cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cgroup.c (56644B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Functions to manage eBPF programs attached to cgroups
      4 *
      5 * Copyright (c) 2016 Daniel Mack
      6 */
      7
      8#include <linux/kernel.h>
      9#include <linux/atomic.h>
     10#include <linux/cgroup.h>
     11#include <linux/filter.h>
     12#include <linux/slab.h>
     13#include <linux/sysctl.h>
     14#include <linux/string.h>
     15#include <linux/bpf.h>
     16#include <linux/bpf-cgroup.h>
     17#include <net/sock.h>
     18#include <net/bpf_sk_storage.h>
     19
     20#include "../cgroup/cgroup-internal.h"
     21
     22DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE);
     23EXPORT_SYMBOL(cgroup_bpf_enabled_key);
     24
     25/* __always_inline is necessary to prevent indirect call through run_prog
     26 * function pointer.
     27 */
     28static __always_inline int
     29bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp,
     30		      enum cgroup_bpf_attach_type atype,
     31		      const void *ctx, bpf_prog_run_fn run_prog,
     32		      int retval, u32 *ret_flags)
     33{
     34	const struct bpf_prog_array_item *item;
     35	const struct bpf_prog *prog;
     36	const struct bpf_prog_array *array;
     37	struct bpf_run_ctx *old_run_ctx;
     38	struct bpf_cg_run_ctx run_ctx;
     39	u32 func_ret;
     40
     41	run_ctx.retval = retval;
     42	migrate_disable();
     43	rcu_read_lock();
     44	array = rcu_dereference(cgrp->effective[atype]);
     45	item = &array->items[0];
     46	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
     47	while ((prog = READ_ONCE(item->prog))) {
     48		run_ctx.prog_item = item;
     49		func_ret = run_prog(prog, ctx);
     50		if (ret_flags) {
     51			*(ret_flags) |= (func_ret >> 1);
     52			func_ret &= 1;
     53		}
     54		if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval))
     55			run_ctx.retval = -EPERM;
     56		item++;
     57	}
     58	bpf_reset_run_ctx(old_run_ctx);
     59	rcu_read_unlock();
     60	migrate_enable();
     61	return run_ctx.retval;
     62}
     63
     64void cgroup_bpf_offline(struct cgroup *cgrp)
     65{
     66	cgroup_get(cgrp);
     67	percpu_ref_kill(&cgrp->bpf.refcnt);
     68}
     69
     70static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
     71{
     72	enum bpf_cgroup_storage_type stype;
     73
     74	for_each_cgroup_storage_type(stype)
     75		bpf_cgroup_storage_free(storages[stype]);
     76}
     77
     78static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
     79				     struct bpf_cgroup_storage *new_storages[],
     80				     enum bpf_attach_type type,
     81				     struct bpf_prog *prog,
     82				     struct cgroup *cgrp)
     83{
     84	enum bpf_cgroup_storage_type stype;
     85	struct bpf_cgroup_storage_key key;
     86	struct bpf_map *map;
     87
     88	key.cgroup_inode_id = cgroup_id(cgrp);
     89	key.attach_type = type;
     90
     91	for_each_cgroup_storage_type(stype) {
     92		map = prog->aux->cgroup_storage[stype];
     93		if (!map)
     94			continue;
     95
     96		storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
     97		if (storages[stype])
     98			continue;
     99
    100		storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
    101		if (IS_ERR(storages[stype])) {
    102			bpf_cgroup_storages_free(new_storages);
    103			return -ENOMEM;
    104		}
    105
    106		new_storages[stype] = storages[stype];
    107	}
    108
    109	return 0;
    110}
    111
    112static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
    113				       struct bpf_cgroup_storage *src[])
    114{
    115	enum bpf_cgroup_storage_type stype;
    116
    117	for_each_cgroup_storage_type(stype)
    118		dst[stype] = src[stype];
    119}
    120
    121static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
    122				     struct cgroup *cgrp,
    123				     enum bpf_attach_type attach_type)
    124{
    125	enum bpf_cgroup_storage_type stype;
    126
    127	for_each_cgroup_storage_type(stype)
    128		bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
    129}
    130
    131/* Called when bpf_cgroup_link is auto-detached from dying cgroup.
    132 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
    133 * doesn't free link memory, which will eventually be done by bpf_link's
    134 * release() callback, when its last FD is closed.
    135 */
    136static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
    137{
    138	cgroup_put(link->cgroup);
    139	link->cgroup = NULL;
    140}
    141
    142/**
    143 * cgroup_bpf_release() - put references of all bpf programs and
    144 *                        release all cgroup bpf data
    145 * @work: work structure embedded into the cgroup to modify
    146 */
    147static void cgroup_bpf_release(struct work_struct *work)
    148{
    149	struct cgroup *p, *cgrp = container_of(work, struct cgroup,
    150					       bpf.release_work);
    151	struct bpf_prog_array *old_array;
    152	struct list_head *storages = &cgrp->bpf.storages;
    153	struct bpf_cgroup_storage *storage, *stmp;
    154
    155	unsigned int atype;
    156
    157	mutex_lock(&cgroup_mutex);
    158
    159	for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) {
    160		struct list_head *progs = &cgrp->bpf.progs[atype];
    161		struct bpf_prog_list *pl, *pltmp;
    162
    163		list_for_each_entry_safe(pl, pltmp, progs, node) {
    164			list_del(&pl->node);
    165			if (pl->prog)
    166				bpf_prog_put(pl->prog);
    167			if (pl->link)
    168				bpf_cgroup_link_auto_detach(pl->link);
    169			kfree(pl);
    170			static_branch_dec(&cgroup_bpf_enabled_key[atype]);
    171		}
    172		old_array = rcu_dereference_protected(
    173				cgrp->bpf.effective[atype],
    174				lockdep_is_held(&cgroup_mutex));
    175		bpf_prog_array_free(old_array);
    176	}
    177
    178	list_for_each_entry_safe(storage, stmp, storages, list_cg) {
    179		bpf_cgroup_storage_unlink(storage);
    180		bpf_cgroup_storage_free(storage);
    181	}
    182
    183	mutex_unlock(&cgroup_mutex);
    184
    185	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
    186		cgroup_bpf_put(p);
    187
    188	percpu_ref_exit(&cgrp->bpf.refcnt);
    189	cgroup_put(cgrp);
    190}
    191
    192/**
    193 * cgroup_bpf_release_fn() - callback used to schedule releasing
    194 *                           of bpf cgroup data
    195 * @ref: percpu ref counter structure
    196 */
    197static void cgroup_bpf_release_fn(struct percpu_ref *ref)
    198{
    199	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
    200
    201	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
    202	queue_work(system_wq, &cgrp->bpf.release_work);
    203}
    204
    205/* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
    206 * link or direct prog.
    207 */
    208static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
    209{
    210	if (pl->prog)
    211		return pl->prog;
    212	if (pl->link)
    213		return pl->link->link.prog;
    214	return NULL;
    215}
    216
    217/* count number of elements in the list.
    218 * it's slow but the list cannot be long
    219 */
    220static u32 prog_list_length(struct list_head *head)
    221{
    222	struct bpf_prog_list *pl;
    223	u32 cnt = 0;
    224
    225	list_for_each_entry(pl, head, node) {
    226		if (!prog_list_prog(pl))
    227			continue;
    228		cnt++;
    229	}
    230	return cnt;
    231}
    232
    233/* if parent has non-overridable prog attached,
    234 * disallow attaching new programs to the descendent cgroup.
    235 * if parent has overridable or multi-prog, allow attaching
    236 */
    237static bool hierarchy_allows_attach(struct cgroup *cgrp,
    238				    enum cgroup_bpf_attach_type atype)
    239{
    240	struct cgroup *p;
    241
    242	p = cgroup_parent(cgrp);
    243	if (!p)
    244		return true;
    245	do {
    246		u32 flags = p->bpf.flags[atype];
    247		u32 cnt;
    248
    249		if (flags & BPF_F_ALLOW_MULTI)
    250			return true;
    251		cnt = prog_list_length(&p->bpf.progs[atype]);
    252		WARN_ON_ONCE(cnt > 1);
    253		if (cnt == 1)
    254			return !!(flags & BPF_F_ALLOW_OVERRIDE);
    255		p = cgroup_parent(p);
    256	} while (p);
    257	return true;
    258}
    259
    260/* compute a chain of effective programs for a given cgroup:
    261 * start from the list of programs in this cgroup and add
    262 * all parent programs.
    263 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
    264 * to programs in this cgroup
    265 */
    266static int compute_effective_progs(struct cgroup *cgrp,
    267				   enum cgroup_bpf_attach_type atype,
    268				   struct bpf_prog_array **array)
    269{
    270	struct bpf_prog_array_item *item;
    271	struct bpf_prog_array *progs;
    272	struct bpf_prog_list *pl;
    273	struct cgroup *p = cgrp;
    274	int cnt = 0;
    275
    276	/* count number of effective programs by walking parents */
    277	do {
    278		if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
    279			cnt += prog_list_length(&p->bpf.progs[atype]);
    280		p = cgroup_parent(p);
    281	} while (p);
    282
    283	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
    284	if (!progs)
    285		return -ENOMEM;
    286
    287	/* populate the array with effective progs */
    288	cnt = 0;
    289	p = cgrp;
    290	do {
    291		if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
    292			continue;
    293
    294		list_for_each_entry(pl, &p->bpf.progs[atype], node) {
    295			if (!prog_list_prog(pl))
    296				continue;
    297
    298			item = &progs->items[cnt];
    299			item->prog = prog_list_prog(pl);
    300			bpf_cgroup_storages_assign(item->cgroup_storage,
    301						   pl->storage);
    302			cnt++;
    303		}
    304	} while ((p = cgroup_parent(p)));
    305
    306	*array = progs;
    307	return 0;
    308}
    309
    310static void activate_effective_progs(struct cgroup *cgrp,
    311				     enum cgroup_bpf_attach_type atype,
    312				     struct bpf_prog_array *old_array)
    313{
    314	old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array,
    315					lockdep_is_held(&cgroup_mutex));
    316	/* free prog array after grace period, since __cgroup_bpf_run_*()
    317	 * might be still walking the array
    318	 */
    319	bpf_prog_array_free(old_array);
    320}
    321
    322/**
    323 * cgroup_bpf_inherit() - inherit effective programs from parent
    324 * @cgrp: the cgroup to modify
    325 */
    326int cgroup_bpf_inherit(struct cgroup *cgrp)
    327{
    328/* has to use marco instead of const int, since compiler thinks
    329 * that array below is variable length
    330 */
    331#define	NR ARRAY_SIZE(cgrp->bpf.effective)
    332	struct bpf_prog_array *arrays[NR] = {};
    333	struct cgroup *p;
    334	int ret, i;
    335
    336	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
    337			      GFP_KERNEL);
    338	if (ret)
    339		return ret;
    340
    341	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
    342		cgroup_bpf_get(p);
    343
    344	for (i = 0; i < NR; i++)
    345		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
    346
    347	INIT_LIST_HEAD(&cgrp->bpf.storages);
    348
    349	for (i = 0; i < NR; i++)
    350		if (compute_effective_progs(cgrp, i, &arrays[i]))
    351			goto cleanup;
    352
    353	for (i = 0; i < NR; i++)
    354		activate_effective_progs(cgrp, i, arrays[i]);
    355
    356	return 0;
    357cleanup:
    358	for (i = 0; i < NR; i++)
    359		bpf_prog_array_free(arrays[i]);
    360
    361	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
    362		cgroup_bpf_put(p);
    363
    364	percpu_ref_exit(&cgrp->bpf.refcnt);
    365
    366	return -ENOMEM;
    367}
    368
    369static int update_effective_progs(struct cgroup *cgrp,
    370				  enum cgroup_bpf_attach_type atype)
    371{
    372	struct cgroup_subsys_state *css;
    373	int err;
    374
    375	/* allocate and recompute effective prog arrays */
    376	css_for_each_descendant_pre(css, &cgrp->self) {
    377		struct cgroup *desc = container_of(css, struct cgroup, self);
    378
    379		if (percpu_ref_is_zero(&desc->bpf.refcnt))
    380			continue;
    381
    382		err = compute_effective_progs(desc, atype, &desc->bpf.inactive);
    383		if (err)
    384			goto cleanup;
    385	}
    386
    387	/* all allocations were successful. Activate all prog arrays */
    388	css_for_each_descendant_pre(css, &cgrp->self) {
    389		struct cgroup *desc = container_of(css, struct cgroup, self);
    390
    391		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
    392			if (unlikely(desc->bpf.inactive)) {
    393				bpf_prog_array_free(desc->bpf.inactive);
    394				desc->bpf.inactive = NULL;
    395			}
    396			continue;
    397		}
    398
    399		activate_effective_progs(desc, atype, desc->bpf.inactive);
    400		desc->bpf.inactive = NULL;
    401	}
    402
    403	return 0;
    404
    405cleanup:
    406	/* oom while computing effective. Free all computed effective arrays
    407	 * since they were not activated
    408	 */
    409	css_for_each_descendant_pre(css, &cgrp->self) {
    410		struct cgroup *desc = container_of(css, struct cgroup, self);
    411
    412		bpf_prog_array_free(desc->bpf.inactive);
    413		desc->bpf.inactive = NULL;
    414	}
    415
    416	return err;
    417}
    418
    419#define BPF_CGROUP_MAX_PROGS 64
    420
    421static struct bpf_prog_list *find_attach_entry(struct list_head *progs,
    422					       struct bpf_prog *prog,
    423					       struct bpf_cgroup_link *link,
    424					       struct bpf_prog *replace_prog,
    425					       bool allow_multi)
    426{
    427	struct bpf_prog_list *pl;
    428
    429	/* single-attach case */
    430	if (!allow_multi) {
    431		if (list_empty(progs))
    432			return NULL;
    433		return list_first_entry(progs, typeof(*pl), node);
    434	}
    435
    436	list_for_each_entry(pl, progs, node) {
    437		if (prog && pl->prog == prog && prog != replace_prog)
    438			/* disallow attaching the same prog twice */
    439			return ERR_PTR(-EINVAL);
    440		if (link && pl->link == link)
    441			/* disallow attaching the same link twice */
    442			return ERR_PTR(-EINVAL);
    443	}
    444
    445	/* direct prog multi-attach w/ replacement case */
    446	if (replace_prog) {
    447		list_for_each_entry(pl, progs, node) {
    448			if (pl->prog == replace_prog)
    449				/* a match found */
    450				return pl;
    451		}
    452		/* prog to replace not found for cgroup */
    453		return ERR_PTR(-ENOENT);
    454	}
    455
    456	return NULL;
    457}
    458
    459/**
    460 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
    461 *                         propagate the change to descendants
    462 * @cgrp: The cgroup which descendants to traverse
    463 * @prog: A program to attach
    464 * @link: A link to attach
    465 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
    466 * @type: Type of attach operation
    467 * @flags: Option flags
    468 *
    469 * Exactly one of @prog or @link can be non-null.
    470 * Must be called with cgroup_mutex held.
    471 */
    472static int __cgroup_bpf_attach(struct cgroup *cgrp,
    473			       struct bpf_prog *prog, struct bpf_prog *replace_prog,
    474			       struct bpf_cgroup_link *link,
    475			       enum bpf_attach_type type, u32 flags)
    476{
    477	u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
    478	struct bpf_prog *old_prog = NULL;
    479	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
    480	struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
    481	enum cgroup_bpf_attach_type atype;
    482	struct bpf_prog_list *pl;
    483	struct list_head *progs;
    484	int err;
    485
    486	if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
    487	    ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
    488		/* invalid combination */
    489		return -EINVAL;
    490	if (link && (prog || replace_prog))
    491		/* only either link or prog/replace_prog can be specified */
    492		return -EINVAL;
    493	if (!!replace_prog != !!(flags & BPF_F_REPLACE))
    494		/* replace_prog implies BPF_F_REPLACE, and vice versa */
    495		return -EINVAL;
    496
    497	atype = to_cgroup_bpf_attach_type(type);
    498	if (atype < 0)
    499		return -EINVAL;
    500
    501	progs = &cgrp->bpf.progs[atype];
    502
    503	if (!hierarchy_allows_attach(cgrp, atype))
    504		return -EPERM;
    505
    506	if (!list_empty(progs) && cgrp->bpf.flags[atype] != saved_flags)
    507		/* Disallow attaching non-overridable on top
    508		 * of existing overridable in this cgroup.
    509		 * Disallow attaching multi-prog if overridable or none
    510		 */
    511		return -EPERM;
    512
    513	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
    514		return -E2BIG;
    515
    516	pl = find_attach_entry(progs, prog, link, replace_prog,
    517			       flags & BPF_F_ALLOW_MULTI);
    518	if (IS_ERR(pl))
    519		return PTR_ERR(pl);
    520
    521	if (bpf_cgroup_storages_alloc(storage, new_storage, type,
    522				      prog ? : link->link.prog, cgrp))
    523		return -ENOMEM;
    524
    525	if (pl) {
    526		old_prog = pl->prog;
    527	} else {
    528		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
    529		if (!pl) {
    530			bpf_cgroup_storages_free(new_storage);
    531			return -ENOMEM;
    532		}
    533		list_add_tail(&pl->node, progs);
    534	}
    535
    536	pl->prog = prog;
    537	pl->link = link;
    538	bpf_cgroup_storages_assign(pl->storage, storage);
    539	cgrp->bpf.flags[atype] = saved_flags;
    540
    541	err = update_effective_progs(cgrp, atype);
    542	if (err)
    543		goto cleanup;
    544
    545	if (old_prog)
    546		bpf_prog_put(old_prog);
    547	else
    548		static_branch_inc(&cgroup_bpf_enabled_key[atype]);
    549	bpf_cgroup_storages_link(new_storage, cgrp, type);
    550	return 0;
    551
    552cleanup:
    553	if (old_prog) {
    554		pl->prog = old_prog;
    555		pl->link = NULL;
    556	}
    557	bpf_cgroup_storages_free(new_storage);
    558	if (!old_prog) {
    559		list_del(&pl->node);
    560		kfree(pl);
    561	}
    562	return err;
    563}
    564
    565static int cgroup_bpf_attach(struct cgroup *cgrp,
    566			     struct bpf_prog *prog, struct bpf_prog *replace_prog,
    567			     struct bpf_cgroup_link *link,
    568			     enum bpf_attach_type type,
    569			     u32 flags)
    570{
    571	int ret;
    572
    573	mutex_lock(&cgroup_mutex);
    574	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
    575	mutex_unlock(&cgroup_mutex);
    576	return ret;
    577}
    578
    579/* Swap updated BPF program for given link in effective program arrays across
    580 * all descendant cgroups. This function is guaranteed to succeed.
    581 */
    582static void replace_effective_prog(struct cgroup *cgrp,
    583				   enum cgroup_bpf_attach_type atype,
    584				   struct bpf_cgroup_link *link)
    585{
    586	struct bpf_prog_array_item *item;
    587	struct cgroup_subsys_state *css;
    588	struct bpf_prog_array *progs;
    589	struct bpf_prog_list *pl;
    590	struct list_head *head;
    591	struct cgroup *cg;
    592	int pos;
    593
    594	css_for_each_descendant_pre(css, &cgrp->self) {
    595		struct cgroup *desc = container_of(css, struct cgroup, self);
    596
    597		if (percpu_ref_is_zero(&desc->bpf.refcnt))
    598			continue;
    599
    600		/* find position of link in effective progs array */
    601		for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
    602			if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
    603				continue;
    604
    605			head = &cg->bpf.progs[atype];
    606			list_for_each_entry(pl, head, node) {
    607				if (!prog_list_prog(pl))
    608					continue;
    609				if (pl->link == link)
    610					goto found;
    611				pos++;
    612			}
    613		}
    614found:
    615		BUG_ON(!cg);
    616		progs = rcu_dereference_protected(
    617				desc->bpf.effective[atype],
    618				lockdep_is_held(&cgroup_mutex));
    619		item = &progs->items[pos];
    620		WRITE_ONCE(item->prog, link->link.prog);
    621	}
    622}
    623
    624/**
    625 * __cgroup_bpf_replace() - Replace link's program and propagate the change
    626 *                          to descendants
    627 * @cgrp: The cgroup which descendants to traverse
    628 * @link: A link for which to replace BPF program
    629 * @type: Type of attach operation
    630 *
    631 * Must be called with cgroup_mutex held.
    632 */
    633static int __cgroup_bpf_replace(struct cgroup *cgrp,
    634				struct bpf_cgroup_link *link,
    635				struct bpf_prog *new_prog)
    636{
    637	enum cgroup_bpf_attach_type atype;
    638	struct bpf_prog *old_prog;
    639	struct bpf_prog_list *pl;
    640	struct list_head *progs;
    641	bool found = false;
    642
    643	atype = to_cgroup_bpf_attach_type(link->type);
    644	if (atype < 0)
    645		return -EINVAL;
    646
    647	progs = &cgrp->bpf.progs[atype];
    648
    649	if (link->link.prog->type != new_prog->type)
    650		return -EINVAL;
    651
    652	list_for_each_entry(pl, progs, node) {
    653		if (pl->link == link) {
    654			found = true;
    655			break;
    656		}
    657	}
    658	if (!found)
    659		return -ENOENT;
    660
    661	old_prog = xchg(&link->link.prog, new_prog);
    662	replace_effective_prog(cgrp, atype, link);
    663	bpf_prog_put(old_prog);
    664	return 0;
    665}
    666
    667static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
    668			      struct bpf_prog *old_prog)
    669{
    670	struct bpf_cgroup_link *cg_link;
    671	int ret;
    672
    673	cg_link = container_of(link, struct bpf_cgroup_link, link);
    674
    675	mutex_lock(&cgroup_mutex);
    676	/* link might have been auto-released by dying cgroup, so fail */
    677	if (!cg_link->cgroup) {
    678		ret = -ENOLINK;
    679		goto out_unlock;
    680	}
    681	if (old_prog && link->prog != old_prog) {
    682		ret = -EPERM;
    683		goto out_unlock;
    684	}
    685	ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
    686out_unlock:
    687	mutex_unlock(&cgroup_mutex);
    688	return ret;
    689}
    690
    691static struct bpf_prog_list *find_detach_entry(struct list_head *progs,
    692					       struct bpf_prog *prog,
    693					       struct bpf_cgroup_link *link,
    694					       bool allow_multi)
    695{
    696	struct bpf_prog_list *pl;
    697
    698	if (!allow_multi) {
    699		if (list_empty(progs))
    700			/* report error when trying to detach and nothing is attached */
    701			return ERR_PTR(-ENOENT);
    702
    703		/* to maintain backward compatibility NONE and OVERRIDE cgroups
    704		 * allow detaching with invalid FD (prog==NULL) in legacy mode
    705		 */
    706		return list_first_entry(progs, typeof(*pl), node);
    707	}
    708
    709	if (!prog && !link)
    710		/* to detach MULTI prog the user has to specify valid FD
    711		 * of the program or link to be detached
    712		 */
    713		return ERR_PTR(-EINVAL);
    714
    715	/* find the prog or link and detach it */
    716	list_for_each_entry(pl, progs, node) {
    717		if (pl->prog == prog && pl->link == link)
    718			return pl;
    719	}
    720	return ERR_PTR(-ENOENT);
    721}
    722
    723/**
    724 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
    725 *                         propagate the change to descendants
    726 * @cgrp: The cgroup which descendants to traverse
    727 * @prog: A program to detach or NULL
    728 * @link: A link to detach or NULL
    729 * @type: Type of detach operation
    730 *
    731 * At most one of @prog or @link can be non-NULL.
    732 * Must be called with cgroup_mutex held.
    733 */
    734static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
    735			       struct bpf_cgroup_link *link, enum bpf_attach_type type)
    736{
    737	enum cgroup_bpf_attach_type atype;
    738	struct bpf_prog *old_prog;
    739	struct bpf_prog_list *pl;
    740	struct list_head *progs;
    741	u32 flags;
    742	int err;
    743
    744	atype = to_cgroup_bpf_attach_type(type);
    745	if (atype < 0)
    746		return -EINVAL;
    747
    748	progs = &cgrp->bpf.progs[atype];
    749	flags = cgrp->bpf.flags[atype];
    750
    751	if (prog && link)
    752		/* only one of prog or link can be specified */
    753		return -EINVAL;
    754
    755	pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
    756	if (IS_ERR(pl))
    757		return PTR_ERR(pl);
    758
    759	/* mark it deleted, so it's ignored while recomputing effective */
    760	old_prog = pl->prog;
    761	pl->prog = NULL;
    762	pl->link = NULL;
    763
    764	err = update_effective_progs(cgrp, atype);
    765	if (err)
    766		goto cleanup;
    767
    768	/* now can actually delete it from this cgroup list */
    769	list_del(&pl->node);
    770	kfree(pl);
    771	if (list_empty(progs))
    772		/* last program was detached, reset flags to zero */
    773		cgrp->bpf.flags[atype] = 0;
    774	if (old_prog)
    775		bpf_prog_put(old_prog);
    776	static_branch_dec(&cgroup_bpf_enabled_key[atype]);
    777	return 0;
    778
    779cleanup:
    780	/* restore back prog or link */
    781	pl->prog = old_prog;
    782	pl->link = link;
    783	return err;
    784}
    785
    786static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
    787			     enum bpf_attach_type type)
    788{
    789	int ret;
    790
    791	mutex_lock(&cgroup_mutex);
    792	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
    793	mutex_unlock(&cgroup_mutex);
    794	return ret;
    795}
    796
    797/* Must be called with cgroup_mutex held to avoid races. */
    798static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
    799			      union bpf_attr __user *uattr)
    800{
    801	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
    802	enum bpf_attach_type type = attr->query.attach_type;
    803	enum cgroup_bpf_attach_type atype;
    804	struct bpf_prog_array *effective;
    805	struct list_head *progs;
    806	struct bpf_prog *prog;
    807	int cnt, ret = 0, i;
    808	u32 flags;
    809
    810	atype = to_cgroup_bpf_attach_type(type);
    811	if (atype < 0)
    812		return -EINVAL;
    813
    814	progs = &cgrp->bpf.progs[atype];
    815	flags = cgrp->bpf.flags[atype];
    816
    817	effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
    818					      lockdep_is_held(&cgroup_mutex));
    819
    820	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
    821		cnt = bpf_prog_array_length(effective);
    822	else
    823		cnt = prog_list_length(progs);
    824
    825	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
    826		return -EFAULT;
    827	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
    828		return -EFAULT;
    829	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
    830		/* return early if user requested only program count + flags */
    831		return 0;
    832	if (attr->query.prog_cnt < cnt) {
    833		cnt = attr->query.prog_cnt;
    834		ret = -ENOSPC;
    835	}
    836
    837	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
    838		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
    839	} else {
    840		struct bpf_prog_list *pl;
    841		u32 id;
    842
    843		i = 0;
    844		list_for_each_entry(pl, progs, node) {
    845			prog = prog_list_prog(pl);
    846			id = prog->aux->id;
    847			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
    848				return -EFAULT;
    849			if (++i == cnt)
    850				break;
    851		}
    852	}
    853	return ret;
    854}
    855
    856static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
    857			    union bpf_attr __user *uattr)
    858{
    859	int ret;
    860
    861	mutex_lock(&cgroup_mutex);
    862	ret = __cgroup_bpf_query(cgrp, attr, uattr);
    863	mutex_unlock(&cgroup_mutex);
    864	return ret;
    865}
    866
    867int cgroup_bpf_prog_attach(const union bpf_attr *attr,
    868			   enum bpf_prog_type ptype, struct bpf_prog *prog)
    869{
    870	struct bpf_prog *replace_prog = NULL;
    871	struct cgroup *cgrp;
    872	int ret;
    873
    874	cgrp = cgroup_get_from_fd(attr->target_fd);
    875	if (IS_ERR(cgrp))
    876		return PTR_ERR(cgrp);
    877
    878	if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
    879	    (attr->attach_flags & BPF_F_REPLACE)) {
    880		replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
    881		if (IS_ERR(replace_prog)) {
    882			cgroup_put(cgrp);
    883			return PTR_ERR(replace_prog);
    884		}
    885	}
    886
    887	ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
    888				attr->attach_type, attr->attach_flags);
    889
    890	if (replace_prog)
    891		bpf_prog_put(replace_prog);
    892	cgroup_put(cgrp);
    893	return ret;
    894}
    895
    896int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
    897{
    898	struct bpf_prog *prog;
    899	struct cgroup *cgrp;
    900	int ret;
    901
    902	cgrp = cgroup_get_from_fd(attr->target_fd);
    903	if (IS_ERR(cgrp))
    904		return PTR_ERR(cgrp);
    905
    906	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
    907	if (IS_ERR(prog))
    908		prog = NULL;
    909
    910	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
    911	if (prog)
    912		bpf_prog_put(prog);
    913
    914	cgroup_put(cgrp);
    915	return ret;
    916}
    917
    918static void bpf_cgroup_link_release(struct bpf_link *link)
    919{
    920	struct bpf_cgroup_link *cg_link =
    921		container_of(link, struct bpf_cgroup_link, link);
    922	struct cgroup *cg;
    923
    924	/* link might have been auto-detached by dying cgroup already,
    925	 * in that case our work is done here
    926	 */
    927	if (!cg_link->cgroup)
    928		return;
    929
    930	mutex_lock(&cgroup_mutex);
    931
    932	/* re-check cgroup under lock again */
    933	if (!cg_link->cgroup) {
    934		mutex_unlock(&cgroup_mutex);
    935		return;
    936	}
    937
    938	WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
    939				    cg_link->type));
    940
    941	cg = cg_link->cgroup;
    942	cg_link->cgroup = NULL;
    943
    944	mutex_unlock(&cgroup_mutex);
    945
    946	cgroup_put(cg);
    947}
    948
    949static void bpf_cgroup_link_dealloc(struct bpf_link *link)
    950{
    951	struct bpf_cgroup_link *cg_link =
    952		container_of(link, struct bpf_cgroup_link, link);
    953
    954	kfree(cg_link);
    955}
    956
    957static int bpf_cgroup_link_detach(struct bpf_link *link)
    958{
    959	bpf_cgroup_link_release(link);
    960
    961	return 0;
    962}
    963
    964static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
    965					struct seq_file *seq)
    966{
    967	struct bpf_cgroup_link *cg_link =
    968		container_of(link, struct bpf_cgroup_link, link);
    969	u64 cg_id = 0;
    970
    971	mutex_lock(&cgroup_mutex);
    972	if (cg_link->cgroup)
    973		cg_id = cgroup_id(cg_link->cgroup);
    974	mutex_unlock(&cgroup_mutex);
    975
    976	seq_printf(seq,
    977		   "cgroup_id:\t%llu\n"
    978		   "attach_type:\t%d\n",
    979		   cg_id,
    980		   cg_link->type);
    981}
    982
    983static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
    984					  struct bpf_link_info *info)
    985{
    986	struct bpf_cgroup_link *cg_link =
    987		container_of(link, struct bpf_cgroup_link, link);
    988	u64 cg_id = 0;
    989
    990	mutex_lock(&cgroup_mutex);
    991	if (cg_link->cgroup)
    992		cg_id = cgroup_id(cg_link->cgroup);
    993	mutex_unlock(&cgroup_mutex);
    994
    995	info->cgroup.cgroup_id = cg_id;
    996	info->cgroup.attach_type = cg_link->type;
    997	return 0;
    998}
    999
   1000static const struct bpf_link_ops bpf_cgroup_link_lops = {
   1001	.release = bpf_cgroup_link_release,
   1002	.dealloc = bpf_cgroup_link_dealloc,
   1003	.detach = bpf_cgroup_link_detach,
   1004	.update_prog = cgroup_bpf_replace,
   1005	.show_fdinfo = bpf_cgroup_link_show_fdinfo,
   1006	.fill_link_info = bpf_cgroup_link_fill_link_info,
   1007};
   1008
   1009int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
   1010{
   1011	struct bpf_link_primer link_primer;
   1012	struct bpf_cgroup_link *link;
   1013	struct cgroup *cgrp;
   1014	int err;
   1015
   1016	if (attr->link_create.flags)
   1017		return -EINVAL;
   1018
   1019	cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
   1020	if (IS_ERR(cgrp))
   1021		return PTR_ERR(cgrp);
   1022
   1023	link = kzalloc(sizeof(*link), GFP_USER);
   1024	if (!link) {
   1025		err = -ENOMEM;
   1026		goto out_put_cgroup;
   1027	}
   1028	bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
   1029		      prog);
   1030	link->cgroup = cgrp;
   1031	link->type = attr->link_create.attach_type;
   1032
   1033	err = bpf_link_prime(&link->link, &link_primer);
   1034	if (err) {
   1035		kfree(link);
   1036		goto out_put_cgroup;
   1037	}
   1038
   1039	err = cgroup_bpf_attach(cgrp, NULL, NULL, link,
   1040				link->type, BPF_F_ALLOW_MULTI);
   1041	if (err) {
   1042		bpf_link_cleanup(&link_primer);
   1043		goto out_put_cgroup;
   1044	}
   1045
   1046	return bpf_link_settle(&link_primer);
   1047
   1048out_put_cgroup:
   1049	cgroup_put(cgrp);
   1050	return err;
   1051}
   1052
   1053int cgroup_bpf_prog_query(const union bpf_attr *attr,
   1054			  union bpf_attr __user *uattr)
   1055{
   1056	struct cgroup *cgrp;
   1057	int ret;
   1058
   1059	cgrp = cgroup_get_from_fd(attr->query.target_fd);
   1060	if (IS_ERR(cgrp))
   1061		return PTR_ERR(cgrp);
   1062
   1063	ret = cgroup_bpf_query(cgrp, attr, uattr);
   1064
   1065	cgroup_put(cgrp);
   1066	return ret;
   1067}
   1068
   1069/**
   1070 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
   1071 * @sk: The socket sending or receiving traffic
   1072 * @skb: The skb that is being sent or received
   1073 * @type: The type of program to be executed
   1074 *
   1075 * If no socket is passed, or the socket is not of type INET or INET6,
   1076 * this function does nothing and returns 0.
   1077 *
   1078 * The program type passed in via @type must be suitable for network
   1079 * filtering. No further check is performed to assert that.
   1080 *
   1081 * For egress packets, this function can return:
   1082 *   NET_XMIT_SUCCESS    (0)	- continue with packet output
   1083 *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
   1084 *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
   1085 *				  to call cwr
   1086 *   -err			- drop packet
   1087 *
   1088 * For ingress packets, this function will return -EPERM if any
   1089 * attached program was found and if it returned != 1 during execution.
   1090 * Otherwise 0 is returned.
   1091 */
   1092int __cgroup_bpf_run_filter_skb(struct sock *sk,
   1093				struct sk_buff *skb,
   1094				enum cgroup_bpf_attach_type atype)
   1095{
   1096	unsigned int offset = skb->data - skb_network_header(skb);
   1097	struct sock *save_sk;
   1098	void *saved_data_end;
   1099	struct cgroup *cgrp;
   1100	int ret;
   1101
   1102	if (!sk || !sk_fullsock(sk))
   1103		return 0;
   1104
   1105	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
   1106		return 0;
   1107
   1108	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
   1109	save_sk = skb->sk;
   1110	skb->sk = sk;
   1111	__skb_push(skb, offset);
   1112
   1113	/* compute pointers for the bpf prog */
   1114	bpf_compute_and_save_data_end(skb, &saved_data_end);
   1115
   1116	if (atype == CGROUP_INET_EGRESS) {
   1117		u32 flags = 0;
   1118		bool cn;
   1119
   1120		ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb,
   1121					    __bpf_prog_run_save_cb, 0, &flags);
   1122
   1123		/* Return values of CGROUP EGRESS BPF programs are:
   1124		 *   0: drop packet
   1125		 *   1: keep packet
   1126		 *   2: drop packet and cn
   1127		 *   3: keep packet and cn
   1128		 *
   1129		 * The returned value is then converted to one of the NET_XMIT
   1130		 * or an error code that is then interpreted as drop packet
   1131		 * (and no cn):
   1132		 *   0: NET_XMIT_SUCCESS  skb should be transmitted
   1133		 *   1: NET_XMIT_DROP     skb should be dropped and cn
   1134		 *   2: NET_XMIT_CN       skb should be transmitted and cn
   1135		 *   3: -err              skb should be dropped
   1136		 */
   1137
   1138		cn = flags & BPF_RET_SET_CN;
   1139		if (ret && !IS_ERR_VALUE((long)ret))
   1140			ret = -EFAULT;
   1141		if (!ret)
   1142			ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS);
   1143		else
   1144			ret = (cn ? NET_XMIT_DROP : ret);
   1145	} else {
   1146		ret = bpf_prog_run_array_cg(&cgrp->bpf, atype,
   1147					    skb, __bpf_prog_run_save_cb, 0,
   1148					    NULL);
   1149		if (ret && !IS_ERR_VALUE((long)ret))
   1150			ret = -EFAULT;
   1151	}
   1152	bpf_restore_data_end(skb, saved_data_end);
   1153	__skb_pull(skb, offset);
   1154	skb->sk = save_sk;
   1155
   1156	return ret;
   1157}
   1158EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
   1159
   1160/**
   1161 * __cgroup_bpf_run_filter_sk() - Run a program on a sock
   1162 * @sk: sock structure to manipulate
   1163 * @type: The type of program to be executed
   1164 *
   1165 * socket is passed is expected to be of type INET or INET6.
   1166 *
   1167 * The program type passed in via @type must be suitable for sock
   1168 * filtering. No further check is performed to assert that.
   1169 *
   1170 * This function will return %-EPERM if any if an attached program was found
   1171 * and if it returned != 1 during execution. In all other cases, 0 is returned.
   1172 */
   1173int __cgroup_bpf_run_filter_sk(struct sock *sk,
   1174			       enum cgroup_bpf_attach_type atype)
   1175{
   1176	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
   1177
   1178	return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0,
   1179				     NULL);
   1180}
   1181EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
   1182
   1183/**
   1184 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
   1185 *                                       provided by user sockaddr
   1186 * @sk: sock struct that will use sockaddr
   1187 * @uaddr: sockaddr struct provided by user
   1188 * @type: The type of program to be executed
   1189 * @t_ctx: Pointer to attach type specific context
   1190 * @flags: Pointer to u32 which contains higher bits of BPF program
   1191 *         return value (OR'ed together).
   1192 *
   1193 * socket is expected to be of type INET or INET6.
   1194 *
   1195 * This function will return %-EPERM if an attached program is found and
   1196 * returned value != 1 during execution. In all other cases, 0 is returned.
   1197 */
   1198int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
   1199				      struct sockaddr *uaddr,
   1200				      enum cgroup_bpf_attach_type atype,
   1201				      void *t_ctx,
   1202				      u32 *flags)
   1203{
   1204	struct bpf_sock_addr_kern ctx = {
   1205		.sk = sk,
   1206		.uaddr = uaddr,
   1207		.t_ctx = t_ctx,
   1208	};
   1209	struct sockaddr_storage unspec;
   1210	struct cgroup *cgrp;
   1211
   1212	/* Check socket family since not all sockets represent network
   1213	 * endpoint (e.g. AF_UNIX).
   1214	 */
   1215	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
   1216		return 0;
   1217
   1218	if (!ctx.uaddr) {
   1219		memset(&unspec, 0, sizeof(unspec));
   1220		ctx.uaddr = (struct sockaddr *)&unspec;
   1221	}
   1222
   1223	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
   1224	return bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run,
   1225				     0, flags);
   1226}
   1227EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
   1228
   1229/**
   1230 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
   1231 * @sk: socket to get cgroup from
   1232 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
   1233 * sk with connection information (IP addresses, etc.) May not contain
   1234 * cgroup info if it is a req sock.
   1235 * @type: The type of program to be executed
   1236 *
   1237 * socket passed is expected to be of type INET or INET6.
   1238 *
   1239 * The program type passed in via @type must be suitable for sock_ops
   1240 * filtering. No further check is performed to assert that.
   1241 *
   1242 * This function will return %-EPERM if any if an attached program was found
   1243 * and if it returned != 1 during execution. In all other cases, 0 is returned.
   1244 */
   1245int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
   1246				     struct bpf_sock_ops_kern *sock_ops,
   1247				     enum cgroup_bpf_attach_type atype)
   1248{
   1249	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
   1250
   1251	return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run,
   1252				     0, NULL);
   1253}
   1254EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
   1255
   1256int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
   1257				      short access, enum cgroup_bpf_attach_type atype)
   1258{
   1259	struct cgroup *cgrp;
   1260	struct bpf_cgroup_dev_ctx ctx = {
   1261		.access_type = (access << 16) | dev_type,
   1262		.major = major,
   1263		.minor = minor,
   1264	};
   1265	int ret;
   1266
   1267	rcu_read_lock();
   1268	cgrp = task_dfl_cgroup(current);
   1269	ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0,
   1270				    NULL);
   1271	rcu_read_unlock();
   1272
   1273	return ret;
   1274}
   1275
   1276BPF_CALL_0(bpf_get_retval)
   1277{
   1278	struct bpf_cg_run_ctx *ctx =
   1279		container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
   1280
   1281	return ctx->retval;
   1282}
   1283
   1284static const struct bpf_func_proto bpf_get_retval_proto = {
   1285	.func		= bpf_get_retval,
   1286	.gpl_only	= false,
   1287	.ret_type	= RET_INTEGER,
   1288};
   1289
   1290BPF_CALL_1(bpf_set_retval, int, retval)
   1291{
   1292	struct bpf_cg_run_ctx *ctx =
   1293		container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
   1294
   1295	ctx->retval = retval;
   1296	return 0;
   1297}
   1298
   1299static const struct bpf_func_proto bpf_set_retval_proto = {
   1300	.func		= bpf_set_retval,
   1301	.gpl_only	= false,
   1302	.ret_type	= RET_INTEGER,
   1303	.arg1_type	= ARG_ANYTHING,
   1304};
   1305
   1306static const struct bpf_func_proto *
   1307cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
   1308{
   1309	switch (func_id) {
   1310	case BPF_FUNC_get_current_uid_gid:
   1311		return &bpf_get_current_uid_gid_proto;
   1312	case BPF_FUNC_get_local_storage:
   1313		return &bpf_get_local_storage_proto;
   1314	case BPF_FUNC_get_current_cgroup_id:
   1315		return &bpf_get_current_cgroup_id_proto;
   1316	case BPF_FUNC_perf_event_output:
   1317		return &bpf_event_output_data_proto;
   1318	case BPF_FUNC_get_retval:
   1319		return &bpf_get_retval_proto;
   1320	case BPF_FUNC_set_retval:
   1321		return &bpf_set_retval_proto;
   1322	default:
   1323		return bpf_base_func_proto(func_id);
   1324	}
   1325}
   1326
   1327static const struct bpf_func_proto *
   1328cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
   1329{
   1330	return cgroup_base_func_proto(func_id, prog);
   1331}
   1332
   1333static bool cgroup_dev_is_valid_access(int off, int size,
   1334				       enum bpf_access_type type,
   1335				       const struct bpf_prog *prog,
   1336				       struct bpf_insn_access_aux *info)
   1337{
   1338	const int size_default = sizeof(__u32);
   1339
   1340	if (type == BPF_WRITE)
   1341		return false;
   1342
   1343	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
   1344		return false;
   1345	/* The verifier guarantees that size > 0. */
   1346	if (off % size != 0)
   1347		return false;
   1348
   1349	switch (off) {
   1350	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
   1351		bpf_ctx_record_field_size(info, size_default);
   1352		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
   1353			return false;
   1354		break;
   1355	default:
   1356		if (size != size_default)
   1357			return false;
   1358	}
   1359
   1360	return true;
   1361}
   1362
   1363const struct bpf_prog_ops cg_dev_prog_ops = {
   1364};
   1365
   1366const struct bpf_verifier_ops cg_dev_verifier_ops = {
   1367	.get_func_proto		= cgroup_dev_func_proto,
   1368	.is_valid_access	= cgroup_dev_is_valid_access,
   1369};
   1370
   1371/**
   1372 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
   1373 *
   1374 * @head: sysctl table header
   1375 * @table: sysctl table
   1376 * @write: sysctl is being read (= 0) or written (= 1)
   1377 * @buf: pointer to buffer (in and out)
   1378 * @pcount: value-result argument: value is size of buffer pointed to by @buf,
   1379 *	result is size of @new_buf if program set new value, initial value
   1380 *	otherwise
   1381 * @ppos: value-result argument: value is position at which read from or write
   1382 *	to sysctl is happening, result is new position if program overrode it,
   1383 *	initial value otherwise
   1384 * @type: type of program to be executed
   1385 *
   1386 * Program is run when sysctl is being accessed, either read or written, and
   1387 * can allow or deny such access.
   1388 *
   1389 * This function will return %-EPERM if an attached program is found and
   1390 * returned value != 1 during execution. In all other cases 0 is returned.
   1391 */
   1392int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
   1393				   struct ctl_table *table, int write,
   1394				   char **buf, size_t *pcount, loff_t *ppos,
   1395				   enum cgroup_bpf_attach_type atype)
   1396{
   1397	struct bpf_sysctl_kern ctx = {
   1398		.head = head,
   1399		.table = table,
   1400		.write = write,
   1401		.ppos = ppos,
   1402		.cur_val = NULL,
   1403		.cur_len = PAGE_SIZE,
   1404		.new_val = NULL,
   1405		.new_len = 0,
   1406		.new_updated = 0,
   1407	};
   1408	struct cgroup *cgrp;
   1409	loff_t pos = 0;
   1410	int ret;
   1411
   1412	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
   1413	if (!ctx.cur_val ||
   1414	    table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
   1415		/* Let BPF program decide how to proceed. */
   1416		ctx.cur_len = 0;
   1417	}
   1418
   1419	if (write && *buf && *pcount) {
   1420		/* BPF program should be able to override new value with a
   1421		 * buffer bigger than provided by user.
   1422		 */
   1423		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
   1424		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
   1425		if (ctx.new_val) {
   1426			memcpy(ctx.new_val, *buf, ctx.new_len);
   1427		} else {
   1428			/* Let BPF program decide how to proceed. */
   1429			ctx.new_len = 0;
   1430		}
   1431	}
   1432
   1433	rcu_read_lock();
   1434	cgrp = task_dfl_cgroup(current);
   1435	ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0,
   1436				    NULL);
   1437	rcu_read_unlock();
   1438
   1439	kfree(ctx.cur_val);
   1440
   1441	if (ret == 1 && ctx.new_updated) {
   1442		kfree(*buf);
   1443		*buf = ctx.new_val;
   1444		*pcount = ctx.new_len;
   1445	} else {
   1446		kfree(ctx.new_val);
   1447	}
   1448
   1449	return ret;
   1450}
   1451
   1452#ifdef CONFIG_NET
   1453static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen,
   1454			     struct bpf_sockopt_buf *buf)
   1455{
   1456	if (unlikely(max_optlen < 0))
   1457		return -EINVAL;
   1458
   1459	if (unlikely(max_optlen > PAGE_SIZE)) {
   1460		/* We don't expose optvals that are greater than PAGE_SIZE
   1461		 * to the BPF program.
   1462		 */
   1463		max_optlen = PAGE_SIZE;
   1464	}
   1465
   1466	if (max_optlen <= sizeof(buf->data)) {
   1467		/* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE
   1468		 * bytes avoid the cost of kzalloc.
   1469		 */
   1470		ctx->optval = buf->data;
   1471		ctx->optval_end = ctx->optval + max_optlen;
   1472		return max_optlen;
   1473	}
   1474
   1475	ctx->optval = kzalloc(max_optlen, GFP_USER);
   1476	if (!ctx->optval)
   1477		return -ENOMEM;
   1478
   1479	ctx->optval_end = ctx->optval + max_optlen;
   1480
   1481	return max_optlen;
   1482}
   1483
   1484static void sockopt_free_buf(struct bpf_sockopt_kern *ctx,
   1485			     struct bpf_sockopt_buf *buf)
   1486{
   1487	if (ctx->optval == buf->data)
   1488		return;
   1489	kfree(ctx->optval);
   1490}
   1491
   1492static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx,
   1493				  struct bpf_sockopt_buf *buf)
   1494{
   1495	return ctx->optval != buf->data;
   1496}
   1497
   1498int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
   1499				       int *optname, char __user *optval,
   1500				       int *optlen, char **kernel_optval)
   1501{
   1502	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
   1503	struct bpf_sockopt_buf buf = {};
   1504	struct bpf_sockopt_kern ctx = {
   1505		.sk = sk,
   1506		.level = *level,
   1507		.optname = *optname,
   1508	};
   1509	int ret, max_optlen;
   1510
   1511	/* Allocate a bit more than the initial user buffer for
   1512	 * BPF program. The canonical use case is overriding
   1513	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
   1514	 */
   1515	max_optlen = max_t(int, 16, *optlen);
   1516	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
   1517	if (max_optlen < 0)
   1518		return max_optlen;
   1519
   1520	ctx.optlen = *optlen;
   1521
   1522	if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
   1523		ret = -EFAULT;
   1524		goto out;
   1525	}
   1526
   1527	lock_sock(sk);
   1528	ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT,
   1529				    &ctx, bpf_prog_run, 0, NULL);
   1530	release_sock(sk);
   1531
   1532	if (ret)
   1533		goto out;
   1534
   1535	if (ctx.optlen == -1) {
   1536		/* optlen set to -1, bypass kernel */
   1537		ret = 1;
   1538	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
   1539		/* optlen is out of bounds */
   1540		ret = -EFAULT;
   1541	} else {
   1542		/* optlen within bounds, run kernel handler */
   1543		ret = 0;
   1544
   1545		/* export any potential modifications */
   1546		*level = ctx.level;
   1547		*optname = ctx.optname;
   1548
   1549		/* optlen == 0 from BPF indicates that we should
   1550		 * use original userspace data.
   1551		 */
   1552		if (ctx.optlen != 0) {
   1553			*optlen = ctx.optlen;
   1554			/* We've used bpf_sockopt_kern->buf as an intermediary
   1555			 * storage, but the BPF program indicates that we need
   1556			 * to pass this data to the kernel setsockopt handler.
   1557			 * No way to export on-stack buf, have to allocate a
   1558			 * new buffer.
   1559			 */
   1560			if (!sockopt_buf_allocated(&ctx, &buf)) {
   1561				void *p = kmalloc(ctx.optlen, GFP_USER);
   1562
   1563				if (!p) {
   1564					ret = -ENOMEM;
   1565					goto out;
   1566				}
   1567				memcpy(p, ctx.optval, ctx.optlen);
   1568				*kernel_optval = p;
   1569			} else {
   1570				*kernel_optval = ctx.optval;
   1571			}
   1572			/* export and don't free sockopt buf */
   1573			return 0;
   1574		}
   1575	}
   1576
   1577out:
   1578	sockopt_free_buf(&ctx, &buf);
   1579	return ret;
   1580}
   1581
   1582int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
   1583				       int optname, char __user *optval,
   1584				       int __user *optlen, int max_optlen,
   1585				       int retval)
   1586{
   1587	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
   1588	struct bpf_sockopt_buf buf = {};
   1589	struct bpf_sockopt_kern ctx = {
   1590		.sk = sk,
   1591		.level = level,
   1592		.optname = optname,
   1593		.current_task = current,
   1594	};
   1595	int ret;
   1596
   1597	ctx.optlen = max_optlen;
   1598	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
   1599	if (max_optlen < 0)
   1600		return max_optlen;
   1601
   1602	if (!retval) {
   1603		/* If kernel getsockopt finished successfully,
   1604		 * copy whatever was returned to the user back
   1605		 * into our temporary buffer. Set optlen to the
   1606		 * one that kernel returned as well to let
   1607		 * BPF programs inspect the value.
   1608		 */
   1609
   1610		if (get_user(ctx.optlen, optlen)) {
   1611			ret = -EFAULT;
   1612			goto out;
   1613		}
   1614
   1615		if (ctx.optlen < 0) {
   1616			ret = -EFAULT;
   1617			goto out;
   1618		}
   1619
   1620		if (copy_from_user(ctx.optval, optval,
   1621				   min(ctx.optlen, max_optlen)) != 0) {
   1622			ret = -EFAULT;
   1623			goto out;
   1624		}
   1625	}
   1626
   1627	lock_sock(sk);
   1628	ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT,
   1629				    &ctx, bpf_prog_run, retval, NULL);
   1630	release_sock(sk);
   1631
   1632	if (ret < 0)
   1633		goto out;
   1634
   1635	if (ctx.optlen > max_optlen || ctx.optlen < 0) {
   1636		ret = -EFAULT;
   1637		goto out;
   1638	}
   1639
   1640	if (ctx.optlen != 0) {
   1641		if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
   1642		    put_user(ctx.optlen, optlen)) {
   1643			ret = -EFAULT;
   1644			goto out;
   1645		}
   1646	}
   1647
   1648out:
   1649	sockopt_free_buf(&ctx, &buf);
   1650	return ret;
   1651}
   1652
   1653int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
   1654					    int optname, void *optval,
   1655					    int *optlen, int retval)
   1656{
   1657	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
   1658	struct bpf_sockopt_kern ctx = {
   1659		.sk = sk,
   1660		.level = level,
   1661		.optname = optname,
   1662		.optlen = *optlen,
   1663		.optval = optval,
   1664		.optval_end = optval + *optlen,
   1665		.current_task = current,
   1666	};
   1667	int ret;
   1668
   1669	/* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
   1670	 * user data back into BPF buffer when reval != 0. This is
   1671	 * done as an optimization to avoid extra copy, assuming
   1672	 * kernel won't populate the data in case of an error.
   1673	 * Here we always pass the data and memset() should
   1674	 * be called if that data shouldn't be "exported".
   1675	 */
   1676
   1677	ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT,
   1678				    &ctx, bpf_prog_run, retval, NULL);
   1679	if (ret < 0)
   1680		return ret;
   1681
   1682	if (ctx.optlen > *optlen)
   1683		return -EFAULT;
   1684
   1685	/* BPF programs can shrink the buffer, export the modifications.
   1686	 */
   1687	if (ctx.optlen != 0)
   1688		*optlen = ctx.optlen;
   1689
   1690	return ret;
   1691}
   1692#endif
   1693
   1694static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
   1695			      size_t *lenp)
   1696{
   1697	ssize_t tmp_ret = 0, ret;
   1698
   1699	if (dir->header.parent) {
   1700		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
   1701		if (tmp_ret < 0)
   1702			return tmp_ret;
   1703	}
   1704
   1705	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
   1706	if (ret < 0)
   1707		return ret;
   1708	*bufp += ret;
   1709	*lenp -= ret;
   1710	ret += tmp_ret;
   1711
   1712	/* Avoid leading slash. */
   1713	if (!ret)
   1714		return ret;
   1715
   1716	tmp_ret = strscpy(*bufp, "/", *lenp);
   1717	if (tmp_ret < 0)
   1718		return tmp_ret;
   1719	*bufp += tmp_ret;
   1720	*lenp -= tmp_ret;
   1721
   1722	return ret + tmp_ret;
   1723}
   1724
   1725BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
   1726	   size_t, buf_len, u64, flags)
   1727{
   1728	ssize_t tmp_ret = 0, ret;
   1729
   1730	if (!buf)
   1731		return -EINVAL;
   1732
   1733	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
   1734		if (!ctx->head)
   1735			return -EINVAL;
   1736		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
   1737		if (tmp_ret < 0)
   1738			return tmp_ret;
   1739	}
   1740
   1741	ret = strscpy(buf, ctx->table->procname, buf_len);
   1742
   1743	return ret < 0 ? ret : tmp_ret + ret;
   1744}
   1745
   1746static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
   1747	.func		= bpf_sysctl_get_name,
   1748	.gpl_only	= false,
   1749	.ret_type	= RET_INTEGER,
   1750	.arg1_type	= ARG_PTR_TO_CTX,
   1751	.arg2_type	= ARG_PTR_TO_MEM,
   1752	.arg3_type	= ARG_CONST_SIZE,
   1753	.arg4_type	= ARG_ANYTHING,
   1754};
   1755
   1756static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
   1757			     size_t src_len)
   1758{
   1759	if (!dst)
   1760		return -EINVAL;
   1761
   1762	if (!dst_len)
   1763		return -E2BIG;
   1764
   1765	if (!src || !src_len) {
   1766		memset(dst, 0, dst_len);
   1767		return -EINVAL;
   1768	}
   1769
   1770	memcpy(dst, src, min(dst_len, src_len));
   1771
   1772	if (dst_len > src_len) {
   1773		memset(dst + src_len, '\0', dst_len - src_len);
   1774		return src_len;
   1775	}
   1776
   1777	dst[dst_len - 1] = '\0';
   1778
   1779	return -E2BIG;
   1780}
   1781
   1782BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
   1783	   char *, buf, size_t, buf_len)
   1784{
   1785	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
   1786}
   1787
   1788static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
   1789	.func		= bpf_sysctl_get_current_value,
   1790	.gpl_only	= false,
   1791	.ret_type	= RET_INTEGER,
   1792	.arg1_type	= ARG_PTR_TO_CTX,
   1793	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
   1794	.arg3_type	= ARG_CONST_SIZE,
   1795};
   1796
   1797BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
   1798	   size_t, buf_len)
   1799{
   1800	if (!ctx->write) {
   1801		if (buf && buf_len)
   1802			memset(buf, '\0', buf_len);
   1803		return -EINVAL;
   1804	}
   1805	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
   1806}
   1807
   1808static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
   1809	.func		= bpf_sysctl_get_new_value,
   1810	.gpl_only	= false,
   1811	.ret_type	= RET_INTEGER,
   1812	.arg1_type	= ARG_PTR_TO_CTX,
   1813	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
   1814	.arg3_type	= ARG_CONST_SIZE,
   1815};
   1816
   1817BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
   1818	   const char *, buf, size_t, buf_len)
   1819{
   1820	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
   1821		return -EINVAL;
   1822
   1823	if (buf_len > PAGE_SIZE - 1)
   1824		return -E2BIG;
   1825
   1826	memcpy(ctx->new_val, buf, buf_len);
   1827	ctx->new_len = buf_len;
   1828	ctx->new_updated = 1;
   1829
   1830	return 0;
   1831}
   1832
   1833static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
   1834	.func		= bpf_sysctl_set_new_value,
   1835	.gpl_only	= false,
   1836	.ret_type	= RET_INTEGER,
   1837	.arg1_type	= ARG_PTR_TO_CTX,
   1838	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
   1839	.arg3_type	= ARG_CONST_SIZE,
   1840};
   1841
   1842static const struct bpf_func_proto *
   1843sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
   1844{
   1845	switch (func_id) {
   1846	case BPF_FUNC_strtol:
   1847		return &bpf_strtol_proto;
   1848	case BPF_FUNC_strtoul:
   1849		return &bpf_strtoul_proto;
   1850	case BPF_FUNC_sysctl_get_name:
   1851		return &bpf_sysctl_get_name_proto;
   1852	case BPF_FUNC_sysctl_get_current_value:
   1853		return &bpf_sysctl_get_current_value_proto;
   1854	case BPF_FUNC_sysctl_get_new_value:
   1855		return &bpf_sysctl_get_new_value_proto;
   1856	case BPF_FUNC_sysctl_set_new_value:
   1857		return &bpf_sysctl_set_new_value_proto;
   1858	case BPF_FUNC_ktime_get_coarse_ns:
   1859		return &bpf_ktime_get_coarse_ns_proto;
   1860	default:
   1861		return cgroup_base_func_proto(func_id, prog);
   1862	}
   1863}
   1864
   1865static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
   1866				   const struct bpf_prog *prog,
   1867				   struct bpf_insn_access_aux *info)
   1868{
   1869	const int size_default = sizeof(__u32);
   1870
   1871	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
   1872		return false;
   1873
   1874	switch (off) {
   1875	case bpf_ctx_range(struct bpf_sysctl, write):
   1876		if (type != BPF_READ)
   1877			return false;
   1878		bpf_ctx_record_field_size(info, size_default);
   1879		return bpf_ctx_narrow_access_ok(off, size, size_default);
   1880	case bpf_ctx_range(struct bpf_sysctl, file_pos):
   1881		if (type == BPF_READ) {
   1882			bpf_ctx_record_field_size(info, size_default);
   1883			return bpf_ctx_narrow_access_ok(off, size, size_default);
   1884		} else {
   1885			return size == size_default;
   1886		}
   1887	default:
   1888		return false;
   1889	}
   1890}
   1891
   1892static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
   1893				     const struct bpf_insn *si,
   1894				     struct bpf_insn *insn_buf,
   1895				     struct bpf_prog *prog, u32 *target_size)
   1896{
   1897	struct bpf_insn *insn = insn_buf;
   1898	u32 read_size;
   1899
   1900	switch (si->off) {
   1901	case offsetof(struct bpf_sysctl, write):
   1902		*insn++ = BPF_LDX_MEM(
   1903			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
   1904			bpf_target_off(struct bpf_sysctl_kern, write,
   1905				       sizeof_field(struct bpf_sysctl_kern,
   1906						    write),
   1907				       target_size));
   1908		break;
   1909	case offsetof(struct bpf_sysctl, file_pos):
   1910		/* ppos is a pointer so it should be accessed via indirect
   1911		 * loads and stores. Also for stores additional temporary
   1912		 * register is used since neither src_reg nor dst_reg can be
   1913		 * overridden.
   1914		 */
   1915		if (type == BPF_WRITE) {
   1916			int treg = BPF_REG_9;
   1917
   1918			if (si->src_reg == treg || si->dst_reg == treg)
   1919				--treg;
   1920			if (si->src_reg == treg || si->dst_reg == treg)
   1921				--treg;
   1922			*insn++ = BPF_STX_MEM(
   1923				BPF_DW, si->dst_reg, treg,
   1924				offsetof(struct bpf_sysctl_kern, tmp_reg));
   1925			*insn++ = BPF_LDX_MEM(
   1926				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
   1927				treg, si->dst_reg,
   1928				offsetof(struct bpf_sysctl_kern, ppos));
   1929			*insn++ = BPF_STX_MEM(
   1930				BPF_SIZEOF(u32), treg, si->src_reg,
   1931				bpf_ctx_narrow_access_offset(
   1932					0, sizeof(u32), sizeof(loff_t)));
   1933			*insn++ = BPF_LDX_MEM(
   1934				BPF_DW, treg, si->dst_reg,
   1935				offsetof(struct bpf_sysctl_kern, tmp_reg));
   1936		} else {
   1937			*insn++ = BPF_LDX_MEM(
   1938				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
   1939				si->dst_reg, si->src_reg,
   1940				offsetof(struct bpf_sysctl_kern, ppos));
   1941			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
   1942			*insn++ = BPF_LDX_MEM(
   1943				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
   1944				bpf_ctx_narrow_access_offset(
   1945					0, read_size, sizeof(loff_t)));
   1946		}
   1947		*target_size = sizeof(u32);
   1948		break;
   1949	}
   1950
   1951	return insn - insn_buf;
   1952}
   1953
   1954const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
   1955	.get_func_proto		= sysctl_func_proto,
   1956	.is_valid_access	= sysctl_is_valid_access,
   1957	.convert_ctx_access	= sysctl_convert_ctx_access,
   1958};
   1959
   1960const struct bpf_prog_ops cg_sysctl_prog_ops = {
   1961};
   1962
   1963#ifdef CONFIG_NET
   1964BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx)
   1965{
   1966	const struct net *net = ctx ? sock_net(ctx->sk) : &init_net;
   1967
   1968	return net->net_cookie;
   1969}
   1970
   1971static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = {
   1972	.func		= bpf_get_netns_cookie_sockopt,
   1973	.gpl_only	= false,
   1974	.ret_type	= RET_INTEGER,
   1975	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
   1976};
   1977#endif
   1978
   1979static const struct bpf_func_proto *
   1980cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
   1981{
   1982	switch (func_id) {
   1983#ifdef CONFIG_NET
   1984	case BPF_FUNC_get_netns_cookie:
   1985		return &bpf_get_netns_cookie_sockopt_proto;
   1986	case BPF_FUNC_sk_storage_get:
   1987		return &bpf_sk_storage_get_proto;
   1988	case BPF_FUNC_sk_storage_delete:
   1989		return &bpf_sk_storage_delete_proto;
   1990	case BPF_FUNC_setsockopt:
   1991		if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
   1992			return &bpf_sk_setsockopt_proto;
   1993		return NULL;
   1994	case BPF_FUNC_getsockopt:
   1995		if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
   1996			return &bpf_sk_getsockopt_proto;
   1997		return NULL;
   1998#endif
   1999#ifdef CONFIG_INET
   2000	case BPF_FUNC_tcp_sock:
   2001		return &bpf_tcp_sock_proto;
   2002#endif
   2003	default:
   2004		return cgroup_base_func_proto(func_id, prog);
   2005	}
   2006}
   2007
   2008static bool cg_sockopt_is_valid_access(int off, int size,
   2009				       enum bpf_access_type type,
   2010				       const struct bpf_prog *prog,
   2011				       struct bpf_insn_access_aux *info)
   2012{
   2013	const int size_default = sizeof(__u32);
   2014
   2015	if (off < 0 || off >= sizeof(struct bpf_sockopt))
   2016		return false;
   2017
   2018	if (off % size != 0)
   2019		return false;
   2020
   2021	if (type == BPF_WRITE) {
   2022		switch (off) {
   2023		case offsetof(struct bpf_sockopt, retval):
   2024			if (size != size_default)
   2025				return false;
   2026			return prog->expected_attach_type ==
   2027				BPF_CGROUP_GETSOCKOPT;
   2028		case offsetof(struct bpf_sockopt, optname):
   2029			fallthrough;
   2030		case offsetof(struct bpf_sockopt, level):
   2031			if (size != size_default)
   2032				return false;
   2033			return prog->expected_attach_type ==
   2034				BPF_CGROUP_SETSOCKOPT;
   2035		case offsetof(struct bpf_sockopt, optlen):
   2036			return size == size_default;
   2037		default:
   2038			return false;
   2039		}
   2040	}
   2041
   2042	switch (off) {
   2043	case offsetof(struct bpf_sockopt, sk):
   2044		if (size != sizeof(__u64))
   2045			return false;
   2046		info->reg_type = PTR_TO_SOCKET;
   2047		break;
   2048	case offsetof(struct bpf_sockopt, optval):
   2049		if (size != sizeof(__u64))
   2050			return false;
   2051		info->reg_type = PTR_TO_PACKET;
   2052		break;
   2053	case offsetof(struct bpf_sockopt, optval_end):
   2054		if (size != sizeof(__u64))
   2055			return false;
   2056		info->reg_type = PTR_TO_PACKET_END;
   2057		break;
   2058	case offsetof(struct bpf_sockopt, retval):
   2059		if (size != size_default)
   2060			return false;
   2061		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
   2062	default:
   2063		if (size != size_default)
   2064			return false;
   2065		break;
   2066	}
   2067	return true;
   2068}
   2069
   2070#define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
   2071	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
   2072	  si->dst_reg, si->src_reg,					\
   2073	  offsetof(struct bpf_sockopt_kern, F))
   2074
   2075static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
   2076					 const struct bpf_insn *si,
   2077					 struct bpf_insn *insn_buf,
   2078					 struct bpf_prog *prog,
   2079					 u32 *target_size)
   2080{
   2081	struct bpf_insn *insn = insn_buf;
   2082
   2083	switch (si->off) {
   2084	case offsetof(struct bpf_sockopt, sk):
   2085		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
   2086		break;
   2087	case offsetof(struct bpf_sockopt, level):
   2088		if (type == BPF_WRITE)
   2089			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
   2090		else
   2091			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
   2092		break;
   2093	case offsetof(struct bpf_sockopt, optname):
   2094		if (type == BPF_WRITE)
   2095			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
   2096		else
   2097			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
   2098		break;
   2099	case offsetof(struct bpf_sockopt, optlen):
   2100		if (type == BPF_WRITE)
   2101			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
   2102		else
   2103			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
   2104		break;
   2105	case offsetof(struct bpf_sockopt, retval):
   2106		BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0);
   2107
   2108		if (type == BPF_WRITE) {
   2109			int treg = BPF_REG_9;
   2110
   2111			if (si->src_reg == treg || si->dst_reg == treg)
   2112				--treg;
   2113			if (si->src_reg == treg || si->dst_reg == treg)
   2114				--treg;
   2115			*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg,
   2116					      offsetof(struct bpf_sockopt_kern, tmp_reg));
   2117			*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task),
   2118					      treg, si->dst_reg,
   2119					      offsetof(struct bpf_sockopt_kern, current_task));
   2120			*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx),
   2121					      treg, treg,
   2122					      offsetof(struct task_struct, bpf_ctx));
   2123			*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval),
   2124					      treg, si->src_reg,
   2125					      offsetof(struct bpf_cg_run_ctx, retval));
   2126			*insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg,
   2127					      offsetof(struct bpf_sockopt_kern, tmp_reg));
   2128		} else {
   2129			*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task),
   2130					      si->dst_reg, si->src_reg,
   2131					      offsetof(struct bpf_sockopt_kern, current_task));
   2132			*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx),
   2133					      si->dst_reg, si->dst_reg,
   2134					      offsetof(struct task_struct, bpf_ctx));
   2135			*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval),
   2136					      si->dst_reg, si->dst_reg,
   2137					      offsetof(struct bpf_cg_run_ctx, retval));
   2138		}
   2139		break;
   2140	case offsetof(struct bpf_sockopt, optval):
   2141		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
   2142		break;
   2143	case offsetof(struct bpf_sockopt, optval_end):
   2144		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
   2145		break;
   2146	}
   2147
   2148	return insn - insn_buf;
   2149}
   2150
   2151static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
   2152				   bool direct_write,
   2153				   const struct bpf_prog *prog)
   2154{
   2155	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
   2156	 */
   2157	return 0;
   2158}
   2159
   2160const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
   2161	.get_func_proto		= cg_sockopt_func_proto,
   2162	.is_valid_access	= cg_sockopt_is_valid_access,
   2163	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
   2164	.gen_prologue		= cg_sockopt_get_prologue,
   2165};
   2166
   2167const struct bpf_prog_ops cg_sockopt_prog_ops = {
   2168};