cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

core.c (72625B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Linux Socket Filter - Kernel level socket filtering
      4 *
      5 * Based on the design of the Berkeley Packet Filter. The new
      6 * internal format has been designed by PLUMgrid:
      7 *
      8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
      9 *
     10 * Authors:
     11 *
     12 *	Jay Schulist <jschlst@samba.org>
     13 *	Alexei Starovoitov <ast@plumgrid.com>
     14 *	Daniel Borkmann <dborkman@redhat.com>
     15 *
     16 * Andi Kleen - Fix a few bad bugs and races.
     17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
     18 */
     19
     20#include <uapi/linux/btf.h>
     21#include <linux/filter.h>
     22#include <linux/skbuff.h>
     23#include <linux/vmalloc.h>
     24#include <linux/random.h>
     25#include <linux/moduleloader.h>
     26#include <linux/bpf.h>
     27#include <linux/btf.h>
     28#include <linux/objtool.h>
     29#include <linux/rbtree_latch.h>
     30#include <linux/kallsyms.h>
     31#include <linux/rcupdate.h>
     32#include <linux/perf_event.h>
     33#include <linux/extable.h>
     34#include <linux/log2.h>
     35#include <linux/bpf_verifier.h>
     36#include <linux/nodemask.h>
     37
     38#include <asm/barrier.h>
     39#include <asm/unaligned.h>
     40
     41/* Registers */
     42#define BPF_R0	regs[BPF_REG_0]
     43#define BPF_R1	regs[BPF_REG_1]
     44#define BPF_R2	regs[BPF_REG_2]
     45#define BPF_R3	regs[BPF_REG_3]
     46#define BPF_R4	regs[BPF_REG_4]
     47#define BPF_R5	regs[BPF_REG_5]
     48#define BPF_R6	regs[BPF_REG_6]
     49#define BPF_R7	regs[BPF_REG_7]
     50#define BPF_R8	regs[BPF_REG_8]
     51#define BPF_R9	regs[BPF_REG_9]
     52#define BPF_R10	regs[BPF_REG_10]
     53
     54/* Named registers */
     55#define DST	regs[insn->dst_reg]
     56#define SRC	regs[insn->src_reg]
     57#define FP	regs[BPF_REG_FP]
     58#define AX	regs[BPF_REG_AX]
     59#define ARG1	regs[BPF_REG_ARG1]
     60#define CTX	regs[BPF_REG_CTX]
     61#define IMM	insn->imm
     62
     63/* No hurry in this branch
     64 *
     65 * Exported for the bpf jit load helper.
     66 */
     67void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
     68{
     69	u8 *ptr = NULL;
     70
     71	if (k >= SKF_NET_OFF)
     72		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
     73	else if (k >= SKF_LL_OFF)
     74		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
     75
     76	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
     77		return ptr;
     78
     79	return NULL;
     80}
     81
     82struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
     83{
     84	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
     85	struct bpf_prog_aux *aux;
     86	struct bpf_prog *fp;
     87
     88	size = round_up(size, PAGE_SIZE);
     89	fp = __vmalloc(size, gfp_flags);
     90	if (fp == NULL)
     91		return NULL;
     92
     93	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
     94	if (aux == NULL) {
     95		vfree(fp);
     96		return NULL;
     97	}
     98	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
     99	if (!fp->active) {
    100		vfree(fp);
    101		kfree(aux);
    102		return NULL;
    103	}
    104
    105	fp->pages = size / PAGE_SIZE;
    106	fp->aux = aux;
    107	fp->aux->prog = fp;
    108	fp->jit_requested = ebpf_jit_enabled();
    109	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
    110
    111	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
    112	mutex_init(&fp->aux->used_maps_mutex);
    113	mutex_init(&fp->aux->dst_mutex);
    114
    115	return fp;
    116}
    117
    118struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
    119{
    120	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
    121	struct bpf_prog *prog;
    122	int cpu;
    123
    124	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
    125	if (!prog)
    126		return NULL;
    127
    128	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
    129	if (!prog->stats) {
    130		free_percpu(prog->active);
    131		kfree(prog->aux);
    132		vfree(prog);
    133		return NULL;
    134	}
    135
    136	for_each_possible_cpu(cpu) {
    137		struct bpf_prog_stats *pstats;
    138
    139		pstats = per_cpu_ptr(prog->stats, cpu);
    140		u64_stats_init(&pstats->syncp);
    141	}
    142	return prog;
    143}
    144EXPORT_SYMBOL_GPL(bpf_prog_alloc);
    145
    146int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
    147{
    148	if (!prog->aux->nr_linfo || !prog->jit_requested)
    149		return 0;
    150
    151	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
    152					  sizeof(*prog->aux->jited_linfo),
    153					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
    154	if (!prog->aux->jited_linfo)
    155		return -ENOMEM;
    156
    157	return 0;
    158}
    159
    160void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
    161{
    162	if (prog->aux->jited_linfo &&
    163	    (!prog->jited || !prog->aux->jited_linfo[0])) {
    164		kvfree(prog->aux->jited_linfo);
    165		prog->aux->jited_linfo = NULL;
    166	}
    167
    168	kfree(prog->aux->kfunc_tab);
    169	prog->aux->kfunc_tab = NULL;
    170}
    171
    172/* The jit engine is responsible to provide an array
    173 * for insn_off to the jited_off mapping (insn_to_jit_off).
    174 *
    175 * The idx to this array is the insn_off.  Hence, the insn_off
    176 * here is relative to the prog itself instead of the main prog.
    177 * This array has one entry for each xlated bpf insn.
    178 *
    179 * jited_off is the byte off to the last byte of the jited insn.
    180 *
    181 * Hence, with
    182 * insn_start:
    183 *      The first bpf insn off of the prog.  The insn off
    184 *      here is relative to the main prog.
    185 *      e.g. if prog is a subprog, insn_start > 0
    186 * linfo_idx:
    187 *      The prog's idx to prog->aux->linfo and jited_linfo
    188 *
    189 * jited_linfo[linfo_idx] = prog->bpf_func
    190 *
    191 * For i > linfo_idx,
    192 *
    193 * jited_linfo[i] = prog->bpf_func +
    194 *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
    195 */
    196void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
    197			       const u32 *insn_to_jit_off)
    198{
    199	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
    200	const struct bpf_line_info *linfo;
    201	void **jited_linfo;
    202
    203	if (!prog->aux->jited_linfo)
    204		/* Userspace did not provide linfo */
    205		return;
    206
    207	linfo_idx = prog->aux->linfo_idx;
    208	linfo = &prog->aux->linfo[linfo_idx];
    209	insn_start = linfo[0].insn_off;
    210	insn_end = insn_start + prog->len;
    211
    212	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
    213	jited_linfo[0] = prog->bpf_func;
    214
    215	nr_linfo = prog->aux->nr_linfo - linfo_idx;
    216
    217	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
    218		/* The verifier ensures that linfo[i].insn_off is
    219		 * strictly increasing
    220		 */
    221		jited_linfo[i] = prog->bpf_func +
    222			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
    223}
    224
    225struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
    226				  gfp_t gfp_extra_flags)
    227{
    228	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
    229	struct bpf_prog *fp;
    230	u32 pages;
    231
    232	size = round_up(size, PAGE_SIZE);
    233	pages = size / PAGE_SIZE;
    234	if (pages <= fp_old->pages)
    235		return fp_old;
    236
    237	fp = __vmalloc(size, gfp_flags);
    238	if (fp) {
    239		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
    240		fp->pages = pages;
    241		fp->aux->prog = fp;
    242
    243		/* We keep fp->aux from fp_old around in the new
    244		 * reallocated structure.
    245		 */
    246		fp_old->aux = NULL;
    247		fp_old->stats = NULL;
    248		fp_old->active = NULL;
    249		__bpf_prog_free(fp_old);
    250	}
    251
    252	return fp;
    253}
    254
    255void __bpf_prog_free(struct bpf_prog *fp)
    256{
    257	if (fp->aux) {
    258		mutex_destroy(&fp->aux->used_maps_mutex);
    259		mutex_destroy(&fp->aux->dst_mutex);
    260		kfree(fp->aux->poke_tab);
    261		kfree(fp->aux);
    262	}
    263	free_percpu(fp->stats);
    264	free_percpu(fp->active);
    265	vfree(fp);
    266}
    267
    268int bpf_prog_calc_tag(struct bpf_prog *fp)
    269{
    270	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
    271	u32 raw_size = bpf_prog_tag_scratch_size(fp);
    272	u32 digest[SHA1_DIGEST_WORDS];
    273	u32 ws[SHA1_WORKSPACE_WORDS];
    274	u32 i, bsize, psize, blocks;
    275	struct bpf_insn *dst;
    276	bool was_ld_map;
    277	u8 *raw, *todo;
    278	__be32 *result;
    279	__be64 *bits;
    280
    281	raw = vmalloc(raw_size);
    282	if (!raw)
    283		return -ENOMEM;
    284
    285	sha1_init(digest);
    286	memset(ws, 0, sizeof(ws));
    287
    288	/* We need to take out the map fd for the digest calculation
    289	 * since they are unstable from user space side.
    290	 */
    291	dst = (void *)raw;
    292	for (i = 0, was_ld_map = false; i < fp->len; i++) {
    293		dst[i] = fp->insnsi[i];
    294		if (!was_ld_map &&
    295		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
    296		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
    297		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
    298			was_ld_map = true;
    299			dst[i].imm = 0;
    300		} else if (was_ld_map &&
    301			   dst[i].code == 0 &&
    302			   dst[i].dst_reg == 0 &&
    303			   dst[i].src_reg == 0 &&
    304			   dst[i].off == 0) {
    305			was_ld_map = false;
    306			dst[i].imm = 0;
    307		} else {
    308			was_ld_map = false;
    309		}
    310	}
    311
    312	psize = bpf_prog_insn_size(fp);
    313	memset(&raw[psize], 0, raw_size - psize);
    314	raw[psize++] = 0x80;
    315
    316	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
    317	blocks = bsize / SHA1_BLOCK_SIZE;
    318	todo   = raw;
    319	if (bsize - psize >= sizeof(__be64)) {
    320		bits = (__be64 *)(todo + bsize - sizeof(__be64));
    321	} else {
    322		bits = (__be64 *)(todo + bsize + bits_offset);
    323		blocks++;
    324	}
    325	*bits = cpu_to_be64((psize - 1) << 3);
    326
    327	while (blocks--) {
    328		sha1_transform(digest, todo, ws);
    329		todo += SHA1_BLOCK_SIZE;
    330	}
    331
    332	result = (__force __be32 *)digest;
    333	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
    334		result[i] = cpu_to_be32(digest[i]);
    335	memcpy(fp->tag, result, sizeof(fp->tag));
    336
    337	vfree(raw);
    338	return 0;
    339}
    340
    341static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
    342				s32 end_new, s32 curr, const bool probe_pass)
    343{
    344	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
    345	s32 delta = end_new - end_old;
    346	s64 imm = insn->imm;
    347
    348	if (curr < pos && curr + imm + 1 >= end_old)
    349		imm += delta;
    350	else if (curr >= end_new && curr + imm + 1 < end_new)
    351		imm -= delta;
    352	if (imm < imm_min || imm > imm_max)
    353		return -ERANGE;
    354	if (!probe_pass)
    355		insn->imm = imm;
    356	return 0;
    357}
    358
    359static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
    360				s32 end_new, s32 curr, const bool probe_pass)
    361{
    362	const s32 off_min = S16_MIN, off_max = S16_MAX;
    363	s32 delta = end_new - end_old;
    364	s32 off = insn->off;
    365
    366	if (curr < pos && curr + off + 1 >= end_old)
    367		off += delta;
    368	else if (curr >= end_new && curr + off + 1 < end_new)
    369		off -= delta;
    370	if (off < off_min || off > off_max)
    371		return -ERANGE;
    372	if (!probe_pass)
    373		insn->off = off;
    374	return 0;
    375}
    376
    377static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
    378			    s32 end_new, const bool probe_pass)
    379{
    380	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
    381	struct bpf_insn *insn = prog->insnsi;
    382	int ret = 0;
    383
    384	for (i = 0; i < insn_cnt; i++, insn++) {
    385		u8 code;
    386
    387		/* In the probing pass we still operate on the original,
    388		 * unpatched image in order to check overflows before we
    389		 * do any other adjustments. Therefore skip the patchlet.
    390		 */
    391		if (probe_pass && i == pos) {
    392			i = end_new;
    393			insn = prog->insnsi + end_old;
    394		}
    395		if (bpf_pseudo_func(insn)) {
    396			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
    397						   end_new, i, probe_pass);
    398			if (ret)
    399				return ret;
    400			continue;
    401		}
    402		code = insn->code;
    403		if ((BPF_CLASS(code) != BPF_JMP &&
    404		     BPF_CLASS(code) != BPF_JMP32) ||
    405		    BPF_OP(code) == BPF_EXIT)
    406			continue;
    407		/* Adjust offset of jmps if we cross patch boundaries. */
    408		if (BPF_OP(code) == BPF_CALL) {
    409			if (insn->src_reg != BPF_PSEUDO_CALL)
    410				continue;
    411			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
    412						   end_new, i, probe_pass);
    413		} else {
    414			ret = bpf_adj_delta_to_off(insn, pos, end_old,
    415						   end_new, i, probe_pass);
    416		}
    417		if (ret)
    418			break;
    419	}
    420
    421	return ret;
    422}
    423
    424static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
    425{
    426	struct bpf_line_info *linfo;
    427	u32 i, nr_linfo;
    428
    429	nr_linfo = prog->aux->nr_linfo;
    430	if (!nr_linfo || !delta)
    431		return;
    432
    433	linfo = prog->aux->linfo;
    434
    435	for (i = 0; i < nr_linfo; i++)
    436		if (off < linfo[i].insn_off)
    437			break;
    438
    439	/* Push all off < linfo[i].insn_off by delta */
    440	for (; i < nr_linfo; i++)
    441		linfo[i].insn_off += delta;
    442}
    443
    444struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
    445				       const struct bpf_insn *patch, u32 len)
    446{
    447	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
    448	const u32 cnt_max = S16_MAX;
    449	struct bpf_prog *prog_adj;
    450	int err;
    451
    452	/* Since our patchlet doesn't expand the image, we're done. */
    453	if (insn_delta == 0) {
    454		memcpy(prog->insnsi + off, patch, sizeof(*patch));
    455		return prog;
    456	}
    457
    458	insn_adj_cnt = prog->len + insn_delta;
    459
    460	/* Reject anything that would potentially let the insn->off
    461	 * target overflow when we have excessive program expansions.
    462	 * We need to probe here before we do any reallocation where
    463	 * we afterwards may not fail anymore.
    464	 */
    465	if (insn_adj_cnt > cnt_max &&
    466	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
    467		return ERR_PTR(err);
    468
    469	/* Several new instructions need to be inserted. Make room
    470	 * for them. Likely, there's no need for a new allocation as
    471	 * last page could have large enough tailroom.
    472	 */
    473	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
    474				    GFP_USER);
    475	if (!prog_adj)
    476		return ERR_PTR(-ENOMEM);
    477
    478	prog_adj->len = insn_adj_cnt;
    479
    480	/* Patching happens in 3 steps:
    481	 *
    482	 * 1) Move over tail of insnsi from next instruction onwards,
    483	 *    so we can patch the single target insn with one or more
    484	 *    new ones (patching is always from 1 to n insns, n > 0).
    485	 * 2) Inject new instructions at the target location.
    486	 * 3) Adjust branch offsets if necessary.
    487	 */
    488	insn_rest = insn_adj_cnt - off - len;
    489
    490	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
    491		sizeof(*patch) * insn_rest);
    492	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
    493
    494	/* We are guaranteed to not fail at this point, otherwise
    495	 * the ship has sailed to reverse to the original state. An
    496	 * overflow cannot happen at this point.
    497	 */
    498	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
    499
    500	bpf_adj_linfo(prog_adj, off, insn_delta);
    501
    502	return prog_adj;
    503}
    504
    505int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
    506{
    507	/* Branch offsets can't overflow when program is shrinking, no need
    508	 * to call bpf_adj_branches(..., true) here
    509	 */
    510	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
    511		sizeof(struct bpf_insn) * (prog->len - off - cnt));
    512	prog->len -= cnt;
    513
    514	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
    515}
    516
    517static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
    518{
    519	int i;
    520
    521	for (i = 0; i < fp->aux->func_cnt; i++)
    522		bpf_prog_kallsyms_del(fp->aux->func[i]);
    523}
    524
    525void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
    526{
    527	bpf_prog_kallsyms_del_subprogs(fp);
    528	bpf_prog_kallsyms_del(fp);
    529}
    530
    531#ifdef CONFIG_BPF_JIT
    532/* All BPF JIT sysctl knobs here. */
    533int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
    534int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
    535int bpf_jit_harden   __read_mostly;
    536long bpf_jit_limit   __read_mostly;
    537long bpf_jit_limit_max __read_mostly;
    538
    539static void
    540bpf_prog_ksym_set_addr(struct bpf_prog *prog)
    541{
    542	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
    543
    544	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
    545	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
    546}
    547
    548static void
    549bpf_prog_ksym_set_name(struct bpf_prog *prog)
    550{
    551	char *sym = prog->aux->ksym.name;
    552	const char *end = sym + KSYM_NAME_LEN;
    553	const struct btf_type *type;
    554	const char *func_name;
    555
    556	BUILD_BUG_ON(sizeof("bpf_prog_") +
    557		     sizeof(prog->tag) * 2 +
    558		     /* name has been null terminated.
    559		      * We should need +1 for the '_' preceding
    560		      * the name.  However, the null character
    561		      * is double counted between the name and the
    562		      * sizeof("bpf_prog_") above, so we omit
    563		      * the +1 here.
    564		      */
    565		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
    566
    567	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
    568	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
    569
    570	/* prog->aux->name will be ignored if full btf name is available */
    571	if (prog->aux->func_info_cnt) {
    572		type = btf_type_by_id(prog->aux->btf,
    573				      prog->aux->func_info[prog->aux->func_idx].type_id);
    574		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
    575		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
    576		return;
    577	}
    578
    579	if (prog->aux->name[0])
    580		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
    581	else
    582		*sym = 0;
    583}
    584
    585static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
    586{
    587	return container_of(n, struct bpf_ksym, tnode)->start;
    588}
    589
    590static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
    591					  struct latch_tree_node *b)
    592{
    593	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
    594}
    595
    596static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
    597{
    598	unsigned long val = (unsigned long)key;
    599	const struct bpf_ksym *ksym;
    600
    601	ksym = container_of(n, struct bpf_ksym, tnode);
    602
    603	if (val < ksym->start)
    604		return -1;
    605	if (val >= ksym->end)
    606		return  1;
    607
    608	return 0;
    609}
    610
    611static const struct latch_tree_ops bpf_tree_ops = {
    612	.less	= bpf_tree_less,
    613	.comp	= bpf_tree_comp,
    614};
    615
    616static DEFINE_SPINLOCK(bpf_lock);
    617static LIST_HEAD(bpf_kallsyms);
    618static struct latch_tree_root bpf_tree __cacheline_aligned;
    619
    620void bpf_ksym_add(struct bpf_ksym *ksym)
    621{
    622	spin_lock_bh(&bpf_lock);
    623	WARN_ON_ONCE(!list_empty(&ksym->lnode));
    624	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
    625	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
    626	spin_unlock_bh(&bpf_lock);
    627}
    628
    629static void __bpf_ksym_del(struct bpf_ksym *ksym)
    630{
    631	if (list_empty(&ksym->lnode))
    632		return;
    633
    634	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
    635	list_del_rcu(&ksym->lnode);
    636}
    637
    638void bpf_ksym_del(struct bpf_ksym *ksym)
    639{
    640	spin_lock_bh(&bpf_lock);
    641	__bpf_ksym_del(ksym);
    642	spin_unlock_bh(&bpf_lock);
    643}
    644
    645static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
    646{
    647	return fp->jited && !bpf_prog_was_classic(fp);
    648}
    649
    650static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
    651{
    652	return list_empty(&fp->aux->ksym.lnode) ||
    653	       fp->aux->ksym.lnode.prev == LIST_POISON2;
    654}
    655
    656void bpf_prog_kallsyms_add(struct bpf_prog *fp)
    657{
    658	if (!bpf_prog_kallsyms_candidate(fp) ||
    659	    !bpf_capable())
    660		return;
    661
    662	bpf_prog_ksym_set_addr(fp);
    663	bpf_prog_ksym_set_name(fp);
    664	fp->aux->ksym.prog = true;
    665
    666	bpf_ksym_add(&fp->aux->ksym);
    667}
    668
    669void bpf_prog_kallsyms_del(struct bpf_prog *fp)
    670{
    671	if (!bpf_prog_kallsyms_candidate(fp))
    672		return;
    673
    674	bpf_ksym_del(&fp->aux->ksym);
    675}
    676
    677static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
    678{
    679	struct latch_tree_node *n;
    680
    681	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
    682	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
    683}
    684
    685const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
    686				 unsigned long *off, char *sym)
    687{
    688	struct bpf_ksym *ksym;
    689	char *ret = NULL;
    690
    691	rcu_read_lock();
    692	ksym = bpf_ksym_find(addr);
    693	if (ksym) {
    694		unsigned long symbol_start = ksym->start;
    695		unsigned long symbol_end = ksym->end;
    696
    697		strncpy(sym, ksym->name, KSYM_NAME_LEN);
    698
    699		ret = sym;
    700		if (size)
    701			*size = symbol_end - symbol_start;
    702		if (off)
    703			*off  = addr - symbol_start;
    704	}
    705	rcu_read_unlock();
    706
    707	return ret;
    708}
    709
    710bool is_bpf_text_address(unsigned long addr)
    711{
    712	bool ret;
    713
    714	rcu_read_lock();
    715	ret = bpf_ksym_find(addr) != NULL;
    716	rcu_read_unlock();
    717
    718	return ret;
    719}
    720
    721static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
    722{
    723	struct bpf_ksym *ksym = bpf_ksym_find(addr);
    724
    725	return ksym && ksym->prog ?
    726	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
    727	       NULL;
    728}
    729
    730const struct exception_table_entry *search_bpf_extables(unsigned long addr)
    731{
    732	const struct exception_table_entry *e = NULL;
    733	struct bpf_prog *prog;
    734
    735	rcu_read_lock();
    736	prog = bpf_prog_ksym_find(addr);
    737	if (!prog)
    738		goto out;
    739	if (!prog->aux->num_exentries)
    740		goto out;
    741
    742	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
    743out:
    744	rcu_read_unlock();
    745	return e;
    746}
    747
    748int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
    749		    char *sym)
    750{
    751	struct bpf_ksym *ksym;
    752	unsigned int it = 0;
    753	int ret = -ERANGE;
    754
    755	if (!bpf_jit_kallsyms_enabled())
    756		return ret;
    757
    758	rcu_read_lock();
    759	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
    760		if (it++ != symnum)
    761			continue;
    762
    763		strncpy(sym, ksym->name, KSYM_NAME_LEN);
    764
    765		*value = ksym->start;
    766		*type  = BPF_SYM_ELF_TYPE;
    767
    768		ret = 0;
    769		break;
    770	}
    771	rcu_read_unlock();
    772
    773	return ret;
    774}
    775
    776int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
    777				struct bpf_jit_poke_descriptor *poke)
    778{
    779	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
    780	static const u32 poke_tab_max = 1024;
    781	u32 slot = prog->aux->size_poke_tab;
    782	u32 size = slot + 1;
    783
    784	if (size > poke_tab_max)
    785		return -ENOSPC;
    786	if (poke->tailcall_target || poke->tailcall_target_stable ||
    787	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
    788		return -EINVAL;
    789
    790	switch (poke->reason) {
    791	case BPF_POKE_REASON_TAIL_CALL:
    792		if (!poke->tail_call.map)
    793			return -EINVAL;
    794		break;
    795	default:
    796		return -EINVAL;
    797	}
    798
    799	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
    800	if (!tab)
    801		return -ENOMEM;
    802
    803	memcpy(&tab[slot], poke, sizeof(*poke));
    804	prog->aux->size_poke_tab = size;
    805	prog->aux->poke_tab = tab;
    806
    807	return slot;
    808}
    809
    810/*
    811 * BPF program pack allocator.
    812 *
    813 * Most BPF programs are pretty small. Allocating a hole page for each
    814 * program is sometime a waste. Many small bpf program also adds pressure
    815 * to instruction TLB. To solve this issue, we introduce a BPF program pack
    816 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
    817 * to host BPF programs.
    818 */
    819#define BPF_PROG_CHUNK_SHIFT	6
    820#define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
    821#define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
    822
    823struct bpf_prog_pack {
    824	struct list_head list;
    825	void *ptr;
    826	unsigned long bitmap[];
    827};
    828
    829#define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
    830
    831static size_t bpf_prog_pack_size = -1;
    832static size_t bpf_prog_pack_mask = -1;
    833
    834static int bpf_prog_chunk_count(void)
    835{
    836	WARN_ON_ONCE(bpf_prog_pack_size == -1);
    837	return bpf_prog_pack_size / BPF_PROG_CHUNK_SIZE;
    838}
    839
    840static DEFINE_MUTEX(pack_mutex);
    841static LIST_HEAD(pack_list);
    842
    843/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
    844 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
    845 */
    846#ifdef PMD_SIZE
    847#define BPF_HPAGE_SIZE PMD_SIZE
    848#define BPF_HPAGE_MASK PMD_MASK
    849#else
    850#define BPF_HPAGE_SIZE PAGE_SIZE
    851#define BPF_HPAGE_MASK PAGE_MASK
    852#endif
    853
    854static size_t select_bpf_prog_pack_size(void)
    855{
    856	size_t size;
    857	void *ptr;
    858
    859	size = BPF_HPAGE_SIZE * num_online_nodes();
    860	ptr = module_alloc(size);
    861
    862	/* Test whether we can get huge pages. If not just use PAGE_SIZE
    863	 * packs.
    864	 */
    865	if (!ptr || !is_vm_area_hugepages(ptr)) {
    866		size = PAGE_SIZE;
    867		bpf_prog_pack_mask = PAGE_MASK;
    868	} else {
    869		bpf_prog_pack_mask = BPF_HPAGE_MASK;
    870	}
    871
    872	vfree(ptr);
    873	return size;
    874}
    875
    876static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
    877{
    878	struct bpf_prog_pack *pack;
    879
    880	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(bpf_prog_chunk_count())),
    881		       GFP_KERNEL);
    882	if (!pack)
    883		return NULL;
    884	pack->ptr = module_alloc(bpf_prog_pack_size);
    885	if (!pack->ptr) {
    886		kfree(pack);
    887		return NULL;
    888	}
    889	bpf_fill_ill_insns(pack->ptr, bpf_prog_pack_size);
    890	bitmap_zero(pack->bitmap, bpf_prog_pack_size / BPF_PROG_CHUNK_SIZE);
    891	list_add_tail(&pack->list, &pack_list);
    892
    893	set_vm_flush_reset_perms(pack->ptr);
    894	set_memory_ro((unsigned long)pack->ptr, bpf_prog_pack_size / PAGE_SIZE);
    895	set_memory_x((unsigned long)pack->ptr, bpf_prog_pack_size / PAGE_SIZE);
    896	return pack;
    897}
    898
    899static void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
    900{
    901	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
    902	struct bpf_prog_pack *pack;
    903	unsigned long pos;
    904	void *ptr = NULL;
    905
    906	mutex_lock(&pack_mutex);
    907	if (bpf_prog_pack_size == -1)
    908		bpf_prog_pack_size = select_bpf_prog_pack_size();
    909
    910	if (size > bpf_prog_pack_size) {
    911		size = round_up(size, PAGE_SIZE);
    912		ptr = module_alloc(size);
    913		if (ptr) {
    914			bpf_fill_ill_insns(ptr, size);
    915			set_vm_flush_reset_perms(ptr);
    916			set_memory_ro((unsigned long)ptr, size / PAGE_SIZE);
    917			set_memory_x((unsigned long)ptr, size / PAGE_SIZE);
    918		}
    919		goto out;
    920	}
    921	list_for_each_entry(pack, &pack_list, list) {
    922		pos = bitmap_find_next_zero_area(pack->bitmap, bpf_prog_chunk_count(), 0,
    923						 nbits, 0);
    924		if (pos < bpf_prog_chunk_count())
    925			goto found_free_area;
    926	}
    927
    928	pack = alloc_new_pack(bpf_fill_ill_insns);
    929	if (!pack)
    930		goto out;
    931
    932	pos = 0;
    933
    934found_free_area:
    935	bitmap_set(pack->bitmap, pos, nbits);
    936	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
    937
    938out:
    939	mutex_unlock(&pack_mutex);
    940	return ptr;
    941}
    942
    943static void bpf_prog_pack_free(struct bpf_binary_header *hdr)
    944{
    945	struct bpf_prog_pack *pack = NULL, *tmp;
    946	unsigned int nbits;
    947	unsigned long pos;
    948	void *pack_ptr;
    949
    950	mutex_lock(&pack_mutex);
    951	if (hdr->size > bpf_prog_pack_size) {
    952		module_memfree(hdr);
    953		goto out;
    954	}
    955
    956	pack_ptr = (void *)((unsigned long)hdr & bpf_prog_pack_mask);
    957
    958	list_for_each_entry(tmp, &pack_list, list) {
    959		if (tmp->ptr == pack_ptr) {
    960			pack = tmp;
    961			break;
    962		}
    963	}
    964
    965	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
    966		goto out;
    967
    968	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
    969	pos = ((unsigned long)hdr - (unsigned long)pack_ptr) >> BPF_PROG_CHUNK_SHIFT;
    970
    971	WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
    972		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
    973
    974	bitmap_clear(pack->bitmap, pos, nbits);
    975	if (bitmap_find_next_zero_area(pack->bitmap, bpf_prog_chunk_count(), 0,
    976				       bpf_prog_chunk_count(), 0) == 0) {
    977		list_del(&pack->list);
    978		module_memfree(pack->ptr);
    979		kfree(pack);
    980	}
    981out:
    982	mutex_unlock(&pack_mutex);
    983}
    984
    985static atomic_long_t bpf_jit_current;
    986
    987/* Can be overridden by an arch's JIT compiler if it has a custom,
    988 * dedicated BPF backend memory area, or if neither of the two
    989 * below apply.
    990 */
    991u64 __weak bpf_jit_alloc_exec_limit(void)
    992{
    993#if defined(MODULES_VADDR)
    994	return MODULES_END - MODULES_VADDR;
    995#else
    996	return VMALLOC_END - VMALLOC_START;
    997#endif
    998}
    999
   1000static int __init bpf_jit_charge_init(void)
   1001{
   1002	/* Only used as heuristic here to derive limit. */
   1003	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
   1004	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
   1005					    PAGE_SIZE), LONG_MAX);
   1006	return 0;
   1007}
   1008pure_initcall(bpf_jit_charge_init);
   1009
   1010int bpf_jit_charge_modmem(u32 size)
   1011{
   1012	if (atomic_long_add_return(size, &bpf_jit_current) > bpf_jit_limit) {
   1013		if (!bpf_capable()) {
   1014			atomic_long_sub(size, &bpf_jit_current);
   1015			return -EPERM;
   1016		}
   1017	}
   1018
   1019	return 0;
   1020}
   1021
   1022void bpf_jit_uncharge_modmem(u32 size)
   1023{
   1024	atomic_long_sub(size, &bpf_jit_current);
   1025}
   1026
   1027void *__weak bpf_jit_alloc_exec(unsigned long size)
   1028{
   1029	return module_alloc(size);
   1030}
   1031
   1032void __weak bpf_jit_free_exec(void *addr)
   1033{
   1034	module_memfree(addr);
   1035}
   1036
   1037struct bpf_binary_header *
   1038bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
   1039		     unsigned int alignment,
   1040		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
   1041{
   1042	struct bpf_binary_header *hdr;
   1043	u32 size, hole, start;
   1044
   1045	WARN_ON_ONCE(!is_power_of_2(alignment) ||
   1046		     alignment > BPF_IMAGE_ALIGNMENT);
   1047
   1048	/* Most of BPF filters are really small, but if some of them
   1049	 * fill a page, allow at least 128 extra bytes to insert a
   1050	 * random section of illegal instructions.
   1051	 */
   1052	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
   1053
   1054	if (bpf_jit_charge_modmem(size))
   1055		return NULL;
   1056	hdr = bpf_jit_alloc_exec(size);
   1057	if (!hdr) {
   1058		bpf_jit_uncharge_modmem(size);
   1059		return NULL;
   1060	}
   1061
   1062	/* Fill space with illegal/arch-dep instructions. */
   1063	bpf_fill_ill_insns(hdr, size);
   1064
   1065	hdr->size = size;
   1066	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
   1067		     PAGE_SIZE - sizeof(*hdr));
   1068	start = (get_random_int() % hole) & ~(alignment - 1);
   1069
   1070	/* Leave a random number of instructions before BPF code. */
   1071	*image_ptr = &hdr->image[start];
   1072
   1073	return hdr;
   1074}
   1075
   1076void bpf_jit_binary_free(struct bpf_binary_header *hdr)
   1077{
   1078	u32 size = hdr->size;
   1079
   1080	bpf_jit_free_exec(hdr);
   1081	bpf_jit_uncharge_modmem(size);
   1082}
   1083
   1084/* Allocate jit binary from bpf_prog_pack allocator.
   1085 * Since the allocated memory is RO+X, the JIT engine cannot write directly
   1086 * to the memory. To solve this problem, a RW buffer is also allocated at
   1087 * as the same time. The JIT engine should calculate offsets based on the
   1088 * RO memory address, but write JITed program to the RW buffer. Once the
   1089 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
   1090 * the JITed program to the RO memory.
   1091 */
   1092struct bpf_binary_header *
   1093bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
   1094			  unsigned int alignment,
   1095			  struct bpf_binary_header **rw_header,
   1096			  u8 **rw_image,
   1097			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
   1098{
   1099	struct bpf_binary_header *ro_header;
   1100	u32 size, hole, start;
   1101
   1102	WARN_ON_ONCE(!is_power_of_2(alignment) ||
   1103		     alignment > BPF_IMAGE_ALIGNMENT);
   1104
   1105	/* add 16 bytes for a random section of illegal instructions */
   1106	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
   1107
   1108	if (bpf_jit_charge_modmem(size))
   1109		return NULL;
   1110	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
   1111	if (!ro_header) {
   1112		bpf_jit_uncharge_modmem(size);
   1113		return NULL;
   1114	}
   1115
   1116	*rw_header = kvmalloc(size, GFP_KERNEL);
   1117	if (!*rw_header) {
   1118		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
   1119		bpf_prog_pack_free(ro_header);
   1120		bpf_jit_uncharge_modmem(size);
   1121		return NULL;
   1122	}
   1123
   1124	/* Fill space with illegal/arch-dep instructions. */
   1125	bpf_fill_ill_insns(*rw_header, size);
   1126	(*rw_header)->size = size;
   1127
   1128	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
   1129		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
   1130	start = (get_random_int() % hole) & ~(alignment - 1);
   1131
   1132	*image_ptr = &ro_header->image[start];
   1133	*rw_image = &(*rw_header)->image[start];
   1134
   1135	return ro_header;
   1136}
   1137
   1138/* Copy JITed text from rw_header to its final location, the ro_header. */
   1139int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
   1140				 struct bpf_binary_header *ro_header,
   1141				 struct bpf_binary_header *rw_header)
   1142{
   1143	void *ptr;
   1144
   1145	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
   1146
   1147	kvfree(rw_header);
   1148
   1149	if (IS_ERR(ptr)) {
   1150		bpf_prog_pack_free(ro_header);
   1151		return PTR_ERR(ptr);
   1152	}
   1153	prog->aux->use_bpf_prog_pack = true;
   1154	return 0;
   1155}
   1156
   1157/* bpf_jit_binary_pack_free is called in two different scenarios:
   1158 *   1) when the program is freed after;
   1159 *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
   1160 * For case 2), we need to free both the RO memory and the RW buffer.
   1161 *
   1162 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
   1163 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
   1164 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
   1165 * bpf_arch_text_copy (when jit fails).
   1166 */
   1167void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
   1168			      struct bpf_binary_header *rw_header)
   1169{
   1170	u32 size = ro_header->size;
   1171
   1172	bpf_prog_pack_free(ro_header);
   1173	kvfree(rw_header);
   1174	bpf_jit_uncharge_modmem(size);
   1175}
   1176
   1177static inline struct bpf_binary_header *
   1178bpf_jit_binary_hdr(const struct bpf_prog *fp)
   1179{
   1180	unsigned long real_start = (unsigned long)fp->bpf_func;
   1181	unsigned long addr;
   1182
   1183	if (fp->aux->use_bpf_prog_pack)
   1184		addr = real_start & BPF_PROG_CHUNK_MASK;
   1185	else
   1186		addr = real_start & PAGE_MASK;
   1187
   1188	return (void *)addr;
   1189}
   1190
   1191/* This symbol is only overridden by archs that have different
   1192 * requirements than the usual eBPF JITs, f.e. when they only
   1193 * implement cBPF JIT, do not set images read-only, etc.
   1194 */
   1195void __weak bpf_jit_free(struct bpf_prog *fp)
   1196{
   1197	if (fp->jited) {
   1198		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
   1199
   1200		if (fp->aux->use_bpf_prog_pack)
   1201			bpf_jit_binary_pack_free(hdr, NULL /* rw_buffer */);
   1202		else
   1203			bpf_jit_binary_free(hdr);
   1204
   1205		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
   1206	}
   1207
   1208	bpf_prog_unlock_free(fp);
   1209}
   1210
   1211int bpf_jit_get_func_addr(const struct bpf_prog *prog,
   1212			  const struct bpf_insn *insn, bool extra_pass,
   1213			  u64 *func_addr, bool *func_addr_fixed)
   1214{
   1215	s16 off = insn->off;
   1216	s32 imm = insn->imm;
   1217	u8 *addr;
   1218
   1219	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
   1220	if (!*func_addr_fixed) {
   1221		/* Place-holder address till the last pass has collected
   1222		 * all addresses for JITed subprograms in which case we
   1223		 * can pick them up from prog->aux.
   1224		 */
   1225		if (!extra_pass)
   1226			addr = NULL;
   1227		else if (prog->aux->func &&
   1228			 off >= 0 && off < prog->aux->func_cnt)
   1229			addr = (u8 *)prog->aux->func[off]->bpf_func;
   1230		else
   1231			return -EINVAL;
   1232	} else {
   1233		/* Address of a BPF helper call. Since part of the core
   1234		 * kernel, it's always at a fixed location. __bpf_call_base
   1235		 * and the helper with imm relative to it are both in core
   1236		 * kernel.
   1237		 */
   1238		addr = (u8 *)__bpf_call_base + imm;
   1239	}
   1240
   1241	*func_addr = (unsigned long)addr;
   1242	return 0;
   1243}
   1244
   1245static int bpf_jit_blind_insn(const struct bpf_insn *from,
   1246			      const struct bpf_insn *aux,
   1247			      struct bpf_insn *to_buff,
   1248			      bool emit_zext)
   1249{
   1250	struct bpf_insn *to = to_buff;
   1251	u32 imm_rnd = get_random_int();
   1252	s16 off;
   1253
   1254	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
   1255	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
   1256
   1257	/* Constraints on AX register:
   1258	 *
   1259	 * AX register is inaccessible from user space. It is mapped in
   1260	 * all JITs, and used here for constant blinding rewrites. It is
   1261	 * typically "stateless" meaning its contents are only valid within
   1262	 * the executed instruction, but not across several instructions.
   1263	 * There are a few exceptions however which are further detailed
   1264	 * below.
   1265	 *
   1266	 * Constant blinding is only used by JITs, not in the interpreter.
   1267	 * The interpreter uses AX in some occasions as a local temporary
   1268	 * register e.g. in DIV or MOD instructions.
   1269	 *
   1270	 * In restricted circumstances, the verifier can also use the AX
   1271	 * register for rewrites as long as they do not interfere with
   1272	 * the above cases!
   1273	 */
   1274	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
   1275		goto out;
   1276
   1277	if (from->imm == 0 &&
   1278	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
   1279	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
   1280		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
   1281		goto out;
   1282	}
   1283
   1284	switch (from->code) {
   1285	case BPF_ALU | BPF_ADD | BPF_K:
   1286	case BPF_ALU | BPF_SUB | BPF_K:
   1287	case BPF_ALU | BPF_AND | BPF_K:
   1288	case BPF_ALU | BPF_OR  | BPF_K:
   1289	case BPF_ALU | BPF_XOR | BPF_K:
   1290	case BPF_ALU | BPF_MUL | BPF_K:
   1291	case BPF_ALU | BPF_MOV | BPF_K:
   1292	case BPF_ALU | BPF_DIV | BPF_K:
   1293	case BPF_ALU | BPF_MOD | BPF_K:
   1294		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
   1295		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
   1296		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
   1297		break;
   1298
   1299	case BPF_ALU64 | BPF_ADD | BPF_K:
   1300	case BPF_ALU64 | BPF_SUB | BPF_K:
   1301	case BPF_ALU64 | BPF_AND | BPF_K:
   1302	case BPF_ALU64 | BPF_OR  | BPF_K:
   1303	case BPF_ALU64 | BPF_XOR | BPF_K:
   1304	case BPF_ALU64 | BPF_MUL | BPF_K:
   1305	case BPF_ALU64 | BPF_MOV | BPF_K:
   1306	case BPF_ALU64 | BPF_DIV | BPF_K:
   1307	case BPF_ALU64 | BPF_MOD | BPF_K:
   1308		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
   1309		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
   1310		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
   1311		break;
   1312
   1313	case BPF_JMP | BPF_JEQ  | BPF_K:
   1314	case BPF_JMP | BPF_JNE  | BPF_K:
   1315	case BPF_JMP | BPF_JGT  | BPF_K:
   1316	case BPF_JMP | BPF_JLT  | BPF_K:
   1317	case BPF_JMP | BPF_JGE  | BPF_K:
   1318	case BPF_JMP | BPF_JLE  | BPF_K:
   1319	case BPF_JMP | BPF_JSGT | BPF_K:
   1320	case BPF_JMP | BPF_JSLT | BPF_K:
   1321	case BPF_JMP | BPF_JSGE | BPF_K:
   1322	case BPF_JMP | BPF_JSLE | BPF_K:
   1323	case BPF_JMP | BPF_JSET | BPF_K:
   1324		/* Accommodate for extra offset in case of a backjump. */
   1325		off = from->off;
   1326		if (off < 0)
   1327			off -= 2;
   1328		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
   1329		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
   1330		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
   1331		break;
   1332
   1333	case BPF_JMP32 | BPF_JEQ  | BPF_K:
   1334	case BPF_JMP32 | BPF_JNE  | BPF_K:
   1335	case BPF_JMP32 | BPF_JGT  | BPF_K:
   1336	case BPF_JMP32 | BPF_JLT  | BPF_K:
   1337	case BPF_JMP32 | BPF_JGE  | BPF_K:
   1338	case BPF_JMP32 | BPF_JLE  | BPF_K:
   1339	case BPF_JMP32 | BPF_JSGT | BPF_K:
   1340	case BPF_JMP32 | BPF_JSLT | BPF_K:
   1341	case BPF_JMP32 | BPF_JSGE | BPF_K:
   1342	case BPF_JMP32 | BPF_JSLE | BPF_K:
   1343	case BPF_JMP32 | BPF_JSET | BPF_K:
   1344		/* Accommodate for extra offset in case of a backjump. */
   1345		off = from->off;
   1346		if (off < 0)
   1347			off -= 2;
   1348		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
   1349		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
   1350		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
   1351				      off);
   1352		break;
   1353
   1354	case BPF_LD | BPF_IMM | BPF_DW:
   1355		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
   1356		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
   1357		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
   1358		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
   1359		break;
   1360	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
   1361		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
   1362		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
   1363		if (emit_zext)
   1364			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
   1365		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
   1366		break;
   1367
   1368	case BPF_ST | BPF_MEM | BPF_DW:
   1369	case BPF_ST | BPF_MEM | BPF_W:
   1370	case BPF_ST | BPF_MEM | BPF_H:
   1371	case BPF_ST | BPF_MEM | BPF_B:
   1372		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
   1373		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
   1374		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
   1375		break;
   1376	}
   1377out:
   1378	return to - to_buff;
   1379}
   1380
   1381static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
   1382					      gfp_t gfp_extra_flags)
   1383{
   1384	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
   1385	struct bpf_prog *fp;
   1386
   1387	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
   1388	if (fp != NULL) {
   1389		/* aux->prog still points to the fp_other one, so
   1390		 * when promoting the clone to the real program,
   1391		 * this still needs to be adapted.
   1392		 */
   1393		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
   1394	}
   1395
   1396	return fp;
   1397}
   1398
   1399static void bpf_prog_clone_free(struct bpf_prog *fp)
   1400{
   1401	/* aux was stolen by the other clone, so we cannot free
   1402	 * it from this path! It will be freed eventually by the
   1403	 * other program on release.
   1404	 *
   1405	 * At this point, we don't need a deferred release since
   1406	 * clone is guaranteed to not be locked.
   1407	 */
   1408	fp->aux = NULL;
   1409	fp->stats = NULL;
   1410	fp->active = NULL;
   1411	__bpf_prog_free(fp);
   1412}
   1413
   1414void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
   1415{
   1416	/* We have to repoint aux->prog to self, as we don't
   1417	 * know whether fp here is the clone or the original.
   1418	 */
   1419	fp->aux->prog = fp;
   1420	bpf_prog_clone_free(fp_other);
   1421}
   1422
   1423struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
   1424{
   1425	struct bpf_insn insn_buff[16], aux[2];
   1426	struct bpf_prog *clone, *tmp;
   1427	int insn_delta, insn_cnt;
   1428	struct bpf_insn *insn;
   1429	int i, rewritten;
   1430
   1431	if (!prog->blinding_requested || prog->blinded)
   1432		return prog;
   1433
   1434	clone = bpf_prog_clone_create(prog, GFP_USER);
   1435	if (!clone)
   1436		return ERR_PTR(-ENOMEM);
   1437
   1438	insn_cnt = clone->len;
   1439	insn = clone->insnsi;
   1440
   1441	for (i = 0; i < insn_cnt; i++, insn++) {
   1442		if (bpf_pseudo_func(insn)) {
   1443			/* ld_imm64 with an address of bpf subprog is not
   1444			 * a user controlled constant. Don't randomize it,
   1445			 * since it will conflict with jit_subprogs() logic.
   1446			 */
   1447			insn++;
   1448			i++;
   1449			continue;
   1450		}
   1451
   1452		/* We temporarily need to hold the original ld64 insn
   1453		 * so that we can still access the first part in the
   1454		 * second blinding run.
   1455		 */
   1456		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
   1457		    insn[1].code == 0)
   1458			memcpy(aux, insn, sizeof(aux));
   1459
   1460		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
   1461						clone->aux->verifier_zext);
   1462		if (!rewritten)
   1463			continue;
   1464
   1465		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
   1466		if (IS_ERR(tmp)) {
   1467			/* Patching may have repointed aux->prog during
   1468			 * realloc from the original one, so we need to
   1469			 * fix it up here on error.
   1470			 */
   1471			bpf_jit_prog_release_other(prog, clone);
   1472			return tmp;
   1473		}
   1474
   1475		clone = tmp;
   1476		insn_delta = rewritten - 1;
   1477
   1478		/* Walk new program and skip insns we just inserted. */
   1479		insn = clone->insnsi + i + insn_delta;
   1480		insn_cnt += insn_delta;
   1481		i        += insn_delta;
   1482	}
   1483
   1484	clone->blinded = 1;
   1485	return clone;
   1486}
   1487#endif /* CONFIG_BPF_JIT */
   1488
   1489/* Base function for offset calculation. Needs to go into .text section,
   1490 * therefore keeping it non-static as well; will also be used by JITs
   1491 * anyway later on, so do not let the compiler omit it. This also needs
   1492 * to go into kallsyms for correlation from e.g. bpftool, so naming
   1493 * must not change.
   1494 */
   1495noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
   1496{
   1497	return 0;
   1498}
   1499EXPORT_SYMBOL_GPL(__bpf_call_base);
   1500
   1501/* All UAPI available opcodes. */
   1502#define BPF_INSN_MAP(INSN_2, INSN_3)		\
   1503	/* 32 bit ALU operations. */		\
   1504	/*   Register based. */			\
   1505	INSN_3(ALU, ADD,  X),			\
   1506	INSN_3(ALU, SUB,  X),			\
   1507	INSN_3(ALU, AND,  X),			\
   1508	INSN_3(ALU, OR,   X),			\
   1509	INSN_3(ALU, LSH,  X),			\
   1510	INSN_3(ALU, RSH,  X),			\
   1511	INSN_3(ALU, XOR,  X),			\
   1512	INSN_3(ALU, MUL,  X),			\
   1513	INSN_3(ALU, MOV,  X),			\
   1514	INSN_3(ALU, ARSH, X),			\
   1515	INSN_3(ALU, DIV,  X),			\
   1516	INSN_3(ALU, MOD,  X),			\
   1517	INSN_2(ALU, NEG),			\
   1518	INSN_3(ALU, END, TO_BE),		\
   1519	INSN_3(ALU, END, TO_LE),		\
   1520	/*   Immediate based. */		\
   1521	INSN_3(ALU, ADD,  K),			\
   1522	INSN_3(ALU, SUB,  K),			\
   1523	INSN_3(ALU, AND,  K),			\
   1524	INSN_3(ALU, OR,   K),			\
   1525	INSN_3(ALU, LSH,  K),			\
   1526	INSN_3(ALU, RSH,  K),			\
   1527	INSN_3(ALU, XOR,  K),			\
   1528	INSN_3(ALU, MUL,  K),			\
   1529	INSN_3(ALU, MOV,  K),			\
   1530	INSN_3(ALU, ARSH, K),			\
   1531	INSN_3(ALU, DIV,  K),			\
   1532	INSN_3(ALU, MOD,  K),			\
   1533	/* 64 bit ALU operations. */		\
   1534	/*   Register based. */			\
   1535	INSN_3(ALU64, ADD,  X),			\
   1536	INSN_3(ALU64, SUB,  X),			\
   1537	INSN_3(ALU64, AND,  X),			\
   1538	INSN_3(ALU64, OR,   X),			\
   1539	INSN_3(ALU64, LSH,  X),			\
   1540	INSN_3(ALU64, RSH,  X),			\
   1541	INSN_3(ALU64, XOR,  X),			\
   1542	INSN_3(ALU64, MUL,  X),			\
   1543	INSN_3(ALU64, MOV,  X),			\
   1544	INSN_3(ALU64, ARSH, X),			\
   1545	INSN_3(ALU64, DIV,  X),			\
   1546	INSN_3(ALU64, MOD,  X),			\
   1547	INSN_2(ALU64, NEG),			\
   1548	/*   Immediate based. */		\
   1549	INSN_3(ALU64, ADD,  K),			\
   1550	INSN_3(ALU64, SUB,  K),			\
   1551	INSN_3(ALU64, AND,  K),			\
   1552	INSN_3(ALU64, OR,   K),			\
   1553	INSN_3(ALU64, LSH,  K),			\
   1554	INSN_3(ALU64, RSH,  K),			\
   1555	INSN_3(ALU64, XOR,  K),			\
   1556	INSN_3(ALU64, MUL,  K),			\
   1557	INSN_3(ALU64, MOV,  K),			\
   1558	INSN_3(ALU64, ARSH, K),			\
   1559	INSN_3(ALU64, DIV,  K),			\
   1560	INSN_3(ALU64, MOD,  K),			\
   1561	/* Call instruction. */			\
   1562	INSN_2(JMP, CALL),			\
   1563	/* Exit instruction. */			\
   1564	INSN_2(JMP, EXIT),			\
   1565	/* 32-bit Jump instructions. */		\
   1566	/*   Register based. */			\
   1567	INSN_3(JMP32, JEQ,  X),			\
   1568	INSN_3(JMP32, JNE,  X),			\
   1569	INSN_3(JMP32, JGT,  X),			\
   1570	INSN_3(JMP32, JLT,  X),			\
   1571	INSN_3(JMP32, JGE,  X),			\
   1572	INSN_3(JMP32, JLE,  X),			\
   1573	INSN_3(JMP32, JSGT, X),			\
   1574	INSN_3(JMP32, JSLT, X),			\
   1575	INSN_3(JMP32, JSGE, X),			\
   1576	INSN_3(JMP32, JSLE, X),			\
   1577	INSN_3(JMP32, JSET, X),			\
   1578	/*   Immediate based. */		\
   1579	INSN_3(JMP32, JEQ,  K),			\
   1580	INSN_3(JMP32, JNE,  K),			\
   1581	INSN_3(JMP32, JGT,  K),			\
   1582	INSN_3(JMP32, JLT,  K),			\
   1583	INSN_3(JMP32, JGE,  K),			\
   1584	INSN_3(JMP32, JLE,  K),			\
   1585	INSN_3(JMP32, JSGT, K),			\
   1586	INSN_3(JMP32, JSLT, K),			\
   1587	INSN_3(JMP32, JSGE, K),			\
   1588	INSN_3(JMP32, JSLE, K),			\
   1589	INSN_3(JMP32, JSET, K),			\
   1590	/* Jump instructions. */		\
   1591	/*   Register based. */			\
   1592	INSN_3(JMP, JEQ,  X),			\
   1593	INSN_3(JMP, JNE,  X),			\
   1594	INSN_3(JMP, JGT,  X),			\
   1595	INSN_3(JMP, JLT,  X),			\
   1596	INSN_3(JMP, JGE,  X),			\
   1597	INSN_3(JMP, JLE,  X),			\
   1598	INSN_3(JMP, JSGT, X),			\
   1599	INSN_3(JMP, JSLT, X),			\
   1600	INSN_3(JMP, JSGE, X),			\
   1601	INSN_3(JMP, JSLE, X),			\
   1602	INSN_3(JMP, JSET, X),			\
   1603	/*   Immediate based. */		\
   1604	INSN_3(JMP, JEQ,  K),			\
   1605	INSN_3(JMP, JNE,  K),			\
   1606	INSN_3(JMP, JGT,  K),			\
   1607	INSN_3(JMP, JLT,  K),			\
   1608	INSN_3(JMP, JGE,  K),			\
   1609	INSN_3(JMP, JLE,  K),			\
   1610	INSN_3(JMP, JSGT, K),			\
   1611	INSN_3(JMP, JSLT, K),			\
   1612	INSN_3(JMP, JSGE, K),			\
   1613	INSN_3(JMP, JSLE, K),			\
   1614	INSN_3(JMP, JSET, K),			\
   1615	INSN_2(JMP, JA),			\
   1616	/* Store instructions. */		\
   1617	/*   Register based. */			\
   1618	INSN_3(STX, MEM,  B),			\
   1619	INSN_3(STX, MEM,  H),			\
   1620	INSN_3(STX, MEM,  W),			\
   1621	INSN_3(STX, MEM,  DW),			\
   1622	INSN_3(STX, ATOMIC, W),			\
   1623	INSN_3(STX, ATOMIC, DW),		\
   1624	/*   Immediate based. */		\
   1625	INSN_3(ST, MEM, B),			\
   1626	INSN_3(ST, MEM, H),			\
   1627	INSN_3(ST, MEM, W),			\
   1628	INSN_3(ST, MEM, DW),			\
   1629	/* Load instructions. */		\
   1630	/*   Register based. */			\
   1631	INSN_3(LDX, MEM, B),			\
   1632	INSN_3(LDX, MEM, H),			\
   1633	INSN_3(LDX, MEM, W),			\
   1634	INSN_3(LDX, MEM, DW),			\
   1635	/*   Immediate based. */		\
   1636	INSN_3(LD, IMM, DW)
   1637
   1638bool bpf_opcode_in_insntable(u8 code)
   1639{
   1640#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
   1641#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
   1642	static const bool public_insntable[256] = {
   1643		[0 ... 255] = false,
   1644		/* Now overwrite non-defaults ... */
   1645		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
   1646		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
   1647		[BPF_LD | BPF_ABS | BPF_B] = true,
   1648		[BPF_LD | BPF_ABS | BPF_H] = true,
   1649		[BPF_LD | BPF_ABS | BPF_W] = true,
   1650		[BPF_LD | BPF_IND | BPF_B] = true,
   1651		[BPF_LD | BPF_IND | BPF_H] = true,
   1652		[BPF_LD | BPF_IND | BPF_W] = true,
   1653	};
   1654#undef BPF_INSN_3_TBL
   1655#undef BPF_INSN_2_TBL
   1656	return public_insntable[code];
   1657}
   1658
   1659#ifndef CONFIG_BPF_JIT_ALWAYS_ON
   1660u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
   1661{
   1662	memset(dst, 0, size);
   1663	return -EFAULT;
   1664}
   1665
   1666/**
   1667 *	___bpf_prog_run - run eBPF program on a given context
   1668 *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
   1669 *	@insn: is the array of eBPF instructions
   1670 *
   1671 * Decode and execute eBPF instructions.
   1672 *
   1673 * Return: whatever value is in %BPF_R0 at program exit
   1674 */
   1675static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
   1676{
   1677#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
   1678#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
   1679	static const void * const jumptable[256] __annotate_jump_table = {
   1680		[0 ... 255] = &&default_label,
   1681		/* Now overwrite non-defaults ... */
   1682		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
   1683		/* Non-UAPI available opcodes. */
   1684		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
   1685		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
   1686		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
   1687		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
   1688		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
   1689		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
   1690		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
   1691	};
   1692#undef BPF_INSN_3_LBL
   1693#undef BPF_INSN_2_LBL
   1694	u32 tail_call_cnt = 0;
   1695
   1696#define CONT	 ({ insn++; goto select_insn; })
   1697#define CONT_JMP ({ insn++; goto select_insn; })
   1698
   1699select_insn:
   1700	goto *jumptable[insn->code];
   1701
   1702	/* Explicitly mask the register-based shift amounts with 63 or 31
   1703	 * to avoid undefined behavior. Normally this won't affect the
   1704	 * generated code, for example, in case of native 64 bit archs such
   1705	 * as x86-64 or arm64, the compiler is optimizing the AND away for
   1706	 * the interpreter. In case of JITs, each of the JIT backends compiles
   1707	 * the BPF shift operations to machine instructions which produce
   1708	 * implementation-defined results in such a case; the resulting
   1709	 * contents of the register may be arbitrary, but program behaviour
   1710	 * as a whole remains defined. In other words, in case of JIT backends,
   1711	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
   1712	 */
   1713	/* ALU (shifts) */
   1714#define SHT(OPCODE, OP)					\
   1715	ALU64_##OPCODE##_X:				\
   1716		DST = DST OP (SRC & 63);		\
   1717		CONT;					\
   1718	ALU_##OPCODE##_X:				\
   1719		DST = (u32) DST OP ((u32) SRC & 31);	\
   1720		CONT;					\
   1721	ALU64_##OPCODE##_K:				\
   1722		DST = DST OP IMM;			\
   1723		CONT;					\
   1724	ALU_##OPCODE##_K:				\
   1725		DST = (u32) DST OP (u32) IMM;		\
   1726		CONT;
   1727	/* ALU (rest) */
   1728#define ALU(OPCODE, OP)					\
   1729	ALU64_##OPCODE##_X:				\
   1730		DST = DST OP SRC;			\
   1731		CONT;					\
   1732	ALU_##OPCODE##_X:				\
   1733		DST = (u32) DST OP (u32) SRC;		\
   1734		CONT;					\
   1735	ALU64_##OPCODE##_K:				\
   1736		DST = DST OP IMM;			\
   1737		CONT;					\
   1738	ALU_##OPCODE##_K:				\
   1739		DST = (u32) DST OP (u32) IMM;		\
   1740		CONT;
   1741	ALU(ADD,  +)
   1742	ALU(SUB,  -)
   1743	ALU(AND,  &)
   1744	ALU(OR,   |)
   1745	ALU(XOR,  ^)
   1746	ALU(MUL,  *)
   1747	SHT(LSH, <<)
   1748	SHT(RSH, >>)
   1749#undef SHT
   1750#undef ALU
   1751	ALU_NEG:
   1752		DST = (u32) -DST;
   1753		CONT;
   1754	ALU64_NEG:
   1755		DST = -DST;
   1756		CONT;
   1757	ALU_MOV_X:
   1758		DST = (u32) SRC;
   1759		CONT;
   1760	ALU_MOV_K:
   1761		DST = (u32) IMM;
   1762		CONT;
   1763	ALU64_MOV_X:
   1764		DST = SRC;
   1765		CONT;
   1766	ALU64_MOV_K:
   1767		DST = IMM;
   1768		CONT;
   1769	LD_IMM_DW:
   1770		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
   1771		insn++;
   1772		CONT;
   1773	ALU_ARSH_X:
   1774		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
   1775		CONT;
   1776	ALU_ARSH_K:
   1777		DST = (u64) (u32) (((s32) DST) >> IMM);
   1778		CONT;
   1779	ALU64_ARSH_X:
   1780		(*(s64 *) &DST) >>= (SRC & 63);
   1781		CONT;
   1782	ALU64_ARSH_K:
   1783		(*(s64 *) &DST) >>= IMM;
   1784		CONT;
   1785	ALU64_MOD_X:
   1786		div64_u64_rem(DST, SRC, &AX);
   1787		DST = AX;
   1788		CONT;
   1789	ALU_MOD_X:
   1790		AX = (u32) DST;
   1791		DST = do_div(AX, (u32) SRC);
   1792		CONT;
   1793	ALU64_MOD_K:
   1794		div64_u64_rem(DST, IMM, &AX);
   1795		DST = AX;
   1796		CONT;
   1797	ALU_MOD_K:
   1798		AX = (u32) DST;
   1799		DST = do_div(AX, (u32) IMM);
   1800		CONT;
   1801	ALU64_DIV_X:
   1802		DST = div64_u64(DST, SRC);
   1803		CONT;
   1804	ALU_DIV_X:
   1805		AX = (u32) DST;
   1806		do_div(AX, (u32) SRC);
   1807		DST = (u32) AX;
   1808		CONT;
   1809	ALU64_DIV_K:
   1810		DST = div64_u64(DST, IMM);
   1811		CONT;
   1812	ALU_DIV_K:
   1813		AX = (u32) DST;
   1814		do_div(AX, (u32) IMM);
   1815		DST = (u32) AX;
   1816		CONT;
   1817	ALU_END_TO_BE:
   1818		switch (IMM) {
   1819		case 16:
   1820			DST = (__force u16) cpu_to_be16(DST);
   1821			break;
   1822		case 32:
   1823			DST = (__force u32) cpu_to_be32(DST);
   1824			break;
   1825		case 64:
   1826			DST = (__force u64) cpu_to_be64(DST);
   1827			break;
   1828		}
   1829		CONT;
   1830	ALU_END_TO_LE:
   1831		switch (IMM) {
   1832		case 16:
   1833			DST = (__force u16) cpu_to_le16(DST);
   1834			break;
   1835		case 32:
   1836			DST = (__force u32) cpu_to_le32(DST);
   1837			break;
   1838		case 64:
   1839			DST = (__force u64) cpu_to_le64(DST);
   1840			break;
   1841		}
   1842		CONT;
   1843
   1844	/* CALL */
   1845	JMP_CALL:
   1846		/* Function call scratches BPF_R1-BPF_R5 registers,
   1847		 * preserves BPF_R6-BPF_R9, and stores return value
   1848		 * into BPF_R0.
   1849		 */
   1850		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
   1851						       BPF_R4, BPF_R5);
   1852		CONT;
   1853
   1854	JMP_CALL_ARGS:
   1855		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
   1856							    BPF_R3, BPF_R4,
   1857							    BPF_R5,
   1858							    insn + insn->off + 1);
   1859		CONT;
   1860
   1861	JMP_TAIL_CALL: {
   1862		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
   1863		struct bpf_array *array = container_of(map, struct bpf_array, map);
   1864		struct bpf_prog *prog;
   1865		u32 index = BPF_R3;
   1866
   1867		if (unlikely(index >= array->map.max_entries))
   1868			goto out;
   1869
   1870		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
   1871			goto out;
   1872
   1873		tail_call_cnt++;
   1874
   1875		prog = READ_ONCE(array->ptrs[index]);
   1876		if (!prog)
   1877			goto out;
   1878
   1879		/* ARG1 at this point is guaranteed to point to CTX from
   1880		 * the verifier side due to the fact that the tail call is
   1881		 * handled like a helper, that is, bpf_tail_call_proto,
   1882		 * where arg1_type is ARG_PTR_TO_CTX.
   1883		 */
   1884		insn = prog->insnsi;
   1885		goto select_insn;
   1886out:
   1887		CONT;
   1888	}
   1889	JMP_JA:
   1890		insn += insn->off;
   1891		CONT;
   1892	JMP_EXIT:
   1893		return BPF_R0;
   1894	/* JMP */
   1895#define COND_JMP(SIGN, OPCODE, CMP_OP)				\
   1896	JMP_##OPCODE##_X:					\
   1897		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
   1898			insn += insn->off;			\
   1899			CONT_JMP;				\
   1900		}						\
   1901		CONT;						\
   1902	JMP32_##OPCODE##_X:					\
   1903		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
   1904			insn += insn->off;			\
   1905			CONT_JMP;				\
   1906		}						\
   1907		CONT;						\
   1908	JMP_##OPCODE##_K:					\
   1909		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
   1910			insn += insn->off;			\
   1911			CONT_JMP;				\
   1912		}						\
   1913		CONT;						\
   1914	JMP32_##OPCODE##_K:					\
   1915		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
   1916			insn += insn->off;			\
   1917			CONT_JMP;				\
   1918		}						\
   1919		CONT;
   1920	COND_JMP(u, JEQ, ==)
   1921	COND_JMP(u, JNE, !=)
   1922	COND_JMP(u, JGT, >)
   1923	COND_JMP(u, JLT, <)
   1924	COND_JMP(u, JGE, >=)
   1925	COND_JMP(u, JLE, <=)
   1926	COND_JMP(u, JSET, &)
   1927	COND_JMP(s, JSGT, >)
   1928	COND_JMP(s, JSLT, <)
   1929	COND_JMP(s, JSGE, >=)
   1930	COND_JMP(s, JSLE, <=)
   1931#undef COND_JMP
   1932	/* ST, STX and LDX*/
   1933	ST_NOSPEC:
   1934		/* Speculation barrier for mitigating Speculative Store Bypass.
   1935		 * In case of arm64, we rely on the firmware mitigation as
   1936		 * controlled via the ssbd kernel parameter. Whenever the
   1937		 * mitigation is enabled, it works for all of the kernel code
   1938		 * with no need to provide any additional instructions here.
   1939		 * In case of x86, we use 'lfence' insn for mitigation. We
   1940		 * reuse preexisting logic from Spectre v1 mitigation that
   1941		 * happens to produce the required code on x86 for v4 as well.
   1942		 */
   1943#ifdef CONFIG_X86
   1944		barrier_nospec();
   1945#endif
   1946		CONT;
   1947#define LDST(SIZEOP, SIZE)						\
   1948	STX_MEM_##SIZEOP:						\
   1949		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
   1950		CONT;							\
   1951	ST_MEM_##SIZEOP:						\
   1952		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
   1953		CONT;							\
   1954	LDX_MEM_##SIZEOP:						\
   1955		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
   1956		CONT;							\
   1957	LDX_PROBE_MEM_##SIZEOP:						\
   1958		bpf_probe_read_kernel(&DST, sizeof(SIZE),		\
   1959				      (const void *)(long) (SRC + insn->off));	\
   1960		DST = *((SIZE *)&DST);					\
   1961		CONT;
   1962
   1963	LDST(B,   u8)
   1964	LDST(H,  u16)
   1965	LDST(W,  u32)
   1966	LDST(DW, u64)
   1967#undef LDST
   1968
   1969#define ATOMIC_ALU_OP(BOP, KOP)						\
   1970		case BOP:						\
   1971			if (BPF_SIZE(insn->code) == BPF_W)		\
   1972				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
   1973					     (DST + insn->off));	\
   1974			else						\
   1975				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
   1976					       (DST + insn->off));	\
   1977			break;						\
   1978		case BOP | BPF_FETCH:					\
   1979			if (BPF_SIZE(insn->code) == BPF_W)		\
   1980				SRC = (u32) atomic_fetch_##KOP(		\
   1981					(u32) SRC,			\
   1982					(atomic_t *)(unsigned long) (DST + insn->off)); \
   1983			else						\
   1984				SRC = (u64) atomic64_fetch_##KOP(	\
   1985					(u64) SRC,			\
   1986					(atomic64_t *)(unsigned long) (DST + insn->off)); \
   1987			break;
   1988
   1989	STX_ATOMIC_DW:
   1990	STX_ATOMIC_W:
   1991		switch (IMM) {
   1992		ATOMIC_ALU_OP(BPF_ADD, add)
   1993		ATOMIC_ALU_OP(BPF_AND, and)
   1994		ATOMIC_ALU_OP(BPF_OR, or)
   1995		ATOMIC_ALU_OP(BPF_XOR, xor)
   1996#undef ATOMIC_ALU_OP
   1997
   1998		case BPF_XCHG:
   1999			if (BPF_SIZE(insn->code) == BPF_W)
   2000				SRC = (u32) atomic_xchg(
   2001					(atomic_t *)(unsigned long) (DST + insn->off),
   2002					(u32) SRC);
   2003			else
   2004				SRC = (u64) atomic64_xchg(
   2005					(atomic64_t *)(unsigned long) (DST + insn->off),
   2006					(u64) SRC);
   2007			break;
   2008		case BPF_CMPXCHG:
   2009			if (BPF_SIZE(insn->code) == BPF_W)
   2010				BPF_R0 = (u32) atomic_cmpxchg(
   2011					(atomic_t *)(unsigned long) (DST + insn->off),
   2012					(u32) BPF_R0, (u32) SRC);
   2013			else
   2014				BPF_R0 = (u64) atomic64_cmpxchg(
   2015					(atomic64_t *)(unsigned long) (DST + insn->off),
   2016					(u64) BPF_R0, (u64) SRC);
   2017			break;
   2018
   2019		default:
   2020			goto default_label;
   2021		}
   2022		CONT;
   2023
   2024	default_label:
   2025		/* If we ever reach this, we have a bug somewhere. Die hard here
   2026		 * instead of just returning 0; we could be somewhere in a subprog,
   2027		 * so execution could continue otherwise which we do /not/ want.
   2028		 *
   2029		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
   2030		 */
   2031		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
   2032			insn->code, insn->imm);
   2033		BUG_ON(1);
   2034		return 0;
   2035}
   2036
   2037#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
   2038#define DEFINE_BPF_PROG_RUN(stack_size) \
   2039static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
   2040{ \
   2041	u64 stack[stack_size / sizeof(u64)]; \
   2042	u64 regs[MAX_BPF_EXT_REG]; \
   2043\
   2044	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
   2045	ARG1 = (u64) (unsigned long) ctx; \
   2046	return ___bpf_prog_run(regs, insn); \
   2047}
   2048
   2049#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
   2050#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
   2051static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
   2052				      const struct bpf_insn *insn) \
   2053{ \
   2054	u64 stack[stack_size / sizeof(u64)]; \
   2055	u64 regs[MAX_BPF_EXT_REG]; \
   2056\
   2057	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
   2058	BPF_R1 = r1; \
   2059	BPF_R2 = r2; \
   2060	BPF_R3 = r3; \
   2061	BPF_R4 = r4; \
   2062	BPF_R5 = r5; \
   2063	return ___bpf_prog_run(regs, insn); \
   2064}
   2065
   2066#define EVAL1(FN, X) FN(X)
   2067#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
   2068#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
   2069#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
   2070#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
   2071#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
   2072
   2073EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
   2074EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
   2075EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
   2076
   2077EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
   2078EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
   2079EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
   2080
   2081#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
   2082
   2083static unsigned int (*interpreters[])(const void *ctx,
   2084				      const struct bpf_insn *insn) = {
   2085EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
   2086EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
   2087EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
   2088};
   2089#undef PROG_NAME_LIST
   2090#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
   2091static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
   2092				  const struct bpf_insn *insn) = {
   2093EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
   2094EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
   2095EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
   2096};
   2097#undef PROG_NAME_LIST
   2098
   2099void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
   2100{
   2101	stack_depth = max_t(u32, stack_depth, 1);
   2102	insn->off = (s16) insn->imm;
   2103	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
   2104		__bpf_call_base_args;
   2105	insn->code = BPF_JMP | BPF_CALL_ARGS;
   2106}
   2107
   2108#else
   2109static unsigned int __bpf_prog_ret0_warn(const void *ctx,
   2110					 const struct bpf_insn *insn)
   2111{
   2112	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
   2113	 * is not working properly, so warn about it!
   2114	 */
   2115	WARN_ON_ONCE(1);
   2116	return 0;
   2117}
   2118#endif
   2119
   2120bool bpf_prog_map_compatible(struct bpf_map *map,
   2121			     const struct bpf_prog *fp)
   2122{
   2123	bool ret;
   2124
   2125	if (fp->kprobe_override)
   2126		return false;
   2127
   2128	spin_lock(&map->owner.lock);
   2129	if (!map->owner.type) {
   2130		/* There's no owner yet where we could check for
   2131		 * compatibility.
   2132		 */
   2133		map->owner.type  = fp->type;
   2134		map->owner.jited = fp->jited;
   2135		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
   2136		ret = true;
   2137	} else {
   2138		ret = map->owner.type  == fp->type &&
   2139		      map->owner.jited == fp->jited &&
   2140		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
   2141	}
   2142	spin_unlock(&map->owner.lock);
   2143
   2144	return ret;
   2145}
   2146
   2147static int bpf_check_tail_call(const struct bpf_prog *fp)
   2148{
   2149	struct bpf_prog_aux *aux = fp->aux;
   2150	int i, ret = 0;
   2151
   2152	mutex_lock(&aux->used_maps_mutex);
   2153	for (i = 0; i < aux->used_map_cnt; i++) {
   2154		struct bpf_map *map = aux->used_maps[i];
   2155
   2156		if (!map_type_contains_progs(map))
   2157			continue;
   2158
   2159		if (!bpf_prog_map_compatible(map, fp)) {
   2160			ret = -EINVAL;
   2161			goto out;
   2162		}
   2163	}
   2164
   2165out:
   2166	mutex_unlock(&aux->used_maps_mutex);
   2167	return ret;
   2168}
   2169
   2170static void bpf_prog_select_func(struct bpf_prog *fp)
   2171{
   2172#ifndef CONFIG_BPF_JIT_ALWAYS_ON
   2173	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
   2174
   2175	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
   2176#else
   2177	fp->bpf_func = __bpf_prog_ret0_warn;
   2178#endif
   2179}
   2180
   2181/**
   2182 *	bpf_prog_select_runtime - select exec runtime for BPF program
   2183 *	@fp: bpf_prog populated with BPF program
   2184 *	@err: pointer to error variable
   2185 *
   2186 * Try to JIT eBPF program, if JIT is not available, use interpreter.
   2187 * The BPF program will be executed via bpf_prog_run() function.
   2188 *
   2189 * Return: the &fp argument along with &err set to 0 for success or
   2190 * a negative errno code on failure
   2191 */
   2192struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
   2193{
   2194	/* In case of BPF to BPF calls, verifier did all the prep
   2195	 * work with regards to JITing, etc.
   2196	 */
   2197	bool jit_needed = false;
   2198
   2199	if (fp->bpf_func)
   2200		goto finalize;
   2201
   2202	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
   2203	    bpf_prog_has_kfunc_call(fp))
   2204		jit_needed = true;
   2205
   2206	bpf_prog_select_func(fp);
   2207
   2208	/* eBPF JITs can rewrite the program in case constant
   2209	 * blinding is active. However, in case of error during
   2210	 * blinding, bpf_int_jit_compile() must always return a
   2211	 * valid program, which in this case would simply not
   2212	 * be JITed, but falls back to the interpreter.
   2213	 */
   2214	if (!bpf_prog_is_dev_bound(fp->aux)) {
   2215		*err = bpf_prog_alloc_jited_linfo(fp);
   2216		if (*err)
   2217			return fp;
   2218
   2219		fp = bpf_int_jit_compile(fp);
   2220		bpf_prog_jit_attempt_done(fp);
   2221		if (!fp->jited && jit_needed) {
   2222			*err = -ENOTSUPP;
   2223			return fp;
   2224		}
   2225	} else {
   2226		*err = bpf_prog_offload_compile(fp);
   2227		if (*err)
   2228			return fp;
   2229	}
   2230
   2231finalize:
   2232	bpf_prog_lock_ro(fp);
   2233
   2234	/* The tail call compatibility check can only be done at
   2235	 * this late stage as we need to determine, if we deal
   2236	 * with JITed or non JITed program concatenations and not
   2237	 * all eBPF JITs might immediately support all features.
   2238	 */
   2239	*err = bpf_check_tail_call(fp);
   2240
   2241	return fp;
   2242}
   2243EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
   2244
   2245static unsigned int __bpf_prog_ret1(const void *ctx,
   2246				    const struct bpf_insn *insn)
   2247{
   2248	return 1;
   2249}
   2250
   2251static struct bpf_prog_dummy {
   2252	struct bpf_prog prog;
   2253} dummy_bpf_prog = {
   2254	.prog = {
   2255		.bpf_func = __bpf_prog_ret1,
   2256	},
   2257};
   2258
   2259struct bpf_empty_prog_array bpf_empty_prog_array = {
   2260	.null_prog = NULL,
   2261};
   2262EXPORT_SYMBOL(bpf_empty_prog_array);
   2263
   2264struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
   2265{
   2266	if (prog_cnt)
   2267		return kzalloc(sizeof(struct bpf_prog_array) +
   2268			       sizeof(struct bpf_prog_array_item) *
   2269			       (prog_cnt + 1),
   2270			       flags);
   2271
   2272	return &bpf_empty_prog_array.hdr;
   2273}
   2274
   2275void bpf_prog_array_free(struct bpf_prog_array *progs)
   2276{
   2277	if (!progs || progs == &bpf_empty_prog_array.hdr)
   2278		return;
   2279	kfree_rcu(progs, rcu);
   2280}
   2281
   2282int bpf_prog_array_length(struct bpf_prog_array *array)
   2283{
   2284	struct bpf_prog_array_item *item;
   2285	u32 cnt = 0;
   2286
   2287	for (item = array->items; item->prog; item++)
   2288		if (item->prog != &dummy_bpf_prog.prog)
   2289			cnt++;
   2290	return cnt;
   2291}
   2292
   2293bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
   2294{
   2295	struct bpf_prog_array_item *item;
   2296
   2297	for (item = array->items; item->prog; item++)
   2298		if (item->prog != &dummy_bpf_prog.prog)
   2299			return false;
   2300	return true;
   2301}
   2302
   2303static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
   2304				     u32 *prog_ids,
   2305				     u32 request_cnt)
   2306{
   2307	struct bpf_prog_array_item *item;
   2308	int i = 0;
   2309
   2310	for (item = array->items; item->prog; item++) {
   2311		if (item->prog == &dummy_bpf_prog.prog)
   2312			continue;
   2313		prog_ids[i] = item->prog->aux->id;
   2314		if (++i == request_cnt) {
   2315			item++;
   2316			break;
   2317		}
   2318	}
   2319
   2320	return !!(item->prog);
   2321}
   2322
   2323int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
   2324				__u32 __user *prog_ids, u32 cnt)
   2325{
   2326	unsigned long err = 0;
   2327	bool nospc;
   2328	u32 *ids;
   2329
   2330	/* users of this function are doing:
   2331	 * cnt = bpf_prog_array_length();
   2332	 * if (cnt > 0)
   2333	 *     bpf_prog_array_copy_to_user(..., cnt);
   2334	 * so below kcalloc doesn't need extra cnt > 0 check.
   2335	 */
   2336	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
   2337	if (!ids)
   2338		return -ENOMEM;
   2339	nospc = bpf_prog_array_copy_core(array, ids, cnt);
   2340	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
   2341	kfree(ids);
   2342	if (err)
   2343		return -EFAULT;
   2344	if (nospc)
   2345		return -ENOSPC;
   2346	return 0;
   2347}
   2348
   2349void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
   2350				struct bpf_prog *old_prog)
   2351{
   2352	struct bpf_prog_array_item *item;
   2353
   2354	for (item = array->items; item->prog; item++)
   2355		if (item->prog == old_prog) {
   2356			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
   2357			break;
   2358		}
   2359}
   2360
   2361/**
   2362 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
   2363 *                                   index into the program array with
   2364 *                                   a dummy no-op program.
   2365 * @array: a bpf_prog_array
   2366 * @index: the index of the program to replace
   2367 *
   2368 * Skips over dummy programs, by not counting them, when calculating
   2369 * the position of the program to replace.
   2370 *
   2371 * Return:
   2372 * * 0		- Success
   2373 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
   2374 * * -ENOENT	- Index out of range
   2375 */
   2376int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
   2377{
   2378	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
   2379}
   2380
   2381/**
   2382 * bpf_prog_array_update_at() - Updates the program at the given index
   2383 *                              into the program array.
   2384 * @array: a bpf_prog_array
   2385 * @index: the index of the program to update
   2386 * @prog: the program to insert into the array
   2387 *
   2388 * Skips over dummy programs, by not counting them, when calculating
   2389 * the position of the program to update.
   2390 *
   2391 * Return:
   2392 * * 0		- Success
   2393 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
   2394 * * -ENOENT	- Index out of range
   2395 */
   2396int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
   2397			     struct bpf_prog *prog)
   2398{
   2399	struct bpf_prog_array_item *item;
   2400
   2401	if (unlikely(index < 0))
   2402		return -EINVAL;
   2403
   2404	for (item = array->items; item->prog; item++) {
   2405		if (item->prog == &dummy_bpf_prog.prog)
   2406			continue;
   2407		if (!index) {
   2408			WRITE_ONCE(item->prog, prog);
   2409			return 0;
   2410		}
   2411		index--;
   2412	}
   2413	return -ENOENT;
   2414}
   2415
   2416int bpf_prog_array_copy(struct bpf_prog_array *old_array,
   2417			struct bpf_prog *exclude_prog,
   2418			struct bpf_prog *include_prog,
   2419			u64 bpf_cookie,
   2420			struct bpf_prog_array **new_array)
   2421{
   2422	int new_prog_cnt, carry_prog_cnt = 0;
   2423	struct bpf_prog_array_item *existing, *new;
   2424	struct bpf_prog_array *array;
   2425	bool found_exclude = false;
   2426
   2427	/* Figure out how many existing progs we need to carry over to
   2428	 * the new array.
   2429	 */
   2430	if (old_array) {
   2431		existing = old_array->items;
   2432		for (; existing->prog; existing++) {
   2433			if (existing->prog == exclude_prog) {
   2434				found_exclude = true;
   2435				continue;
   2436			}
   2437			if (existing->prog != &dummy_bpf_prog.prog)
   2438				carry_prog_cnt++;
   2439			if (existing->prog == include_prog)
   2440				return -EEXIST;
   2441		}
   2442	}
   2443
   2444	if (exclude_prog && !found_exclude)
   2445		return -ENOENT;
   2446
   2447	/* How many progs (not NULL) will be in the new array? */
   2448	new_prog_cnt = carry_prog_cnt;
   2449	if (include_prog)
   2450		new_prog_cnt += 1;
   2451
   2452	/* Do we have any prog (not NULL) in the new array? */
   2453	if (!new_prog_cnt) {
   2454		*new_array = NULL;
   2455		return 0;
   2456	}
   2457
   2458	/* +1 as the end of prog_array is marked with NULL */
   2459	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
   2460	if (!array)
   2461		return -ENOMEM;
   2462	new = array->items;
   2463
   2464	/* Fill in the new prog array */
   2465	if (carry_prog_cnt) {
   2466		existing = old_array->items;
   2467		for (; existing->prog; existing++) {
   2468			if (existing->prog == exclude_prog ||
   2469			    existing->prog == &dummy_bpf_prog.prog)
   2470				continue;
   2471
   2472			new->prog = existing->prog;
   2473			new->bpf_cookie = existing->bpf_cookie;
   2474			new++;
   2475		}
   2476	}
   2477	if (include_prog) {
   2478		new->prog = include_prog;
   2479		new->bpf_cookie = bpf_cookie;
   2480		new++;
   2481	}
   2482	new->prog = NULL;
   2483	*new_array = array;
   2484	return 0;
   2485}
   2486
   2487int bpf_prog_array_copy_info(struct bpf_prog_array *array,
   2488			     u32 *prog_ids, u32 request_cnt,
   2489			     u32 *prog_cnt)
   2490{
   2491	u32 cnt = 0;
   2492
   2493	if (array)
   2494		cnt = bpf_prog_array_length(array);
   2495
   2496	*prog_cnt = cnt;
   2497
   2498	/* return early if user requested only program count or nothing to copy */
   2499	if (!request_cnt || !cnt)
   2500		return 0;
   2501
   2502	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
   2503	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
   2504								     : 0;
   2505}
   2506
   2507void __bpf_free_used_maps(struct bpf_prog_aux *aux,
   2508			  struct bpf_map **used_maps, u32 len)
   2509{
   2510	struct bpf_map *map;
   2511	u32 i;
   2512
   2513	for (i = 0; i < len; i++) {
   2514		map = used_maps[i];
   2515		if (map->ops->map_poke_untrack)
   2516			map->ops->map_poke_untrack(map, aux);
   2517		bpf_map_put(map);
   2518	}
   2519}
   2520
   2521static void bpf_free_used_maps(struct bpf_prog_aux *aux)
   2522{
   2523	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
   2524	kfree(aux->used_maps);
   2525}
   2526
   2527void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
   2528			  struct btf_mod_pair *used_btfs, u32 len)
   2529{
   2530#ifdef CONFIG_BPF_SYSCALL
   2531	struct btf_mod_pair *btf_mod;
   2532	u32 i;
   2533
   2534	for (i = 0; i < len; i++) {
   2535		btf_mod = &used_btfs[i];
   2536		if (btf_mod->module)
   2537			module_put(btf_mod->module);
   2538		btf_put(btf_mod->btf);
   2539	}
   2540#endif
   2541}
   2542
   2543static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
   2544{
   2545	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
   2546	kfree(aux->used_btfs);
   2547}
   2548
   2549static void bpf_prog_free_deferred(struct work_struct *work)
   2550{
   2551	struct bpf_prog_aux *aux;
   2552	int i;
   2553
   2554	aux = container_of(work, struct bpf_prog_aux, work);
   2555#ifdef CONFIG_BPF_SYSCALL
   2556	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
   2557#endif
   2558	bpf_free_used_maps(aux);
   2559	bpf_free_used_btfs(aux);
   2560	if (bpf_prog_is_dev_bound(aux))
   2561		bpf_prog_offload_destroy(aux->prog);
   2562#ifdef CONFIG_PERF_EVENTS
   2563	if (aux->prog->has_callchain_buf)
   2564		put_callchain_buffers();
   2565#endif
   2566	if (aux->dst_trampoline)
   2567		bpf_trampoline_put(aux->dst_trampoline);
   2568	for (i = 0; i < aux->func_cnt; i++) {
   2569		/* We can just unlink the subprog poke descriptor table as
   2570		 * it was originally linked to the main program and is also
   2571		 * released along with it.
   2572		 */
   2573		aux->func[i]->aux->poke_tab = NULL;
   2574		bpf_jit_free(aux->func[i]);
   2575	}
   2576	if (aux->func_cnt) {
   2577		kfree(aux->func);
   2578		bpf_prog_unlock_free(aux->prog);
   2579	} else {
   2580		bpf_jit_free(aux->prog);
   2581	}
   2582}
   2583
   2584void bpf_prog_free(struct bpf_prog *fp)
   2585{
   2586	struct bpf_prog_aux *aux = fp->aux;
   2587
   2588	if (aux->dst_prog)
   2589		bpf_prog_put(aux->dst_prog);
   2590	INIT_WORK(&aux->work, bpf_prog_free_deferred);
   2591	schedule_work(&aux->work);
   2592}
   2593EXPORT_SYMBOL_GPL(bpf_prog_free);
   2594
   2595/* RNG for unpriviledged user space with separated state from prandom_u32(). */
   2596static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
   2597
   2598void bpf_user_rnd_init_once(void)
   2599{
   2600	prandom_init_once(&bpf_user_rnd_state);
   2601}
   2602
   2603BPF_CALL_0(bpf_user_rnd_u32)
   2604{
   2605	/* Should someone ever have the rather unwise idea to use some
   2606	 * of the registers passed into this function, then note that
   2607	 * this function is called from native eBPF and classic-to-eBPF
   2608	 * transformations. Register assignments from both sides are
   2609	 * different, f.e. classic always sets fn(ctx, A, X) here.
   2610	 */
   2611	struct rnd_state *state;
   2612	u32 res;
   2613
   2614	state = &get_cpu_var(bpf_user_rnd_state);
   2615	res = prandom_u32_state(state);
   2616	put_cpu_var(bpf_user_rnd_state);
   2617
   2618	return res;
   2619}
   2620
   2621BPF_CALL_0(bpf_get_raw_cpu_id)
   2622{
   2623	return raw_smp_processor_id();
   2624}
   2625
   2626/* Weak definitions of helper functions in case we don't have bpf syscall. */
   2627const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
   2628const struct bpf_func_proto bpf_map_update_elem_proto __weak;
   2629const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
   2630const struct bpf_func_proto bpf_map_push_elem_proto __weak;
   2631const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
   2632const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
   2633const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
   2634const struct bpf_func_proto bpf_spin_lock_proto __weak;
   2635const struct bpf_func_proto bpf_spin_unlock_proto __weak;
   2636const struct bpf_func_proto bpf_jiffies64_proto __weak;
   2637
   2638const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
   2639const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
   2640const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
   2641const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
   2642const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
   2643const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
   2644
   2645const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
   2646const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
   2647const struct bpf_func_proto bpf_get_current_comm_proto __weak;
   2648const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
   2649const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
   2650const struct bpf_func_proto bpf_get_local_storage_proto __weak;
   2651const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
   2652const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
   2653const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
   2654
   2655const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
   2656{
   2657	return NULL;
   2658}
   2659
   2660const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
   2661{
   2662	return NULL;
   2663}
   2664
   2665u64 __weak
   2666bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
   2667		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
   2668{
   2669	return -ENOTSUPP;
   2670}
   2671EXPORT_SYMBOL_GPL(bpf_event_output);
   2672
   2673/* Always built-in helper functions. */
   2674const struct bpf_func_proto bpf_tail_call_proto = {
   2675	.func		= NULL,
   2676	.gpl_only	= false,
   2677	.ret_type	= RET_VOID,
   2678	.arg1_type	= ARG_PTR_TO_CTX,
   2679	.arg2_type	= ARG_CONST_MAP_PTR,
   2680	.arg3_type	= ARG_ANYTHING,
   2681};
   2682
   2683/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
   2684 * It is encouraged to implement bpf_int_jit_compile() instead, so that
   2685 * eBPF and implicitly also cBPF can get JITed!
   2686 */
   2687struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
   2688{
   2689	return prog;
   2690}
   2691
   2692/* Stub for JITs that support eBPF. All cBPF code gets transformed into
   2693 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
   2694 */
   2695void __weak bpf_jit_compile(struct bpf_prog *prog)
   2696{
   2697}
   2698
   2699bool __weak bpf_helper_changes_pkt_data(void *func)
   2700{
   2701	return false;
   2702}
   2703
   2704/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
   2705 * analysis code and wants explicit zero extension inserted by verifier.
   2706 * Otherwise, return FALSE.
   2707 *
   2708 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
   2709 * you don't override this. JITs that don't want these extra insns can detect
   2710 * them using insn_is_zext.
   2711 */
   2712bool __weak bpf_jit_needs_zext(void)
   2713{
   2714	return false;
   2715}
   2716
   2717bool __weak bpf_jit_supports_kfunc_call(void)
   2718{
   2719	return false;
   2720}
   2721
   2722/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
   2723 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
   2724 */
   2725int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
   2726			 int len)
   2727{
   2728	return -EFAULT;
   2729}
   2730
   2731int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
   2732			      void *addr1, void *addr2)
   2733{
   2734	return -ENOTSUPP;
   2735}
   2736
   2737void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
   2738{
   2739	return ERR_PTR(-ENOTSUPP);
   2740}
   2741
   2742int __weak bpf_arch_text_invalidate(void *dst, size_t len)
   2743{
   2744	return -ENOTSUPP;
   2745}
   2746
   2747DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
   2748EXPORT_SYMBOL(bpf_stats_enabled_key);
   2749
   2750/* All definitions of tracepoints related to BPF. */
   2751#define CREATE_TRACE_POINTS
   2752#include <linux/bpf_trace.h>
   2753
   2754EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
   2755EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);