cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cpumap.c (21321B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/* bpf/cpumap.c
      3 *
      4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
      5 */
      6
      7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
      8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
      9 *
     10 * Unlike devmap which redirects XDP frames out another NIC device,
     11 * this map type redirects raw XDP frames to another CPU.  The remote
     12 * CPU will do SKB-allocation and call the normal network stack.
     13 *
     14 * This is a scalability and isolation mechanism, that allow
     15 * separating the early driver network XDP layer, from the rest of the
     16 * netstack, and assigning dedicated CPUs for this stage.  This
     17 * basically allows for 10G wirespeed pre-filtering via bpf.
     18 */
     19#include <linux/bitops.h>
     20#include <linux/bpf.h>
     21#include <linux/filter.h>
     22#include <linux/ptr_ring.h>
     23#include <net/xdp.h>
     24
     25#include <linux/sched.h>
     26#include <linux/workqueue.h>
     27#include <linux/kthread.h>
     28#include <linux/capability.h>
     29#include <trace/events/xdp.h>
     30#include <linux/btf_ids.h>
     31
     32#include <linux/netdevice.h>   /* netif_receive_skb_list */
     33#include <linux/etherdevice.h> /* eth_type_trans */
     34
     35/* General idea: XDP packets getting XDP redirected to another CPU,
     36 * will maximum be stored/queued for one driver ->poll() call.  It is
     37 * guaranteed that queueing the frame and the flush operation happen on
     38 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
     39 * which queue in bpf_cpu_map_entry contains packets.
     40 */
     41
     42#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
     43struct bpf_cpu_map_entry;
     44struct bpf_cpu_map;
     45
     46struct xdp_bulk_queue {
     47	void *q[CPU_MAP_BULK_SIZE];
     48	struct list_head flush_node;
     49	struct bpf_cpu_map_entry *obj;
     50	unsigned int count;
     51};
     52
     53/* Struct for every remote "destination" CPU in map */
     54struct bpf_cpu_map_entry {
     55	u32 cpu;    /* kthread CPU and map index */
     56	int map_id; /* Back reference to map */
     57
     58	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
     59	struct xdp_bulk_queue __percpu *bulkq;
     60
     61	struct bpf_cpu_map *cmap;
     62
     63	/* Queue with potential multi-producers, and single-consumer kthread */
     64	struct ptr_ring *queue;
     65	struct task_struct *kthread;
     66
     67	struct bpf_cpumap_val value;
     68	struct bpf_prog *prog;
     69
     70	atomic_t refcnt; /* Control when this struct can be free'ed */
     71	struct rcu_head rcu;
     72
     73	struct work_struct kthread_stop_wq;
     74};
     75
     76struct bpf_cpu_map {
     77	struct bpf_map map;
     78	/* Below members specific for map type */
     79	struct bpf_cpu_map_entry __rcu **cpu_map;
     80};
     81
     82static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
     83
     84static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
     85{
     86	u32 value_size = attr->value_size;
     87	struct bpf_cpu_map *cmap;
     88	int err = -ENOMEM;
     89
     90	if (!bpf_capable())
     91		return ERR_PTR(-EPERM);
     92
     93	/* check sanity of attributes */
     94	if (attr->max_entries == 0 || attr->key_size != 4 ||
     95	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
     96	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
     97	    attr->map_flags & ~BPF_F_NUMA_NODE)
     98		return ERR_PTR(-EINVAL);
     99
    100	cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
    101	if (!cmap)
    102		return ERR_PTR(-ENOMEM);
    103
    104	bpf_map_init_from_attr(&cmap->map, attr);
    105
    106	/* Pre-limit array size based on NR_CPUS, not final CPU check */
    107	if (cmap->map.max_entries > NR_CPUS) {
    108		err = -E2BIG;
    109		goto free_cmap;
    110	}
    111
    112	/* Alloc array for possible remote "destination" CPUs */
    113	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
    114					   sizeof(struct bpf_cpu_map_entry *),
    115					   cmap->map.numa_node);
    116	if (!cmap->cpu_map)
    117		goto free_cmap;
    118
    119	return &cmap->map;
    120free_cmap:
    121	kfree(cmap);
    122	return ERR_PTR(err);
    123}
    124
    125static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
    126{
    127	atomic_inc(&rcpu->refcnt);
    128}
    129
    130/* called from workqueue, to workaround syscall using preempt_disable */
    131static void cpu_map_kthread_stop(struct work_struct *work)
    132{
    133	struct bpf_cpu_map_entry *rcpu;
    134
    135	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
    136
    137	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
    138	 * as it waits until all in-flight call_rcu() callbacks complete.
    139	 */
    140	rcu_barrier();
    141
    142	/* kthread_stop will wake_up_process and wait for it to complete */
    143	kthread_stop(rcpu->kthread);
    144}
    145
    146static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
    147{
    148	/* The tear-down procedure should have made sure that queue is
    149	 * empty.  See __cpu_map_entry_replace() and work-queue
    150	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
    151	 * gracefully and warn once.
    152	 */
    153	struct xdp_frame *xdpf;
    154
    155	while ((xdpf = ptr_ring_consume(ring)))
    156		if (WARN_ON_ONCE(xdpf))
    157			xdp_return_frame(xdpf);
    158}
    159
    160static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
    161{
    162	if (atomic_dec_and_test(&rcpu->refcnt)) {
    163		if (rcpu->prog)
    164			bpf_prog_put(rcpu->prog);
    165		/* The queue should be empty at this point */
    166		__cpu_map_ring_cleanup(rcpu->queue);
    167		ptr_ring_cleanup(rcpu->queue, NULL);
    168		kfree(rcpu->queue);
    169		kfree(rcpu);
    170	}
    171}
    172
    173static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
    174				     struct list_head *listp,
    175				     struct xdp_cpumap_stats *stats)
    176{
    177	struct sk_buff *skb, *tmp;
    178	struct xdp_buff xdp;
    179	u32 act;
    180	int err;
    181
    182	list_for_each_entry_safe(skb, tmp, listp, list) {
    183		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
    184		switch (act) {
    185		case XDP_PASS:
    186			break;
    187		case XDP_REDIRECT:
    188			skb_list_del_init(skb);
    189			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
    190						      rcpu->prog);
    191			if (unlikely(err)) {
    192				kfree_skb(skb);
    193				stats->drop++;
    194			} else {
    195				stats->redirect++;
    196			}
    197			return;
    198		default:
    199			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
    200			fallthrough;
    201		case XDP_ABORTED:
    202			trace_xdp_exception(skb->dev, rcpu->prog, act);
    203			fallthrough;
    204		case XDP_DROP:
    205			skb_list_del_init(skb);
    206			kfree_skb(skb);
    207			stats->drop++;
    208			return;
    209		}
    210	}
    211}
    212
    213static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
    214				    void **frames, int n,
    215				    struct xdp_cpumap_stats *stats)
    216{
    217	struct xdp_rxq_info rxq;
    218	struct xdp_buff xdp;
    219	int i, nframes = 0;
    220
    221	xdp_set_return_frame_no_direct();
    222	xdp.rxq = &rxq;
    223
    224	for (i = 0; i < n; i++) {
    225		struct xdp_frame *xdpf = frames[i];
    226		u32 act;
    227		int err;
    228
    229		rxq.dev = xdpf->dev_rx;
    230		rxq.mem = xdpf->mem;
    231		/* TODO: report queue_index to xdp_rxq_info */
    232
    233		xdp_convert_frame_to_buff(xdpf, &xdp);
    234
    235		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
    236		switch (act) {
    237		case XDP_PASS:
    238			err = xdp_update_frame_from_buff(&xdp, xdpf);
    239			if (err < 0) {
    240				xdp_return_frame(xdpf);
    241				stats->drop++;
    242			} else {
    243				frames[nframes++] = xdpf;
    244				stats->pass++;
    245			}
    246			break;
    247		case XDP_REDIRECT:
    248			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
    249					      rcpu->prog);
    250			if (unlikely(err)) {
    251				xdp_return_frame(xdpf);
    252				stats->drop++;
    253			} else {
    254				stats->redirect++;
    255			}
    256			break;
    257		default:
    258			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
    259			fallthrough;
    260		case XDP_DROP:
    261			xdp_return_frame(xdpf);
    262			stats->drop++;
    263			break;
    264		}
    265	}
    266
    267	xdp_clear_return_frame_no_direct();
    268
    269	return nframes;
    270}
    271
    272#define CPUMAP_BATCH 8
    273
    274static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
    275				int xdp_n, struct xdp_cpumap_stats *stats,
    276				struct list_head *list)
    277{
    278	int nframes;
    279
    280	if (!rcpu->prog)
    281		return xdp_n;
    282
    283	rcu_read_lock_bh();
    284
    285	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
    286
    287	if (stats->redirect)
    288		xdp_do_flush();
    289
    290	if (unlikely(!list_empty(list)))
    291		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
    292
    293	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
    294
    295	return nframes;
    296}
    297
    298
    299static int cpu_map_kthread_run(void *data)
    300{
    301	struct bpf_cpu_map_entry *rcpu = data;
    302
    303	set_current_state(TASK_INTERRUPTIBLE);
    304
    305	/* When kthread gives stop order, then rcpu have been disconnected
    306	 * from map, thus no new packets can enter. Remaining in-flight
    307	 * per CPU stored packets are flushed to this queue.  Wait honoring
    308	 * kthread_stop signal until queue is empty.
    309	 */
    310	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
    311		struct xdp_cpumap_stats stats = {}; /* zero stats */
    312		unsigned int kmem_alloc_drops = 0, sched = 0;
    313		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
    314		int i, n, m, nframes, xdp_n;
    315		void *frames[CPUMAP_BATCH];
    316		void *skbs[CPUMAP_BATCH];
    317		LIST_HEAD(list);
    318
    319		/* Release CPU reschedule checks */
    320		if (__ptr_ring_empty(rcpu->queue)) {
    321			set_current_state(TASK_INTERRUPTIBLE);
    322			/* Recheck to avoid lost wake-up */
    323			if (__ptr_ring_empty(rcpu->queue)) {
    324				schedule();
    325				sched = 1;
    326			} else {
    327				__set_current_state(TASK_RUNNING);
    328			}
    329		} else {
    330			sched = cond_resched();
    331		}
    332
    333		/*
    334		 * The bpf_cpu_map_entry is single consumer, with this
    335		 * kthread CPU pinned. Lockless access to ptr_ring
    336		 * consume side valid as no-resize allowed of queue.
    337		 */
    338		n = __ptr_ring_consume_batched(rcpu->queue, frames,
    339					       CPUMAP_BATCH);
    340		for (i = 0, xdp_n = 0; i < n; i++) {
    341			void *f = frames[i];
    342			struct page *page;
    343
    344			if (unlikely(__ptr_test_bit(0, &f))) {
    345				struct sk_buff *skb = f;
    346
    347				__ptr_clear_bit(0, &skb);
    348				list_add_tail(&skb->list, &list);
    349				continue;
    350			}
    351
    352			frames[xdp_n++] = f;
    353			page = virt_to_page(f);
    354
    355			/* Bring struct page memory area to curr CPU. Read by
    356			 * build_skb_around via page_is_pfmemalloc(), and when
    357			 * freed written by page_frag_free call.
    358			 */
    359			prefetchw(page);
    360		}
    361
    362		/* Support running another XDP prog on this CPU */
    363		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
    364		if (nframes) {
    365			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
    366			if (unlikely(m == 0)) {
    367				for (i = 0; i < nframes; i++)
    368					skbs[i] = NULL; /* effect: xdp_return_frame */
    369				kmem_alloc_drops += nframes;
    370			}
    371		}
    372
    373		local_bh_disable();
    374		for (i = 0; i < nframes; i++) {
    375			struct xdp_frame *xdpf = frames[i];
    376			struct sk_buff *skb = skbs[i];
    377
    378			skb = __xdp_build_skb_from_frame(xdpf, skb,
    379							 xdpf->dev_rx);
    380			if (!skb) {
    381				xdp_return_frame(xdpf);
    382				continue;
    383			}
    384
    385			list_add_tail(&skb->list, &list);
    386		}
    387		netif_receive_skb_list(&list);
    388
    389		/* Feedback loop via tracepoint */
    390		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
    391					 sched, &stats);
    392
    393		local_bh_enable(); /* resched point, may call do_softirq() */
    394	}
    395	__set_current_state(TASK_RUNNING);
    396
    397	put_cpu_map_entry(rcpu);
    398	return 0;
    399}
    400
    401static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
    402				      struct bpf_map *map, int fd)
    403{
    404	struct bpf_prog *prog;
    405
    406	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
    407	if (IS_ERR(prog))
    408		return PTR_ERR(prog);
    409
    410	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
    411	    !bpf_prog_map_compatible(map, prog)) {
    412		bpf_prog_put(prog);
    413		return -EINVAL;
    414	}
    415
    416	rcpu->value.bpf_prog.id = prog->aux->id;
    417	rcpu->prog = prog;
    418
    419	return 0;
    420}
    421
    422static struct bpf_cpu_map_entry *
    423__cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
    424		      u32 cpu)
    425{
    426	int numa, err, i, fd = value->bpf_prog.fd;
    427	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
    428	struct bpf_cpu_map_entry *rcpu;
    429	struct xdp_bulk_queue *bq;
    430
    431	/* Have map->numa_node, but choose node of redirect target CPU */
    432	numa = cpu_to_node(cpu);
    433
    434	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
    435	if (!rcpu)
    436		return NULL;
    437
    438	/* Alloc percpu bulkq */
    439	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
    440					   sizeof(void *), gfp);
    441	if (!rcpu->bulkq)
    442		goto free_rcu;
    443
    444	for_each_possible_cpu(i) {
    445		bq = per_cpu_ptr(rcpu->bulkq, i);
    446		bq->obj = rcpu;
    447	}
    448
    449	/* Alloc queue */
    450	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
    451					   numa);
    452	if (!rcpu->queue)
    453		goto free_bulkq;
    454
    455	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
    456	if (err)
    457		goto free_queue;
    458
    459	rcpu->cpu    = cpu;
    460	rcpu->map_id = map->id;
    461	rcpu->value.qsize  = value->qsize;
    462
    463	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
    464		goto free_ptr_ring;
    465
    466	/* Setup kthread */
    467	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
    468					       "cpumap/%d/map:%d", cpu,
    469					       map->id);
    470	if (IS_ERR(rcpu->kthread))
    471		goto free_prog;
    472
    473	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
    474	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
    475
    476	/* Make sure kthread runs on a single CPU */
    477	kthread_bind(rcpu->kthread, cpu);
    478	wake_up_process(rcpu->kthread);
    479
    480	return rcpu;
    481
    482free_prog:
    483	if (rcpu->prog)
    484		bpf_prog_put(rcpu->prog);
    485free_ptr_ring:
    486	ptr_ring_cleanup(rcpu->queue, NULL);
    487free_queue:
    488	kfree(rcpu->queue);
    489free_bulkq:
    490	free_percpu(rcpu->bulkq);
    491free_rcu:
    492	kfree(rcpu);
    493	return NULL;
    494}
    495
    496static void __cpu_map_entry_free(struct rcu_head *rcu)
    497{
    498	struct bpf_cpu_map_entry *rcpu;
    499
    500	/* This cpu_map_entry have been disconnected from map and one
    501	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
    502	 * new packets and cannot change/set flush_needed that can
    503	 * find this entry.
    504	 */
    505	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
    506
    507	free_percpu(rcpu->bulkq);
    508	/* Cannot kthread_stop() here, last put free rcpu resources */
    509	put_cpu_map_entry(rcpu);
    510}
    511
    512/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
    513 * ensure any driver rcu critical sections have completed, but this
    514 * does not guarantee a flush has happened yet. Because driver side
    515 * rcu_read_lock/unlock only protects the running XDP program.  The
    516 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
    517 * pending flush op doesn't fail.
    518 *
    519 * The bpf_cpu_map_entry is still used by the kthread, and there can
    520 * still be pending packets (in queue and percpu bulkq).  A refcnt
    521 * makes sure to last user (kthread_stop vs. call_rcu) free memory
    522 * resources.
    523 *
    524 * The rcu callback __cpu_map_entry_free flush remaining packets in
    525 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
    526 * preemption, cannot call kthread_stop() to make sure queue is empty.
    527 * Instead a work_queue is started for stopping kthread,
    528 * cpu_map_kthread_stop, which waits for an RCU grace period before
    529 * stopping kthread, emptying the queue.
    530 */
    531static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
    532				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
    533{
    534	struct bpf_cpu_map_entry *old_rcpu;
    535
    536	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
    537	if (old_rcpu) {
    538		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
    539		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
    540		schedule_work(&old_rcpu->kthread_stop_wq);
    541	}
    542}
    543
    544static int cpu_map_delete_elem(struct bpf_map *map, void *key)
    545{
    546	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
    547	u32 key_cpu = *(u32 *)key;
    548
    549	if (key_cpu >= map->max_entries)
    550		return -EINVAL;
    551
    552	/* notice caller map_delete_elem() use preempt_disable() */
    553	__cpu_map_entry_replace(cmap, key_cpu, NULL);
    554	return 0;
    555}
    556
    557static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
    558			       u64 map_flags)
    559{
    560	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
    561	struct bpf_cpumap_val cpumap_value = {};
    562	struct bpf_cpu_map_entry *rcpu;
    563	/* Array index key correspond to CPU number */
    564	u32 key_cpu = *(u32 *)key;
    565
    566	memcpy(&cpumap_value, value, map->value_size);
    567
    568	if (unlikely(map_flags > BPF_EXIST))
    569		return -EINVAL;
    570	if (unlikely(key_cpu >= cmap->map.max_entries))
    571		return -E2BIG;
    572	if (unlikely(map_flags == BPF_NOEXIST))
    573		return -EEXIST;
    574	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
    575		return -EOVERFLOW;
    576
    577	/* Make sure CPU is a valid possible cpu */
    578	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
    579		return -ENODEV;
    580
    581	if (cpumap_value.qsize == 0) {
    582		rcpu = NULL; /* Same as deleting */
    583	} else {
    584		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
    585		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
    586		if (!rcpu)
    587			return -ENOMEM;
    588		rcpu->cmap = cmap;
    589	}
    590	rcu_read_lock();
    591	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
    592	rcu_read_unlock();
    593	return 0;
    594}
    595
    596static void cpu_map_free(struct bpf_map *map)
    597{
    598	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
    599	u32 i;
    600
    601	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
    602	 * so the bpf programs (can be more than one that used this map) were
    603	 * disconnected from events. Wait for outstanding critical sections in
    604	 * these programs to complete. The rcu critical section only guarantees
    605	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
    606	 * It does __not__ ensure pending flush operations (if any) are
    607	 * complete.
    608	 */
    609
    610	synchronize_rcu();
    611
    612	/* For cpu_map the remote CPUs can still be using the entries
    613	 * (struct bpf_cpu_map_entry).
    614	 */
    615	for (i = 0; i < cmap->map.max_entries; i++) {
    616		struct bpf_cpu_map_entry *rcpu;
    617
    618		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
    619		if (!rcpu)
    620			continue;
    621
    622		/* bq flush and cleanup happens after RCU grace-period */
    623		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
    624	}
    625	bpf_map_area_free(cmap->cpu_map);
    626	kfree(cmap);
    627}
    628
    629/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
    630 * by local_bh_disable() (from XDP calls inside NAPI). The
    631 * rcu_read_lock_bh_held() below makes lockdep accept both.
    632 */
    633static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
    634{
    635	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
    636	struct bpf_cpu_map_entry *rcpu;
    637
    638	if (key >= map->max_entries)
    639		return NULL;
    640
    641	rcpu = rcu_dereference_check(cmap->cpu_map[key],
    642				     rcu_read_lock_bh_held());
    643	return rcpu;
    644}
    645
    646static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
    647{
    648	struct bpf_cpu_map_entry *rcpu =
    649		__cpu_map_lookup_elem(map, *(u32 *)key);
    650
    651	return rcpu ? &rcpu->value : NULL;
    652}
    653
    654static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
    655{
    656	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
    657	u32 index = key ? *(u32 *)key : U32_MAX;
    658	u32 *next = next_key;
    659
    660	if (index >= cmap->map.max_entries) {
    661		*next = 0;
    662		return 0;
    663	}
    664
    665	if (index == cmap->map.max_entries - 1)
    666		return -ENOENT;
    667	*next = index + 1;
    668	return 0;
    669}
    670
    671static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
    672{
    673	return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
    674				      __cpu_map_lookup_elem);
    675}
    676
    677BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
    678const struct bpf_map_ops cpu_map_ops = {
    679	.map_meta_equal		= bpf_map_meta_equal,
    680	.map_alloc		= cpu_map_alloc,
    681	.map_free		= cpu_map_free,
    682	.map_delete_elem	= cpu_map_delete_elem,
    683	.map_update_elem	= cpu_map_update_elem,
    684	.map_lookup_elem	= cpu_map_lookup_elem,
    685	.map_get_next_key	= cpu_map_get_next_key,
    686	.map_check_btf		= map_check_no_btf,
    687	.map_btf_id		= &cpu_map_btf_ids[0],
    688	.map_redirect		= cpu_map_redirect,
    689};
    690
    691static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
    692{
    693	struct bpf_cpu_map_entry *rcpu = bq->obj;
    694	unsigned int processed = 0, drops = 0;
    695	const int to_cpu = rcpu->cpu;
    696	struct ptr_ring *q;
    697	int i;
    698
    699	if (unlikely(!bq->count))
    700		return;
    701
    702	q = rcpu->queue;
    703	spin_lock(&q->producer_lock);
    704
    705	for (i = 0; i < bq->count; i++) {
    706		struct xdp_frame *xdpf = bq->q[i];
    707		int err;
    708
    709		err = __ptr_ring_produce(q, xdpf);
    710		if (err) {
    711			drops++;
    712			xdp_return_frame_rx_napi(xdpf);
    713		}
    714		processed++;
    715	}
    716	bq->count = 0;
    717	spin_unlock(&q->producer_lock);
    718
    719	__list_del_clearprev(&bq->flush_node);
    720
    721	/* Feedback loop via tracepoints */
    722	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
    723}
    724
    725/* Runs under RCU-read-side, plus in softirq under NAPI protection.
    726 * Thus, safe percpu variable access.
    727 */
    728static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
    729{
    730	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
    731	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
    732
    733	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
    734		bq_flush_to_queue(bq);
    735
    736	/* Notice, xdp_buff/page MUST be queued here, long enough for
    737	 * driver to code invoking us to finished, due to driver
    738	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
    739	 *
    740	 * Thus, incoming xdp_frame is always queued here (else we race
    741	 * with another CPU on page-refcnt and remaining driver code).
    742	 * Queue time is very short, as driver will invoke flush
    743	 * operation, when completing napi->poll call.
    744	 */
    745	bq->q[bq->count++] = xdpf;
    746
    747	if (!bq->flush_node.prev)
    748		list_add(&bq->flush_node, flush_list);
    749}
    750
    751int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
    752		    struct net_device *dev_rx)
    753{
    754	/* Info needed when constructing SKB on remote CPU */
    755	xdpf->dev_rx = dev_rx;
    756
    757	bq_enqueue(rcpu, xdpf);
    758	return 0;
    759}
    760
    761int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
    762			     struct sk_buff *skb)
    763{
    764	int ret;
    765
    766	__skb_pull(skb, skb->mac_len);
    767	skb_set_redirected(skb, false);
    768	__ptr_set_bit(0, &skb);
    769
    770	ret = ptr_ring_produce(rcpu->queue, skb);
    771	if (ret < 0)
    772		goto trace;
    773
    774	wake_up_process(rcpu->kthread);
    775trace:
    776	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
    777	return ret;
    778}
    779
    780void __cpu_map_flush(void)
    781{
    782	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
    783	struct xdp_bulk_queue *bq, *tmp;
    784
    785	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
    786		bq_flush_to_queue(bq);
    787
    788		/* If already running, costs spin_lock_irqsave + smb_mb */
    789		wake_up_process(bq->obj->kthread);
    790	}
    791}
    792
    793static int __init cpu_map_init(void)
    794{
    795	int cpu;
    796
    797	for_each_possible_cpu(cpu)
    798		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
    799	return 0;
    800}
    801
    802subsys_initcall(cpu_map_init);