			return -E2BIG;
   1539		}
   1540
   1541		expand_by = max_t(u32, btf->types_size >> 2, 16);
   1542		new_size = min_t(u32, BTF_MAX_TYPE,
   1543				 btf->types_size + expand_by);
   1544
   1545		new_types = kvcalloc(new_size, sizeof(*new_types),
   1546				     GFP_KERNEL | __GFP_NOWARN);
   1547		if (!new_types)
   1548			return -ENOMEM;
   1549
   1550		if (btf->nr_types == 0) {
   1551			if (!btf->base_btf) {
   1552				/* lazily init VOID type */
   1553				new_types[0] = &btf_void;
   1554				btf->nr_types++;
   1555			}
   1556		} else {
   1557			memcpy(new_types, btf->types,
   1558			       sizeof(*btf->types) * btf->nr_types);
   1559		}
   1560
   1561		kvfree(btf->types);
   1562		btf->types = new_types;
   1563		btf->types_size = new_size;
   1564	}
   1565
   1566	btf->types[btf->nr_types++] = t;
   1567
   1568	return 0;
   1569}
   1570
   1571static int btf_alloc_id(struct btf *btf)
   1572{
   1573	int id;
   1574
   1575	idr_preload(GFP_KERNEL);
   1576	spin_lock_bh(&btf_idr_lock);
   1577	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
   1578	if (id > 0)
   1579		btf->id = id;
   1580	spin_unlock_bh(&btf_idr_lock);
   1581	idr_preload_end();
   1582
   1583	if (WARN_ON_ONCE(!id))
   1584		return -ENOSPC;
   1585
   1586	return id > 0 ? 0 : id;
   1587}
   1588
   1589static void btf_free_id(struct btf *btf)
   1590{
   1591	unsigned long flags;
   1592
   1593	/*
   1594	 * In map-in-map, calling map_delete_elem() on outer
   1595	 * map will call bpf_map_put on the inner map.
   1596	 * It will then eventually call btf_free_id()
   1597	 * on the inner map.  Some of the map_delete_elem()
   1598	 * implementation may have irq disabled, so
   1599	 * we need to use the _irqsave() version instead
   1600	 * of the _bh() version.
   1601	 */
   1602	spin_lock_irqsave(&btf_idr_lock, flags);
   1603	idr_remove(&btf_idr, btf->id);
   1604	spin_unlock_irqrestore(&btf_idr_lock, flags);
   1605}
   1606
   1607static void btf_free_kfunc_set_tab(struct btf *btf)
   1608{
   1609	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
   1610	int hook, type;
   1611
   1612	if (!tab)
   1613		return;
   1614	/* For module BTF, we directly assign the sets being registered, so
   1615	 * there is nothing to free except kfunc_set_tab.
   1616	 */
   1617	if (btf_is_module(btf))
   1618		goto free_tab;
   1619	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) {
   1620		for (type = 0; type < ARRAY_SIZE(tab->sets[0]); type++)
   1621			kfree(tab->sets[hook][type]);
   1622	}
   1623free_tab:
   1624	kfree(tab);
   1625	btf->kfunc_set_tab = NULL;
   1626}
   1627
   1628static void btf_free_dtor_kfunc_tab(struct btf *btf)
   1629{
   1630	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
   1631
   1632	if (!tab)
   1633		return;
   1634	kfree(tab);
   1635	btf->dtor_kfunc_tab = NULL;
   1636}
   1637
   1638static void btf_free(struct btf *btf)
   1639{
   1640	btf_free_dtor_kfunc_tab(btf);
   1641	btf_free_kfunc_set_tab(btf);
   1642	kvfree(btf->types);
   1643	kvfree(btf->resolved_sizes);
   1644	kvfree(btf->resolved_ids);
   1645	kvfree(btf->data);
   1646	kfree(btf);
   1647}
   1648
   1649static void btf_free_rcu(struct rcu_head *rcu)
   1650{
   1651	struct btf *btf = container_of(rcu, struct btf, rcu);
   1652
   1653	btf_free(btf);
   1654}
   1655
   1656void btf_get(struct btf *btf)
   1657{
   1658	refcount_inc(&btf->refcnt);
   1659}
   1660
   1661void btf_put(struct btf *btf)
   1662{
   1663	if (btf && refcount_dec_and_test(&btf->refcnt)) {
   1664		btf_free_id(btf);
   1665		call_rcu(&btf->rcu, btf_free_rcu);
   1666	}
   1667}
   1668
   1669static int env_resolve_init(struct btf_verifier_env *env)
   1670{
   1671	struct btf *btf = env->btf;
   1672	u32 nr_types = btf->nr_types;
   1673	u32 *resolved_sizes = NULL;
   1674	u32 *resolved_ids = NULL;
   1675	u8 *visit_states = NULL;
   1676
   1677	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
   1678				  GFP_KERNEL | __GFP_NOWARN);
   1679	if (!resolved_sizes)
   1680		goto nomem;
   1681
   1682	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
   1683				GFP_KERNEL | __GFP_NOWARN);
   1684	if (!resolved_ids)
   1685		goto nomem;
   1686
   1687	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
   1688				GFP_KERNEL | __GFP_NOWARN);
   1689	if (!visit_states)
   1690		goto nomem;
   1691
   1692	btf->resolved_sizes = resolved_sizes;
   1693	btf->resolved_ids = resolved_ids;
   1694	env->visit_states = visit_states;
   1695
   1696	return 0;
   1697
   1698nomem:
   1699	kvfree(resolved_sizes);
   1700	kvfree(resolved_ids);
   1701	kvfree(visit_states);
   1702	return -ENOMEM;
   1703}
   1704
   1705static void btf_verifier_env_free(struct btf_verifier_env *env)
   1706{
   1707	kvfree(env->visit_states);
   1708	kfree(env);
   1709}
   1710
   1711static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
   1712				     const struct btf_type *next_type)
   1713{
   1714	switch (env->resolve_mode) {
   1715	case RESOLVE_TBD:
   1716		/* int, enum or void is a sink */
   1717		return !btf_type_needs_resolve(next_type);
   1718	case RESOLVE_PTR:
   1719		/* int, enum, void, struct, array, func or func_proto is a sink
   1720		 * for ptr
   1721		 */
   1722		return !btf_type_is_modifier(next_type) &&
   1723			!btf_type_is_ptr(next_type);
   1724	case RESOLVE_STRUCT_OR_ARRAY:
   1725		/* int, enum, void, ptr, func or func_proto is a sink
   1726		 * for struct and array
   1727		 */
   1728		return !btf_type_is_modifier(next_type) &&
   1729			!btf_type_is_array(next_type) &&
   1730			!btf_type_is_struct(next_type);
   1731	default:
   1732		BUG();
   1733	}
   1734}
   1735
   1736static bool env_type_is_resolved(const struct btf_verifier_env *env,
   1737				 u32 type_id)
   1738{
   1739	/* base BTF types should be resolved by now */
   1740	if (type_id < env->btf->start_id)
   1741		return true;
   1742
   1743	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
   1744}
   1745
   1746static int env_stack_push(struct btf_verifier_env *env,
   1747			  const struct btf_type *t, u32 type_id)
   1748{
   1749	const struct btf *btf = env->btf;
   1750	struct resolve_vertex *v;
   1751
   1752	if (env->top_stack == MAX_RESOLVE_DEPTH)
   1753		return -E2BIG;
   1754
   1755	if (type_id < btf->start_id
   1756	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
   1757		return -EEXIST;
   1758
   1759	env->visit_states[type_id - btf->start_id] = VISITED;
   1760
   1761	v = &env->stack[env->top_stack++];
   1762	v->t = t;
   1763	v->type_id = type_id;
   1764	v->next_member = 0;
   1765
   1766	if (env->resolve_mode == RESOLVE_TBD) {
   1767		if (btf_type_is_ptr(t))
   1768			env->resolve_mode = RESOLVE_PTR;
   1769		else if (btf_type_is_struct(t) || btf_type_is_array(t))
   1770			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
   1771	}
   1772
   1773	return 0;
   1774}
   1775
   1776static void env_stack_set_next_member(struct btf_verifier_env *env,
   1777				      u16 next_member)
   1778{
   1779	env->stack[env->top_stack - 1].next_member = next_member;
   1780}
   1781
   1782static void env_stack_pop_resolved(struct btf_verifier_env *env,
   1783				   u32 resolved_type_id,
   1784				   u32 resolved_size)
   1785{
   1786	u32 type_id = env->stack[--(env->top_stack)].type_id;
   1787	struct btf *btf = env->btf;
   1788
   1789	type_id -= btf->start_id; /* adjust to local type id */
   1790	btf->resolved_sizes[type_id] = resolved_size;
   1791	btf->resolved_ids[type_id] = resolved_type_id;
   1792	env->visit_states[type_id] = RESOLVED;
   1793}
   1794
   1795static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
   1796{
   1797	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
   1798}
   1799
   1800/* Resolve the size of a passed-in "type"
   1801 *
   1802 * type: is an array (e.g. u32 array[x][y])
   1803 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
   1804 * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
   1805 *             corresponds to the return type.
   1806 * *elem_type: u32
   1807 * *elem_id: id of u32
   1808 * *total_nelems: (x * y).  Hence, individual elem size is
   1809 *                (*type_size / *total_nelems)
   1810 * *type_id: id of type if it's changed within the function, 0 if not
   1811 *
   1812 * type: is not an array (e.g. const struct X)
   1813 * return type: type "struct X"
   1814 * *type_size: sizeof(struct X)
   1815 * *elem_type: same as return type ("struct X")
   1816 * *elem_id: 0
   1817 * *total_nelems: 1
   1818 * *type_id: id of type if it's changed within the function, 0 if not
   1819 */
   1820static const struct btf_type *
   1821__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
   1822		   u32 *type_size, const struct btf_type **elem_type,
   1823		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
   1824{
   1825	const struct btf_type *array_type = NULL;
   1826	const struct btf_array *array = NULL;
   1827	u32 i, size, nelems = 1, id = 0;
   1828
   1829	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
   1830		switch (BTF_INFO_KIND(type->info)) {
   1831		/* type->size can be used */
   1832		case BTF_KIND_INT:
   1833		case BTF_KIND_STRUCT:
   1834		case BTF_KIND_UNION:
   1835		case BTF_KIND_ENUM:
   1836		case BTF_KIND_FLOAT:
   1837			size = type->size;
   1838			goto resolved;
   1839
   1840		case BTF_KIND_PTR:
   1841			size = sizeof(void *);
   1842			goto resolved;
   1843
   1844		/* Modifiers */
   1845		case BTF_KIND_TYPEDEF:
   1846		case BTF_KIND_VOLATILE:
   1847		case BTF_KIND_CONST:
   1848		case BTF_KIND_RESTRICT:
   1849		case BTF_KIND_TYPE_TAG:
   1850			id = type->type;
   1851			type = btf_type_by_id(btf, type->type);
   1852			break;
   1853
   1854		case BTF_KIND_ARRAY:
   1855			if (!array_type)
   1856				array_type = type;
   1857			array = btf_type_array(type);
   1858			if (nelems && array->nelems > U32_MAX / nelems)
   1859				return ERR_PTR(-EINVAL);
   1860			nelems *= array->nelems;
   1861			type = btf_type_by_id(btf, array->type);
   1862			break;
   1863
   1864		/* type without size */
   1865		default:
   1866			return ERR_PTR(-EINVAL);
   1867		}
   1868	}
   1869
   1870	return ERR_PTR(-EINVAL);
   1871
   1872resolved:
   1873	if (nelems && size > U32_MAX / nelems)
   1874		return ERR_PTR(-EINVAL);
   1875
   1876	*type_size = nelems * size;
   1877	if (total_nelems)
   1878		*total_nelems = nelems;
   1879	if (elem_type)
   1880		*elem_type = type;
   1881	if (elem_id)
   1882		*elem_id = array ? array->type : 0;
   1883	if (type_id && id)
   1884		*type_id = id;
   1885
   1886	return array_type ? : type;
   1887}
   1888
   1889const struct btf_type *
   1890btf_resolve_size(const struct btf *btf, const struct btf_type *type,
   1891		 u32 *type_size)
   1892{
   1893	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
   1894}
   1895
   1896static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
   1897{
   1898	while (type_id < btf->start_id)
   1899		btf = btf->base_btf;
   1900
   1901	return btf->resolved_ids[type_id - btf->start_id];
   1902}
   1903
   1904/* The input param "type_id" must point to a needs_resolve type */
   1905static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
   1906						  u32 *type_id)
   1907{
   1908	*type_id = btf_resolved_type_id(btf, *type_id);
   1909	return btf_type_by_id(btf, *type_id);
   1910}
   1911
   1912static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
   1913{
   1914	while (type_id < btf->start_id)
   1915		btf = btf->base_btf;
   1916
   1917	return btf->resolved_sizes[type_id - btf->start_id];
   1918}
   1919
   1920const struct btf_type *btf_type_id_size(const struct btf *btf,
   1921					u32 *type_id, u32 *ret_size)
   1922{
   1923	const struct btf_type *size_type;
   1924	u32 size_type_id = *type_id;
   1925	u32 size = 0;
   1926
   1927	size_type = btf_type_by_id(btf, size_type_id);
   1928	if (btf_type_nosize_or_null(size_type))
   1929		return NULL;
   1930
   1931	if (btf_type_has_size(size_type)) {
   1932		size = size_type->size;
   1933	} else if (btf_type_is_array(size_type)) {
   1934		size = btf_resolved_type_size(btf, size_type_id);
   1935	} else if (btf_type_is_ptr(size_type)) {
   1936		size = sizeof(void *);
   1937	} else {
   1938		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
   1939				 !btf_type_is_var(size_type)))
   1940			return NULL;
   1941
   1942		size_type_id = btf_resolved_type_id(btf, size_type_id);
   1943		size_type = btf_type_by_id(btf, size_type_id);
   1944		if (btf_type_nosize_or_null(size_type))
   1945			return NULL;
   1946		else if (btf_type_has_size(size_type))
   1947			size = size_type->size;
   1948		else if (btf_type_is_array(size_type))
   1949			size = btf_resolved_type_size(btf, size_type_id);
   1950		else if (btf_type_is_ptr(size_type))
   1951			size = sizeof(void *);
   1952		else
   1953			return NULL;
   1954	}
   1955
   1956	*type_id = size_type_id;
   1957	if (ret_size)
   1958		*ret_size = size;
   1959
   1960	return size_type;
   1961}
   1962
   1963static int btf_df_check_member(struct btf_verifier_env *env,
   1964			       const struct btf_type *struct_type,
   1965			       const struct btf_member *member,
   1966			       const struct btf_type *member_type)
   1967{
   1968	btf_verifier_log_basic(env, struct_type,
   1969			       "Unsupported check_member");
   1970	return -EINVAL;
   1971}
   1972
   1973static int btf_df_check_kflag_member(struct btf_verifier_env *env,
   1974				     const struct btf_type *struct_type,
   1975				     const struct btf_member *member,
   1976				     const struct btf_type *member_type)
   1977{
   1978	btf_verifier_log_basic(env, struct_type,
   1979			       "Unsupported check_kflag_member");
   1980	return -EINVAL;
   1981}
   1982
   1983/* Used for ptr, array struct/union and float type members.
   1984 * int, enum and modifier types have their specific callback functions.
   1985 */
   1986static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
   1987					  const struct btf_type *struct_type,
   1988					  const struct btf_member *member,
   1989					  const struct btf_type *member_type)
   1990{
   1991	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
   1992		btf_verifier_log_member(env, struct_type, member,
   1993					"Invalid member bitfield_size");
   1994		return -EINVAL;
   1995	}
   1996
   1997	/* bitfield size is 0, so member->offset represents bit offset only.
   1998	 * It is safe to call non kflag check_member variants.
   1999	 */
   2000	return btf_type_ops(member_type)->check_member(env, struct_type,
   2001						       member,
   2002						       member_type);
   2003}
   2004
   2005static int btf_df_resolve(struct btf_verifier_env *env,
   2006			  const struct resolve_vertex *v)
   2007{
   2008	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
   2009	return -EINVAL;
   2010}
   2011
   2012static void btf_df_show(const struct btf *btf, const struct btf_type *t,
   2013			u32 type_id, void *data, u8 bits_offsets,
   2014			struct btf_show *show)
   2015{
   2016	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
   2017}
   2018
   2019static int btf_int_check_member(struct btf_verifier_env *env,
   2020				const struct btf_type *struct_type,
   2021				const struct btf_member *member,
   2022				const struct btf_type *member_type)
   2023{
   2024	u32 int_data = btf_type_int(member_type);
   2025	u32 struct_bits_off = member->offset;
   2026	u32 struct_size = struct_type->size;
   2027	u32 nr_copy_bits;
   2028	u32 bytes_offset;
   2029
   2030	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
   2031		btf_verifier_log_member(env, struct_type, member,
   2032					"bits_offset exceeds U32_MAX");
   2033		return -EINVAL;
   2034	}
   2035
   2036	struct_bits_off += BTF_INT_OFFSET(int_data);
   2037	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
   2038	nr_copy_bits = BTF_INT_BITS(int_data) +
   2039		BITS_PER_BYTE_MASKED(struct_bits_off);
   2040
   2041	if (nr_copy_bits > BITS_PER_U128) {
   2042		btf_verifier_log_member(env, struct_type, member,
   2043					"nr_copy_bits exceeds 128");
   2044		return -EINVAL;
   2045	}
   2046
   2047	if (struct_size < bytes_offset ||
   2048	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
   2049		btf_verifier_log_member(env, struct_type, member,
   2050					"Member exceeds struct_size");
   2051		return -EINVAL;
   2052	}
   2053
   2054	return 0;
   2055}
   2056
   2057static int btf_int_check_kflag_member(struct btf_verifier_env *env,
   2058				      const struct btf_type *struct_type,
   2059				      const struct btf_member *member,
   2060				      const struct btf_type *member_type)
   2061{
   2062	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
   2063	u32 int_data = btf_type_int(member_type);
   2064	u32 struct_size = struct_type->size;
   2065	u32 nr_copy_bits;
   2066
   2067	/* a regular int type is required for the kflag int member */
   2068	if (!btf_type_int_is_regular(member_type)) {
   2069		btf_verifier_log_member(env, struct_type, member,
   2070					"Invalid member base type");
   2071		return -EINVAL;
   2072	}
   2073
   2074	/* check sanity of bitfield size */
   2075	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
   2076	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
   2077	nr_int_data_bits = BTF_INT_BITS(int_data);
   2078	if (!nr_bits) {
   2079		/* Not a bitfield member, member offset must be at byte
   2080		 * boundary.
   2081		 */
   2082		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
   2083			btf_verifier_log_member(env, struct_type, member,
   2084						"Invalid member offset");
   2085			return -EINVAL;
   2086		}
   2087
   2088		nr_bits = nr_int_data_bits;
   2089	} else if (nr_bits > nr_int_data_bits) {
   2090		btf_verifier_log_member(env, struct_type, member,
   2091					"Invalid member bitfield_size");
   2092		return -EINVAL;
   2093	}
   2094
   2095	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
   2096	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
   2097	if (nr_copy_bits > BITS_PER_U128) {
   2098		btf_verifier_log_member(env, struct_type, member,
   2099					"nr_copy_bits exceeds 128");
   2100		return -EINVAL;
   2101	}
   2102
   2103	if (struct_size < bytes_offset ||
   2104	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
   2105		btf_verifier_log_member(env, struct_type, member,
   2106					"Member exceeds struct_size");
   2107		return -EINVAL;
   2108	}
   2109
   2110	return 0;
   2111}
   2112
   2113static s32 btf_int_check_meta(struct btf_verifier_env *env,
   2114			      const struct btf_type *t,
   2115			      u32 meta_left)
   2116{
   2117	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
   2118	u16 encoding;
   2119
   2120	if (meta_left < meta_needed) {
   2121		btf_verifier_log_basic(env, t,
   2122				       "meta_left:%u meta_needed:%u",
   2123				       meta_left, meta_needed);
   2124		return -EINVAL;
   2125	}
   2126
   2127	if (btf_type_vlen(t)) {
   2128		btf_verifier_log_type(env, t, "vlen != 0");
   2129		return -EINVAL;
   2130	}
   2131
   2132	if (btf_type_kflag(t)) {
   2133		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
   2134		return -EINVAL;
   2135	}
   2136
   2137	int_data = btf_type_int(t);
   2138	if (int_data & ~BTF_INT_MASK) {
   2139		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
   2140				       int_data);
   2141		return -EINVAL;
   2142	}
   2143
   2144	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
   2145
   2146	if (nr_bits > BITS_PER_U128) {
   2147		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
   2148				      BITS_PER_U128);
   2149		return -EINVAL;
   2150	}
   2151
   2152	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
   2153		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
   2154		return -EINVAL;
   2155	}
   2156
   2157	/*
   2158	 * Only one of the encoding bits is allowed and it
   2159	 * should be sufficient for the pretty print purpose (i.e. decoding).
   2160	 * Multiple bits can be allowed later if it is found
   2161	 * to be insufficient.
   2162	 */
   2163	encoding = BTF_INT_ENCODING(int_data);
   2164	if (encoding &&
   2165	    encoding != BTF_INT_SIGNED &&
   2166	    encoding != BTF_INT_CHAR &&
   2167	    encoding != BTF_INT_BOOL) {
   2168		btf_verifier_log_type(env, t, "Unsupported encoding");
   2169		return -ENOTSUPP;
   2170	}
   2171
   2172	btf_verifier_log_type(env, t, NULL);
   2173
   2174	return meta_needed;
   2175}
   2176
   2177static void btf_int_log(struct btf_verifier_env *env,
   2178			const struct btf_type *t)
   2179{
   2180	int int_data = btf_type_int(t);
   2181
   2182	btf_verifier_log(env,
   2183			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
   2184			 t->size, BTF_INT_OFFSET(int_data),
   2185			 BTF_INT_BITS(int_data),
   2186			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
   2187}
   2188
   2189static void btf_int128_print(struct btf_show *show, void *data)
   2190{
   2191	/* data points to a __int128 number.
   2192	 * Suppose
   2193	 *     int128_num = *(__int128 *)data;
   2194	 * The below formulas shows what upper_num and lower_num represents:
   2195	 *     upper_num = int128_num >> 64;
   2196	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
   2197	 */
   2198	u64 upper_num, lower_num;
   2199
   2200#ifdef __BIG_ENDIAN_BITFIELD
   2201	upper_num = *(u64 *)data;
   2202	lower_num = *(u64 *)(data + 8);
   2203#else
   2204	upper_num = *(u64 *)(data + 8);
   2205	lower_num = *(u64 *)data;
   2206#endif
   2207	if (upper_num == 0)
   2208		btf_show_type_value(show, "0x%llx", lower_num);
   2209	else
   2210		btf_show_type_values(show, "0x%llx%016llx", upper_num,
   2211				     lower_num);
   2212}
   2213
   2214static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
   2215			     u16 right_shift_bits)
   2216{
   2217	u64 upper_num, lower_num;
   2218
   2219#ifdef __BIG_ENDIAN_BITFIELD
   2220	upper_num = print_num[0];
   2221	lower_num = print_num[1];
   2222#else
   2223	upper_num = print_num[1];
   2224	lower_num = print_num[0];
   2225#endif
   2226
   2227	/* shake out un-needed bits by shift/or operations */
   2228	if (left_shift_bits >= 64) {
   2229		upper_num = lower_num << (left_shift_bits - 64);
   2230		lower_num = 0;
   2231	} else {
   2232		upper_num = (upper_num << left_shift_bits) |
   2233			    (lower_num >> (64 - left_shift_bits));
   2234		lower_num = lower_num << left_shift_bits;
   2235	}
   2236
   2237	if (right_shift_bits >= 64) {
   2238		lower_num = upper_num >> (right_shift_bits - 64);
   2239		upper_num = 0;
   2240	} else {
   2241		lower_num = (lower_num >> right_shift_bits) |
   2242			    (upper_num << (64 - right_shift_bits));
   2243		upper_num = upper_num >> right_shift_bits;
   2244	}
   2245
   2246#ifdef __BIG_ENDIAN_BITFIELD
   2247	print_num[0] = upper_num;
   2248	print_num[1] = lower_num;
   2249#else
   2250	print_num[0] = lower_num;
   2251	print_num[1] = upper_num;
   2252#endif
   2253}
   2254
   2255static void btf_bitfield_show(void *data, u8 bits_offset,
   2256			      u8 nr_bits, struct btf_show *show)
   2257{
   2258	u16 left_shift_bits, right_shift_bits;
   2259	u8 nr_copy_bytes;
   2260	u8 nr_copy_bits;
   2261	u64 print_num[2] = {};
   2262
   2263	nr_copy_bits = nr_bits + bits_offset;
   2264	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
   2265
   2266	memcpy(print_num, data, nr_copy_bytes);
   2267
   2268#ifdef __BIG_ENDIAN_BITFIELD
   2269	left_shift_bits = bits_offset;
   2270#else
   2271	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
   2272#endif
   2273	right_shift_bits = BITS_PER_U128 - nr_bits;
   2274
   2275	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
   2276	btf_int128_print(show, print_num);
   2277}
   2278
   2279
   2280static void btf_int_bits_show(const struct btf *btf,
   2281			      const struct btf_type *t,
   2282			      void *data, u8 bits_offset,
   2283			      struct btf_show *show)
   2284{
   2285	u32 int_data = btf_type_int(t);
   2286	u8 nr_bits = BTF_INT_BITS(int_data);
   2287	u8 total_bits_offset;
   2288
   2289	/*
   2290	 * bits_offset is at most 7.
   2291	 * BTF_INT_OFFSET() cannot exceed 128 bits.
   2292	 */
   2293	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
   2294	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
   2295	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
   2296	btf_bitfield_show(data, bits_offset, nr_bits, show);
   2297}
   2298
   2299static void btf_int_show(const struct btf *btf, const struct btf_type *t,
   2300			 u32 type_id, void *data, u8 bits_offset,
   2301			 struct btf_show *show)
   2302{
   2303	u32 int_data = btf_type_int(t);
   2304	u8 encoding = BTF_INT_ENCODING(int_data);
   2305	bool sign = encoding & BTF_INT_SIGNED;
   2306	u8 nr_bits = BTF_INT_BITS(int_data);
   2307	void *safe_data;
   2308
   2309	safe_data = btf_show_start_type(show, t, type_id, data);
   2310	if (!safe_data)
   2311		return;
   2312
   2313	if (bits_offset || BTF_INT_OFFSET(int_data) ||
   2314	    BITS_PER_BYTE_MASKED(nr_bits)) {
   2315		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
   2316		goto out;
   2317	}
   2318
   2319	switch (nr_bits) {
   2320	case 128:
   2321		btf_int128_print(show, safe_data);
   2322		break;
   2323	case 64:
   2324		if (sign)
   2325			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
   2326		else
   2327			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
   2328		break;
   2329	case 32:
   2330		if (sign)
   2331			btf_show_type_value(show, "%d", *(s32 *)safe_data);
   2332		else
   2333			btf_show_type_value(show, "%u", *(u32 *)safe_data);
   2334		break;
   2335	case 16:
   2336		if (sign)
   2337			btf_show_type_value(show, "%d", *(s16 *)safe_data);
   2338		else
   2339			btf_show_type_value(show, "%u", *(u16 *)safe_data);
   2340		break;
   2341	case 8:
   2342		if (show->state.array_encoding == BTF_INT_CHAR) {
   2343			/* check for null terminator */
   2344			if (show->state.array_terminated)
   2345				break;
   2346			if (*(char *)data == '\0') {
   2347				show->state.array_terminated = 1;
   2348				break;
   2349			}
   2350			if (isprint(*(char *)data)) {
   2351				btf_show_type_value(show, "'%c'",
   2352						    *(char *)safe_data);
   2353				break;
   2354			}
   2355		}
   2356		if (sign)
   2357			btf_show_type_value(show, "%d", *(s8 *)safe_data);
   2358		else
   2359			btf_show_type_value(show, "%u", *(u8 *)safe_data);
   2360		break;
   2361	default:
   2362		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
   2363		break;
   2364	}
   2365out:
   2366	btf_show_end_type(show);
   2367}
   2368
   2369static const struct btf_kind_operations int_ops = {
   2370	.check_meta = btf_int_check_meta,
   2371	.resolve = btf_df_resolve,
   2372	.check_member = btf_int_check_member,
   2373	.check_kflag_member = btf_int_check_kflag_member,
   2374	.log_details = btf_int_log,
   2375	.show = btf_int_show,
   2376};
   2377
   2378static int btf_modifier_check_member(struct btf_verifier_env *env,
   2379				     const struct btf_type *struct_type,
   2380				     const struct btf_member *member,
   2381				     const struct btf_type *member_type)
   2382{
   2383	const struct btf_type *resolved_type;
   2384	u32 resolved_type_id = member->type;
   2385	struct btf_member resolved_member;
   2386	struct btf *btf = env->btf;
   2387
   2388	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
   2389	if (!resolved_type) {
   2390		btf_verifier_log_member(env, struct_type, member,
   2391					"Invalid member");
   2392		return -EINVAL;
   2393	}
   2394
   2395	resolved_member = *member;
   2396	resolved_member.type = resolved_type_id;
   2397
   2398	return btf_type_ops(resolved_type)->check_member(env, struct_type,
   2399							 &resolved_member,
   2400							 resolved_type);
   2401}
   2402
   2403static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
   2404					   const struct btf_type *struct_type,
   2405					   const struct btf_member *member,
   2406					   const struct btf_type *member_type)
   2407{
   2408	const struct btf_type *resolved_type;
   2409	u32 resolved_type_id = member->type;
   2410	struct btf_member resolved_member;
   2411	struct btf *btf = env->btf;
   2412
   2413	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
   2414	if (!resolved_type) {
   2415		btf_verifier_log_member(env, struct_type, member,
   2416					"Invalid member");
   2417		return -EINVAL;
   2418	}
   2419
   2420	resolved_member = *member;
   2421	resolved_member.type = resolved_type_id;
   2422
   2423	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
   2424							       &resolved_member,
   2425							       resolved_type);
   2426}
   2427
   2428static int btf_ptr_check_member(struct btf_verifier_env *env,
   2429				const struct btf_type *struct_type,
   2430				const struct btf_member *member,
   2431				const struct btf_type *member_type)
   2432{
   2433	u32 struct_size, struct_bits_off, bytes_offset;
   2434
   2435	struct_size = struct_type->size;
   2436	struct_bits_off = member->offset;
   2437	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
   2438
   2439	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
   2440		btf_verifier_log_member(env, struct_type, member,
   2441					"Member is not byte aligned");
   2442		return -EINVAL;
   2443	}
   2444
   2445	if (struct_size - bytes_offset < sizeof(void *)) {
   2446		btf_verifier_log_member(env, struct_type, member,
   2447					"Member exceeds struct_size");
   2448		return -EINVAL;
   2449	}
   2450
   2451	return 0;
   2452}
   2453
   2454static int btf_ref_type_check_meta(struct btf_verifier_env *env,
   2455				   const struct btf_type *t,
   2456				   u32 meta_left)
   2457{
   2458	const char *value;
   2459
   2460	if (btf_type_vlen(t)) {
   2461		btf_verifier_log_type(env, t, "vlen != 0");
   2462		return -EINVAL;
   2463	}
   2464
   2465	if (btf_type_kflag(t)) {
   2466		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
   2467		return -EINVAL;
   2468	}
   2469
   2470	if (!BTF_TYPE_ID_VALID(t->type)) {
   2471		btf_verifier_log_type(env, t, "Invalid type_id");
   2472		return -EINVAL;
   2473	}
   2474
   2475	/* typedef/type_tag type must have a valid name, and other ref types,
   2476	 * volatile, const, restrict, should have a null name.
   2477	 */
   2478	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
   2479		if (!t->name_off ||
   2480		    !btf_name_valid_identifier(env->btf, t->name_off)) {
   2481			btf_verifier_log_type(env, t, "Invalid name");
   2482			return -EINVAL;
   2483		}
   2484	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
   2485		value = btf_name_by_offset(env->btf, t->name_off);
   2486		if (!value || !value[0]) {
   2487			btf_verifier_log_type(env, t, "Invalid name");
   2488			return -EINVAL;
   2489		}
   2490	} else {
   2491		if (t->name_off) {
   2492			btf_verifier_log_type(env, t, "Invalid name");
   2493			return -EINVAL;
   2494		}
   2495	}
   2496
   2497	btf_verifier_log_type(env, t, NULL);
   2498
   2499	return 0;
   2500}
   2501
   2502static int btf_modifier_resolve(struct btf_verifier_env *env,
   2503				const struct resolve_vertex *v)
   2504{
   2505	const struct btf_type *t = v->t;
   2506	const struct btf_type *next_type;
   2507	u32 next_type_id = t->type;
   2508	struct btf *btf = env->btf;
   2509
   2510	next_type = btf_type_by_id(btf, next_type_id);
   2511	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
   2512		btf_verifier_log_type(env, v->t, "Invalid type_id");
   2513		return -EINVAL;
   2514	}
   2515
   2516	if (!env_type_is_resolve_sink(env, next_type) &&
   2517	    !env_type_is_resolved(env, next_type_id))
   2518		return env_stack_push(env, next_type, next_type_id);
   2519
   2520	/* Figure out the resolved next_type_id with size.
   2521	 * They will be stored in the current modifier's
   2522	 * resolved_ids and resolved_sizes such that it can
   2523	 * save us a few type-following when we use it later (e.g. in
   2524	 * pretty print).
   2525	 */
   2526	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
   2527		if (env_type_is_resolved(env, next_type_id))
   2528			next_type = btf_type_id_resolve(btf, &next_type_id);
   2529
   2530		/* "typedef void new_void", "const void"...etc */
   2531		if (!btf_type_is_void(next_type) &&
   2532		    !btf_type_is_fwd(next_type) &&
   2533		    !btf_type_is_func_proto(next_type)) {
   2534			btf_verifier_log_type(env, v->t, "Invalid type_id");
   2535			return -EINVAL;
   2536		}
   2537	}
   2538
   2539	env_stack_pop_resolved(env, next_type_id, 0);
   2540
   2541	return 0;
   2542}
   2543
   2544static int btf_var_resolve(struct btf_verifier_env *env,
   2545			   const struct resolve_vertex *v)
   2546{
   2547	const struct btf_type *next_type;
   2548	const struct btf_type *t = v->t;
   2549	u32 next_type_id = t->type;
   2550	struct btf *btf = env->btf;
   2551
   2552	next_type = btf_type_by_id(btf, next_type_id);
   2553	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
   2554		btf_verifier_log_type(env, v->t, "Invalid type_id");
   2555		return -EINVAL;
   2556	}
   2557
   2558	if (!env_type_is_resolve_sink(env, next_type) &&
   2559	    !env_type_is_resolved(env, next_type_id))
   2560		return env_stack_push(env, next_type, next_type_id);
   2561
   2562	if (btf_type_is_modifier(next_type)) {
   2563		const struct btf_type *resolved_type;
   2564		u32 resolved_type_id;
   2565
   2566		resolved_type_id = next_type_id;
   2567		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
   2568
   2569		if (btf_type_is_ptr(resolved_type) &&
   2570		    !env_type_is_resolve_sink(env, resolved_type) &&
   2571		    !env_type_is_resolved(env, resolved_type_id))
   2572			return env_stack_push(env, resolved_type,
   2573					      resolved_type_id);
   2574	}
   2575
   2576	/* We must resolve to something concrete at this point, no
   2577	 * forward types or similar that would resolve to size of
   2578	 * zero is allowed.
   2579	 */
   2580	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
   2581		btf_verifier_log_type(env, v->t, "Invalid type_id");
   2582		return -EINVAL;
   2583	}
   2584
   2585	env_stack_pop_resolved(env, next_type_id, 0);
   2586
   2587	return 0;
   2588}
   2589
   2590static int btf_ptr_resolve(struct btf_verifier_env *env,
   2591			   const struct resolve_vertex *v)
   2592{
   2593	const struct btf_type *next_type;
   2594	const struct btf_type *t = v->t;
   2595	u32 next_type_id = t->type;
   2596	struct btf *btf = env->btf;
   2597
   2598	next_type = btf_type_by_id(btf, next_type_id);
   2599	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
   2600		btf_verifier_log_type(env, v->t, "Invalid type_id");
   2601		return -EINVAL;
   2602	}
   2603
   2604	if (!env_type_is_resolve_sink(env, next_type) &&
   2605	    !env_type_is_resolved(env, next_type_id))
   2606		return env_stack_push(env, next_type, next_type_id);
   2607
   2608	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
   2609	 * the modifier may have stopped resolving when it was resolved
   2610	 * to a ptr (last-resolved-ptr).
   2611	 *
   2612	 * We now need to continue from the last-resolved-ptr to
   2613	 * ensure the last-resolved-ptr will not referring back to
   2614	 * the current ptr (t).
   2615	 */
   2616	if (btf_type_is_modifier(next_type)) {
   2617		const struct btf_type *resolved_type;
   2618		u32 resolved_type_id;
   2619
   2620		resolved_type_id = next_type_id;
   2621		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
   2622
   2623		if (btf_type_is_ptr(resolved_type) &&
   2624		    !env_type_is_resolve_sink(env, resolved_type) &&
   2625		    !env_type_is_resolved(env, resolved_type_id))
   2626			return env_stack_push(env, resolved_type,
   2627					      resolved_type_id);
   2628	}
   2629
   2630	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
   2631		if (env_type_is_resolved(env, next_type_id))
   2632			next_type = btf_type_id_resolve(btf, &next_type_id);
   2633
   2634		if (!btf_type_is_void(next_type) &&
   2635		    !btf_type_is_fwd(next_type) &&
   2636		    !btf_type_is_func_proto(next_type)) {
   2637			btf_verifier_log_type(env, v->t, "Invalid type_id");
   2638			return -EINVAL;
   2639		}
   2640	}
   2641
   2642	env_stack_pop_resolved(env, next_type_id, 0);
   2643
   2644	return 0;
   2645}
   2646
   2647static void btf_modifier_show(const struct btf *btf,
   2648			      const struct btf_type *t,
   2649			      u32 type_id, void *data,
   2650			      u8 bits_offset, struct btf_show *show)
   2651{
   2652	if (btf->resolved_ids)
   2653		t = btf_type_id_resolve(btf, &type_id);
   2654	else
   2655		t = btf_type_skip_modifiers(btf, type_id, NULL);
   2656
   2657	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
   2658}
   2659
   2660static void btf_var_show(const struct btf *btf, const struct btf_type *t,
   2661			 u32 type_id, void *data, u8 bits_offset,
   2662			 struct btf_show *show)
   2663{
   2664	t = btf_type_id_resolve(btf, &type_id);
   2665
   2666	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
   2667}
   2668
   2669static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
   2670			 u32 type_id, void *data, u8 bits_offset,
   2671			 struct btf_show *show)
   2672{
   2673	void *safe_data;
   2674
   2675	safe_data = btf_show_start_type(show, t, type_id, data);
   2676	if (!safe_data)
   2677		return;
   2678
   2679	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
   2680	if (show->flags & BTF_SHOW_PTR_RAW)
   2681		btf_show_type_value(show, "0x%px", *(void **)safe_data);
   2682	else
   2683		btf_show_type_value(show, "0x%p", *(void **)safe_data);
   2684	btf_show_end_type(show);
   2685}
   2686
   2687static void btf_ref_type_log(struct btf_verifier_env *env,
   2688			     const struct btf_type *t)
   2689{
   2690	btf_verifier_log(env, "type_id=%u", t->type);
   2691}
   2692
   2693static struct btf_kind_operations modifier_ops = {
   2694	.check_meta = btf_ref_type_check_meta,
   2695	.resolve = btf_modifier_resolve,
   2696	.check_member = btf_modifier_check_member,
   2697	.check_kflag_member = btf_modifier_check_kflag_member,
   2698	.log_details = btf_ref_type_log,
   2699	.show = btf_modifier_show,
   2700};
   2701
   2702static struct btf_kind_operations ptr_ops = {
   2703	.check_meta = btf_ref_type_check_meta,
   2704	.resolve = btf_ptr_resolve,
   2705	.check_member = btf_ptr_check_member,
   2706	.check_kflag_member = btf_generic_check_kflag_member,
   2707	.log_details = btf_ref_type_log,
   2708	.show = btf_ptr_show,
   2709};
   2710
   2711static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
   2712			      const struct btf_type *t,
   2713			      u32 meta_left)
   2714{
   2715	if (btf_type_vlen(t)) {
   2716		btf_verifier_log_type(env, t, "vlen != 0");
   2717		return -EINVAL;
   2718	}
   2719
   2720	if (t->type) {
   2721		btf_verifier_log_type(env, t, "type != 0");
   2722		return -EINVAL;
   2723	}
   2724
   2725	/* fwd type must have a valid name */
   2726	if (!t->name_off ||
   2727	    !btf_name_valid_identifier(env->btf, t->name_off)) {
   2728		btf_verifier_log_type(env, t, "Invalid name");
   2729		return -EINVAL;
   2730	}
   2731
   2732	btf_verifier_log_type(env, t, NULL);
   2733
   2734	return 0;
   2735}
   2736
   2737static void btf_fwd_type_log(struct btf_verifier_env *env,
   2738			     const struct btf_type *t)
   2739{
   2740	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
   2741}
   2742
   2743static struct btf_kind_operations fwd_ops = {
   2744	.check_meta = btf_fwd_check_meta,
   2745	.resolve = btf_df_resolve,
   2746	.check_member = btf_df_check_member,
   2747	.check_kflag_member = btf_df_check_kflag_member,
   2748	.log_details = btf_fwd_type_log,
   2749	.show = btf_df_show,
   2750};
   2751
   2752static int btf_array_check_member(struct btf_verifier_env *env,
   2753				  const struct btf_type *struct_type,
   2754				  const struct btf_member *member,
   2755				  const struct btf_type *member_type)
   2756{
   2757	u32 struct_bits_off = member->offset;
   2758	u32 struct_size, bytes_offset;
   2759	u32 array_type_id, array_size;
   2760	struct btf *btf = env->btf;
   2761
   2762	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
   2763		btf_verifier_log_member(env, struct_type, member,
   2764					"Member is not byte aligned");
   2765		return -EINVAL;
   2766	}
   2767
   2768	array_type_id = member->type;
   2769	btf_type_id_size(btf, &array_type_id, &array_size);
   2770	struct_size = struct_type->size;
   2771	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
   2772	if (struct_size - bytes_offset < array_size) {
   2773		btf_verifier_log_member(env, struct_type, member,
   2774					"Member exceeds struct_size");
   2775		return -EINVAL;
   2776	}
   2777
   2778	return 0;
   2779}
   2780
   2781static s32 btf_array_check_meta(struct btf_verifier_env *env,
   2782				const struct btf_type *t,
   2783				u32 meta_left)
   2784{
   2785	const struct btf_array *array = btf_type_array(t);
   2786	u32 meta_needed = sizeof(*array);
   2787
   2788	if (meta_left < meta_needed) {
   2789		btf_verifier_log_basic(env, t,
   2790				       "meta_left:%u meta_needed:%u",
   2791				       meta_left, meta_needed);
   2792		return -EINVAL;
   2793	}
   2794
   2795	/* array type should not have a name */
   2796	if (t->name_off) {
   2797		btf_verifier_log_type(env, t, "Invalid name");
   2798		return -EINVAL;
   2799	}
   2800
   2801	if (btf_type_vlen(t)) {
   2802		btf_verifier_log_type(env, t, "vlen != 0");
   2803		return -EINVAL;
   2804	}
   2805
   2806	if (btf_type_kflag(t)) {
   2807		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
   2808		return -EINVAL;
   2809	}
   2810
   2811	if (t->size) {
   2812		btf_verifier_log_type(env, t, "size != 0");
   2813		return -EINVAL;
   2814	}
   2815
   2816	/* Array elem type and index type cannot be in type void,
   2817	 * so !array->type and !array->index_type are not allowed.
   2818	 */
   2819	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
   2820		btf_verifier_log_type(env, t, "Invalid elem");
   2821		return -EINVAL;
   2822	}
   2823
   2824	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
   2825		btf_verifier_log_type(env, t, "Invalid index");
   2826		return -EINVAL;
   2827	}
   2828
   2829	btf_verifier_log_type(env, t, NULL);
   2830
   2831	return meta_needed;
   2832}
   2833
   2834static int btf_array_resolve(struct btf_verifier_env *env,
   2835			     const struct resolve_vertex *v)
   2836{
   2837	const struct btf_array *array = btf_type_array(v->t);
   2838	const struct btf_type *elem_type, *index_type;
   2839	u32 elem_type_id, index_type_id;
   2840	struct btf *btf = env->btf;
   2841	u32 elem_size;
   2842
   2843	/* Check array->index_type */
   2844	index_type_id = array->index_type;
   2845	index_type = btf_type_by_id(btf, index_type_id);
   2846	if (btf_type_nosize_or_null(index_type) ||
   2847	    btf_type_is_resolve_source_only(index_type)) {
   2848		btf_verifier_log_type(env, v->t, "Invalid index");
   2849		return -EINVAL;
   2850	}
   2851
   2852	if (!env_type_is_resolve_sink(env, index_type) &&
   2853	    !env_type_is_resolved(env, index_type_id))
   2854		return env_stack_push(env, index_type, index_type_id);
   2855
   2856	index_type = btf_type_id_size(btf, &index_type_id, NULL);
   2857	if (!index_type || !btf_type_is_int(index_type) ||
   2858	    !btf_type_int_is_regular(index_type)) {
   2859		btf_verifier_log_type(env, v->t, "Invalid index");
   2860		return -EINVAL;
   2861	}
   2862
   2863	/* Check array->type */
   2864	elem_type_id = array->type;
   2865	elem_type = btf_type_by_id(btf, elem_type_id);
   2866	if (btf_type_nosize_or_null(elem_type) ||
   2867	    btf_type_is_resolve_source_only(elem_type)) {
   2868		btf_verifier_log_type(env, v->t,
   2869				      "Invalid elem");
   2870		return -EINVAL;
   2871	}
   2872
   2873	if (!env_type_is_resolve_sink(env, elem_type) &&
   2874	    !env_type_is_resolved(env, elem_type_id))
   2875		return env_stack_push(env, elem_type, elem_type_id);
   2876
   2877	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
   2878	if (!elem_type) {
   2879		btf_verifier_log_type(env, v->t, "Invalid elem");
   2880		return -EINVAL;
   2881	}
   2882
   2883	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
   2884		btf_verifier_log_type(env, v->t, "Invalid array of int");
   2885		return -EINVAL;
   2886	}
   2887
   2888	if (array->nelems && elem_size > U32_MAX / array->nelems) {
   2889		btf_verifier_log_type(env, v->t,
   2890				      "Array size overflows U32_MAX");
   2891		return -EINVAL;
   2892	}
   2893
   2894	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
   2895
   2896	return 0;
   2897}
   2898
   2899static void btf_array_log(struct btf_verifier_env *env,
   2900			  const struct btf_type *t)
   2901{
   2902	const struct btf_array *array = btf_type_array(t);
   2903
   2904	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
   2905			 array->type, array->index_type, array->nelems);
   2906}
   2907
   2908static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
   2909			     u32 type_id, void *data, u8 bits_offset,
   2910			     struct btf_show *show)
   2911{
   2912	const struct btf_array *array = btf_type_array(t);
   2913	const struct btf_kind_operations *elem_ops;
   2914	const struct btf_type *elem_type;
   2915	u32 i, elem_size = 0, elem_type_id;
   2916	u16 encoding = 0;
   2917
   2918	elem_type_id = array->type;
   2919	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
   2920	if (elem_type && btf_type_has_size(elem_type))
   2921		elem_size = elem_type->size;
   2922
   2923	if (elem_type && btf_type_is_int(elem_type)) {
   2924		u32 int_type = btf_type_int(elem_type);
   2925
   2926		encoding = BTF_INT_ENCODING(int_type);
   2927
   2928		/*
   2929		 * BTF_INT_CHAR encoding never seems to be set for
   2930		 * char arrays, so if size is 1 and element is
   2931		 * printable as a char, we'll do that.
   2932		 */
   2933		if (elem_size == 1)
   2934			encoding = BTF_INT_CHAR;
   2935	}
   2936
   2937	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
   2938		return;
   2939
   2940	if (!elem_type)
   2941		goto out;
   2942	elem_ops = btf_type_ops(elem_type);
   2943
   2944	for (i = 0; i < array->nelems; i++) {
   2945
   2946		btf_show_start_array_member(show);
   2947
   2948		elem_ops->show(btf, elem_type, elem_type_id, data,
   2949			       bits_offset, show);
   2950		data += elem_size;
   2951
   2952		btf_show_end_array_member(show);
   2953
   2954		if (show->state.array_terminated)
   2955			break;
   2956	}
   2957out:
   2958	btf_show_end_array_type(show);
   2959}
   2960
   2961static void btf_array_show(const struct btf *btf, const struct btf_type *t,
   2962			   u32 type_id, void *data, u8 bits_offset,
   2963			   struct btf_show *show)
   2964{
   2965	const struct btf_member *m = show->state.member;
   2966
   2967	/*
   2968	 * First check if any members would be shown (are non-zero).
   2969	 * See comments above "struct btf_show" definition for more
   2970	 * details on how this works at a high-level.
   2971	 */
   2972	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
   2973		if (!show->state.depth_check) {
   2974			show->state.depth_check = show->state.depth + 1;
   2975			show->state.depth_to_show = 0;
   2976		}
   2977		__btf_array_show(btf, t, type_id, data, bits_offset, show);
   2978		show->state.member = m;
   2979
   2980		if (show->state.depth_check != show->state.depth + 1)
   2981			return;
   2982		show->state.depth_check = 0;
   2983
   2984		if (show->state.depth_to_show <= show->state.depth)
   2985			return;
   2986		/*
   2987		 * Reaching here indicates we have recursed and found
   2988		 * non-zero array member(s).
   2989		 */
   2990	}
   2991	__btf_array_show(btf, t, type_id, data, bits_offset, show);
   2992}
   2993
   2994static struct btf_kind_operations array_ops = {
   2995	.check_meta = btf_array_check_meta,
   2996	.resolve = btf_array_resolve,
   2997	.check_member = btf_array_check_member,
   2998	.check_kflag_member = btf_generic_check_kflag_member,
   2999	.log_details = btf_array_log,
   3000	.show = btf_array_show,
   3001};
   3002
   3003static int btf_struct_check_member(struct btf_verifier_env *env,
   3004				   const struct btf_type *struct_type,
   3005				   const struct btf_member *member,
   3006				   const struct btf_type *member_type)
   3007{
   3008	u32 struct_bits_off = member->offset;
   3009	u32 struct_size, bytes_offset;
   3010
   3011	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
   3012		btf_verifier_log_member(env, struct_type, member,
   3013					"Member is not byte aligned");
   3014		return -EINVAL;
   3015	}
   3016
   3017	struct_size = struct_type->size;
   3018	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
   3019	if (struct_size - bytes_offset < member_type->size) {
   3020		btf_verifier_log_member(env, struct_type, member,
   3021					"Member exceeds struct_size");
   3022		return -EINVAL;
   3023	}
   3024
   3025	return 0;
   3026}
   3027
   3028static s32 btf_struct_check_meta(struct btf_verifier_env *env,
   3029				 const struct btf_type *t,
   3030				 u32 meta_left)
   3031{
   3032	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
   3033	const struct btf_member *member;
   3034	u32 meta_needed, last_offset;
   3035	struct btf *btf = env->btf;
   3036	u32 struct_size = t->size;
   3037	u32 offset;
   3038	u16 i;
   3039
   3040	meta_needed = btf_type_vlen(t) * sizeof(*member);
   3041	if (meta_left < meta_needed) {
   3042		btf_verifier_log_basic(env, t,
   3043				       "meta_left:%u meta_needed:%u",
   3044				       meta_left, meta_needed);
   3045		return -EINVAL;
   3046	}
   3047
   3048	/* struct type either no name or a valid one */
   3049	if (t->name_off &&
   3050	    !btf_name_valid_identifier(env->btf, t->name_off)) {
   3051		btf_verifier_log_type(env, t, "Invalid name");
   3052		return -EINVAL;
   3053	}
   3054
   3055	btf_verifier_log_type(env, t, NULL);
   3056
   3057	last_offset = 0;
   3058	for_each_member(i, t, member) {
   3059		if (!btf_name_offset_valid(btf, member->name_off)) {
   3060			btf_verifier_log_member(env, t, member,
   3061						"Invalid member name_offset:%u",
   3062						member->name_off);
   3063			return -EINVAL;
   3064		}
   3065
   3066		/* struct member either no name or a valid one */
   3067		if (member->name_off &&
   3068		    !btf_name_valid_identifier(btf, member->name_off)) {
   3069			btf_verifier_log_member(env, t, member, "Invalid name");
   3070			return -EINVAL;
   3071		}
   3072		/* A member cannot be in type void */
   3073		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
   3074			btf_verifier_log_member(env, t, member,
   3075						"Invalid type_id");
   3076			return -EINVAL;
   3077		}
   3078
   3079		offset = __btf_member_bit_offset(t, member);
   3080		if (is_union && offset) {
   3081			btf_verifier_log_member(env, t, member,
   3082						"Invalid member bits_offset");
   3083			return -EINVAL;
   3084		}
   3085
   3086		/*
   3087		 * ">" instead of ">=" because the last member could be
   3088		 * "char a[0];"
   3089		 */
   3090		if (last_offset > offset) {
   3091			btf_verifier_log_member(env, t, member,
   3092						"Invalid member bits_offset");
   3093			return -EINVAL;
   3094		}
   3095
   3096		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
   3097			btf_verifier_log_member(env, t, member,
   3098						"Member bits_offset exceeds its struct size");
   3099			return -EINVAL;
   3100		}
   3101
   3102		btf_verifier_log_member(env, t, member, NULL);
   3103		last_offset = offset;
   3104	}
   3105
   3106	return meta_needed;
   3107}
   3108
   3109static int btf_struct_resolve(struct btf_verifier_env *env,
   3110			      const struct resolve_vertex *v)
   3111{
   3112	const struct btf_member *member;
   3113	int err;
   3114	u16 i;
   3115
   3116	/* Before continue resolving the next_member,
   3117	 * ensure the last member is indeed resolved to a
   3118	 * type with size info.
   3119	 */
   3120	if (v->next_member) {
   3121		const struct btf_type *last_member_type;
   3122		const struct btf_member *last_member;
   3123		u16 last_member_type_id;
   3124
   3125		last_member = btf_type_member(v->t) + v->next_member - 1;
   3126		last_member_type_id = last_member->type;
   3127		if (WARN_ON_ONCE(!env_type_is_resolved(env,
   3128						       last_member_type_id)))
   3129			return -EINVAL;
   3130
   3131		last_member_type = btf_type_by_id(env->btf,
   3132						  last_member_type_id);
   3133		if (btf_type_kflag(v->t))
   3134			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
   3135								last_member,
   3136								last_member_type);
   3137		else
   3138			err = btf_type_ops(last_member_type)->check_member(env, v->t,
   3139								last_member,
   3140								last_member_type);
   3141		if (err)
   3142			return err;
   3143	}
   3144
   3145	for_each_member_from(i, v->next_member, v->t, member) {
   3146		u32 member_type_id = member->type;
   3147		const struct btf_type *member_type = btf_type_by_id(env->btf,
   3148								member_type_id);
   3149
   3150		if (btf_type_nosize_or_null(member_type) ||
   3151		    btf_type_is_resolve_source_only(member_type)) {
   3152			btf_verifier_log_member(env, v->t, member,
   3153						"Invalid member");
   3154			return -EINVAL;
   3155		}
   3156
   3157		if (!env_type_is_resolve_sink(env, member_type) &&
   3158		    !env_type_is_resolved(env, member_type_id)) {
   3159			env_stack_set_next_member(env, i + 1);
   3160			return env_stack_push(env, member_type, member_type_id);
   3161		}
   3162
   3163		if (btf_type_kflag(v->t))
   3164			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
   3165									    member,
   3166									    member_type);
   3167		else
   3168			err = btf_type_ops(member_type)->check_member(env, v->t,
   3169								      member,
   3170								      member_type);
   3171		if (err)
   3172			return err;
   3173	}
   3174
   3175	env_stack_pop_resolved(env, 0, 0);
   3176
   3177	return 0;
   3178}
   3179
   3180static void btf_struct_log(struct btf_verifier_env *env,
   3181			   const struct btf_type *t)
   3182{
   3183	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
   3184}
   3185
   3186enum btf_field_type {
   3187	BTF_FIELD_SPIN_LOCK,
   3188	BTF_FIELD_TIMER,
   3189	BTF_FIELD_KPTR,
   3190};
   3191
   3192enum {
   3193	BTF_FIELD_IGNORE = 0,
   3194	BTF_FIELD_FOUND  = 1,
   3195};
   3196
   3197struct btf_field_info {
   3198	u32 type_id;
   3199	u32 off;
   3200	enum bpf_kptr_type type;
   3201};
   3202
   3203static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
   3204			   u32 off, int sz, struct btf_field_info *info)
   3205{
   3206	if (!__btf_type_is_struct(t))
   3207		return BTF_FIELD_IGNORE;
   3208	if (t->size != sz)
   3209		return BTF_FIELD_IGNORE;
   3210	info->off = off;
   3211	return BTF_FIELD_FOUND;
   3212}
   3213
   3214static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
   3215			 u32 off, int sz, struct btf_field_info *info)
   3216{
   3217	enum bpf_kptr_type type;
   3218	u32 res_id;
   3219
   3220	/* For PTR, sz is always == 8 */
   3221	if (!btf_type_is_ptr(t))
   3222		return BTF_FIELD_IGNORE;
   3223	t = btf_type_by_id(btf, t->type);
   3224
   3225	if (!btf_type_is_type_tag(t))
   3226		return BTF_FIELD_IGNORE;
   3227	/* Reject extra tags */
   3228	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
   3229		return -EINVAL;
   3230	if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
   3231		type = BPF_KPTR_UNREF;
   3232	else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
   3233		type = BPF_KPTR_REF;
   3234	else
   3235		return -EINVAL;
   3236
   3237	/* Get the base type */
   3238	t = btf_type_skip_modifiers(btf, t->type, &res_id);
   3239	/* Only pointer to struct is allowed */
   3240	if (!__btf_type_is_struct(t))
   3241		return -EINVAL;
   3242
   3243	info->type_id = res_id;
   3244	info->off = off;
   3245	info->type = type;
   3246	return BTF_FIELD_FOUND;
   3247}
   3248
   3249static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
   3250				 const char *name, int sz, int align,
   3251				 enum btf_field_type field_type,
   3252				 struct btf_field_info *info, int info_cnt)
   3253{
   3254	const struct btf_member *member;
   3255	struct btf_field_info tmp;
   3256	int ret, idx = 0;
   3257	u32 i, off;
   3258
   3259	for_each_member(i, t, member) {
   3260		const struct btf_type *member_type = btf_type_by_id(btf,
   3261								    member->type);
   3262
   3263		if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
   3264			continue;
   3265
   3266		off = __btf_member_bit_offset(t, member);
   3267		if (off % 8)
   3268			/* valid C code cannot generate such BTF */
   3269			return -EINVAL;
   3270		off /= 8;
   3271		if (off % align)
   3272			return -EINVAL;
   3273
   3274		switch (field_type) {
   3275		case BTF_FIELD_SPIN_LOCK:
   3276		case BTF_FIELD_TIMER:
   3277			ret = btf_find_struct(btf, member_type, off, sz,
   3278					      idx < info_cnt ? &info[idx] : &tmp);
   3279			if (ret < 0)
   3280				return ret;
   3281			break;
   3282		case BTF_FIELD_KPTR:
   3283			ret = btf_find_kptr(btf, member_type, off, sz,
   3284					    idx < info_cnt ? &info[idx] : &tmp);
   3285			if (ret < 0)
   3286				return ret;
   3287			break;
   3288		default:
   3289			return -EFAULT;
   3290		}
   3291
   3292		if (ret == BTF_FIELD_IGNORE)
   3293			continue;
   3294		if (idx >= info_cnt)
   3295			return -E2BIG;
   3296		++idx;
   3297	}
   3298	return idx;
   3299}
   3300
   3301static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
   3302				const char *name, int sz, int align,
   3303				enum btf_field_type field_type,
   3304				struct btf_field_info *info, int info_cnt)
   3305{
   3306	const struct btf_var_secinfo *vsi;
   3307	struct btf_field_info tmp;
   3308	int ret, idx = 0;
   3309	u32 i, off;
   3310
   3311	for_each_vsi(i, t, vsi) {
   3312		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
   3313		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
   3314
   3315		off = vsi->offset;
   3316
   3317		if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
   3318			continue;
   3319		if (vsi->size != sz)
   3320			continue;
   3321		if (off % align)
   3322			return -EINVAL;
   3323
   3324		switch (field_type) {
   3325		case BTF_FIELD_SPIN_LOCK:
   3326		case BTF_FIELD_TIMER:
   3327			ret = btf_find_struct(btf, var_type, off, sz,
   3328					      idx < info_cnt ? &info[idx] : &tmp);
   3329			if (ret < 0)
   3330				return ret;
   3331			break;
   3332		case BTF_FIELD_KPTR:
   3333			ret = btf_find_kptr(btf, var_type, off, sz,
   3334					    idx < info_cnt ? &info[idx] : &tmp);
   3335			if (ret < 0)
   3336				return ret;
   3337			break;
   3338		default:
   3339			return -EFAULT;
   3340		}
   3341
   3342		if (ret == BTF_FIELD_IGNORE)
   3343			continue;
   3344		if (idx >= info_cnt)
   3345			return -E2BIG;
   3346		++idx;
   3347	}
   3348	return idx;
   3349}
   3350
   3351static int btf_find_field(const struct btf *btf, const struct btf_type *t,
   3352			  enum btf_field_type field_type,
   3353			  struct btf_field_info *info, int info_cnt)
   3354{
   3355	const char *name;
   3356	int sz, align;
   3357
   3358	switch (field_type) {
   3359	case BTF_FIELD_SPIN_LOCK:
   3360		name = "bpf_spin_lock";
   3361		sz = sizeof(struct bpf_spin_lock);
   3362		align = __alignof__(struct bpf_spin_lock);
   3363		break;
   3364	case BTF_FIELD_TIMER:
   3365		name = "bpf_timer";
   3366		sz = sizeof(struct bpf_timer);
   3367		align = __alignof__(struct bpf_timer);
   3368		break;
   3369	case BTF_FIELD_KPTR:
   3370		name = NULL;
   3371		sz = sizeof(u64);
   3372		align = 8;
   3373		break;
   3374	default:
   3375		return -EFAULT;
   3376	}
   3377
   3378	if (__btf_type_is_struct(t))
   3379		return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt);
   3380	else if (btf_type_is_datasec(t))
   3381		return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt);
   3382	return -EINVAL;
   3383}
   3384
   3385/* find 'struct bpf_spin_lock' in map value.
   3386 * return >= 0 offset if found
   3387 * and < 0 in case of error
   3388 */
   3389int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
   3390{
   3391	struct btf_field_info info;
   3392	int ret;
   3393
   3394	ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1);
   3395	if (ret < 0)
   3396		return ret;
   3397	if (!ret)
   3398		return -ENOENT;
   3399	return info.off;
   3400}
   3401
   3402int btf_find_timer(const struct btf *btf, const struct btf_type *t)
   3403{
   3404	struct btf_field_info info;
   3405	int ret;
   3406
   3407	ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1);
   3408	if (ret < 0)
   3409		return ret;
   3410	if (!ret)
   3411		return -ENOENT;
   3412	return info.off;
   3413}
   3414
   3415struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf,
   3416					  const struct btf_type *t)
   3417{
   3418	struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX];
   3419	struct bpf_map_value_off *tab;
   3420	struct btf *kernel_btf = NULL;
   3421	struct module *mod = NULL;
   3422	int ret, i, nr_off;
   3423
   3424	ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr));
   3425	if (ret < 0)
   3426		return ERR_PTR(ret);
   3427	if (!ret)
   3428		return NULL;
   3429
   3430	nr_off = ret;
   3431	tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN);
   3432	if (!tab)
   3433		return ERR_PTR(-ENOMEM);
   3434
   3435	for (i = 0; i < nr_off; i++) {
   3436		const struct btf_type *t;
   3437		s32 id;
   3438
   3439		/* Find type in map BTF, and use it to look up the matching type
   3440		 * in vmlinux or module BTFs, by name and kind.
   3441		 */
   3442		t = btf_type_by_id(btf, info_arr[i].type_id);
   3443		id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
   3444				     &kernel_btf);
   3445		if (id < 0) {
   3446			ret = id;
   3447			goto end;
   3448		}
   3449
   3450		/* Find and stash the function pointer for the destruction function that
   3451		 * needs to be eventually invoked from the map free path.
   3452		 */
   3453		if (info_arr[i].type == BPF_KPTR_REF) {
   3454			const struct btf_type *dtor_func;
   3455			const char *dtor_func_name;
   3456			unsigned long addr;
   3457			s32 dtor_btf_id;
   3458
   3459			/* This call also serves as a whitelist of allowed objects that
   3460			 * can be used as a referenced pointer and be stored in a map at
   3461			 * the same time.
   3462			 */
   3463			dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
   3464			if (dtor_btf_id < 0) {
   3465				ret = dtor_btf_id;
   3466				goto end_btf;
   3467			}
   3468
   3469			dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
   3470			if (!dtor_func) {
   3471				ret = -ENOENT;
   3472				goto end_btf;
   3473			}
   3474
   3475			if (btf_is_module(kernel_btf)) {
   3476				mod = btf_try_get_module(kernel_btf);
   3477				if (!mod) {
   3478					ret = -ENXIO;
   3479					goto end_btf;
   3480				}
   3481			}
   3482
   3483			/* We already verified dtor_func to be btf_type_is_func
   3484			 * in register_btf_id_dtor_kfuncs.
   3485			 */
   3486			dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
   3487			addr = kallsyms_lookup_name(dtor_func_name);
   3488			if (!addr) {
   3489				ret = -EINVAL;
   3490				goto end_mod;
   3491			}
   3492			tab->off[i].kptr.dtor = (void *)addr;
   3493		}
   3494
   3495		tab->off[i].offset = info_arr[i].off;
   3496		tab->off[i].type = info_arr[i].type;
   3497		tab->off[i].kptr.btf_id = id;
   3498		tab->off[i].kptr.btf = kernel_btf;
   3499		tab->off[i].kptr.module = mod;
   3500	}
   3501	tab->nr_off = nr_off;
   3502	return tab;
   3503end_mod:
   3504	module_put(mod);
   3505end_btf:
   3506	btf_put(kernel_btf);
   3507end:
   3508	while (i--) {
   3509		btf_put(tab->off[i].kptr.btf);
   3510		if (tab->off[i].kptr.module)
   3511			module_put(tab->off[i].kptr.module);
   3512	}
   3513	kfree(tab);
   3514	return ERR_PTR(ret);
   3515}
   3516
   3517static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
   3518			      u32 type_id, void *data, u8 bits_offset,
   3519			      struct btf_show *show)
   3520{
   3521	const struct btf_member *member;
   3522	void *safe_data;
   3523	u32 i;
   3524
   3525	safe_data = btf_show_start_struct_type(show, t, type_id, data);
   3526	if (!safe_data)
   3527		return;
   3528
   3529	for_each_member(i, t, member) {
   3530		const struct btf_type *member_type = btf_type_by_id(btf,
   3531								member->type);
   3532		const struct btf_kind_operations *ops;
   3533		u32 member_offset, bitfield_size;
   3534		u32 bytes_offset;
   3535		u8 bits8_offset;
   3536
   3537		btf_show_start_member(show, member);
   3538
   3539		member_offset = __btf_member_bit_offset(t, member);
   3540		bitfield_size = __btf_member_bitfield_size(t, member);
   3541		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
   3542		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
   3543		if (bitfield_size) {
   3544			safe_data = btf_show_start_type(show, member_type,
   3545							member->type,
   3546							data + bytes_offset);
   3547			if (safe_data)
   3548				btf_bitfield_show(safe_data,
   3549						  bits8_offset,
   3550						  bitfield_size, show);
   3551			btf_show_end_type(show);
   3552		} else {
   3553			ops = btf_type_ops(member_type);
   3554			ops->show(btf, member_type, member->type,
   3555				  data + bytes_offset, bits8_offset, show);
   3556		}
   3557
   3558		btf_show_end_member(show);
   3559	}
   3560
   3561	btf_show_end_struct_type(show);
   3562}
   3563
   3564static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
   3565			    u32 type_id, void *data, u8 bits_offset,
   3566			    struct btf_show *show)
   3567{
   3568	const struct btf_member *m = show->state.member;
   3569
   3570	/*
   3571	 * First check if any members would be shown (are non-zero).
   3572	 * See comments above "struct btf_show" definition for more
   3573	 * details on how this works at a high-level.
   3574	 */
   3575	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
   3576		if (!show->state.depth_check) {
   3577			show->state.depth_check = show->state.depth + 1;
   3578			show->state.depth_to_show = 0;
   3579		}
   3580		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
   3581		/* Restore saved member data here */
   3582		show->state.member = m;
   3583		if (show->state.depth_check != show->state.depth + 1)
   3584			return;
   3585		show->state.depth_check = 0;
   3586
   3587		if (show->state.depth_to_show <= show->state.depth)
   3588			return;
   3589		/*
   3590		 * Reaching here indicates we have recursed and found
   3591		 * non-zero child values.
   3592		 */
   3593	}
   3594
   3595	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
   3596}
   3597
   3598static struct btf_kind_operations struct_ops = {
   3599	.check_meta = btf_struct_check_meta,
   3600	.resolve = btf_struct_resolve,
   3601	.check_member = btf_struct_check_member,
   3602	.check_kflag_member = btf_generic_check_kflag_member,
   3603	.log_details = btf_struct_log,
   3604	.show = btf_struct_show,
   3605};
   3606
   3607static int btf_enum_check_member(struct btf_verifier_env *env,
   3608				 const struct btf_type *struct_type,
   3609				 const struct btf_member *member,
   3610				 const struct btf_type *member_type)
   3611{
   3612	u32 struct_bits_off = member->offset;
   3613	u32 struct_size, bytes_offset;
   3614
   3615	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
   3616		btf_verifier_log_member(env, struct_type, member,
   3617					"Member is not byte aligned");
   3618		return -EINVAL;
   3619	}
   3620
   3621	struct_size = struct_type->size;
   3622	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
   3623	if (struct_size - bytes_offset < member_type->size) {
   3624		btf_verifier_log_member(env, struct_type, member,
   3625					"Member exceeds struct_size");
   3626		return -EINVAL;
   3627	}
   3628
   3629	return 0;
   3630}
   3631
   3632static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
   3633				       const struct btf_type *struct_type,
   3634				       const struct btf_member *member,
   3635				       const struct btf_type *member_type)
   3636{
   3637	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
   3638	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
   3639
   3640	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
   3641	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
   3642	if (!nr_bits) {
   3643		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
   3644			btf_verifier_log_member(env, struct_type, member,
   3645						"Member is not byte aligned");
   3646			return -EINVAL;
   3647		}
   3648
   3649		nr_bits = int_bitsize;
   3650	} else if (nr_bits > int_bitsize) {
   3651		btf_verifier_log_member(env, struct_type, member,
   3652					"Invalid member bitfield_size");
   3653		return -EINVAL;
   3654	}
   3655
   3656	struct_size = struct_type->size;
   3657	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
   3658	if (struct_size < bytes_end) {
   3659		btf_verifier_log_member(env, struct_type, member,
   3660					"Member exceeds struct_size");
   3661		return -EINVAL;
   3662	}
   3663
   3664	return 0;
   3665}
   3666
   3667static s32 btf_enum_check_meta(struct btf_verifier_env *env,
   3668			       const struct btf_type *t,
   3669			       u32 meta_left)
   3670{
   3671	const struct btf_enum *enums = btf_type_enum(t);
   3672	struct btf *btf = env->btf;
   3673	u16 i, nr_enums;
   3674	u32 meta_needed;
   3675
   3676	nr_enums = btf_type_vlen(t);
   3677	meta_needed = nr_enums * sizeof(*enums);
   3678
   3679	if (meta_left < meta_needed) {
   3680		btf_verifier_log_basic(env, t,
   3681				       "meta_left:%u meta_needed:%u",
   3682				       meta_left, meta_needed);
   3683		return -EINVAL;
   3684	}
   3685
   3686	if (btf_type_kflag(t)) {
   3687		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
   3688		return -EINVAL;
   3689	}
   3690
   3691	if (t->size > 8 || !is_power_of_2(t->size)) {
   3692		btf_verifier_log_type(env, t, "Unexpected size");
   3693		return -EINVAL;
   3694	}
   3695
   3696	/* enum type either no name or a valid one */
   3697	if (t->name_off &&
   3698	    !btf_name_valid_identifier(env->btf, t->name_off)) {
   3699		btf_verifier_log_type(env, t, "Invalid name");
   3700		return -EINVAL;
   3701	}
   3702
   3703	btf_verifier_log_type(env, t, NULL);
   3704
   3705	for (i = 0; i < nr_enums; i++) {
   3706		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
   3707			btf_verifier_log(env, "\tInvalid name_offset:%u",
   3708					 enums[i].name_off);
   3709			return -EINVAL;
   3710		}
   3711
   3712		/* enum member must have a valid name */
   3713		if (!enums[i].name_off ||
   3714		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
   3715			btf_verifier_log_type(env, t, "Invalid name");
   3716			return -EINVAL;
   3717		}
   3718
   3719		if (env->log.level == BPF_LOG_KERNEL)
   3720			continue;
   3721		btf_verifier_log(env, "\t%s val=%d\n",
   3722				 __btf_name_by_offset(btf, enums[i].name_off),
   3723				 enums[i].val);
   3724	}
   3725
   3726	return meta_needed;
   3727}
   3728
   3729static void btf_enum_log(struct btf_verifier_env *env,
   3730			 const struct btf_type *t)
   3731{
   3732	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
   3733}
   3734
   3735static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
   3736			  u32 type_id, void *data, u8 bits_offset,
   3737			  struct btf_show *show)
   3738{
   3739	const struct btf_enum *enums = btf_type_enum(t);
   3740	u32 i, nr_enums = btf_type_vlen(t);
   3741	void *safe_data;
   3742	int v;
   3743
   3744	safe_data = btf_show_start_type(show, t, type_id, data);
   3745	if (!safe_data)
   3746		return;
   3747
   3748	v = *(int *)safe_data;
   3749
   3750	for (i = 0; i < nr_enums; i++) {
   3751		if (v != enums[i].val)
   3752			continue;
   3753
   3754		btf_show_type_value(show, "%s",
   3755				    __btf_name_by_offset(btf,
   3756							 enums[i].name_off));
   3757
   3758		btf_show_end_type(show);
   3759		return;
   3760	}
   3761
   3762	btf_show_type_value(show, "%d", v);
   3763	btf_show_end_type(show);
   3764}
   3765
   3766static struct btf_kind_operations enum_ops = {
   3767	.check_meta = btf_enum_check_meta,
   3768	.resolve = btf_df_resolve,
   3769	.check_member = btf_enum_check_member,
   3770	.check_kflag_member = btf_enum_check_kflag_member,
   3771	.log_details = btf_enum_log,
   3772	.show = btf_enum_show,
   3773};
   3774
   3775static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
   3776				     const struct btf_type *t,
   3777				     u32 meta_left)
   3778{
   3779	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
   3780
   3781	if (meta_left < meta_needed) {
   3782		btf_verifier_log_basic(env, t,
   3783				       "meta_left:%u meta_needed:%u",
   3784				       meta_left, meta_needed);
   3785		return -EINVAL;
   3786	}
   3787
   3788	if (t->name_off) {
   3789		btf_verifier_log_type(env, t, "Invalid name");
   3790		return -EINVAL;
   3791	}
   3792
   3793	if (btf_type_kflag(t)) {
   3794		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
   3795		return -EINVAL;
   3796	}
   3797
   3798	btf_verifier_log_type(env, t, NULL);
   3799
   3800	return meta_needed;
   3801}
   3802
   3803static void btf_func_proto_log(struct btf_verifier_env *env,
   3804			       const struct btf_type *t)
   3805{
   3806	const struct btf_param *args = (const struct btf_param *)(t + 1);
   3807	u16 nr_args = btf_type_vlen(t), i;
   3808
   3809	btf_verifier_log(env, "return=%u args=(", t->type);
   3810	if (!nr_args) {
   3811		btf_verifier_log(env, "void");
   3812		goto done;
   3813	}
   3814
   3815	if (nr_args == 1 && !args[0].type) {
   3816		/* Only one vararg */
   3817		btf_verifier_log(env, "vararg");
   3818		goto done;
   3819	}
   3820
   3821	btf_verifier_log(env, "%u %s", args[0].type,
   3822			 __btf_name_by_offset(env->btf,
   3823					      args[0].name_off));
   3824	for (i = 1; i < nr_args - 1; i++)
   3825		btf_verifier_log(env, ", %u %s", args[i].type,
   3826				 __btf_name_by_offset(env->btf,
   3827						      args[i].name_off));
   3828
   3829	if (nr_args > 1) {
   3830		const struct btf_param *last_arg = &args[nr_args - 1];
   3831
   3832		if (last_arg->type)
   3833			btf_verifier_log(env, ", %u %s", last_arg->type,
   3834					 __btf_name_by_offset(env->btf,
   3835							      last_arg->name_off));
   3836		else
   3837			btf_verifier_log(env, ", vararg");
   3838	}
   3839
   3840done:
   3841	btf_verifier_log(env, ")");
   3842}
   3843
   3844static struct btf_kind_operations func_proto_ops = {
   3845	.check_meta = btf_func_proto_check_meta,
   3846	.resolve = btf_df_resolve,
   3847	/*
   3848	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
   3849	 * a struct's member.
   3850	 *
   3851	 * It should be a function pointer instead.
   3852	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
   3853	 *
   3854	 * Hence, there is no btf_func_check_member().
   3855	 */
   3856	.check_member = btf_df_check_member,
   3857	.check_kflag_member = btf_df_check_kflag_member,
   3858	.log_details = btf_func_proto_log,
   3859	.show = btf_df_show,
   3860};
   3861
   3862static s32 btf_func_check_meta(struct btf_verifier_env *env,
   3863			       const struct btf_type *t,
   3864			       u32 meta_left)
   3865{
   3866	if (!t->name_off ||
   3867	    !btf_name_valid_identifier(env->btf, t->name_off)) {
   3868		btf_verifier_log_type(env, t, "Invalid name");
   3869		return -EINVAL;
   3870	}
   3871
   3872	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
   3873		btf_verifier_log_type(env, t, "Invalid func linkage");
   3874		return -EINVAL;
   3875	}
   3876
   3877	if (btf_type_kflag(t)) {
   3878		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
   3879		return -EINVAL;
   3880	}
   3881
   3882	btf_verifier_log_type(env, t, NULL);
   3883
   3884	return 0;
   3885}
   3886
   3887static int btf_func_resolve(struct btf_verifier_env *env,
   3888			    const struct resolve_vertex *v)
   3889{
   3890	const struct btf_type *t = v->t;
   3891	u32 next_type_id = t->type;
   3892	int err;
   3893
   3894	err = btf_func_check(env, t);
   3895	if (err)
   3896		return err;
   3897
   3898	env_stack_pop_resolved(env, next_type_id, 0);
   3899	return 0;
   3900}
   3901
   3902static struct btf_kind_operations func_ops = {
   3903	.check_meta = btf_func_check_meta,
   3904	.resolve = btf_func_resolve,
   3905	.check_member = btf_df_check_member,
   3906	.check_kflag_member = btf_df_check_kflag_member,
   3907	.log_details = btf_ref_type_log,
   3908	.show = btf_df_show,
   3909};
   3910
   3911static s32 btf_var_check_meta(struct btf_verifier_env *env,
   3912			      const struct btf_type *t,
   3913			      u32 meta_left)
   3914{
   3915	const struct btf_var *var;
   3916	u32 meta_needed = sizeof(*var);
   3917
   3918	if (meta_left < meta_needed) {
   3919		btf_verifier_log_basic(env, t,
   3920				       "meta_left:%u meta_needed:%u",
   3921				       meta_left, meta_needed);
   3922		return -EINVAL;
   3923	}
   3924
   3925	if (btf_type_vlen(t)) {
   3926		btf_verifier_log_type(env, t, "vlen != 0");
   3927		return -EINVAL;
   3928	}
   3929
   3930	if (btf_type_kflag(t)) {
   3931		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
   3932		return -EINVAL;
   3933	}
   3934
   3935	if (!t->name_off ||
   3936	    !__btf_name_valid(env->btf, t->name_off, true)) {
   3937		btf_verifier_log_type(env, t, "Invalid name");
   3938		return -EINVAL;
   3939	}
   3940
   3941	/* A var cannot be in type void */
   3942	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
   3943		btf_verifier_log_type(env, t, "Invalid type_id");
   3944		return -EINVAL;
   3945	}
   3946
   3947	var = btf_type_var(t);
   3948	if (var->linkage != BTF_VAR_STATIC &&
   3949	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
   3950		btf_verifier_log_type(env, t, "Linkage not supported");
   3951		return -EINVAL;
   3952	}
   3953
   3954	btf_verifier_log_type(env, t, NULL);
   3955
   3956	return meta_needed;
   3957}
   3958
   3959static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
   3960{
   3961	const struct btf_var *var = btf_type_var(t);
   3962
   3963	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
   3964}
   3965
   3966static const struct btf_kind_operations var_ops = {
   3967	.check_meta		= btf_var_check_meta,
   3968	.resolve		= btf_var_resolve,
   3969	.check_member		= btf_df_check_member,
   3970	.check_kflag_member	= btf_df_check_kflag_member,
   3971	.log_details		= btf_var_log,
   3972	.show			= btf_var_show,
   3973};
   3974
   3975static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
   3976				  const struct btf_type *t,
   3977				  u32 meta_left)
   3978{
   3979	const struct btf_var_secinfo *vsi;
   3980	u64 last_vsi_end_off = 0, sum = 0;
   3981	u32 i, meta_needed;
   3982
   3983	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
   3984	if (meta_left < meta_needed) {
   3985		btf_verifier_log_basic(env, t,
   3986				       "meta_left:%u meta_needed:%u",
   3987				       meta_left, meta_needed);
   3988		return -EINVAL;
   3989	}
   3990
   3991	if (!t->size) {
   3992		btf_verifier_log_type(env, t, "size == 0");
   3993		return -EINVAL;
   3994	}
   3995
   3996	if (btf_type_kflag(t)) {
   3997		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
   3998		return -EINVAL;
   3999	}
   4000
   4001	if (!t->name_off ||
   4002	    !btf_name_valid_section(env->btf, t->name_off)) {
   4003		btf_verifier_log_type(env, t, "Invalid name");
   4004		return -EINVAL;
   4005	}
   4006
   4007	btf_verifier_log_type(env, t, NULL);
   4008
   4009	for_each_vsi(i, t, vsi) {
   4010		/* A var cannot be in type void */
   4011		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
   4012			btf_verifier_log_vsi(env, t, vsi,
   4013					     "Invalid type_id");
   4014			return -EINVAL;
   4015		}
   4016
   4017		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
   4018			btf_verifier_log_vsi(env, t, vsi,
   4019					     "Invalid offset");
   4020			return -EINVAL;
   4021		}
   4022
   4023		if (!vsi->size || vsi->size > t->size) {
   4024			btf_verifier_log_vsi(env, t, vsi,
   4025					     "Invalid size");
   4026			return -EINVAL;
   4027		}
   4028
   4029		last_vsi_end_off = vsi->offset + vsi->size;
   4030		if (last_vsi_end_off > t->size) {
   4031			btf_verifier_log_vsi(env, t, vsi,
   4032					     "Invalid offset+size");
   4033			return -EINVAL;
   4034		}
   4035
   4036		btf_verifier_log_vsi(env, t, vsi, NULL);
   4037		sum += vsi->size;
   4038	}
   4039
   4040	if (t->size < sum) {
   4041		btf_verifier_log_type(env, t, "Invalid btf_info size");
   4042		return -EINVAL;
   4043	}
   4044
   4045	return meta_needed;
   4046}
   4047
   4048static int btf_datasec_resolve(struct btf_verifier_env *env,
   4049			       const struct resolve_vertex *v)
   4050{
   4051	const struct btf_var_secinfo *vsi;
   4052	struct btf *btf = env->btf;
   4053	u16 i;
   4054
   4055	for_each_vsi_from(i, v->next_member, v->t, vsi) {
   4056		u32 var_type_id = vsi->type, type_id, type_size = 0;
   4057		const struct btf_type *var_type = btf_type_by_id(env->btf,
   4058								 var_type_id);
   4059		if (!var_type || !btf_type_is_var(var_type)) {
   4060			btf_verifier_log_vsi(env, v->t, vsi,
   4061					     "Not a VAR kind member");
   4062			return -EINVAL;
   4063		}
   4064
   4065		if (!env_type_is_resolve_sink(env, var_type) &&
   4066		    !env_type_is_resolved(env, var_type_id)) {
   4067			env_stack_set_next_member(env, i + 1);
   4068			return env_stack_push(env, var_type, var_type_id);
   4069		}
   4070
   4071		type_id = var_type->type;
   4072		if (!btf_type_id_size(btf, &type_id, &type_size)) {
   4073			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
   4074			return -EINVAL;
   4075		}
   4076
   4077		if (vsi->size < type_size) {
   4078			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
   4079			return -EINVAL;
   4080		}
   4081	}
   4082
   4083	env_stack_pop_resolved(env, 0, 0);
   4084	return 0;
   4085}
   4086
   4087static void btf_datasec_log(struct btf_verifier_env *env,
   4088			    const struct btf_type *t)
   4089{
   4090	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
   4091}
   4092
   4093static void btf_datasec_show(const struct btf *btf,
   4094			     const struct btf_type *t, u32 type_id,
   4095			     void *data, u8 bits_offset,
   4096			     struct btf_show *show)
   4097{
   4098	const struct btf_var_secinfo *vsi;
   4099	const struct btf_type *var;
   4100	u32 i;
   4101
   4102	if (!btf_show_start_type(show, t, type_id, data))
   4103		return;
   4104
   4105	btf_show_type_value(show, "section (\"%s\") = {",
   4106			    __btf_name_by_offset(btf, t->name_off));
   4107	for_each_vsi(i, t, vsi) {
   4108		var = btf_type_by_id(btf, vsi->type);
   4109		if (i)
   4110			btf_show(show, ",");
   4111		btf_type_ops(var)->show(btf, var, vsi->type,
   4112					data + vsi->offset, bits_offset, show);
   4113	}
   4114	btf_show_end_type(show);
   4115}
   4116
   4117static const struct btf_kind_operations datasec_ops = {
   4118	.check_meta		= btf_datasec_check_meta,
   4119	.resolve		= btf_datasec_resolve,
   4120	.check_member		= btf_df_check_member,
   4121	.check_kflag_member	= btf_df_check_kflag_member,
   4122	.log_details		= btf_datasec_log,
   4123	.show			= btf_datasec_show,
   4124};
   4125
   4126static s32 btf_float_check_meta(struct btf_verifier_env *env,
   4127				const struct btf_type *t,
   4128				u32 meta_left)
   4129{
   4130	if (btf_type_vlen(t)) {
   4131		btf_verifier_log_type(env, t, "vlen != 0");
   4132		return -EINVAL;
   4133	}
   4134
   4135	if (btf_type_kflag(t)) {
   4136		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
   4137		return -EINVAL;
   4138	}
   4139
   4140	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
   4141	    t->size != 16) {
   4142		btf_verifier_log_type(env, t, "Invalid type_size");
   4143		return -EINVAL;
   4144	}
   4145
   4146	btf_verifier_log_type(env, t, NULL);
   4147
   4148	return 0;
   4149}
   4150
   4151static int btf_float_check_member(struct btf_verifier_env *env,
   4152				  const struct btf_type *struct_type,
   4153				  const struct btf_member *member,
   4154				  const struct btf_type *member_type)
   4155{
   4156	u64 start_offset_bytes;
   4157	u64 end_offset_bytes;
   4158	u64 misalign_bits;
   4159	u64 align_bytes;
   4160	u64 align_bits;
   4161
   4162	/* Different architectures have different alignment requirements, so
   4163	 * here we check only for the reasonable minimum. This way we ensure
   4164	 * that types after CO-RE can pass the kernel BTF verifier.
   4165	 */
   4166	align_bytes = min_t(u64, sizeof(void *), member_type->size);
   4167	align_bits = align_bytes * BITS_PER_BYTE;
   4168	div64_u64_rem(member->offset, align_bits, &misalign_bits);
   4169	if (misalign_bits) {
   4170		btf_verifier_log_member(env, struct_type, member,
   4171					"Member is not properly aligned");
   4172		return -EINVAL;
   4173	}
   4174
   4175	start_offset_bytes = member->offset / BITS_PER_BYTE;
   4176	end_offset_bytes = start_offset_bytes + member_type->size;
   4177	if (end_offset_bytes > struct_type->size) {
   4178		btf_verifier_log_member(env, struct_type, member,
   4179					"Member exceeds struct_size");
   4180		return -EINVAL;
   4181	}
   4182
   4183	return 0;
   4184}
   4185
   4186static void btf_float_log(struct btf_verifier_env *env,
   4187			  const struct btf_type *t)
   4188{
   4189	btf_verifier_log(env, "size=%u", t->size);
   4190}
   4191
   4192static const struct btf_kind_operations float_ops = {
   4193	.check_meta = btf_float_check_meta,
   4194	.resolve = btf_df_resolve,
   4195	.check_member = btf_float_check_member,
   4196	.check_kflag_member = btf_generic_check_kflag_member,
   4197	.log_details = btf_float_log,
   4198	.show = btf_df_show,
   4199};
   4200
   4201static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
   4202			      const struct btf_type *t,
   4203			      u32 meta_left)
   4204{
   4205	const struct btf_decl_tag *tag;
   4206	u32 meta_needed = sizeof(*tag);
   4207	s32 component_idx;
   4208	const char *value;
   4209
   4210	if (meta_left < meta_needed) {
   4211		btf_verifier_log_basic(env, t,
   4212				       "meta_left:%u meta_needed:%u",
   4213				       meta_left, meta_needed);
   4214		return -EINVAL;
   4215	}
   4216
   4217	value = btf_name_by_offset(env->btf, t->name_off);
   4218	if (!value || !value[0]) {
   4219		btf_verifier_log_type(env, t, "Invalid value");
   4220		return -EINVAL;
   4221	}
   4222
   4223	if (btf_type_vlen(t)) {
   4224		btf_verifier_log_type(env, t, "vlen != 0");
   4225		return -EINVAL;
   4226	}
   4227
   4228	if (btf_type_kflag(t)) {
   4229		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
   4230		return -EINVAL;
   4231	}
   4232
   4233	component_idx = btf_type_decl_tag(t)->component_idx;
   4234	if (component_idx < -1) {
   4235		btf_verifier_log_type(env, t, "Invalid component_idx");
   4236		return -EINVAL;
   4237	}
   4238
   4239	btf_verifier_log_type(env, t, NULL);
   4240
   4241	return meta_needed;
   4242}
   4243
   4244static int btf_decl_tag_resolve(struct btf_verifier_env *env,
   4245			   const struct resolve_vertex *v)
   4246{
   4247	const struct btf_type *next_type;
   4248	const struct btf_type *t = v->t;
   4249	u32 next_type_id = t->type;
   4250	struct btf *btf = env->btf;
   4251	s32 component_idx;
   4252	u32 vlen;
   4253
   4254	next_type = btf_type_by_id(btf, next_type_id);
   4255	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
   4256		btf_verifier_log_type(env, v->t, "Invalid type_id");
   4257		return -EINVAL;
   4258	}
   4259
   4260	if (!env_type_is_resolve_sink(env, next_type) &&
   4261	    !env_type_is_resolved(env, next_type_id))
   4262		return env_stack_push(env, next_type, next_type_id);
   4263
   4264	component_idx = btf_type_decl_tag(t)->component_idx;
   4265	if (component_idx != -1) {
   4266		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
   4267			btf_verifier_log_type(env, v->t, "Invalid component_idx");
   4268			return -EINVAL;
   4269		}
   4270
   4271		if (btf_type_is_struct(next_type)) {
   4272			vlen = btf_type_vlen(next_type);
   4273		} else {
   4274			/* next_type should be a function */
   4275			next_type = btf_type_by_id(btf, next_type->type);
   4276			vlen = btf_type_vlen(next_type);
   4277		}
   4278
   4279		if ((u32)component_idx >= vlen) {
   4280			btf_verifier_log_type(env, v->t, "Invalid component_idx");
   4281			return -EINVAL;
   4282		}
   4283	}
   4284
   4285	env_stack_pop_resolved(env, next_type_id, 0);
   4286
   4287	return 0;
   4288}
   4289
   4290static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
   4291{
   4292	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
   4293			 btf_type_decl_tag(t)->component_idx);
   4294}
   4295
   4296static const struct btf_kind_operations decl_tag_ops = {
   4297	.check_meta = btf_decl_tag_check_meta,
   4298	.resolve = btf_decl_tag_resolve,
   4299	.check_member = btf_df_check_member,
   4300	.check_kflag_member = btf_df_check_kflag_member,
   4301	.log_details = btf_decl_tag_log,
   4302	.show = btf_df_show,
   4303};
   4304
   4305static int btf_func_proto_check(struct btf_verifier_env *env,
   4306				const struct btf_type *t)
   4307{
   4308	const struct btf_type *ret_type;
   4309	const struct btf_param *args;
   4310	const struct btf *btf;
   4311	u16 nr_args, i;
   4312	int err;
   4313
   4314	btf = env->btf;
   4315	args = (const struct btf_param *)(t + 1);
   4316	nr_args = btf_type_vlen(t);
   4317
   4318	/* Check func return type which could be "void" (t->type == 0) */
   4319	if (t->type) {
   4320		u32 ret_type_id = t->type;
   4321
   4322		ret_type = btf_type_by_id(btf, ret_type_id);
   4323		if (!ret_type) {
   4324			btf_verifier_log_type(env, t, "Invalid return type");
   4325			return -EINVAL;
   4326		}
   4327
   4328		if (btf_type_needs_resolve(ret_type) &&
   4329		    !env_type_is_resolved(env, ret_type_id)) {
   4330			err = btf_resolve(env, ret_type, ret_type_id);
   4331			if (err)
   4332				return err;
   4333		}
   4334
   4335		/* Ensure the return type is a type that has a size */
   4336		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
   4337			btf_verifier_log_type(env, t, "Invalid return type");
   4338			return -EINVAL;
   4339		}
   4340	}
   4341
   4342	if (!nr_args)
   4343		return 0;
   4344
   4345	/* Last func arg type_id could be 0 if it is a vararg */
   4346	if (!args[nr_args - 1].type) {
   4347		if (args[nr_args - 1].name_off) {
   4348			btf_verifier_log_type(env, t, "Invalid arg#%u",
   4349					      nr_args);
   4350			return -EINVAL;
   4351		}
   4352		nr_args--;
   4353	}
   4354
   4355	err = 0;
   4356	for (i = 0; i < nr_args; i++) {
   4357		const struct btf_type *arg_type;
   4358		u32 arg_type_id;
   4359
   4360		arg_type_id = args[i].type;
   4361		arg_type = btf_type_by_id(btf, arg_type_id);
   4362		if (!arg_type) {
   4363			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
   4364			err = -EINVAL;
   4365			break;
   4366		}
   4367
   4368		if (args[i].name_off &&
   4369		    (!btf_name_offset_valid(btf, args[i].name_off) ||
   4370		     !btf_name_valid_identifier(btf, args[i].name_off))) {
   4371			btf_verifier_log_type(env, t,
   4372					      "Invalid arg#%u", i + 1);
   4373			err = -EINVAL;
   4374			break;
   4375		}
   4376
   4377		if (btf_type_needs_resolve(arg_type) &&
   4378		    !env_type_is_resolved(env, arg_type_id)) {
   4379			err = btf_resolve(env, arg_type, arg_type_id);
   4380			if (err)
   4381				break;
   4382		}
   4383
   4384		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
   4385			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
   4386			err = -EINVAL;
   4387			break;
   4388		}
   4389	}
   4390
   4391	return err;
   4392}
   4393
   4394static int btf_func_check(struct btf_verifier_env *env,
   4395			  const struct btf_type *t)
   4396{
   4397	const struct btf_type *proto_type;
   4398	const struct btf_param *args;
   4399	const struct btf *btf;
   4400	u16 nr_args, i;
   4401
   4402	btf = env->btf;
   4403	proto_type = btf_type_by_id(btf, t->type);
   4404
   4405	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
   4406		btf_verifier_log_type(env, t, "Invalid type_id");
   4407		return -EINVAL;
   4408	}
   4409
   4410	args = (const struct btf_param *)(proto_type + 1);
   4411	nr_args = btf_type_vlen(proto_type);
   4412	for (i = 0; i < nr_args; i++) {
   4413		if (!args[i].name_off && args[i].type) {
   4414			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
   4415			return -EINVAL;
   4416		}
   4417	}
   4418
   4419	return 0;
   4420}
   4421
   4422static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
   4423	[BTF_KIND_INT] = &int_ops,
   4424	[BTF_KIND_PTR] = &ptr_ops,
   4425	[BTF_KIND_ARRAY] = &array_ops,
   4426	[BTF_KIND_STRUCT] = &struct_ops,
   4427	[BTF_KIND_UNION] = &struct_ops,
   4428	[BTF_KIND_ENUM] = &enum_ops,
   4429	[BTF_KIND_FWD] = &fwd_ops,
   4430	[BTF_KIND_TYPEDEF] = &modifier_ops,
   4431	[BTF_KIND_VOLATILE] = &modifier_ops,
   4432	[BTF_KIND_CONST] = &modifier_ops,
   4433	[BTF_KIND_RESTRICT] = &modifier_ops,
   4434	[BTF_KIND_FUNC] = &func_ops,
   4435	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
   4436	[BTF_KIND_VAR] = &var_ops,
   4437	[BTF_KIND_DATASEC] = &datasec_ops,
   4438	[BTF_KIND_FLOAT] = &float_ops,
   4439	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
   4440	[BTF_KIND_TYPE_TAG] = &modifier_ops,
   4441};
   4442
   4443static s32 btf_check_meta(struct btf_verifier_env *env,
   4444			  const struct btf_type *t,
   4445			  u32 meta_left)
   4446{
   4447	u32 saved_meta_left = meta_left;
   4448	s32 var_meta_size;
   4449
   4450	if (meta_left < sizeof(*t)) {
   4451		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
   4452				 env->log_type_id, meta_left, sizeof(*t));
   4453		return -EINVAL;
   4454	}
   4455	meta_left -= sizeof(*t);
   4456
   4457	if (t->info & ~BTF_INFO_MASK) {
   4458		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
   4459				 env->log_type_id, t->info);
   4460		return -EINVAL;
   4461	}
   4462
   4463	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
   4464	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
   4465		btf_verifier_log(env, "[%u] Invalid kind:%u",
   4466				 env->log_type_id, BTF_INFO_KIND(t->info));
   4467		return -EINVAL;
   4468	}
   4469
   4470	if (!btf_name_offset_valid(env->btf, t->name_off)) {
   4471		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
   4472				 env->log_type_id, t->name_off);
   4473		return -EINVAL;
   4474	}
   4475
   4476	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
   4477	if (var_meta_size < 0)
   4478		return var_meta_size;
   4479
   4480	meta_left -= var_meta_size;
   4481
   4482	return saved_meta_left - meta_left;
   4483}
   4484
   4485static int btf_check_all_metas(struct btf_verifier_env *env)
   4486{
   4487	struct btf *btf = env->btf;
   4488	struct btf_header *hdr;
   4489	void *cur, *end;
   4490
   4491	hdr = &btf->hdr;
   4492	cur = btf->nohdr_data + hdr->type_off;
   4493	end = cur + hdr->type_len;
   4494
   4495	env->log_type_id = btf->base_btf ? btf->start_id : 1;
   4496	while (cur < end) {
   4497		struct btf_type *t = cur;
   4498		s32 meta_size;
   4499
   4500		meta_size = btf_check_meta(env, t, end - cur);
   4501		if (meta_size < 0)
   4502			return meta_size;
   4503
   4504		btf_add_type(env, t);
   4505		cur += meta_size;
   4506		env->log_type_id++;
   4507	}
   4508
   4509	return 0;
   4510}
   4511
   4512static bool btf_resolve_valid(struct btf_verifier_env *env,
   4513			      const struct btf_type *t,
   4514			      u32 type_id)
   4515{
   4516	struct btf *btf = env->btf;
   4517
   4518	if (!env_type_is_resolved(env, type_id))
   4519		return false;
   4520
   4521	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
   4522		return !btf_resolved_type_id(btf, type_id) &&
   4523		       !btf_resolved_type_size(btf, type_id);
   4524
   4525	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
   4526		return btf_resolved_type_id(btf, type_id) &&
   4527		       !btf_resolved_type_size(btf, type_id);
   4528
   4529	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
   4530	    btf_type_is_var(t)) {
   4531		t = btf_type_id_resolve(btf, &type_id);
   4532		return t &&
   4533		       !btf_type_is_modifier(t) &&
   4534		       !btf_type_is_var(t) &&
   4535		       !btf_type_is_datasec(t);
   4536	}
   4537
   4538	if (btf_type_is_array(t)) {
   4539		const struct btf_array *array = btf_type_array(t);
   4540		const struct btf_type *elem_type;
   4541		u32 elem_type_id = array->type;
   4542		u32 elem_size;
   4543
   4544		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
   4545		return elem_type && !btf_type_is_modifier(elem_type) &&
   4546			(array->nelems * elem_size ==
   4547			 btf_resolved_type_size(btf, type_id));
   4548	}
   4549
   4550	return false;
   4551}
   4552
   4553static int btf_resolve(struct btf_verifier_env *env,
   4554		       const struct btf_type *t, u32 type_id)
   4555{
   4556	u32 save_log_type_id = env->log_type_id;
   4557	const struct resolve_vertex *v;
   4558	int err = 0;
   4559
   4560	env->resolve_mode = RESOLVE_TBD;
   4561	env_stack_push(env, t, type_id);
   4562	while (!err && (v = env_stack_peak(env))) {
   4563		env->log_type_id = v->type_id;
   4564		err = btf_type_ops(v->t)->resolve(env, v);
   4565	}
   4566
   4567	env->log_type_id = type_id;
   4568	if (err == -E2BIG) {
   4569		btf_verifier_log_type(env, t,
   4570				      "Exceeded max resolving depth:%u",
   4571				      MAX_RESOLVE_DEPTH);
   4572	} else if (err == -EEXIST) {
   4573		btf_verifier_log_type(env, t, "Loop detected");
   4574	}
   4575
   4576	/* Final sanity check */
   4577	if (!err && !btf_resolve_valid(env, t, type_id)) {
   4578		btf_verifier_log_type(env, t, "Invalid resolve state");
   4579		err = -EINVAL;
   4580	}
   4581
   4582	env->log_type_id = save_log_type_id;
   4583	return err;
   4584}
   4585
   4586static int btf_check_all_types(struct btf_verifier_env *env)
   4587{
   4588	struct btf *btf = env->btf;
   4589	const struct btf_type *t;
   4590	u32 type_id, i;
   4591	int err;
   4592
   4593	err = env_resolve_init(env);
   4594	if (err)
   4595		return err;
   4596
   4597	env->phase++;
   4598	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
   4599		type_id = btf->start_id + i;
   4600		t = btf_type_by_id(btf, type_id);
   4601
   4602		env->log_type_id = type_id;
   4603		if (btf_type_needs_resolve(t) &&
   4604		    !env_type_is_resolved(env, type_id)) {
   4605			err = btf_resolve(env, t, type_id);
   4606			if (err)
   4607				return err;
   4608		}
   4609
   4610		if (btf_type_is_func_proto(t)) {
   4611			err = btf_func_proto_check(env, t);
   4612			if (err)
   4613				return err;
   4614		}
   4615	}
   4616
   4617	return 0;
   4618}
   4619
   4620static int btf_parse_type_sec(struct btf_verifier_env *env)
   4621{
   4622	const struct btf_header *hdr = &env->btf->hdr;
   4623	int err;
   4624
   4625	/* Type section must align to 4 bytes */
   4626	if (hdr->type_off & (sizeof(u32) - 1)) {
   4627		btf_verifier_log(env, "Unaligned type_off");
   4628		return -EINVAL;
   4629	}
   4630
   4631	if (!env->btf->base_btf && !hdr->type_len) {
   4632		btf_verifier_log(env, "No type found");
   4633		return -EINVAL;
   4634	}
   4635
   4636	err = btf_check_all_metas(env);
   4637	if (err)
   4638		return err;
   4639
   4640	return btf_check_all_types(env);
   4641}
   4642
   4643static int btf_parse_str_sec(struct btf_verifier_env *env)
   4644{
   4645	const struct btf_header *hdr;
   4646	struct btf *btf = env->btf;
   4647	const char *start, *end;
   4648
   4649	hdr = &btf->hdr;
   4650	start = btf->nohdr_data + hdr->str_off;
   4651	end = start + hdr->str_len;
   4652
   4653	if (end != btf->data + btf->data_size) {
   4654		btf_verifier_log(env, "String section is not at the end");
   4655		return -EINVAL;
   4656	}
   4657
   4658	btf->strings = start;
   4659
   4660	if (btf->base_btf && !hdr->str_len)
   4661		return 0;
   4662	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
   4663		btf_verifier_log(env, "Invalid string section");
   4664		return -EINVAL;
   4665	}
   4666	if (!btf->base_btf && start[0]) {
   4667		btf_verifier_log(env, "Invalid string section");
   4668		return -EINVAL;
   4669	}
   4670
   4671	return 0;
   4672}
   4673
   4674static const size_t btf_sec_info_offset[] = {
   4675	offsetof(struct btf_header, type_off),
   4676	offsetof(struct btf_header, str_off),
   4677};
   4678
   4679static int btf_sec_info_cmp(const void *a, const void *b)
   4680{
   4681	const struct btf_sec_info *x = a;
   4682	const struct btf_sec_info *y = b;
   4683
   4684	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
   4685}
   4686
   4687static int btf_check_sec_info(struct btf_verifier_env *env,
   4688			      u32 btf_data_size)
   4689{
   4690	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
   4691	u32 total, expected_total, i;
   4692	const struct btf_header *hdr;
   4693	const struct btf *btf;
   4694
   4695	btf = env->btf;
   4696	hdr = &btf->hdr;
   4697
   4698	/* Populate the secs from hdr */
   4699	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
   4700		secs[i] = *(struct btf_sec_info *)((void *)hdr +
   4701						   btf_sec_info_offset[i]);
   4702
   4703	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
   4704	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
   4705
   4706	/* Check for gaps and overlap among sections */
   4707	total = 0;
   4708	expected_total = btf_data_size - hdr->hdr_len;
   4709	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
   4710		if (expected_total < secs[i].off) {
   4711			btf_verifier_log(env, "Invalid section offset");
   4712			return -EINVAL;
   4713		}
   4714		if (total < secs[i].off) {
   4715			/* gap */
   4716			btf_verifier_log(env, "Unsupported section found");
   4717			return -EINVAL;
   4718		}
   4719		if (total > secs[i].off) {
   4720			btf_verifier_log(env, "Section overlap found");
   4721			return -EINVAL;
   4722		}
   4723		if (expected_total - total < secs[i].len) {
   4724			btf_verifier_log(env,
   4725					 "Total section length too long");
   4726			return -EINVAL;
   4727		}
   4728		total += secs[i].len;
   4729	}
   4730
   4731	/* There is data other than hdr and known sections */
   4732	if (expected_total != total) {
   4733		btf_verifier_log(env, "Unsupported section found");
   4734		return -EINVAL;
   4735	}
   4736
   4737	return 0;
   4738}
   4739
   4740static int btf_parse_hdr(struct btf_verifier_env *env)
   4741{
   4742	u32 hdr_len, hdr_copy, btf_data_size;
   4743	const struct btf_header *hdr;
   4744	struct btf *btf;
   4745	int err;
   4746
   4747	btf = env->btf;
   4748	btf_data_size = btf->data_size;
   4749
   4750	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
   4751		btf_verifier_log(env, "hdr_len not found");
   4752		return -EINVAL;
   4753	}
   4754
   4755	hdr = btf->data;
   4756	hdr_len = hdr->hdr_len;
   4757	if (btf_data_size < hdr_len) {
   4758		btf_verifier_log(env, "btf_header not found");
   4759		return -EINVAL;
   4760	}
   4761
   4762	/* Ensure the unsupported header fields are zero */
   4763	if (hdr_len > sizeof(btf->hdr)) {
   4764		u8 *expected_zero = btf->data + sizeof(btf->hdr);
   4765		u8 *end = btf->data + hdr_len;
   4766
   4767		for (; expected_zero < end; expected_zero++) {
   4768			if (*expected_zero) {
   4769				btf_verifier_log(env, "Unsupported btf_header");
   4770				return -E2BIG;
   4771			}
   4772		}
   4773	}
   4774
   4775	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
   4776	memcpy(&btf->hdr, btf->data, hdr_copy);
   4777
   4778	hdr = &btf->hdr;
   4779
   4780	btf_verifier_log_hdr(env, btf_data_size);
   4781
   4782	if (hdr->magic != BTF_MAGIC) {
   4783		btf_verifier_log(env, "Invalid magic");
   4784		return -EINVAL;
   4785	}
   4786
   4787	if (hdr->version != BTF_VERSION) {
   4788		btf_verifier_log(env, "Unsupported version");
   4789		return -ENOTSUPP;
   4790	}
   4791
   4792	if (hdr->flags) {
   4793		btf_verifier_log(env, "Unsupported flags");
   4794		return -ENOTSUPP;
   4795	}
   4796
   4797	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
   4798		btf_verifier_log(env, "No data");
   4799		return -EINVAL;
   4800	}
   4801
   4802	err = btf_check_sec_info(env, btf_data_size);
   4803	if (err)
   4804		return err;
   4805
   4806	return 0;
   4807}
   4808
   4809static int btf_check_type_tags(struct btf_verifier_env *env,
   4810			       struct btf *btf, int start_id)
   4811{
   4812	int i, n, good_id = start_id - 1;
   4813	bool in_tags;
   4814
   4815	n = btf_nr_types(btf);
   4816	for (i = start_id; i < n; i++) {
   4817		const struct btf_type *t;
   4818		int chain_limit = 32;
   4819		u32 cur_id = i;
   4820
   4821		t = btf_type_by_id(btf, i);
   4822		if (!t)
   4823			return -EINVAL;
   4824		if (!btf_type_is_modifier(t))
   4825			continue;
   4826
   4827		cond_resched();
   4828
   4829		in_tags = btf_type_is_type_tag(t);
   4830		while (btf_type_is_modifier(t)) {
   4831			if (!chain_limit--) {
   4832				btf_verifier_log(env, "Max chain length or cycle detected");
   4833				return -ELOOP;
   4834			}
   4835			if (btf_type_is_type_tag(t)) {
   4836				if (!in_tags) {
   4837					btf_verifier_log(env, "Type tags don't precede modifiers");
   4838					return -EINVAL;
   4839				}
   4840			} else if (in_tags) {
   4841				in_tags = false;
   4842			}
   4843			if (cur_id <= good_id)
   4844				break;
   4845			/* Move to next type */
   4846			cur_id = t->type;
   4847			t = btf_type_by_id(btf, cur_id);
   4848			if (!t)
   4849				return -EINVAL;
   4850		}
   4851		good_id = i;
   4852	}
   4853	return 0;
   4854}
   4855
   4856static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
   4857			     u32 log_level, char __user *log_ubuf, u32 log_size)
   4858{
   4859	struct btf_verifier_env *env = NULL;
   4860	struct bpf_verifier_log *log;
   4861	struct btf *btf = NULL;
   4862	u8 *data;
   4863	int err;
   4864
   4865	if (btf_data_size > BTF_MAX_SIZE)
   4866		return ERR_PTR(-E2BIG);
   4867
   4868	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
   4869	if (!env)
   4870		return ERR_PTR(-ENOMEM);
   4871
   4872	log = &env->log;
   4873	if (log_level || log_ubuf || log_size) {
   4874		/* user requested verbose verifier output
   4875		 * and supplied buffer to store the verification trace
   4876		 */
   4877		log->level = log_level;
   4878		log->ubuf = log_ubuf;
   4879		log->len_total = log_size;
   4880
   4881		/* log attributes have to be sane */
   4882		if (!bpf_verifier_log_attr_valid(log)) {
   4883			err = -EINVAL;
   4884			goto errout;
   4885		}
   4886	}
   4887
   4888	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
   4889	if (!btf) {
   4890		err = -ENOMEM;
   4891		goto errout;
   4892	}
   4893	env->btf = btf;
   4894
   4895	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
   4896	if (!data) {
   4897		err = -ENOMEM;
   4898		goto errout;
   4899	}
   4900
   4901	btf->data = data;
   4902	btf->data_size = btf_data_size;
   4903
   4904	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
   4905		err = -EFAULT;
   4906		goto errout;
   4907	}
   4908
   4909	err = btf_parse_hdr(env);
   4910	if (err)
   4911		goto errout;
   4912
   4913	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
   4914
   4915	err = btf_parse_str_sec(env);
   4916	if (err)
   4917		goto errout;
   4918
   4919	err = btf_parse_type_sec(env);
   4920	if (err)
   4921		goto errout;
   4922
   4923	err = btf_check_type_tags(env, btf, 1);
   4924	if (err)
   4925		goto errout;
   4926
   4927	if (log->level && bpf_verifier_log_full(log)) {
   4928		err = -ENOSPC;
   4929		goto errout;
   4930	}
   4931
   4932	btf_verifier_env_free(env);
   4933	refcount_set(&btf->refcnt, 1);
   4934	return btf;
   4935
   4936errout:
   4937	btf_verifier_env_free(env);
   4938	if (btf)
   4939		btf_free(btf);
   4940	return ERR_PTR(err);
   4941}
   4942
   4943extern char __weak __start_BTF[];
   4944extern char __weak __stop_BTF[];
   4945extern struct btf *btf_vmlinux;
   4946
   4947#define BPF_MAP_TYPE(_id, _ops)
   4948#define BPF_LINK_TYPE(_id, _name)
   4949static union {
   4950	struct bpf_ctx_convert {
   4951#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
   4952	prog_ctx_type _id##_prog; \
   4953	kern_ctx_type _id##_kern;
   4954#include <linux/bpf_types.h>
   4955#undef BPF_PROG_TYPE
   4956	} *__t;
   4957	/* 't' is written once under lock. Read many times. */
   4958	const struct btf_type *t;
   4959} bpf_ctx_convert;
   4960enum {
   4961#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
   4962	__ctx_convert##_id,
   4963#include <linux/bpf_types.h>
   4964#undef BPF_PROG_TYPE
   4965	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
   4966};
   4967static u8 bpf_ctx_convert_map[] = {
   4968#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
   4969	[_id] = __ctx_convert##_id,
   4970#include <linux/bpf_types.h>
   4971#undef BPF_PROG_TYPE
   4972	0, /* avoid empty array */
   4973};
   4974#undef BPF_MAP_TYPE
   4975#undef BPF_LINK_TYPE
   4976
   4977static const struct btf_member *
   4978btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
   4979		      const struct btf_type *t, enum bpf_prog_type prog_type,
   4980		      int arg)
   4981{
   4982	const struct btf_type *conv_struct;
   4983	const struct btf_type *ctx_struct;
   4984	const struct btf_member *ctx_type;
   4985	const char *tname, *ctx_tname;
   4986
   4987	conv_struct = bpf_ctx_convert.t;
   4988	if (!conv_struct) {
   4989		bpf_log(log, "btf_vmlinux is malformed\n");
   4990		return NULL;
   4991	}
   4992	t = btf_type_by_id(btf, t->type);
   4993	while (btf_type_is_modifier(t))
   4994		t = btf_type_by_id(btf, t->type);
   4995	if (!btf_type_is_struct(t)) {
   4996		/* Only pointer to struct is supported for now.
   4997		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
   4998		 * is not supported yet.
   4999		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
   5000		 */
   5001		return NULL;
   5002	}
   5003	tname = btf_name_by_offset(btf, t->name_off);
   5004	if (!tname) {
   5005		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
   5006		return NULL;
   5007	}
   5008	/* prog_type is valid bpf program type. No need for bounds check. */
   5009	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
   5010	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
   5011	 * Like 'struct __sk_buff'
   5012	 */
   5013	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
   5014	if (!ctx_struct)
   5015		/* should not happen */
   5016		return NULL;
   5017	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
   5018	if (!ctx_tname) {
   5019		/* should not happen */
   5020		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
   5021		return NULL;
   5022	}
   5023	/* only compare that prog's ctx type name is the same as
   5024	 * kernel expects. No need to compare field by field.
   5025	 * It's ok for bpf prog to do:
   5026	 * struct __sk_buff {};
   5027	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
   5028	 * { // no fields of skb are ever used }
   5029	 */
   5030	if (strcmp(ctx_tname, tname))
   5031		return NULL;
   5032	return ctx_type;
   5033}
   5034
   5035static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
   5036				     struct btf *btf,
   5037				     const struct btf_type *t,
   5038				     enum bpf_prog_type prog_type,
   5039				     int arg)
   5040{
   5041	const struct btf_member *prog_ctx_type, *kern_ctx_type;
   5042
   5043	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
   5044	if (!prog_ctx_type)
   5045		return -ENOENT;
   5046	kern_ctx_type = prog_ctx_type + 1;
   5047	return kern_ctx_type->type;
   5048}
   5049
   5050BTF_ID_LIST(bpf_ctx_convert_btf_id)
   5051BTF_ID(struct, bpf_ctx_convert)
   5052
   5053struct btf *btf_parse_vmlinux(void)
   5054{
   5055	struct btf_verifier_env *env = NULL;
   5056	struct bpf_verifier_log *log;
   5057	struct btf *btf = NULL;
   5058	int err;
   5059
   5060	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
   5061	if (!env)
   5062		return ERR_PTR(-ENOMEM);
   5063
   5064	log = &env->log;
   5065	log->level = BPF_LOG_KERNEL;
   5066
   5067	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
   5068	if (!btf) {
   5069		err = -ENOMEM;
   5070		goto errout;
   5071	}
   5072	env->btf = btf;
   5073
   5074	btf->data = __start_BTF;
   5075	btf->data_size = __stop_BTF - __start_BTF;
   5076	btf->kernel_btf = true;
   5077	snprintf(btf->name, sizeof(btf->name), "vmlinux");
   5078
   5079	err = btf_parse_hdr(env);
   5080	if (err)
   5081		goto errout;
   5082
   5083	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
   5084
   5085	err = btf_parse_str_sec(env);
   5086	if (err)
   5087		goto errout;
   5088
   5089	err = btf_check_all_metas(env);
   5090	if (err)
   5091		goto errout;
   5092
   5093	err = btf_check_type_tags(env, btf, 1);
   5094	if (err)
   5095		goto errout;
   5096
   5097	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
   5098	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
   5099
   5100	bpf_struct_ops_init(btf, log);
   5101
   5102	refcount_set(&btf->refcnt, 1);
   5103
   5104	err = btf_alloc_id(btf);
   5105	if (err)
   5106		goto errout;
   5107
   5108	btf_verifier_env_free(env);
   5109	return btf;
   5110
   5111errout:
   5112	btf_verifier_env_free(env);
   5113	if (btf) {
   5114		kvfree(btf->types);
   5115		kfree(btf);
   5116	}
   5117	return ERR_PTR(err);
   5118}
   5119
   5120#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
   5121
   5122static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
   5123{
   5124	struct btf_verifier_env *env = NULL;
   5125	struct bpf_verifier_log *log;
   5126	struct btf *btf = NULL, *base_btf;
   5127	int err;
   5128
   5129	base_btf = bpf_get_btf_vmlinux();
   5130	if (IS_ERR(base_btf))
   5131		return base_btf;
   5132	if (!base_btf)
   5133		return ERR_PTR(-EINVAL);
   5134
   5135	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
   5136	if (!env)
   5137		return ERR_PTR(-ENOMEM);
   5138
   5139	log = &env->log;
   5140	log->level = BPF_LOG_KERNEL;
   5141
   5142	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
   5143	if (!btf) {
   5144		err = -ENOMEM;
   5145		goto errout;
   5146	}
   5147	env->btf = btf;
   5148
   5149	btf->base_btf = base_btf;
   5150	btf->start_id = base_btf->nr_types;
   5151	btf->start_str_off = base_btf->hdr.str_len;
   5152	btf->kernel_btf = true;
   5153	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
   5154
   5155	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
   5156	if (!btf->data) {
   5157		err = -ENOMEM;
   5158		goto errout;
   5159	}
   5160	memcpy(btf->data, data, data_size);
   5161	btf->data_size = data_size;
   5162
   5163	err = btf_parse_hdr(env);
   5164	if (err)
   5165		goto errout;
   5166
   5167	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
   5168
   5169	err = btf_parse_str_sec(env);
   5170	if (err)
   5171		goto errout;
   5172
   5173	err = btf_check_all_metas(env);
   5174	if (err)
   5175		goto errout;
   5176
   5177	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
   5178	if (err)
   5179		goto errout;
   5180
   5181	btf_verifier_env_free(env);
   5182	refcount_set(&btf->refcnt, 1);
   5183	return btf;
   5184
   5185errout:
   5186	btf_verifier_env_free(env);
   5187	if (btf) {
   5188		kvfree(btf->data);
   5189		kvfree(btf->types);
   5190		kfree(btf);
   5191	}
   5192	return ERR_PTR(err);
   5193}
   5194
   5195#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
   5196
   5197struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
   5198{
   5199	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
   5200
   5201	if (tgt_prog)
   5202		return tgt_prog->aux->btf;
   5203	else
   5204		return prog->aux->attach_btf;
   5205}
   5206
   5207static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
   5208{
   5209	/* t comes in already as a pointer */
   5210	t = btf_type_by_id(btf, t->type);
   5211
   5212	/* allow const */
   5213	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
   5214		t = btf_type_by_id(btf, t->type);
   5215
   5216	return btf_type_is_int(t);
   5217}
   5218
   5219bool btf_ctx_access(int off, int size, enum bpf_access_type type,
   5220		    const struct bpf_prog *prog,
   5221		    struct bpf_insn_access_aux *info)
   5222{
   5223	const struct btf_type *t = prog->aux->attach_func_proto;
   5224	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
   5225	struct btf *btf = bpf_prog_get_target_btf(prog);
   5226	const char *tname = prog->aux->attach_func_name;
   5227	struct bpf_verifier_log *log = info->log;
   5228	const struct btf_param *args;
   5229	const char *tag_value;
   5230	u32 nr_args, arg;
   5231	int i, ret;
   5232
   5233	if (off % 8) {
   5234		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
   5235			tname, off);
   5236		return false;
   5237	}
   5238	arg = off / 8;
   5239	args = (const struct btf_param *)(t + 1);
   5240	/* if (t == NULL) Fall back to default BPF prog with
   5241	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
   5242	 */
   5243	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
   5244	if (prog->aux->attach_btf_trace) {
   5245		/* skip first 'void *__data' argument in btf_trace_##name typedef */
   5246		args++;
   5247		nr_args--;
   5248	}
   5249
   5250	if (arg > nr_args) {
   5251		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
   5252			tname, arg + 1);
   5253		return false;
   5254	}
   5255
   5256	if (arg == nr_args) {
   5257		switch (prog->expected_attach_type) {
   5258		case BPF_LSM_MAC:
   5259		case BPF_TRACE_FEXIT:
   5260			/* When LSM programs are attached to void LSM hooks
   5261			 * they use FEXIT trampolines and when attached to
   5262			 * int LSM hooks, they use MODIFY_RETURN trampolines.
   5263			 *
   5264			 * While the LSM programs are BPF_MODIFY_RETURN-like
   5265			 * the check:
   5266			 *
   5267			 *	if (ret_type != 'int')
   5268			 *		return -EINVAL;
   5269			 *
   5270			 * is _not_ done here. This is still safe as LSM hooks
   5271			 * have only void and int return types.
   5272			 */
   5273			if (!t)
   5274				return true;
   5275			t = btf_type_by_id(btf, t->type);
   5276			break;
   5277		case BPF_MODIFY_RETURN:
   5278			/* For now the BPF_MODIFY_RETURN can only be attached to
   5279			 * functions that return an int.
   5280			 */
   5281			if (!t)
   5282				return false;
   5283
   5284			t = btf_type_skip_modifiers(btf, t->type, NULL);
   5285			if (!btf_type_is_small_int(t)) {
   5286				bpf_log(log,
   5287					"ret type %s not allowed for fmod_ret\n",
   5288					btf_kind_str[BTF_INFO_KIND(t->info)]);
   5289				return false;
   5290			}
   5291			break;
   5292		default:
   5293			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
   5294				tname, arg + 1);
   5295			return false;
   5296		}
   5297	} else {
   5298		if (!t)
   5299			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
   5300			return true;
   5301		t = btf_type_by_id(btf, args[arg].type);
   5302	}
   5303
   5304	/* skip modifiers */
   5305	while (btf_type_is_modifier(t))
   5306		t = btf_type_by_id(btf, t->type);
   5307	if (btf_type_is_small_int(t) || btf_type_is_enum(t))
   5308		/* accessing a scalar */
   5309		return true;
   5310	if (!btf_type_is_ptr(t)) {
   5311		bpf_log(log,
   5312			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
   5313			tname, arg,
   5314			__btf_name_by_offset(btf, t->name_off),
   5315			btf_kind_str[BTF_INFO_KIND(t->info)]);
   5316		return false;
   5317	}
   5318
   5319	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
   5320	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
   5321		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
   5322		u32 type, flag;
   5323
   5324		type = base_type(ctx_arg_info->reg_type);
   5325		flag = type_flag(ctx_arg_info->reg_type);
   5326		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
   5327		    (flag & PTR_MAYBE_NULL)) {
   5328			info->reg_type = ctx_arg_info->reg_type;
   5329			return true;
   5330		}
   5331	}
   5332
   5333	if (t->type == 0)
   5334		/* This is a pointer to void.
   5335		 * It is the same as scalar from the verifier safety pov.
   5336		 * No further pointer walking is allowed.
   5337		 */
   5338		return true;
   5339
   5340	if (is_int_ptr(btf, t))
   5341		return true;
   5342
   5343	/* this is a pointer to another type */
   5344	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
   5345		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
   5346
   5347		if (ctx_arg_info->offset == off) {
   5348			if (!ctx_arg_info->btf_id) {
   5349				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
   5350				return false;
   5351			}
   5352
   5353			info->reg_type = ctx_arg_info->reg_type;
   5354			info->btf = btf_vmlinux;
   5355			info->btf_id = ctx_arg_info->btf_id;
   5356			return true;
   5357		}
   5358	}
   5359
   5360	info->reg_type = PTR_TO_BTF_ID;
   5361	if (tgt_prog) {
   5362		enum bpf_prog_type tgt_type;
   5363
   5364		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
   5365			tgt_type = tgt_prog->aux->saved_dst_prog_type;
   5366		else
   5367			tgt_type = tgt_prog->type;
   5368
   5369		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
   5370		if (ret > 0) {
   5371			info->btf = btf_vmlinux;
   5372			info->btf_id = ret;
   5373			return true;
   5374		} else {
   5375			return false;
   5376		}
   5377	}
   5378
   5379	info->btf = btf;
   5380	info->btf_id = t->type;
   5381	t = btf_type_by_id(btf, t->type);
   5382
   5383	if (btf_type_is_type_tag(t)) {
   5384		tag_value = __btf_name_by_offset(btf, t->name_off);
   5385		if (strcmp(tag_value, "user") == 0)
   5386			info->reg_type |= MEM_USER;
   5387		if (strcmp(tag_value, "percpu") == 0)
   5388			info->reg_type |= MEM_PERCPU;
   5389	}
   5390
   5391	/* skip modifiers */
   5392	while (btf_type_is_modifier(t)) {
   5393		info->btf_id = t->type;
   5394		t = btf_type_by_id(btf, t->type);
   5395	}
   5396	if (!btf_type_is_struct(t)) {
   5397		bpf_log(log,
   5398			"func '%s' arg%d type %s is not a struct\n",
   5399			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
   5400		return false;
   5401	}
   5402	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
   5403		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
   5404		__btf_name_by_offset(btf, t->name_off));
   5405	return true;
   5406}
   5407
   5408enum bpf_struct_walk_result {
   5409	/* < 0 error */
   5410	WALK_SCALAR = 0,
   5411	WALK_PTR,
   5412	WALK_STRUCT,
   5413};
   5414
   5415static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
   5416			   const struct btf_type *t, int off, int size,
   5417			   u32 *next_btf_id, enum bpf_type_flag *flag)
   5418{
   5419	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
   5420	const struct btf_type *mtype, *elem_type = NULL;
   5421	const struct btf_member *member;
   5422	const char *tname, *mname, *tag_value;
   5423	u32 vlen, elem_id, mid;
   5424
   5425again:
   5426	tname = __btf_name_by_offset(btf, t->name_off);
   5427	if (!btf_type_is_struct(t)) {
   5428		bpf_log(log, "Type '%s' is not a struct\n", tname);
   5429		return -EINVAL;
   5430	}
   5431
   5432	vlen = btf_type_vlen(t);
   5433	if (off + size > t->size) {
   5434		/* If the last element is a variable size array, we may
   5435		 * need to relax the rule.
   5436		 */
   5437		struct btf_array *array_elem;
   5438
   5439		if (vlen == 0)
   5440			goto error;
   5441
   5442		member = btf_type_member(t) + vlen - 1;
   5443		mtype = btf_type_skip_modifiers(btf, member->type,
   5444						NULL);
   5445		if (!btf_type_is_array(mtype))
   5446			goto error;
   5447
   5448		array_elem = (struct btf_array *)(mtype + 1);
   5449		if (array_elem->nelems != 0)
   5450			goto error;
   5451
   5452		moff = __btf_member_bit_offset(t, member) / 8;
   5453		if (off < moff)
   5454			goto error;
   5455
   5456		/* Only allow structure for now, can be relaxed for
   5457		 * other types later.
   5458		 */
   5459		t = btf_type_skip_modifiers(btf, array_elem->type,
   5460					    NULL);
   5461		if (!btf_type_is_struct(t))
   5462			goto error;
   5463
   5464		off = (off - moff) % t->size;
   5465		goto again;
   5466
   5467error:
   5468		bpf_log(log, "access beyond struct %s at off %u size %u\n",
   5469			tname, off, size);
   5470		return -EACCES;
   5471	}
   5472
   5473	for_each_member(i, t, member) {
   5474		/* offset of the field in bytes */
   5475		moff = __btf_member_bit_offset(t, member) / 8;
   5476		if (off + size <= moff)
   5477			/* won't find anything, field is already too far */
   5478			break;
   5479
   5480		if (__btf_member_bitfield_size(t, member)) {
   5481			u32 end_bit = __btf_member_bit_offset(t, member) +
   5482				__btf_member_bitfield_size(t, member);
   5483
   5484			/* off <= moff instead of off == moff because clang
   5485			 * does not generate a BTF member for anonymous
   5486			 * bitfield like the ":16" here:
   5487			 * struct {
   5488			 *	int :16;
   5489			 *	int x:8;
   5490			 * };
   5491			 */
   5492			if (off <= moff &&
   5493			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
   5494				return WALK_SCALAR;
   5495
   5496			/* off may be accessing a following member
   5497			 *
   5498			 * or
   5499			 *
   5500			 * Doing partial access at either end of this
   5501			 * bitfield.  Continue on this case also to
   5502			 * treat it as not accessing this bitfield
   5503			 * and eventually error out as field not
   5504			 * found to keep it simple.
   5505			 * It could be relaxed if there was a legit
   5506			 * partial access case later.
   5507			 */
   5508			continue;
   5509		}
   5510
   5511		/* In case of "off" is pointing to holes of a struct */
   5512		if (off < moff)
   5513			break;
   5514
   5515		/* type of the field */
   5516		mid = member->type;
   5517		mtype = btf_type_by_id(btf, member->type);
   5518		mname = __btf_name_by_offset(btf, member->name_off);
   5519
   5520		mtype = __btf_resolve_size(btf, mtype, &msize,
   5521					   &elem_type, &elem_id, &total_nelems,
   5522					   &mid);
   5523		if (IS_ERR(mtype)) {
   5524			bpf_log(log, "field %s doesn't have size\n", mname);
   5525			return -EFAULT;
   5526		}
   5527
   5528		mtrue_end = moff + msize;
   5529		if (off >= mtrue_end)
   5530			/* no overlap with member, keep iterating */
   5531			continue;
   5532
   5533		if (btf_type_is_array(mtype)) {
   5534			u32 elem_idx;
   5535
   5536			/* __btf_resolve_size() above helps to
   5537			 * linearize a multi-dimensional array.
   5538			 *
   5539			 * The logic here is treating an array
   5540			 * in a struct as the following way:
   5541			 *
   5542			 * struct outer {
   5543			 *	struct inner array[2][2];
   5544			 * };
   5545			 *
   5546			 * looks like:
   5547			 *
   5548			 * struct outer {
   5549			 *	struct inner array_elem0;
   5550			 *	struct inner array_elem1;
   5551			 *	struct inner array_elem2;
   5552			 *	struct inner array_elem3;
   5553			 * };
   5554			 *
   5555			 * When accessing outer->array[1][0], it moves
   5556			 * moff to "array_elem2", set mtype to
   5557			 * "struct inner", and msize also becomes
   5558			 * sizeof(struct inner).  Then most of the
   5559			 * remaining logic will fall through without
   5560			 * caring the current member is an array or
   5561			 * not.
   5562			 *
   5563			 * Unlike mtype/msize/moff, mtrue_end does not
   5564			 * change.  The naming difference ("_true") tells
   5565			 * that it is not always corresponding to
   5566			 * the current mtype/msize/moff.
   5567			 * It is the true end of the current
   5568			 * member (i.e. array in this case).  That
   5569			 * will allow an int array to be accessed like
   5570			 * a scratch space,
   5571			 * i.e. allow access beyond the size of
   5572			 *      the array's element as long as it is
   5573			 *      within the mtrue_end boundary.
   5574			 */
   5575
   5576			/* skip empty array */
   5577			if (moff == mtrue_end)
   5578				continue;
   5579
   5580			msize /= total_nelems;
   5581			elem_idx = (off - moff) / msize;
   5582			moff += elem_idx * msize;
   5583			mtype = elem_type;
   5584			mid = elem_id;
   5585		}
   5586
   5587		/* the 'off' we're looking for is either equal to start
   5588		 * of this field or inside of this struct
   5589		 */
   5590		if (btf_type_is_struct(mtype)) {
   5591			/* our field must be inside that union or struct */
   5592			t = mtype;
   5593
   5594			/* return if the offset matches the member offset */
   5595			if (off == moff) {
   5596				*next_btf_id = mid;
   5597				return WALK_STRUCT;
   5598			}
   5599
   5600			/* adjust offset we're looking for */
   5601			off -= moff;
   5602			goto again;
   5603		}
   5604
   5605		if (btf_type_is_ptr(mtype)) {
   5606			const struct btf_type *stype, *t;
   5607			enum bpf_type_flag tmp_flag = 0;
   5608			u32 id;
   5609
   5610			if (msize != size || off != moff) {
   5611				bpf_log(log,
   5612					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
   5613					mname, moff, tname, off, size);
   5614				return -EACCES;
   5615			}
   5616
   5617			/* check type tag */
   5618			t = btf_type_by_id(btf, mtype->type);
   5619			if (btf_type_is_type_tag(t)) {
   5620				tag_value = __btf_name_by_offset(btf, t->name_off);
   5621				/* check __user tag */
   5622				if (strcmp(tag_value, "user") == 0)
   5623					tmp_flag = MEM_USER;
   5624				/* check __percpu tag */
   5625				if (strcmp(tag_value, "percpu") == 0)
   5626					tmp_flag = MEM_PERCPU;
   5627			}
   5628
   5629			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
   5630			if (btf_type_is_struct(stype)) {
   5631				*next_btf_id = id;
   5632				*flag = tmp_flag;
   5633				return WALK_PTR;
   5634			}
   5635		}
   5636
   5637		/* Allow more flexible access within an int as long as
   5638		 * it is within mtrue_end.
   5639		 * Since mtrue_end could be the end of an array,
   5640		 * that also allows using an array of int as a scratch
   5641		 * space. e.g. skb->cb[].
   5642		 */
   5643		if (off + size > mtrue_end) {
   5644			bpf_log(log,
   5645				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
   5646				mname, mtrue_end, tname, off, size);
   5647			return -EACCES;
   5648		}
   5649
   5650		return WALK_SCALAR;
   5651	}
   5652	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
   5653	return -EINVAL;
   5654}
   5655
   5656int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
   5657		      const struct btf_type *t, int off, int size,
   5658		      enum bpf_access_type atype __maybe_unused,
   5659		      u32 *next_btf_id, enum bpf_type_flag *flag)
   5660{
   5661	enum bpf_type_flag tmp_flag = 0;
   5662	int err;
   5663	u32 id;
   5664
   5665	do {
   5666		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
   5667
   5668		switch (err) {
   5669		case WALK_PTR:
   5670			/* If we found the pointer or scalar on t+off,
   5671			 * we're done.
   5672			 */
   5673			*next_btf_id = id;
   5674			*flag = tmp_flag;
   5675			return PTR_TO_BTF_ID;
   5676		case WALK_SCALAR:
   5677			return SCALAR_VALUE;
   5678		case WALK_STRUCT:
   5679			/* We found nested struct, so continue the search
   5680			 * by diving in it. At this point the offset is
   5681			 * aligned with the new type, so set it to 0.
   5682			 */
   5683			t = btf_type_by_id(btf, id);
   5684			off = 0;
   5685			break;
   5686		default:
   5687			/* It's either error or unknown return value..
   5688			 * scream and leave.
   5689			 */
   5690			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
   5691				return -EINVAL;
   5692			return err;
   5693		}
   5694	} while (t);
   5695
   5696	return -EINVAL;
   5697}
   5698
   5699/* Check that two BTF types, each specified as an BTF object + id, are exactly
   5700 * the same. Trivial ID check is not enough due to module BTFs, because we can
   5701 * end up with two different module BTFs, but IDs point to the common type in
   5702 * vmlinux BTF.
   5703 */
   5704static bool btf_types_are_same(const struct btf *btf1, u32 id1,
   5705			       const struct btf *btf2, u32 id2)
   5706{
   5707	if (id1 != id2)
   5708		return false;
   5709	if (btf1 == btf2)
   5710		return true;
   5711	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
   5712}
   5713
   5714bool btf_struct_ids_match(struct bpf_verifier_log *log,
   5715			  const struct btf *btf, u32 id, int off,
   5716			  const struct btf *need_btf, u32 need_type_id,
   5717			  bool strict)
   5718{
   5719	const struct btf_type *type;
   5720	enum bpf_type_flag flag;
   5721	int err;
   5722
   5723	/* Are we already done? */
   5724	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
   5725		return true;
   5726	/* In case of strict type match, we do not walk struct, the top level
   5727	 * type match must succeed. When strict is true, off should have already
   5728	 * been 0.
   5729	 */
   5730	if (strict)
   5731		return false;
   5732again:
   5733	type = btf_type_by_id(btf, id);
   5734	if (!type)
   5735		return false;
   5736	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
   5737	if (err != WALK_STRUCT)
   5738		return false;
   5739
   5740	/* We found nested struct object. If it matches
   5741	 * the requested ID, we're done. Otherwise let's
   5742	 * continue the search with offset 0 in the new
   5743	 * type.
   5744	 */
   5745	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
   5746		off = 0;
   5747		goto again;
   5748	}
   5749
   5750	return true;
   5751}
   5752
   5753static int __get_type_size(struct btf *btf, u32 btf_id,
   5754			   const struct btf_type **bad_type)
   5755{
   5756	const struct btf_type *t;
   5757
   5758	if (!btf_id)
   5759		/* void */
   5760		return 0;
   5761	t = btf_type_by_id(btf, btf_id);
   5762	while (t && btf_type_is_modifier(t))
   5763		t = btf_type_by_id(btf, t->type);
   5764	if (!t) {
   5765		*bad_type = btf_type_by_id(btf, 0);
   5766		return -EINVAL;
   5767	}
   5768	if (btf_type_is_ptr(t))
   5769		/* kernel size of pointer. Not BPF's size of pointer*/
   5770		return sizeof(void *);
   5771	if (btf_type_is_int(t) || btf_type_is_enum(t))
   5772		return t->size;
   5773	*bad_type = t;
   5774	return -EINVAL;
   5775}
   5776
   5777int btf_distill_func_proto(struct bpf_verifier_log *log,
   5778			   struct btf *btf,
   5779			   const struct btf_type *func,
   5780			   const char *tname,
   5781			   struct btf_func_model *m)
   5782{
   5783	const struct btf_param *args;
   5784	const struct btf_type *t;
   5785	u32 i, nargs;
   5786	int ret;
   5787
   5788	if (!func) {
   5789		/* BTF function prototype doesn't match the verifier types.
   5790		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
   5791		 */
   5792		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
   5793			m->arg_size[i] = 8;
   5794		m->ret_size = 8;
   5795		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
   5796		return 0;
   5797	}
   5798	args = (const struct btf_param *)(func + 1);
   5799	nargs = btf_type_vlen(func);
   5800	if (nargs > MAX_BPF_FUNC_ARGS) {
   5801		bpf_log(log,
   5802			"The function %s has %d arguments. Too many.\n",
   5803			tname, nargs);
   5804		return -EINVAL;
   5805	}
   5806	ret = __get_type_size(btf, func->type, &t);
   5807	if (ret < 0) {
   5808		bpf_log(log,
   5809			"The function %s return type %s is unsupported.\n",
   5810			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
   5811		return -EINVAL;
   5812	}
   5813	m->ret_size = ret;
   5814
   5815	for (i = 0; i < nargs; i++) {
   5816		if (i == nargs - 1 && args[i].type == 0) {
   5817			bpf_log(log,
   5818				"The function %s with variable args is unsupported.\n",
   5819				tname);
   5820			return -EINVAL;
   5821		}
   5822		ret = __get_type_size(btf, args[i].type, &t);
   5823		if (ret < 0) {
   5824			bpf_log(log,
   5825				"The function %s arg%d type %s is unsupported.\n",
   5826				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
   5827			return -EINVAL;
   5828		}
   5829		if (ret == 0) {
   5830			bpf_log(log,
   5831				"The function %s has malformed void argument.\n",
   5832				tname);
   5833			return -EINVAL;
   5834		}
   5835		m->arg_size[i] = ret;
   5836	}
   5837	m->nr_args = nargs;
   5838	return 0;
   5839}
   5840
   5841/* Compare BTFs of two functions assuming only scalars and pointers to context.
   5842 * t1 points to BTF_KIND_FUNC in btf1
   5843 * t2 points to BTF_KIND_FUNC in btf2
   5844 * Returns:
   5845 * EINVAL - function prototype mismatch
   5846 * EFAULT - verifier bug
   5847 * 0 - 99% match. The last 1% is validated by the verifier.
   5848 */
   5849static int btf_check_func_type_match(struct bpf_verifier_log *log,
   5850				     struct btf *btf1, const struct btf_type *t1,
   5851				     struct btf *btf2, const struct btf_type *t2)
   5852{
   5853	const struct btf_param *args1, *args2;
   5854	const char *fn1, *fn2, *s1, *s2;
   5855	u32 nargs1, nargs2, i;
   5856
   5857	fn1 = btf_name_by_offset(btf1, t1->name_off);
   5858	fn2 = btf_name_by_offset(btf2, t2->name_off);
   5859
   5860	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
   5861		bpf_log(log, "%s() is not a global function\n", fn1);
   5862		return -EINVAL;
   5863	}
   5864	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
   5865		bpf_log(log, "%s() is not a global function\n", fn2);
   5866		return -EINVAL;
   5867	}
   5868
   5869	t1 = btf_type_by_id(btf1, t1->type);
   5870	if (!t1 || !btf_type_is_func_proto(t1))
   5871		return -EFAULT;
   5872	t2 = btf_type_by_id(btf2, t2->type);
   5873	if (!t2 || !btf_type_is_func_proto(t2))
   5874		return -EFAULT;
   5875
   5876	args1 = (const struct btf_param *)(t1 + 1);
   5877	nargs1 = btf_type_vlen(t1);
   5878	args2 = (const struct btf_param *)(t2 + 1);
   5879	nargs2 = btf_type_vlen(t2);
   5880
   5881	if (nargs1 != nargs2) {
   5882		bpf_log(log, "%s() has %d args while %s() has %d args\n",
   5883			fn1, nargs1, fn2, nargs2);
   5884		return -EINVAL;
   5885	}
   5886
   5887	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
   5888	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
   5889	if (t1->info != t2->info) {
   5890		bpf_log(log,
   5891			"Return type %s of %s() doesn't match type %s of %s()\n",
   5892			btf_type_str(t1), fn1,
   5893			btf_type_str(t2), fn2);
   5894		return -EINVAL;
   5895	}
   5896
   5897	for (i = 0; i < nargs1; i++) {
   5898		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
   5899		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
   5900
   5901		if (t1->info != t2->info) {
   5902			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
   5903				i, fn1, btf_type_str(t1),
   5904				fn2, btf_type_str(t2));
   5905			return -EINVAL;
   5906		}
   5907		if (btf_type_has_size(t1) && t1->size != t2->size) {
   5908			bpf_log(log,
   5909				"arg%d in %s() has size %d while %s() has %d\n",
   5910				i, fn1, t1->size,
   5911				fn2, t2->size);
   5912			return -EINVAL;
   5913		}
   5914
   5915		/* global functions are validated with scalars and pointers
   5916		 * to context only. And only global functions can be replaced.
   5917		 * Hence type check only those types.
   5918		 */
   5919		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
   5920			continue;
   5921		if (!btf_type_is_ptr(t1)) {
   5922			bpf_log(log,
   5923				"arg%d in %s() has unrecognized type\n",
   5924				i, fn1);
   5925			return -EINVAL;
   5926		}
   5927		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
   5928		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
   5929		if (!btf_type_is_struct(t1)) {
   5930			bpf_log(log,
   5931				"arg%d in %s() is not a pointer to context\n",
   5932				i, fn1);
   5933			return -EINVAL;
   5934		}
   5935		if (!btf_type_is_struct(t2)) {
   5936			bpf_log(log,
   5937				"arg%d in %s() is not a pointer to context\n",
   5938				i, fn2);
   5939			return -EINVAL;
   5940		}
   5941		/* This is an optional check to make program writing easier.
   5942		 * Compare names of structs and report an error to the user.
   5943		 * btf_prepare_func_args() already checked that t2 struct
   5944		 * is a context type. btf_prepare_func_args() will check
   5945		 * later that t1 struct is a context type as well.
   5946		 */
   5947		s1 = btf_name_by_offset(btf1, t1->name_off);
   5948		s2 = btf_name_by_offset(btf2, t2->name_off);
   5949		if (strcmp(s1, s2)) {
   5950			bpf_log(log,
   5951				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
   5952				i, fn1, s1, fn2, s2);
   5953			return -EINVAL;
   5954		}
   5955	}
   5956	return 0;
   5957}
   5958
   5959/* Compare BTFs of given program with BTF of target program */
   5960int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
   5961			 struct btf *btf2, const struct btf_type *t2)
   5962{
   5963	struct btf *btf1 = prog->aux->btf;
   5964	const struct btf_type *t1;
   5965	u32 btf_id = 0;
   5966
   5967	if (!prog->aux->func_info) {
   5968		bpf_log(log, "Program extension requires BTF\n");
   5969		return -EINVAL;
   5970	}
   5971
   5972	btf_id = prog->aux->func_info[0].type_id;
   5973	if (!btf_id)
   5974		return -EFAULT;
   5975
   5976	t1 = btf_type_by_id(btf1, btf_id);
   5977	if (!t1 || !btf_type_is_func(t1))
   5978		return -EFAULT;
   5979
   5980	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
   5981}
   5982
   5983static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
   5984#ifdef CONFIG_NET
   5985	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
   5986	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
   5987	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
   5988#endif
   5989};
   5990
   5991/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
   5992static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
   5993					const struct btf *btf,
   5994					const struct btf_type *t, int rec)
   5995{
   5996	const struct btf_type *member_type;
   5997	const struct btf_member *member;
   5998	u32 i;
   5999
   6000	if (!btf_type_is_struct(t))
   6001		return false;
   6002
   6003	for_each_member(i, t, member) {
   6004		const struct btf_array *array;
   6005
   6006		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
   6007		if (btf_type_is_struct(member_type)) {
   6008			if (rec >= 3) {
   6009				bpf_log(log, "max struct nesting depth exceeded\n");
   6010				return false;
   6011			}
   6012			if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
   6013				return false;
   6014			continue;
   6015		}
   6016		if (btf_type_is_array(member_type)) {
   6017			array = btf_type_array(member_type);
   6018			if (!array->nelems)
   6019				return false;
   6020			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
   6021			if (!btf_type_is_scalar(member_type))
   6022				return false;
   6023			continue;
   6024		}
   6025		if (!btf_type_is_scalar(member_type))
   6026			return false;
   6027	}
   6028	return true;
   6029}
   6030
   6031static bool is_kfunc_arg_mem_size(const struct btf *btf,
   6032				  const struct btf_param *arg,
   6033				  const struct bpf_reg_state *reg)
   6034{
   6035	int len, sfx_len = sizeof("__sz") - 1;
   6036	const struct btf_type *t;
   6037	const char *param_name;
   6038
   6039	t = btf_type_skip_modifiers(btf, arg->type, NULL);
   6040	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
   6041		return false;
   6042
   6043	/* In the future, this can be ported to use BTF tagging */
   6044	param_name = btf_name_by_offset(btf, arg->name_off);
   6045	if (str_is_empty(param_name))
   6046		return false;
   6047	len = strlen(param_name);
   6048	if (len < sfx_len)
   6049		return false;
   6050	param_name += len - sfx_len;
   6051	if (strncmp(param_name, "__sz", sfx_len))
   6052		return false;
   6053
   6054	return true;
   6055}
   6056
   6057static int btf_check_func_arg_match(struct bpf_verifier_env *env,
   6058				    const struct btf *btf, u32 func_id,
   6059				    struct bpf_reg_state *regs,
   6060				    bool ptr_to_mem_ok)
   6061{
   6062	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
   6063	struct bpf_verifier_log *log = &env->log;
   6064	u32 i, nargs, ref_id, ref_obj_id = 0;
   6065	bool is_kfunc = btf_is_kernel(btf);
   6066	bool rel = false, kptr_get = false;
   6067	const char *func_name, *ref_tname;
   6068	const struct btf_type *t, *ref_t;
   6069	const struct btf_param *args;
   6070	int ref_regno = 0, ret;
   6071
   6072	t = btf_type_by_id(btf, func_id);
   6073	if (!t || !btf_type_is_func(t)) {
   6074		/* These checks were already done by the verifier while loading
   6075		 * struct bpf_func_info or in add_kfunc_call().
   6076		 */
   6077		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
   6078			func_id);
   6079		return -EFAULT;
   6080	}
   6081	func_name = btf_name_by_offset(btf, t->name_off);
   6082
   6083	t = btf_type_by_id(btf, t->type);
   6084	if (!t || !btf_type_is_func_proto(t)) {
   6085		bpf_log(log, "Invalid BTF of func %s\n", func_name);
   6086		return -EFAULT;
   6087	}
   6088	args = (const struct btf_param *)(t + 1);
   6089	nargs = btf_type_vlen(t);
   6090	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
   6091		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
   6092			MAX_BPF_FUNC_REG_ARGS);
   6093		return -EINVAL;
   6094	}
   6095
   6096	if (is_kfunc) {
   6097		/* Only kfunc can be release func */
   6098		rel = btf_kfunc_id_set_contains(btf, resolve_prog_type(env->prog),
   6099						BTF_KFUNC_TYPE_RELEASE, func_id);
   6100		kptr_get = btf_kfunc_id_set_contains(btf, resolve_prog_type(env->prog),
   6101						     BTF_KFUNC_TYPE_KPTR_ACQUIRE, func_id);
   6102	}
   6103
   6104	/* check that BTF function arguments match actual types that the
   6105	 * verifier sees.
   6106	 */
   6107	for (i = 0; i < nargs; i++) {
   6108		enum bpf_arg_type arg_type = ARG_DONTCARE;
   6109		u32 regno = i + 1;
   6110		struct bpf_reg_state *reg = &regs[regno];
   6111
   6112		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
   6113		if (btf_type_is_scalar(t)) {
   6114			if (reg->type == SCALAR_VALUE)
   6115				continue;
   6116			bpf_log(log, "R%d is not a scalar\n", regno);
   6117			return -EINVAL;
   6118		}
   6119
   6120		if (!btf_type_is_ptr(t)) {
   6121			bpf_log(log, "Unrecognized arg#%d type %s\n",
   6122				i, btf_type_str(t));
   6123			return -EINVAL;
   6124		}
   6125
   6126		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
   6127		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
   6128
   6129		if (rel && reg->ref_obj_id)
   6130			arg_type |= OBJ_RELEASE;
   6131		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
   6132		if (ret < 0)
   6133			return ret;
   6134
   6135		/* kptr_get is only true for kfunc */
   6136		if (i == 0 && kptr_get) {
   6137			struct bpf_map_value_off_desc *off_desc;
   6138
   6139			if (reg->type != PTR_TO_MAP_VALUE) {
   6140				bpf_log(log, "arg#0 expected pointer to map value\n");
   6141				return -EINVAL;
   6142			}
   6143
   6144			/* check_func_arg_reg_off allows var_off for
   6145			 * PTR_TO_MAP_VALUE, but we need fixed offset to find
   6146			 * off_desc.
   6147			 */
   6148			if (!tnum_is_const(reg->var_off)) {
   6149				bpf_log(log, "arg#0 must have constant offset\n");
   6150				return -EINVAL;
   6151			}
   6152
   6153			off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value);
   6154			if (!off_desc || off_desc->type != BPF_KPTR_REF) {
   6155				bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n",
   6156					reg->off + reg->var_off.value);
   6157				return -EINVAL;
   6158			}
   6159
   6160			if (!btf_type_is_ptr(ref_t)) {
   6161				bpf_log(log, "arg#0 BTF type must be a double pointer\n");
   6162				return -EINVAL;
   6163			}
   6164
   6165			ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id);
   6166			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
   6167
   6168			if (!btf_type_is_struct(ref_t)) {
   6169				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
   6170					func_name, i, btf_type_str(ref_t), ref_tname);
   6171				return -EINVAL;
   6172			}
   6173			if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf,
   6174						  off_desc->kptr.btf_id, true)) {
   6175				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n",
   6176					func_name, i, btf_type_str(ref_t), ref_tname);
   6177				return -EINVAL;
   6178			}
   6179			/* rest of the arguments can be anything, like normal kfunc */
   6180		} else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
   6181			/* If function expects ctx type in BTF check that caller
   6182			 * is passing PTR_TO_CTX.
   6183			 */
   6184			if (reg->type != PTR_TO_CTX) {
   6185				bpf_log(log,
   6186					"arg#%d expected pointer to ctx, but got %s\n",
   6187					i, btf_type_str(t));
   6188				return -EINVAL;
   6189			}
   6190		} else if (is_kfunc && (reg->type == PTR_TO_BTF_ID ||
   6191			   (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) {
   6192			const struct btf_type *reg_ref_t;
   6193			const struct btf *reg_btf;
   6194			const char *reg_ref_tname;
   6195			u32 reg_ref_id;
   6196
   6197			if (!btf_type_is_struct(ref_t)) {
   6198				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
   6199					func_name, i, btf_type_str(ref_t),
   6200					ref_tname);
   6201				return -EINVAL;
   6202			}
   6203
   6204			if (reg->type == PTR_TO_BTF_ID) {
   6205				reg_btf = reg->btf;
   6206				reg_ref_id = reg->btf_id;
   6207				/* Ensure only one argument is referenced PTR_TO_BTF_ID */
   6208				if (reg->ref_obj_id) {
   6209					if (ref_obj_id) {
   6210						bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
   6211							regno, reg->ref_obj_id, ref_obj_id);
   6212						return -EFAULT;
   6213					}
   6214					ref_regno = regno;
   6215					ref_obj_id = reg->ref_obj_id;
   6216				}
   6217			} else {
   6218				reg_btf = btf_vmlinux;
   6219				reg_ref_id = *reg2btf_ids[base_type(reg->type)];
   6220			}
   6221
   6222			reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
   6223							    &reg_ref_id);
   6224			reg_ref_tname = btf_name_by_offset(reg_btf,
   6225							   reg_ref_t->name_off);
   6226			if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
   6227						  reg->off, btf, ref_id, rel && reg->ref_obj_id)) {
   6228				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
   6229					func_name, i,
   6230					btf_type_str(ref_t), ref_tname,
   6231					regno, btf_type_str(reg_ref_t),
   6232					reg_ref_tname);
   6233				return -EINVAL;
   6234			}
   6235		} else if (ptr_to_mem_ok) {
   6236			const struct btf_type *resolve_ret;
   6237			u32 type_size;
   6238
   6239			if (is_kfunc) {
   6240				bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], &regs[regno + 1]);
   6241
   6242				/* Permit pointer to mem, but only when argument
   6243				 * type is pointer to scalar, or struct composed
   6244				 * (recursively) of scalars.
   6245				 * When arg_mem_size is true, the pointer can be
   6246				 * void *.
   6247				 */
   6248				if (!btf_type_is_scalar(ref_t) &&
   6249				    !__btf_type_is_scalar_struct(log, btf, ref_t, 0) &&
   6250				    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
   6251					bpf_log(log,
   6252						"arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
   6253						i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
   6254					return -EINVAL;
   6255				}
   6256
   6257				/* Check for mem, len pair */
   6258				if (arg_mem_size) {
   6259					if (check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1)) {
   6260						bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n",
   6261							i, i + 1);
   6262						return -EINVAL;
   6263					}
   6264					i++;
   6265					continue;
   6266				}
   6267			}
   6268
   6269			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
   6270			if (IS_ERR(resolve_ret)) {
   6271				bpf_log(log,
   6272					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
   6273					i, btf_type_str(ref_t), ref_tname,
   6274					PTR_ERR(resolve_ret));
   6275				return -EINVAL;
   6276			}
   6277
   6278			if (check_mem_reg(env, reg, regno, type_size))
   6279				return -EINVAL;
   6280		} else {
   6281			bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
   6282				is_kfunc ? "kernel " : "", func_name, func_id);
   6283			return -EINVAL;
   6284		}
   6285	}
   6286
   6287	/* Either both are set, or neither */
   6288	WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno));
   6289	/* We already made sure ref_obj_id is set only for one argument. We do
   6290	 * allow (!rel && ref_obj_id), so that passing such referenced
   6291	 * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when
   6292	 * is_kfunc is true.
   6293	 */
   6294	if (rel && !ref_obj_id) {
   6295		bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
   6296			func_name);
   6297		return -EINVAL;
   6298	}
   6299	/* returns argument register number > 0 in case of reference release kfunc */
   6300	return rel ? ref_regno : 0;
   6301}
   6302
   6303/* Compare BTF of a function with given bpf_reg_state.
   6304 * Returns:
   6305 * EFAULT - there is a verifier bug. Abort verification.
   6306 * EINVAL - there is a type mismatch or BTF is not available.
   6307 * 0 - BTF matches with what bpf_reg_state expects.
   6308 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
   6309 */
   6310int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
   6311				struct bpf_reg_state *regs)
   6312{
   6313	struct bpf_prog *prog = env->prog;
   6314	struct btf *btf = prog->aux->btf;
   6315	bool is_global;
   6316	u32 btf_id;
   6317	int err;
   6318
   6319	if (!prog->aux->func_info)
   6320		return -EINVAL;
   6321
   6322	btf_id = prog->aux->func_info[subprog].type_id;
   6323	if (!btf_id)
   6324		return -EFAULT;
   6325
   6326	if (prog->aux->func_info_aux[subprog].unreliable)
   6327		return -EINVAL;
   6328
   6329	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
   6330	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
   6331
   6332	/* Compiler optimizations can remove arguments from static functions
   6333	 * or mismatched type can be passed into a global function.
   6334	 * In such cases mark the function as unreliable from BTF point of view.
   6335	 */
   6336	if (err)
   6337		prog->aux->func_info_aux[subprog].unreliable = true;
   6338	return err;
   6339}
   6340
   6341int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
   6342			      const struct btf *btf, u32 func_id,
   6343			      struct bpf_reg_state *regs)
   6344{
   6345	return btf_check_func_arg_match(env, btf, func_id, regs, true);
   6346}
   6347
   6348/* Convert BTF of a function into bpf_reg_state if possible
   6349 * Returns:
   6350 * EFAULT - there is a verifier bug. Abort verification.
   6351 * EINVAL - cannot convert BTF.
   6352 * 0 - Successfully converted BTF into bpf_reg_state
   6353 * (either PTR_TO_CTX or SCALAR_VALUE).
   6354 */
   6355int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
   6356			  struct bpf_reg_state *regs)
   6357{
   6358	struct bpf_verifier_log *log = &env->log;
   6359	struct bpf_prog *prog = env->prog;
   6360	enum bpf_prog_type prog_type = prog->type;
   6361	struct btf *btf = prog->aux->btf;
   6362	const struct btf_param *args;
   6363	const struct btf_type *t, *ref_t;
   6364	u32 i, nargs, btf_id;
   6365	const char *tname;
   6366
   6367	if (!prog->aux->func_info ||
   6368	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
   6369		bpf_log(log, "Verifier bug\n");
   6370		return -EFAULT;
   6371	}
   6372
   6373	btf_id = prog->aux->func_info[subprog].type_id;
   6374	if (!btf_id) {
   6375		bpf_log(log, "Global functions need valid BTF\n");
   6376		return -EFAULT;
   6377	}
   6378
   6379	t = btf_type_by_id(btf, btf_id);
   6380	if (!t || !btf_type_is_func(t)) {
   6381		/* These checks were already done by the verifier while loading
   6382		 * struct bpf_func_info
   6383		 */
   6384		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
   6385			subprog);
   6386		return -EFAULT;
   6387	}
   6388	tname = btf_name_by_offset(btf, t->name_off);
   6389
   6390	if (log->level & BPF_LOG_LEVEL)
   6391		bpf_log(log, "Validating %s() func#%d...\n",
   6392			tname, subprog);
   6393
   6394	if (prog->aux->func_info_aux[subprog].unreliable) {
   6395		bpf_log(log, "Verifier bug in function %s()\n", tname);
   6396		return -EFAULT;
   6397	}
   6398	if (prog_type == BPF_PROG_TYPE_EXT)
   6399		prog_type = prog->aux->dst_prog->type;
   6400
   6401	t = btf_type_by_id(btf, t->type);
   6402	if (!t || !btf_type_is_func_proto(t)) {
   6403		bpf_log(log, "Invalid type of function %s()\n", tname);
   6404		return -EFAULT;
   6405	}
   6406	args = (const struct btf_param *)(t + 1);
   6407	nargs = btf_type_vlen(t);
   6408	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
   6409		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
   6410			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
   6411		return -EINVAL;
   6412	}
   6413	/* check that function returns int */
   6414	t = btf_type_by_id(btf, t->type);
   6415	while (btf_type_is_modifier(t))
   6416		t = btf_type_by_id(btf, t->type);
   6417	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
   6418		bpf_log(log,
   6419			"Global function %s() doesn't return scalar. Only those are supported.\n",
   6420			tname);
   6421		return -EINVAL;
   6422	}
   6423	/* Convert BTF function arguments into verifier types.
   6424	 * Only PTR_TO_CTX and SCALAR are supported atm.
   6425	 */
   6426	for (i = 0; i < nargs; i++) {
   6427		struct bpf_reg_state *reg = &regs[i + 1];
   6428
   6429		t = btf_type_by_id(btf, args[i].type);
   6430		while (btf_type_is_modifier(t))
   6431			t = btf_type_by_id(btf, t->type);
   6432		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
   6433			reg->type = SCALAR_VALUE;
   6434			continue;
   6435		}
   6436		if (btf_type_is_ptr(t)) {
   6437			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
   6438				reg->type = PTR_TO_CTX;
   6439				continue;
   6440			}
   6441
   6442			t = btf_type_skip_modifiers(btf, t->type, NULL);
   6443
   6444			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
   6445			if (IS_ERR(ref_t)) {
   6446				bpf_log(log,
   6447				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
   6448				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
   6449					PTR_ERR(ref_t));
   6450				return -EINVAL;
   6451			}
   6452
   6453			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
   6454			reg->id = ++env->id_gen;
   6455
   6456			continue;
   6457		}
   6458		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
   6459			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
   6460		return -EINVAL;
   6461	}
   6462	return 0;
   6463}
   6464
   6465static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
   6466			  struct btf_show *show)
   6467{
   6468	const struct btf_type *t = btf_type_by_id(btf, type_id);
   6469
   6470	show->btf = btf;
   6471	memset(&show->state, 0, sizeof(show->state));
   6472	memset(&show->obj, 0, sizeof(show->obj));
   6473
   6474	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
   6475}
   6476
   6477static void btf_seq_show(struct btf_show *show, const char *fmt,
   6478			 va_list args)
   6479{
   6480	seq_vprintf((struct seq_file *)show->target, fmt, args);
   6481}
   6482
   6483int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
   6484			    void *obj, struct seq_file *m, u64 flags)
   6485{
   6486	struct btf_show sseq;
   6487
   6488	sseq.target = m;
   6489	sseq.showfn = btf_seq_show;
   6490	sseq.flags = flags;
   6491
   6492	btf_type_show(btf, type_id, obj, &sseq);
   6493
   6494	return sseq.state.status;
   6495}
   6496
   6497void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
   6498		       struct seq_file *m)
   6499{
   6500	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
   6501				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
   6502				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
   6503}
   6504
   6505struct btf_show_snprintf {
   6506	struct btf_show show;
   6507	int len_left;		/* space left in string */
   6508	int len;		/* length we would have written */
   6509};
   6510
   6511static void btf_snprintf_show(struct btf_show *show, const char *fmt,
   6512			      va_list args)
   6513{
   6514	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
   6515	int len;
   6516
   6517	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
   6518
   6519	if (len < 0) {
   6520		ssnprintf->len_left = 0;
   6521		ssnprintf->len = len;
   6522	} else if (len > ssnprintf->len_left) {
   6523		/* no space, drive on to get length we would have written */
   6524		ssnprintf->len_left = 0;
   6525		ssnprintf->len += len;
   6526	} else {
   6527		ssnprintf->len_left -= len;
   6528		ssnprintf->len += len;
   6529		show->target += len;
   6530	}
   6531}
   6532
   6533int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
   6534			   char *buf, int len, u64 flags)
   6535{
   6536	struct btf_show_snprintf ssnprintf;
   6537
   6538	ssnprintf.show.target = buf;
   6539	ssnprintf.show.flags = flags;
   6540	ssnprintf.show.showfn = btf_snprintf_show;
   6541	ssnprintf.len_left = len;
   6542	ssnprintf.len = 0;
   6543
   6544	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
   6545
   6546	/* If we encountered an error, return it. */
   6547	if (ssnprintf.show.state.status)
   6548		return ssnprintf.show.state.status;
   6549
   6550	/* Otherwise return length we would have written */
   6551	return ssnprintf.len;
   6552}
   6553
   6554#ifdef CONFIG_PROC_FS
   6555static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
   6556{
   6557	const struct btf *btf = filp->private_data;
   6558
   6559	seq_printf(m, "btf_id:\t%u\n", btf->id);
   6560}
   6561#endif
   6562
   6563static int btf_release(struct inode *inode, struct file *filp)
   6564{
   6565	btf_put(filp->private_data);
   6566	return 0;
   6567}
   6568
   6569const struct file_operations btf_fops = {
   6570#ifdef CONFIG_PROC_FS
   6571	.show_fdinfo	= bpf_btf_show_fdinfo,
   6572#endif
   6573	.release	= btf_release,
   6574};
   6575
   6576static int __btf_new_fd(struct btf *btf)
   6577{
   6578	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
   6579}
   6580
   6581int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
   6582{
   6583	struct btf *btf;
   6584	int ret;
   6585
   6586	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
   6587			attr->btf_size, attr->btf_log_level,
   6588			u64_to_user_ptr(attr->btf_log_buf),
   6589			attr->btf_log_size);
   6590	if (IS_ERR(btf))
   6591		return PTR_ERR(btf);
   6592
   6593	ret = btf_alloc_id(btf);
   6594	if (ret) {
   6595		btf_free(btf);
   6596		return ret;
   6597	}
   6598
   6599	/*
   6600	 * The BTF ID is published to the userspace.
   6601	 * All BTF free must go through call_rcu() from
   6602	 * now on (i.e. free by calling btf_put()).
   6603	 */
   6604
   6605	ret = __btf_new_fd(btf);
   6606	if (ret < 0)
   6607		btf_put(btf);
   6608
   6609	return ret;
   6610}
   6611
   6612struct btf *btf_get_by_fd(int fd)
   6613{
   6614	struct btf *btf;
   6615	struct fd f;
   6616
   6617	f = fdget(fd);
   6618
   6619	if (!f.file)
   6620		return ERR_PTR(-EBADF);
   6621
   6622	if (f.file->f_op != &btf_fops) {
   6623		fdput(f);
   6624		return ERR_PTR(-EINVAL);
   6625	}
   6626
   6627	btf = f.file->private_data;
   6628	refcount_inc(&btf->refcnt);
   6629	fdput(f);
   6630
   6631	return btf;
   6632}
   6633
   6634int btf_get_info_by_fd(const struct btf *btf,
   6635		       const union bpf_attr *attr,
   6636		       union bpf_attr __user *uattr)
   6637{
   6638	struct bpf_btf_info __user *uinfo;
   6639	struct bpf_btf_info info;
   6640	u32 info_copy, btf_copy;
   6641	void __user *ubtf;
   6642	char __user *uname;
   6643	u32 uinfo_len, uname_len, name_len;
   6644	int ret = 0;
   6645
   6646	uinfo = u64_to_user_ptr(attr->info.info);
   6647	uinfo_len = attr->info.info_len;
   6648
   6649	info_copy = min_t(u32, uinfo_len, sizeof(info));
   6650	memset(&info, 0, sizeof(info));
   6651	if (copy_from_user(&info, uinfo, info_copy))
   6652		return -EFAULT;
   6653
   6654	info.id = btf->id;
   6655	ubtf = u64_to_user_ptr(info.btf);
   6656	btf_copy = min_t(u32, btf->data_size, info.btf_size);
   6657	if (copy_to_user(ubtf, btf->data, btf_copy))
   6658		return -EFAULT;
   6659	info.btf_size = btf->data_size;
   6660
   6661	info.kernel_btf = btf->kernel_btf;
   6662
   6663	uname = u64_to_user_ptr(info.name);
   6664	uname_len = info.name_len;
   6665	if (!uname ^ !uname_len)
   6666		return -EINVAL;
   6667
   6668	name_len = strlen(btf->name);
   6669	info.name_len = name_len;
   6670
   6671	if (uname) {
   6672		if (uname_len >= name_len + 1) {
   6673			if (copy_to_user(uname, btf->name, name_len + 1))
   6674				return -EFAULT;
   6675		} else {
   6676			char zero = '\0';
   6677
   6678			if (copy_to_user(uname, btf->name, uname_len - 1))
   6679				return -EFAULT;
   6680			if (put_user(zero, uname + uname_len - 1))
   6681				return -EFAULT;
   6682			/* let user-space know about too short buffer */
   6683			ret = -ENOSPC;
   6684		}
   6685	}
   6686
   6687	if (copy_to_user(uinfo, &info, info_copy) ||
   6688	    put_user(info_copy, &uattr->info.info_len))
   6689		return -EFAULT;
   6690
   6691	return ret;
   6692}
   6693
   6694int btf_get_fd_by_id(u32 id)
   6695{
   6696	struct btf *btf;
   6697	int fd;
   6698
   6699	rcu_read_lock();
   6700	btf = idr_find(&btf_idr, id);
   6701	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
   6702		btf = ERR_PTR(-ENOENT);
   6703	rcu_read_unlock();
   6704
   6705	if (IS_ERR(btf))
   6706		return PTR_ERR(btf);
   6707
   6708	fd = __btf_new_fd(btf);
   6709	if (fd < 0)
   6710		btf_put(btf);
   6711
   6712	return fd;
   6713}
   6714
   6715u32 btf_obj_id(const struct btf *btf)
   6716{
   6717	return btf->id;
   6718}
   6719
   6720bool btf_is_kernel(const struct btf *btf)
   6721{
   6722	return btf->kernel_btf;
   6723}
   6724
   6725bool btf_is_module(const struct btf *btf)
   6726{
   6727	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
   6728}
   6729
   6730static int btf_id_cmp_func(const void *a, const void *b)
   6731{
   6732	const int *pa = a, *pb = b;
   6733
   6734	return *pa - *pb;
   6735}
   6736
   6737bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
   6738{
   6739	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
   6740}
   6741
   6742enum {
   6743	BTF_MODULE_F_LIVE = (1 << 0),
   6744};
   6745
   6746#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
   6747struct btf_module {
   6748	struct list_head list;
   6749	struct module *module;
   6750	struct btf *btf;
   6751	struct bin_attribute *sysfs_attr;
   6752	int flags;
   6753};
   6754
   6755static LIST_HEAD(btf_modules);
   6756static DEFINE_MUTEX(btf_module_mutex);
   6757
   6758static ssize_t
   6759btf_module_read(struct file *file, struct kobject *kobj,
   6760		struct bin_attribute *bin_attr,
   6761		char *buf, loff_t off, size_t len)
   6762{
   6763	const struct btf *btf = bin_attr->private;
   6764
   6765	memcpy(buf, btf->data + off, len);
   6766	return len;
   6767}
   6768
   6769static void purge_cand_cache(struct btf *btf);
   6770
   6771static int btf_module_notify(struct notifier_block *nb, unsigned long op,
   6772			     void *module)
   6773{
   6774	struct btf_module *btf_mod, *tmp;
   6775	struct module *mod = module;
   6776	struct btf *btf;
   6777	int err = 0;
   6778
   6779	if (mod->btf_data_size == 0 ||
   6780	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
   6781	     op != MODULE_STATE_GOING))
   6782		goto out;
   6783
   6784	switch (op) {
   6785	case MODULE_STATE_COMING:
   6786		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
   6787		if (!btf_mod) {
   6788			err = -ENOMEM;
   6789			goto out;
   6790		}
   6791		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
   6792		if (IS_ERR(btf)) {
   6793			pr_warn("failed to validate module [%s] BTF: %ld\n",
   6794				mod->name, PTR_ERR(btf));
   6795			kfree(btf_mod);
   6796			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
   6797				err = PTR_ERR(btf);
   6798			goto out;
   6799		}
   6800		err = btf_alloc_id(btf);
   6801		if (err) {
   6802			btf_free(btf);
   6803			kfree(btf_mod);
   6804			goto out;
   6805		}
   6806
   6807		purge_cand_cache(NULL);
   6808		mutex_lock(&btf_module_mutex);
   6809		btf_mod->module = module;
   6810		btf_mod->btf = btf;
   6811		list_add(&btf_mod->list, &btf_modules);
   6812		mutex_unlock(&btf_module_mutex);
   6813
   6814		if (IS_ENABLED(CONFIG_SYSFS)) {
   6815			struct bin_attribute *attr;
   6816
   6817			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
   6818			if (!attr)
   6819				goto out;
   6820
   6821			sysfs_bin_attr_init(attr);
   6822			attr->attr.name = btf->name;
   6823			attr->attr.mode = 0444;
   6824			attr->size = btf->data_size;
   6825			attr->private = btf;
   6826			attr->read = btf_module_read;
   6827
   6828			err = sysfs_create_bin_file(btf_kobj, attr);
   6829			if (err) {
   6830				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
   6831					mod->name, err);
   6832				kfree(attr);
   6833				err = 0;
   6834				goto out;
   6835			}
   6836
   6837			btf_mod->sysfs_attr = attr;
   6838		}
   6839
   6840		break;
   6841	case MODULE_STATE_LIVE:
   6842		mutex_lock(&btf_module_mutex);
   6843		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
   6844			if (btf_mod->module != module)
   6845				continue;
   6846
   6847			btf_mod->flags |= BTF_MODULE_F_LIVE;
   6848			break;
   6849		}
   6850		mutex_unlock(&btf_module_mutex);
   6851		break;
   6852	case MODULE_STATE_GOING:
   6853		mutex_lock(&btf_module_mutex);
   6854		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
   6855			if (btf_mod->module != module)
   6856				continue;
   6857
   6858			list_del(&btf_mod->list);
   6859			if (btf_mod->sysfs_attr)
   6860				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
   6861			purge_cand_cache(btf_mod->btf);
   6862			btf_put(btf_mod->btf);
   6863			kfree(btf_mod->sysfs_attr);
   6864			kfree(btf_mod);
   6865			break;
   6866		}
   6867		mutex_unlock(&btf_module_mutex);
   6868		break;
   6869	}
   6870out:
   6871	return notifier_from_errno(err);
   6872}
   6873
   6874static struct notifier_block btf_module_nb = {
   6875	.notifier_call = btf_module_notify,
   6876};
   6877
   6878static int __init btf_module_init(void)
   6879{
   6880	register_module_notifier(&btf_module_nb);
   6881	return 0;
   6882}
   6883
   6884fs_initcall(btf_module_init);
   6885#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
   6886
   6887struct module *btf_try_get_module(const struct btf *btf)
   6888{
   6889	struct module *res = NULL;
   6890#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
   6891	struct btf_module *btf_mod, *tmp;
   6892
   6893	mutex_lock(&btf_module_mutex);
   6894	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
   6895		if (btf_mod->btf != btf)
   6896			continue;
   6897
   6898		/* We must only consider module whose __init routine has
   6899		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
   6900		 * which is set from the notifier callback for
   6901		 * MODULE_STATE_LIVE.
   6902		 */
   6903		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
   6904			res = btf_mod->module;
   6905
   6906		break;
   6907	}
   6908	mutex_unlock(&btf_module_mutex);
   6909#endif
   6910
   6911	return res;
   6912}
   6913
   6914/* Returns struct btf corresponding to the struct module.
   6915 * This function can return NULL or ERR_PTR.
   6916 */
   6917static struct btf *btf_get_module_btf(const struct module *module)
   6918{
   6919#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
   6920	struct btf_module *btf_mod, *tmp;
   6921#endif
   6922	struct btf *btf = NULL;
   6923
   6924	if (!module) {
   6925		btf = bpf_get_btf_vmlinux();
   6926		if (!IS_ERR_OR_NULL(btf))
   6927			btf_get(btf);
   6928		return btf;
   6929	}
   6930
   6931#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
   6932	mutex_lock(&btf_module_mutex);
   6933	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
   6934		if (btf_mod->module != module)
   6935			continue;
   6936
   6937		btf_get(btf_mod->btf);
   6938		btf = btf_mod->btf;
   6939		break;
   6940	}
   6941	mutex_unlock(&btf_module_mutex);
   6942#endif
   6943
   6944	return btf;
   6945}
   6946
   6947BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
   6948{
   6949	struct btf *btf = NULL;
   6950	int btf_obj_fd = 0;
   6951	long ret;
   6952
   6953	if (flags)
   6954		return -EINVAL;
   6955
   6956	if (name_sz <= 1 || name[name_sz - 1])
   6957		return -EINVAL;
   6958
   6959	ret = bpf_find_btf_id(name, kind, &btf);
   6960	if (ret > 0 && btf_is_module(btf)) {
   6961		btf_obj_fd = __btf_new_fd(btf);
   6962		if (btf_obj_fd < 0) {
   6963			btf_put(btf);
   6964			return btf_obj_fd;
   6965		}
   6966		return ret | (((u64)btf_obj_fd) << 32);
   6967	}
   6968	if (ret > 0)
   6969		btf_put(btf);
   6970	return ret;
   6971}
   6972
   6973const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
   6974	.func		= bpf_btf_find_by_name_kind,
   6975	.gpl_only	= false,
   6976	.ret_type	= RET_INTEGER,
   6977	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
   6978	.arg2_type	= ARG_CONST_SIZE,
   6979	.arg3_type	= ARG_ANYTHING,
   6980	.arg4_type	= ARG_ANYTHING,
   6981};
   6982
   6983BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
   6984#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
   6985BTF_TRACING_TYPE_xxx
   6986#undef BTF_TRACING_TYPE
   6987
   6988/* Kernel Function (kfunc) BTF ID set registration API */
   6989
   6990static int __btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
   6991				    enum btf_kfunc_type type,
   6992				    struct btf_id_set *add_set, bool vmlinux_set)
   6993{
   6994	struct btf_kfunc_set_tab *tab;
   6995	struct btf_id_set *set;
   6996	u32 set_cnt;
   6997	int ret;
   6998
   6999	if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX) {
   7000		ret = -EINVAL;
   7001		goto end;
   7002	}
   7003
   7004	if (!add_set->cnt)
   7005		return 0;
   7006
   7007	tab = btf->kfunc_set_tab;
   7008	if (!tab) {
   7009		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
   7010		if (!tab)
   7011			return -ENOMEM;
   7012		btf->kfunc_set_tab = tab;
   7013	}
   7014
   7015	set = tab->sets[hook][type];
   7016	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
   7017	 * for module sets.
   7018	 */
   7019	if (WARN_ON_ONCE(set && !vmlinux_set)) {
   7020		ret = -EINVAL;
   7021		goto end;
   7022	}
   7023
   7024	/* We don't need to allocate, concatenate, and sort module sets, because
   7025	 * only one is allowed per hook. Hence, we can directly assign the
   7026	 * pointer and return.
   7027	 */
   7028	if (!vmlinux_set) {
   7029		tab->sets[hook][type] = add_set;
   7030		return 0;
   7031	}
   7032
   7033	/* In case of vmlinux sets, there may be more than one set being
   7034	 * registered per hook. To create a unified set, we allocate a new set
   7035	 * and concatenate all individual sets being registered. While each set
   7036	 * is individually sorted, they may become unsorted when concatenated,
   7037	 * hence re-sorting the final set again is required to make binary
   7038	 * searching the set using btf_id_set_contains function work.
   7039	 */
   7040	set_cnt = set ? set->cnt : 0;
   7041
   7042	if (set_cnt > U32_MAX - add_set->cnt) {
   7043		ret = -EOVERFLOW;
   7044		goto end;
   7045	}
   7046
   7047	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
   7048		ret = -E2BIG;
   7049		goto end;
   7050	}
   7051
   7052	/* Grow set */
   7053	set = krealloc(tab->sets[hook][type],
   7054		       offsetof(struct btf_id_set, ids[set_cnt + add_set->cnt]),
   7055		       GFP_KERNEL | __GFP_NOWARN);
   7056	if (!set) {
   7057		ret = -ENOMEM;
   7058		goto end;
   7059	}
   7060
   7061	/* For newly allocated set, initialize set->cnt to 0 */
   7062	if (!tab->sets[hook][type])
   7063		set->cnt = 0;
   7064	tab->sets[hook][type] = set;
   7065
   7066	/* Concatenate the two sets */
   7067	memcpy(set->ids + set->cnt, add_set->ids, add_set->cnt * sizeof(set->ids[0]));
   7068	set->cnt += add_set->cnt;
   7069
   7070	sort(set->ids, set->cnt, sizeof(set->ids[0]), btf_id_cmp_func, NULL);
   7071
   7072	return 0;
   7073end:
   7074	btf_free_kfunc_set_tab(btf);
   7075	return ret;
   7076}
   7077
   7078static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
   7079				  const struct btf_kfunc_id_set *kset)
   7080{
   7081	bool vmlinux_set = !btf_is_module(btf);
   7082	int type, ret = 0;
   7083
   7084	for (type = 0; type < ARRAY_SIZE(kset->sets); type++) {
   7085		if (!kset->sets[type])
   7086			continue;
   7087
   7088		ret = __btf_populate_kfunc_set(btf, hook, type, kset->sets[type], vmlinux_set);
   7089		if (ret)
   7090			break;
   7091	}
   7092	return ret;
   7093}
   7094
   7095static bool __btf_kfunc_id_set_contains(const struct btf *btf,
   7096					enum btf_kfunc_hook hook,
   7097					enum btf_kfunc_type type,
   7098					u32 kfunc_btf_id)
   7099{
   7100	struct btf_id_set *set;
   7101
   7102	if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX)
   7103		return false;
   7104	if (!btf->kfunc_set_tab)
   7105		return false;
   7106	set = btf->kfunc_set_tab->sets[hook][type];
   7107	if (!set)
   7108		return false;
   7109	return btf_id_set_contains(set, kfunc_btf_id);
   7110}
   7111
   7112static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
   7113{
   7114	switch (prog_type) {
   7115	case BPF_PROG_TYPE_XDP:
   7116		return BTF_KFUNC_HOOK_XDP;
   7117	case BPF_PROG_TYPE_SCHED_CLS:
   7118		return BTF_KFUNC_HOOK_TC;
   7119	case BPF_PROG_TYPE_STRUCT_OPS:
   7120		return BTF_KFUNC_HOOK_STRUCT_OPS;
   7121	case BPF_PROG_TYPE_TRACING:
   7122		return BTF_KFUNC_HOOK_TRACING;
   7123	case BPF_PROG_TYPE_SYSCALL:
   7124		return BTF_KFUNC_HOOK_SYSCALL;
   7125	default:
   7126		return BTF_KFUNC_HOOK_MAX;
   7127	}
   7128}
   7129
   7130/* Caution:
   7131 * Reference to the module (obtained using btf_try_get_module) corresponding to
   7132 * the struct btf *MUST* be held when calling this function from verifier
   7133 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
   7134 * keeping the reference for the duration of the call provides the necessary
   7135 * protection for looking up a well-formed btf->kfunc_set_tab.
   7136 */
   7137bool btf_kfunc_id_set_contains(const struct btf *btf,
   7138			       enum bpf_prog_type prog_type,
   7139			       enum btf_kfunc_type type, u32 kfunc_btf_id)
   7140{
   7141	enum btf_kfunc_hook hook;
   7142
   7143	hook = bpf_prog_type_to_kfunc_hook(prog_type);
   7144	return __btf_kfunc_id_set_contains(btf, hook, type, kfunc_btf_id);
   7145}
   7146
   7147/* This function must be invoked only from initcalls/module init functions */
   7148int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
   7149			      const struct btf_kfunc_id_set *kset)
   7150{
   7151	enum btf_kfunc_hook hook;
   7152	struct btf *btf;
   7153	int ret;
   7154
   7155	btf = btf_get_module_btf(kset->owner);
   7156	if (!btf) {
   7157		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
   7158			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
   7159			return -ENOENT;
   7160		}
   7161		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
   7162			pr_err("missing module BTF, cannot register kfuncs\n");
   7163			return -ENOENT;
   7164		}
   7165		return 0;
   7166	}
   7167	if (IS_ERR(btf))
   7168		return PTR_ERR(btf);
   7169
   7170	hook = bpf_prog_type_to_kfunc_hook(prog_type);
   7171	ret = btf_populate_kfunc_set(btf, hook, kset);
   7172	btf_put(btf);
   7173	return ret;
   7174}
   7175EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
   7176
   7177s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
   7178{
   7179	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
   7180	struct btf_id_dtor_kfunc *dtor;
   7181
   7182	if (!tab)
   7183		return -ENOENT;
   7184	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
   7185	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
   7186	 */
   7187	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
   7188	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
   7189	if (!dtor)
   7190		return -ENOENT;
   7191	return dtor->kfunc_btf_id;
   7192}
   7193
   7194static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
   7195{
   7196	const struct btf_type *dtor_func, *dtor_func_proto, *t;
   7197	const struct btf_param *args;
   7198	s32 dtor_btf_id;
   7199	u32 nr_args, i;
   7200
   7201	for (i = 0; i < cnt; i++) {
   7202		dtor_btf_id = dtors[i].kfunc_btf_id;
   7203
   7204		dtor_func = btf_type_by_id(btf, dtor_btf_id);
   7205		if (!dtor_func || !btf_type_is_func(dtor_func))
   7206			return -EINVAL;
   7207
   7208		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
   7209		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
   7210			return -EINVAL;
   7211
   7212		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
   7213		t = btf_type_by_id(btf, dtor_func_proto->type);
   7214		if (!t || !btf_type_is_void(t))
   7215			return -EINVAL;
   7216
   7217		nr_args = btf_type_vlen(dtor_func_proto);
   7218		if (nr_args != 1)
   7219			return -EINVAL;
   7220		args = btf_params(dtor_func_proto);
   7221		t = btf_type_by_id(btf, args[0].type);
   7222		/* Allow any pointer type, as width on targets Linux supports
   7223		 * will be same for all pointer types (i.e. sizeof(void *))
   7224		 */
   7225		if (!t || !btf_type_is_ptr(t))
   7226			return -EINVAL;
   7227	}
   7228	return 0;
   7229}
   7230
   7231/* This function must be invoked only from initcalls/module init functions */
   7232int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
   7233				struct module *owner)
   7234{
   7235	struct btf_id_dtor_kfunc_tab *tab;
   7236	struct btf *btf;
   7237	u32 tab_cnt;
   7238	int ret;
   7239
   7240	btf = btf_get_module_btf(owner);
   7241	if (!btf) {
   7242		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
   7243			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
   7244			return -ENOENT;
   7245		}
   7246		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
   7247			pr_err("missing module BTF, cannot register dtor kfuncs\n");
   7248			return -ENOENT;
   7249		}
   7250		return 0;
   7251	}
   7252	if (IS_ERR(btf))
   7253		return PTR_ERR(btf);
   7254
   7255	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
   7256		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
   7257		ret = -E2BIG;
   7258		goto end;
   7259	}
   7260
   7261	/* Ensure that the prototype of dtor kfuncs being registered is sane */
   7262	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
   7263	if (ret < 0)
   7264		goto end;
   7265
   7266	tab = btf->dtor_kfunc_tab;
   7267	/* Only one call allowed for modules */
   7268	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
   7269		ret = -EINVAL;
   7270		goto end;
   7271	}
   7272
   7273	tab_cnt = tab ? tab->cnt : 0;
   7274	if (tab_cnt > U32_MAX - add_cnt) {
   7275		ret = -EOVERFLOW;
   7276		goto end;
   7277	}
   7278	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
   7279		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
   7280		ret = -E2BIG;
   7281		goto end;
   7282	}
   7283
   7284	tab = krealloc(btf->dtor_kfunc_tab,
   7285		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
   7286		       GFP_KERNEL | __GFP_NOWARN);
   7287	if (!tab) {
   7288		ret = -ENOMEM;
   7289		goto end;
   7290	}
   7291
   7292	if (!btf->dtor_kfunc_tab)
   7293		tab->cnt = 0;
   7294	btf->dtor_kfunc_tab = tab;
   7295
   7296	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
   7297	tab->cnt += add_cnt;
   7298
   7299	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
   7300
   7301	return 0;
   7302end:
   7303	btf_free_dtor_kfunc_tab(btf);
   7304	btf_put(btf);
   7305	return ret;
   7306}
   7307EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
   7308
   7309#define MAX_TYPES_ARE_COMPAT_DEPTH 2
   7310
   7311static
   7312int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
   7313				const struct btf *targ_btf, __u32 targ_id,
   7314				int level)
   7315{
   7316	const struct btf_type *local_type, *targ_type;
   7317	int depth = 32; /* max recursion depth */
   7318
   7319	/* caller made sure that names match (ignoring flavor suffix) */
   7320	local_type = btf_type_by_id(local_btf, local_id);
   7321	targ_type = btf_type_by_id(targ_btf, targ_id);
   7322	if (btf_kind(local_type) != btf_kind(targ_type))
   7323		return 0;
   7324
   7325recur:
   7326	depth--;
   7327	if (depth < 0)
   7328		return -EINVAL;
   7329
   7330	local_type = btf_type_skip_modifiers(local_btf, local_id, &local_id);
   7331	targ_type = btf_type_skip_modifiers(targ_btf, targ_id, &targ_id);
   7332	if (!local_type || !targ_type)
   7333		return -EINVAL;
   7334
   7335	if (btf_kind(local_type) != btf_kind(targ_type))
   7336		return 0;
   7337
   7338	switch (btf_kind(local_type)) {
   7339	case BTF_KIND_UNKN:
   7340	case BTF_KIND_STRUCT:
   7341	case BTF_KIND_UNION:
   7342	case BTF_KIND_ENUM:
   7343	case BTF_KIND_FWD:
   7344		return 1;
   7345	case BTF_KIND_INT:
   7346		/* just reject deprecated bitfield-like integers; all other
   7347		 * integers are by default compatible between each other
   7348		 */
   7349		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
   7350	case BTF_KIND_PTR:
   7351		local_id = local_type->type;
   7352		targ_id = targ_type->type;
   7353		goto recur;
   7354	case BTF_KIND_ARRAY:
   7355		local_id = btf_array(local_type)->type;
   7356		targ_id = btf_array(targ_type)->type;
   7357		goto recur;
   7358	case BTF_KIND_FUNC_PROTO: {
   7359		struct btf_param *local_p = btf_params(local_type);
   7360		struct btf_param *targ_p = btf_params(targ_type);
   7361		__u16 local_vlen = btf_vlen(local_type);
   7362		__u16 targ_vlen = btf_vlen(targ_type);
   7363		int i, err;
   7364
   7365		if (local_vlen != targ_vlen)
   7366			return 0;
   7367
   7368		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
   7369			if (level <= 0)
   7370				return -EINVAL;
   7371
   7372			btf_type_skip_modifiers(local_btf, local_p->type, &local_id);
   7373			btf_type_skip_modifiers(targ_btf, targ_p->type, &targ_id);
   7374			err = __bpf_core_types_are_compat(local_btf, local_id,
   7375							  targ_btf, targ_id,
   7376							  level - 1);
   7377			if (err <= 0)
   7378				return err;
   7379		}
   7380
   7381		/* tail recurse for return type check */
   7382		btf_type_skip_modifiers(local_btf, local_type->type, &local_id);
   7383		btf_type_skip_modifiers(targ_btf, targ_type->type, &targ_id);
   7384		goto recur;
   7385	}
   7386	default:
   7387		return 0;
   7388	}
   7389}
   7390
   7391/* Check local and target types for compatibility. This check is used for
   7392 * type-based CO-RE relocations and follow slightly different rules than
   7393 * field-based relocations. This function assumes that root types were already
   7394 * checked for name match. Beyond that initial root-level name check, names
   7395 * are completely ignored. Compatibility rules are as follows:
   7396 *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
   7397 *     kind should match for local and target types (i.e., STRUCT is not
   7398 *     compatible with UNION);
   7399 *   - for ENUMs, the size is ignored;
   7400 *   - for INT, size and signedness are ignored;
   7401 *   - for ARRAY, dimensionality is ignored, element types are checked for
   7402 *     compatibility recursively;
   7403 *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
   7404 *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
   7405 *   - FUNC_PROTOs are compatible if they have compatible signature: same
   7406 *     number of input args and compatible return and argument types.
   7407 * These rules are not set in stone and probably will be adjusted as we get
   7408 * more experience with using BPF CO-RE relocations.
   7409 */
   7410int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
   7411			      const struct btf *targ_btf, __u32 targ_id)
   7412{
   7413	return __bpf_core_types_are_compat(local_btf, local_id,
   7414					   targ_btf, targ_id,
   7415					   MAX_TYPES_ARE_COMPAT_DEPTH);
   7416}
   7417
   7418static bool bpf_core_is_flavor_sep(const char *s)
   7419{
   7420	/* check X___Y name pattern, where X and Y are not underscores */
   7421	return s[0] != '_' &&				      /* X */
   7422	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
   7423	       s[4] != '_';				      /* Y */
   7424}
   7425
   7426size_t bpf_core_essential_name_len(const char *name)
   7427{
   7428	size_t n = strlen(name);
   7429	int i;
   7430
   7431	for (i = n - 5; i >= 0; i--) {
   7432		if (bpf_core_is_flavor_sep(name + i))
   7433			return i + 1;
   7434	}
   7435	return n;
   7436}
   7437
   7438struct bpf_cand_cache {
   7439	const char *name;
   7440	u32 name_len;
   7441	u16 kind;
   7442	u16 cnt;
   7443	struct {
   7444		const struct btf *btf;
   7445		u32 id;
   7446	} cands[];
   7447};
   7448
   7449static void bpf_free_cands(struct bpf_cand_cache *cands)
   7450{
   7451	if (!cands->cnt)
   7452		/* empty candidate array was allocated on stack */
   7453		return;
   7454	kfree(cands);
   7455}
   7456
   7457static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
   7458{
   7459	kfree(cands->name);
   7460	kfree(cands);
   7461}
   7462
   7463#define VMLINUX_CAND_CACHE_SIZE 31
   7464static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
   7465
   7466#define MODULE_CAND_CACHE_SIZE 31
   7467static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
   7468
   7469static DEFINE_MUTEX(cand_cache_mutex);
   7470
   7471static void __print_cand_cache(struct bpf_verifier_log *log,
   7472			       struct bpf_cand_cache **cache,
   7473			       int cache_size)
   7474{
   7475	struct bpf_cand_cache *cc;
   7476	int i, j;
   7477
   7478	for (i = 0; i < cache_size; i++) {
   7479		cc = cache[i];
   7480		if (!cc)
   7481			continue;
   7482		bpf_log(log, "[%d]%s(", i, cc->name);
   7483		for (j = 0; j < cc->cnt; j++) {
   7484			bpf_log(log, "%d", cc->cands[j].id);
   7485			if (j < cc->cnt - 1)
   7486				bpf_log(log, " ");
   7487		}
   7488		bpf_log(log, "), ");
   7489	}
   7490}
   7491
   7492static void print_cand_cache(struct bpf_verifier_log *log)
   7493{
   7494	mutex_lock(&cand_cache_mutex);
   7495	bpf_log(log, "vmlinux_cand_cache:");
   7496	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
   7497	bpf_log(log, "\nmodule_cand_cache:");
   7498	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
   7499	bpf_log(log, "\n");
   7500	mutex_unlock(&cand_cache_mutex);
   7501}
   7502
   7503static u32 hash_cands(struct bpf_cand_cache *cands)
   7504{
   7505	return jhash(cands->name, cands->name_len, 0);
   7506}
   7507
   7508static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
   7509					       struct bpf_cand_cache **cache,
   7510					       int cache_size)
   7511{
   7512	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
   7513
   7514	if (cc && cc->name_len == cands->name_len &&
   7515	    !strncmp(cc->name, cands->name, cands->name_len))
   7516		return cc;
   7517	return NULL;
   7518}
   7519
   7520static size_t sizeof_cands(int cnt)
   7521{
   7522	return offsetof(struct bpf_cand_cache, cands[cnt]);
   7523}
   7524
   7525static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
   7526						  struct bpf_cand_cache **cache,
   7527						  int cache_size)
   7528{
   7529	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
   7530
   7531	if (*cc) {
   7532		bpf_free_cands_from_cache(*cc);
   7533		*cc = NULL;
   7534	}
   7535	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
   7536	if (!new_cands) {
   7537		bpf_free_cands(cands);
   7538		return ERR_PTR(-ENOMEM);
   7539	}
   7540	/* strdup the name, since it will stay in cache.
   7541	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
   7542	 */
   7543	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
   7544	bpf_free_cands(cands);
   7545	if (!new_cands->name) {
   7546		kfree(new_cands);
   7547		return ERR_PTR(-ENOMEM);
   7548	}
   7549	*cc = new_cands;
   7550	return new_cands;
   7551}
   7552
   7553#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
   7554static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
   7555			       int cache_size)
   7556{
   7557	struct bpf_cand_cache *cc;
   7558	int i, j;
   7559
   7560	for (i = 0; i < cache_size; i++) {
   7561		cc = cache[i];
   7562		if (!cc)
   7563			continue;
   7564		if (!btf) {
   7565			/* when new module is loaded purge all of module_cand_cache,
   7566			 * since new module might have candidates with the name
   7567			 * that matches cached cands.
   7568			 */
   7569			bpf_free_cands_from_cache(cc);
   7570			cache[i] = NULL;
   7571			continue;
   7572		}
   7573		/* when module is unloaded purge cache entries
   7574		 * that match module's btf
   7575		 */
   7576		for (j = 0; j < cc->cnt; j++)
   7577			if (cc->cands[j].btf == btf) {
   7578				bpf_free_cands_from_cache(cc);
   7579				cache[i] = NULL;
   7580				break;
   7581			}
   7582	}
   7583
   7584}
   7585
   7586static void purge_cand_cache(struct btf *btf)
   7587{
   7588	mutex_lock(&cand_cache_mutex);
   7589	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
   7590	mutex_unlock(&cand_cache_mutex);
   7591}
   7592#endif
   7593
   7594static struct bpf_cand_cache *
   7595bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
   7596		   int targ_start_id)
   7597{
   7598	struct bpf_cand_cache *new_cands;
   7599	const struct btf_type *t;
   7600	const char *targ_name;
   7601	size_t targ_essent_len;
   7602	int n, i;
   7603
   7604	n = btf_nr_types(targ_btf);
   7605	for (i = targ_start_id; i < n; i++) {
   7606		t = btf_type_by_id(targ_btf, i);
   7607		if (btf_kind(t) != cands->kind)
   7608			continue;
   7609
   7610		targ_name = btf_name_by_offset(targ_btf, t->name_off);
   7611		if (!targ_name)
   7612			continue;
   7613
   7614		/* the resched point is before strncmp to make sure that search
   7615		 * for non-existing name will have a chance to schedule().
   7616		 */
   7617		cond_resched();
   7618
   7619		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
   7620			continue;
   7621
   7622		targ_essent_len = bpf_core_essential_name_len(targ_name);
   7623		if (targ_essent_len != cands->name_len)
   7624			continue;
   7625
   7626		/* most of the time there is only one candidate for a given kind+name pair */
   7627		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
   7628		if (!new_cands) {
   7629			bpf_free_cands(cands);
   7630			return ERR_PTR(-ENOMEM);
   7631		}
   7632
   7633		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
   7634		bpf_free_cands(cands);
   7635		cands = new_cands;
   7636		cands->cands[cands->cnt].btf = targ_btf;
   7637		cands->cands[cands->cnt].id = i;
   7638		cands->cnt++;
   7639	}
   7640	return cands;
   7641}
   7642
   7643static struct bpf_cand_cache *
   7644bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
   7645{
   7646	struct bpf_cand_cache *cands, *cc, local_cand = {};
   7647	const struct btf *local_btf = ctx->btf;
   7648	const struct btf_type *local_type;
   7649	const struct btf *main_btf;
   7650	size_t local_essent_len;
   7651	struct btf *mod_btf;
   7652	const char *name;
   7653	int id;
   7654
   7655	main_btf = bpf_get_btf_vmlinux();
   7656	if (IS_ERR(main_btf))
   7657		return ERR_CAST(main_btf);
   7658	if (!main_btf)
   7659		return ERR_PTR(-EINVAL);
   7660
   7661	local_type = btf_type_by_id(local_btf, local_type_id);
   7662	if (!local_type)
   7663		return ERR_PTR(-EINVAL);
   7664
   7665	name = btf_name_by_offset(local_btf, local_type->name_off);
   7666	if (str_is_empty(name))
   7667		return ERR_PTR(-EINVAL);
   7668	local_essent_len = bpf_core_essential_name_len(name);
   7669
   7670	cands = &local_cand;
   7671	cands->name = name;
   7672	cands->kind = btf_kind(local_type);
   7673	cands->name_len = local_essent_len;
   7674
   7675	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
   7676	/* cands is a pointer to stack here */
   7677	if (cc) {
   7678		if (cc->cnt)
   7679			return cc;
   7680		goto check_modules;
   7681	}
   7682
   7683	/* Attempt to find target candidates in vmlinux BTF first */
   7684	cands = bpf_core_add_cands(cands, main_btf, 1);
   7685	if (IS_ERR(cands))
   7686		return ERR_CAST(cands);
   7687
   7688	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
   7689
   7690	/* populate cache even when cands->cnt == 0 */
   7691	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
   7692	if (IS_ERR(cc))
   7693		return ERR_CAST(cc);
   7694
   7695	/* if vmlinux BTF has any candidate, don't go for module BTFs */
   7696	if (cc->cnt)
   7697		return cc;
   7698
   7699check_modules:
   7700	/* cands is a pointer to stack here and cands->cnt == 0 */
   7701	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
   7702	if (cc)
   7703		/* if cache has it return it even if cc->cnt == 0 */
   7704		return cc;
   7705
   7706	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
   7707	spin_lock_bh(&btf_idr_lock);
   7708	idr_for_each_entry(&btf_idr, mod_btf, id) {
   7709		if (!btf_is_module(mod_btf))
   7710			continue;
   7711		/* linear search could be slow hence unlock/lock
   7712		 * the IDR to avoiding holding it for too long
   7713		 */
   7714		btf_get(mod_btf);
   7715		spin_unlock_bh(&btf_idr_lock);
   7716		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
   7717		if (IS_ERR(cands)) {
   7718			btf_put(mod_btf);
   7719			return ERR_CAST(cands);
   7720		}
   7721		spin_lock_bh(&btf_idr_lock);
   7722		btf_put(mod_btf);
   7723	}
   7724	spin_unlock_bh(&btf_idr_lock);
   7725	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
   7726	 * or pointer to stack if cands->cnd == 0.
   7727	 * Copy it into the cache even when cands->cnt == 0 and
   7728	 * return the result.
   7729	 */
   7730	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
   7731}
   7732
   7733int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
   7734		   int relo_idx, void *insn)
   7735{
   7736	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
   7737	struct bpf_core_cand_list cands = {};
   7738	struct bpf_core_relo_res targ_res;
   7739	struct bpf_core_spec *specs;
   7740	int err;
   7741
   7742	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
   7743	 * into arrays of btf_ids of struct fields and array indices.
   7744	 */
   7745	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
   7746	if (!specs)
   7747		return -ENOMEM;
   7748
   7749	if (need_cands) {
   7750		struct bpf_cand_cache *cc;
   7751		int i;
   7752
   7753		mutex_lock(&cand_cache_mutex);
   7754		cc = bpf_core_find_cands(ctx, relo->type_id);
   7755		if (IS_ERR(cc)) {
   7756			bpf_log(ctx->log, "target candidate search failed for %d\n",
   7757				relo->type_id);
   7758			err = PTR_ERR(cc);
   7759			goto out;
   7760		}
   7761		if (cc->cnt) {
   7762			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
   7763			if (!cands.cands) {
   7764				err = -ENOMEM;
   7765				goto out;
   7766			}
   7767		}
   7768		for (i = 0; i < cc->cnt; i++) {
   7769			bpf_log(ctx->log,
   7770				"CO-RE relocating %s %s: found target candidate [%d]\n",
   7771				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
   7772			cands.cands[i].btf = cc->cands[i].btf;
   7773			cands.cands[i].id = cc->cands[i].id;
   7774		}
   7775		cands.len = cc->cnt;
   7776		/* cand_cache_mutex needs to span the cache lookup and
   7777		 * copy of btf pointer into bpf_core_cand_list,
   7778		 * since module can be unloaded while bpf_core_calc_relo_insn
   7779		 * is working with module's btf.
   7780		 */
   7781	}
   7782
   7783	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
   7784				      &targ_res);
   7785	if (err)
   7786		goto out;
   7787
   7788	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
   7789				  &targ_res);
   7790
   7791out:
   7792	kfree(specs);
   7793	if (need_cands) {
   7794		kfree(cands.cands);
   7795		mutex_unlock(&cand_cache_mutex);
   7796		if (ctx->log->level & BPF_LOG_LEVEL2)
   7797			print_cand_cache(ctx->log);
   7798	}
   7799	return err;
   7800}