cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

lpm_trie.c (21553B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Longest prefix match list implementation
      4 *
      5 * Copyright (c) 2016,2017 Daniel Mack
      6 * Copyright (c) 2016 David Herrmann
      7 */
      8
      9#include <linux/bpf.h>
     10#include <linux/btf.h>
     11#include <linux/err.h>
     12#include <linux/slab.h>
     13#include <linux/spinlock.h>
     14#include <linux/vmalloc.h>
     15#include <net/ipv6.h>
     16#include <uapi/linux/btf.h>
     17#include <linux/btf_ids.h>
     18
     19/* Intermediate node */
     20#define LPM_TREE_NODE_FLAG_IM BIT(0)
     21
     22struct lpm_trie_node;
     23
     24struct lpm_trie_node {
     25	struct rcu_head rcu;
     26	struct lpm_trie_node __rcu	*child[2];
     27	u32				prefixlen;
     28	u32				flags;
     29	u8				data[];
     30};
     31
     32struct lpm_trie {
     33	struct bpf_map			map;
     34	struct lpm_trie_node __rcu	*root;
     35	size_t				n_entries;
     36	size_t				max_prefixlen;
     37	size_t				data_size;
     38	spinlock_t			lock;
     39};
     40
     41/* This trie implements a longest prefix match algorithm that can be used to
     42 * match IP addresses to a stored set of ranges.
     43 *
     44 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
     45 * interpreted as big endian, so data[0] stores the most significant byte.
     46 *
     47 * Match ranges are internally stored in instances of struct lpm_trie_node
     48 * which each contain their prefix length as well as two pointers that may
     49 * lead to more nodes containing more specific matches. Each node also stores
     50 * a value that is defined by and returned to userspace via the update_elem
     51 * and lookup functions.
     52 *
     53 * For instance, let's start with a trie that was created with a prefix length
     54 * of 32, so it can be used for IPv4 addresses, and one single element that
     55 * matches 192.168.0.0/16. The data array would hence contain
     56 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
     57 * stick to IP-address notation for readability though.
     58 *
     59 * As the trie is empty initially, the new node (1) will be places as root
     60 * node, denoted as (R) in the example below. As there are no other node, both
     61 * child pointers are %NULL.
     62 *
     63 *              +----------------+
     64 *              |       (1)  (R) |
     65 *              | 192.168.0.0/16 |
     66 *              |    value: 1    |
     67 *              |   [0]    [1]   |
     68 *              +----------------+
     69 *
     70 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
     71 * a node with the same data and a smaller prefix (ie, a less specific one),
     72 * node (2) will become a child of (1). In child index depends on the next bit
     73 * that is outside of what (1) matches, and that bit is 0, so (2) will be
     74 * child[0] of (1):
     75 *
     76 *              +----------------+
     77 *              |       (1)  (R) |
     78 *              | 192.168.0.0/16 |
     79 *              |    value: 1    |
     80 *              |   [0]    [1]   |
     81 *              +----------------+
     82 *                   |
     83 *    +----------------+
     84 *    |       (2)      |
     85 *    | 192.168.0.0/24 |
     86 *    |    value: 2    |
     87 *    |   [0]    [1]   |
     88 *    +----------------+
     89 *
     90 * The child[1] slot of (1) could be filled with another node which has bit #17
     91 * (the next bit after the ones that (1) matches on) set to 1. For instance,
     92 * 192.168.128.0/24:
     93 *
     94 *              +----------------+
     95 *              |       (1)  (R) |
     96 *              | 192.168.0.0/16 |
     97 *              |    value: 1    |
     98 *              |   [0]    [1]   |
     99 *              +----------------+
    100 *                   |      |
    101 *    +----------------+  +------------------+
    102 *    |       (2)      |  |        (3)       |
    103 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
    104 *    |    value: 2    |  |     value: 3     |
    105 *    |   [0]    [1]   |  |    [0]    [1]    |
    106 *    +----------------+  +------------------+
    107 *
    108 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
    109 * it, node (1) is looked at first, and because (4) of the semantics laid out
    110 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
    111 * However, that slot is already allocated, so a new node is needed in between.
    112 * That node does not have a value attached to it and it will never be
    113 * returned to users as result of a lookup. It is only there to differentiate
    114 * the traversal further. It will get a prefix as wide as necessary to
    115 * distinguish its two children:
    116 *
    117 *                      +----------------+
    118 *                      |       (1)  (R) |
    119 *                      | 192.168.0.0/16 |
    120 *                      |    value: 1    |
    121 *                      |   [0]    [1]   |
    122 *                      +----------------+
    123 *                           |      |
    124 *            +----------------+  +------------------+
    125 *            |       (4)  (I) |  |        (3)       |
    126 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
    127 *            |    value: ---  |  |     value: 3     |
    128 *            |   [0]    [1]   |  |    [0]    [1]    |
    129 *            +----------------+  +------------------+
    130 *                 |      |
    131 *  +----------------+  +----------------+
    132 *  |       (2)      |  |       (5)      |
    133 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
    134 *  |    value: 2    |  |     value: 5   |
    135 *  |   [0]    [1]   |  |   [0]    [1]   |
    136 *  +----------------+  +----------------+
    137 *
    138 * 192.168.1.1/32 would be a child of (5) etc.
    139 *
    140 * An intermediate node will be turned into a 'real' node on demand. In the
    141 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
    142 *
    143 * A fully populated trie would have a height of 32 nodes, as the trie was
    144 * created with a prefix length of 32.
    145 *
    146 * The lookup starts at the root node. If the current node matches and if there
    147 * is a child that can be used to become more specific, the trie is traversed
    148 * downwards. The last node in the traversal that is a non-intermediate one is
    149 * returned.
    150 */
    151
    152static inline int extract_bit(const u8 *data, size_t index)
    153{
    154	return !!(data[index / 8] & (1 << (7 - (index % 8))));
    155}
    156
    157/**
    158 * longest_prefix_match() - determine the longest prefix
    159 * @trie:	The trie to get internal sizes from
    160 * @node:	The node to operate on
    161 * @key:	The key to compare to @node
    162 *
    163 * Determine the longest prefix of @node that matches the bits in @key.
    164 */
    165static size_t longest_prefix_match(const struct lpm_trie *trie,
    166				   const struct lpm_trie_node *node,
    167				   const struct bpf_lpm_trie_key *key)
    168{
    169	u32 limit = min(node->prefixlen, key->prefixlen);
    170	u32 prefixlen = 0, i = 0;
    171
    172	BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
    173	BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32));
    174
    175#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
    176
    177	/* data_size >= 16 has very small probability.
    178	 * We do not use a loop for optimal code generation.
    179	 */
    180	if (trie->data_size >= 8) {
    181		u64 diff = be64_to_cpu(*(__be64 *)node->data ^
    182				       *(__be64 *)key->data);
    183
    184		prefixlen = 64 - fls64(diff);
    185		if (prefixlen >= limit)
    186			return limit;
    187		if (diff)
    188			return prefixlen;
    189		i = 8;
    190	}
    191#endif
    192
    193	while (trie->data_size >= i + 4) {
    194		u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
    195				       *(__be32 *)&key->data[i]);
    196
    197		prefixlen += 32 - fls(diff);
    198		if (prefixlen >= limit)
    199			return limit;
    200		if (diff)
    201			return prefixlen;
    202		i += 4;
    203	}
    204
    205	if (trie->data_size >= i + 2) {
    206		u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
    207				       *(__be16 *)&key->data[i]);
    208
    209		prefixlen += 16 - fls(diff);
    210		if (prefixlen >= limit)
    211			return limit;
    212		if (diff)
    213			return prefixlen;
    214		i += 2;
    215	}
    216
    217	if (trie->data_size >= i + 1) {
    218		prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
    219
    220		if (prefixlen >= limit)
    221			return limit;
    222	}
    223
    224	return prefixlen;
    225}
    226
    227/* Called from syscall or from eBPF program */
    228static void *trie_lookup_elem(struct bpf_map *map, void *_key)
    229{
    230	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
    231	struct lpm_trie_node *node, *found = NULL;
    232	struct bpf_lpm_trie_key *key = _key;
    233
    234	/* Start walking the trie from the root node ... */
    235
    236	for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
    237	     node;) {
    238		unsigned int next_bit;
    239		size_t matchlen;
    240
    241		/* Determine the longest prefix of @node that matches @key.
    242		 * If it's the maximum possible prefix for this trie, we have
    243		 * an exact match and can return it directly.
    244		 */
    245		matchlen = longest_prefix_match(trie, node, key);
    246		if (matchlen == trie->max_prefixlen) {
    247			found = node;
    248			break;
    249		}
    250
    251		/* If the number of bits that match is smaller than the prefix
    252		 * length of @node, bail out and return the node we have seen
    253		 * last in the traversal (ie, the parent).
    254		 */
    255		if (matchlen < node->prefixlen)
    256			break;
    257
    258		/* Consider this node as return candidate unless it is an
    259		 * artificially added intermediate one.
    260		 */
    261		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
    262			found = node;
    263
    264		/* If the node match is fully satisfied, let's see if we can
    265		 * become more specific. Determine the next bit in the key and
    266		 * traverse down.
    267		 */
    268		next_bit = extract_bit(key->data, node->prefixlen);
    269		node = rcu_dereference_check(node->child[next_bit],
    270					     rcu_read_lock_bh_held());
    271	}
    272
    273	if (!found)
    274		return NULL;
    275
    276	return found->data + trie->data_size;
    277}
    278
    279static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
    280						 const void *value)
    281{
    282	struct lpm_trie_node *node;
    283	size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
    284
    285	if (value)
    286		size += trie->map.value_size;
    287
    288	node = bpf_map_kmalloc_node(&trie->map, size, GFP_ATOMIC | __GFP_NOWARN,
    289				    trie->map.numa_node);
    290	if (!node)
    291		return NULL;
    292
    293	node->flags = 0;
    294
    295	if (value)
    296		memcpy(node->data + trie->data_size, value,
    297		       trie->map.value_size);
    298
    299	return node;
    300}
    301
    302/* Called from syscall or from eBPF program */
    303static int trie_update_elem(struct bpf_map *map,
    304			    void *_key, void *value, u64 flags)
    305{
    306	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
    307	struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
    308	struct lpm_trie_node __rcu **slot;
    309	struct bpf_lpm_trie_key *key = _key;
    310	unsigned long irq_flags;
    311	unsigned int next_bit;
    312	size_t matchlen = 0;
    313	int ret = 0;
    314
    315	if (unlikely(flags > BPF_EXIST))
    316		return -EINVAL;
    317
    318	if (key->prefixlen > trie->max_prefixlen)
    319		return -EINVAL;
    320
    321	spin_lock_irqsave(&trie->lock, irq_flags);
    322
    323	/* Allocate and fill a new node */
    324
    325	if (trie->n_entries == trie->map.max_entries) {
    326		ret = -ENOSPC;
    327		goto out;
    328	}
    329
    330	new_node = lpm_trie_node_alloc(trie, value);
    331	if (!new_node) {
    332		ret = -ENOMEM;
    333		goto out;
    334	}
    335
    336	trie->n_entries++;
    337
    338	new_node->prefixlen = key->prefixlen;
    339	RCU_INIT_POINTER(new_node->child[0], NULL);
    340	RCU_INIT_POINTER(new_node->child[1], NULL);
    341	memcpy(new_node->data, key->data, trie->data_size);
    342
    343	/* Now find a slot to attach the new node. To do that, walk the tree
    344	 * from the root and match as many bits as possible for each node until
    345	 * we either find an empty slot or a slot that needs to be replaced by
    346	 * an intermediate node.
    347	 */
    348	slot = &trie->root;
    349
    350	while ((node = rcu_dereference_protected(*slot,
    351					lockdep_is_held(&trie->lock)))) {
    352		matchlen = longest_prefix_match(trie, node, key);
    353
    354		if (node->prefixlen != matchlen ||
    355		    node->prefixlen == key->prefixlen ||
    356		    node->prefixlen == trie->max_prefixlen)
    357			break;
    358
    359		next_bit = extract_bit(key->data, node->prefixlen);
    360		slot = &node->child[next_bit];
    361	}
    362
    363	/* If the slot is empty (a free child pointer or an empty root),
    364	 * simply assign the @new_node to that slot and be done.
    365	 */
    366	if (!node) {
    367		rcu_assign_pointer(*slot, new_node);
    368		goto out;
    369	}
    370
    371	/* If the slot we picked already exists, replace it with @new_node
    372	 * which already has the correct data array set.
    373	 */
    374	if (node->prefixlen == matchlen) {
    375		new_node->child[0] = node->child[0];
    376		new_node->child[1] = node->child[1];
    377
    378		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
    379			trie->n_entries--;
    380
    381		rcu_assign_pointer(*slot, new_node);
    382		kfree_rcu(node, rcu);
    383
    384		goto out;
    385	}
    386
    387	/* If the new node matches the prefix completely, it must be inserted
    388	 * as an ancestor. Simply insert it between @node and *@slot.
    389	 */
    390	if (matchlen == key->prefixlen) {
    391		next_bit = extract_bit(node->data, matchlen);
    392		rcu_assign_pointer(new_node->child[next_bit], node);
    393		rcu_assign_pointer(*slot, new_node);
    394		goto out;
    395	}
    396
    397	im_node = lpm_trie_node_alloc(trie, NULL);
    398	if (!im_node) {
    399		ret = -ENOMEM;
    400		goto out;
    401	}
    402
    403	im_node->prefixlen = matchlen;
    404	im_node->flags |= LPM_TREE_NODE_FLAG_IM;
    405	memcpy(im_node->data, node->data, trie->data_size);
    406
    407	/* Now determine which child to install in which slot */
    408	if (extract_bit(key->data, matchlen)) {
    409		rcu_assign_pointer(im_node->child[0], node);
    410		rcu_assign_pointer(im_node->child[1], new_node);
    411	} else {
    412		rcu_assign_pointer(im_node->child[0], new_node);
    413		rcu_assign_pointer(im_node->child[1], node);
    414	}
    415
    416	/* Finally, assign the intermediate node to the determined slot */
    417	rcu_assign_pointer(*slot, im_node);
    418
    419out:
    420	if (ret) {
    421		if (new_node)
    422			trie->n_entries--;
    423
    424		kfree(new_node);
    425		kfree(im_node);
    426	}
    427
    428	spin_unlock_irqrestore(&trie->lock, irq_flags);
    429
    430	return ret;
    431}
    432
    433/* Called from syscall or from eBPF program */
    434static int trie_delete_elem(struct bpf_map *map, void *_key)
    435{
    436	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
    437	struct bpf_lpm_trie_key *key = _key;
    438	struct lpm_trie_node __rcu **trim, **trim2;
    439	struct lpm_trie_node *node, *parent;
    440	unsigned long irq_flags;
    441	unsigned int next_bit;
    442	size_t matchlen = 0;
    443	int ret = 0;
    444
    445	if (key->prefixlen > trie->max_prefixlen)
    446		return -EINVAL;
    447
    448	spin_lock_irqsave(&trie->lock, irq_flags);
    449
    450	/* Walk the tree looking for an exact key/length match and keeping
    451	 * track of the path we traverse.  We will need to know the node
    452	 * we wish to delete, and the slot that points to the node we want
    453	 * to delete.  We may also need to know the nodes parent and the
    454	 * slot that contains it.
    455	 */
    456	trim = &trie->root;
    457	trim2 = trim;
    458	parent = NULL;
    459	while ((node = rcu_dereference_protected(
    460		       *trim, lockdep_is_held(&trie->lock)))) {
    461		matchlen = longest_prefix_match(trie, node, key);
    462
    463		if (node->prefixlen != matchlen ||
    464		    node->prefixlen == key->prefixlen)
    465			break;
    466
    467		parent = node;
    468		trim2 = trim;
    469		next_bit = extract_bit(key->data, node->prefixlen);
    470		trim = &node->child[next_bit];
    471	}
    472
    473	if (!node || node->prefixlen != key->prefixlen ||
    474	    node->prefixlen != matchlen ||
    475	    (node->flags & LPM_TREE_NODE_FLAG_IM)) {
    476		ret = -ENOENT;
    477		goto out;
    478	}
    479
    480	trie->n_entries--;
    481
    482	/* If the node we are removing has two children, simply mark it
    483	 * as intermediate and we are done.
    484	 */
    485	if (rcu_access_pointer(node->child[0]) &&
    486	    rcu_access_pointer(node->child[1])) {
    487		node->flags |= LPM_TREE_NODE_FLAG_IM;
    488		goto out;
    489	}
    490
    491	/* If the parent of the node we are about to delete is an intermediate
    492	 * node, and the deleted node doesn't have any children, we can delete
    493	 * the intermediate parent as well and promote its other child
    494	 * up the tree.  Doing this maintains the invariant that all
    495	 * intermediate nodes have exactly 2 children and that there are no
    496	 * unnecessary intermediate nodes in the tree.
    497	 */
    498	if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
    499	    !node->child[0] && !node->child[1]) {
    500		if (node == rcu_access_pointer(parent->child[0]))
    501			rcu_assign_pointer(
    502				*trim2, rcu_access_pointer(parent->child[1]));
    503		else
    504			rcu_assign_pointer(
    505				*trim2, rcu_access_pointer(parent->child[0]));
    506		kfree_rcu(parent, rcu);
    507		kfree_rcu(node, rcu);
    508		goto out;
    509	}
    510
    511	/* The node we are removing has either zero or one child. If there
    512	 * is a child, move it into the removed node's slot then delete
    513	 * the node.  Otherwise just clear the slot and delete the node.
    514	 */
    515	if (node->child[0])
    516		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
    517	else if (node->child[1])
    518		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
    519	else
    520		RCU_INIT_POINTER(*trim, NULL);
    521	kfree_rcu(node, rcu);
    522
    523out:
    524	spin_unlock_irqrestore(&trie->lock, irq_flags);
    525
    526	return ret;
    527}
    528
    529#define LPM_DATA_SIZE_MAX	256
    530#define LPM_DATA_SIZE_MIN	1
    531
    532#define LPM_VAL_SIZE_MAX	(KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
    533				 sizeof(struct lpm_trie_node))
    534#define LPM_VAL_SIZE_MIN	1
    535
    536#define LPM_KEY_SIZE(X)		(sizeof(struct bpf_lpm_trie_key) + (X))
    537#define LPM_KEY_SIZE_MAX	LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
    538#define LPM_KEY_SIZE_MIN	LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
    539
    540#define LPM_CREATE_FLAG_MASK	(BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |	\
    541				 BPF_F_ACCESS_MASK)
    542
    543static struct bpf_map *trie_alloc(union bpf_attr *attr)
    544{
    545	struct lpm_trie *trie;
    546
    547	if (!bpf_capable())
    548		return ERR_PTR(-EPERM);
    549
    550	/* check sanity of attributes */
    551	if (attr->max_entries == 0 ||
    552	    !(attr->map_flags & BPF_F_NO_PREALLOC) ||
    553	    attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
    554	    !bpf_map_flags_access_ok(attr->map_flags) ||
    555	    attr->key_size < LPM_KEY_SIZE_MIN ||
    556	    attr->key_size > LPM_KEY_SIZE_MAX ||
    557	    attr->value_size < LPM_VAL_SIZE_MIN ||
    558	    attr->value_size > LPM_VAL_SIZE_MAX)
    559		return ERR_PTR(-EINVAL);
    560
    561	trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN | __GFP_ACCOUNT);
    562	if (!trie)
    563		return ERR_PTR(-ENOMEM);
    564
    565	/* copy mandatory map attributes */
    566	bpf_map_init_from_attr(&trie->map, attr);
    567	trie->data_size = attr->key_size -
    568			  offsetof(struct bpf_lpm_trie_key, data);
    569	trie->max_prefixlen = trie->data_size * 8;
    570
    571	spin_lock_init(&trie->lock);
    572
    573	return &trie->map;
    574}
    575
    576static void trie_free(struct bpf_map *map)
    577{
    578	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
    579	struct lpm_trie_node __rcu **slot;
    580	struct lpm_trie_node *node;
    581
    582	/* Always start at the root and walk down to a node that has no
    583	 * children. Then free that node, nullify its reference in the parent
    584	 * and start over.
    585	 */
    586
    587	for (;;) {
    588		slot = &trie->root;
    589
    590		for (;;) {
    591			node = rcu_dereference_protected(*slot, 1);
    592			if (!node)
    593				goto out;
    594
    595			if (rcu_access_pointer(node->child[0])) {
    596				slot = &node->child[0];
    597				continue;
    598			}
    599
    600			if (rcu_access_pointer(node->child[1])) {
    601				slot = &node->child[1];
    602				continue;
    603			}
    604
    605			kfree(node);
    606			RCU_INIT_POINTER(*slot, NULL);
    607			break;
    608		}
    609	}
    610
    611out:
    612	kfree(trie);
    613}
    614
    615static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
    616{
    617	struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
    618	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
    619	struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
    620	struct lpm_trie_node **node_stack = NULL;
    621	int err = 0, stack_ptr = -1;
    622	unsigned int next_bit;
    623	size_t matchlen;
    624
    625	/* The get_next_key follows postorder. For the 4 node example in
    626	 * the top of this file, the trie_get_next_key() returns the following
    627	 * one after another:
    628	 *   192.168.0.0/24
    629	 *   192.168.1.0/24
    630	 *   192.168.128.0/24
    631	 *   192.168.0.0/16
    632	 *
    633	 * The idea is to return more specific keys before less specific ones.
    634	 */
    635
    636	/* Empty trie */
    637	search_root = rcu_dereference(trie->root);
    638	if (!search_root)
    639		return -ENOENT;
    640
    641	/* For invalid key, find the leftmost node in the trie */
    642	if (!key || key->prefixlen > trie->max_prefixlen)
    643		goto find_leftmost;
    644
    645	node_stack = kmalloc_array(trie->max_prefixlen,
    646				   sizeof(struct lpm_trie_node *),
    647				   GFP_ATOMIC | __GFP_NOWARN);
    648	if (!node_stack)
    649		return -ENOMEM;
    650
    651	/* Try to find the exact node for the given key */
    652	for (node = search_root; node;) {
    653		node_stack[++stack_ptr] = node;
    654		matchlen = longest_prefix_match(trie, node, key);
    655		if (node->prefixlen != matchlen ||
    656		    node->prefixlen == key->prefixlen)
    657			break;
    658
    659		next_bit = extract_bit(key->data, node->prefixlen);
    660		node = rcu_dereference(node->child[next_bit]);
    661	}
    662	if (!node || node->prefixlen != key->prefixlen ||
    663	    (node->flags & LPM_TREE_NODE_FLAG_IM))
    664		goto find_leftmost;
    665
    666	/* The node with the exactly-matching key has been found,
    667	 * find the first node in postorder after the matched node.
    668	 */
    669	node = node_stack[stack_ptr];
    670	while (stack_ptr > 0) {
    671		parent = node_stack[stack_ptr - 1];
    672		if (rcu_dereference(parent->child[0]) == node) {
    673			search_root = rcu_dereference(parent->child[1]);
    674			if (search_root)
    675				goto find_leftmost;
    676		}
    677		if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
    678			next_node = parent;
    679			goto do_copy;
    680		}
    681
    682		node = parent;
    683		stack_ptr--;
    684	}
    685
    686	/* did not find anything */
    687	err = -ENOENT;
    688	goto free_stack;
    689
    690find_leftmost:
    691	/* Find the leftmost non-intermediate node, all intermediate nodes
    692	 * have exact two children, so this function will never return NULL.
    693	 */
    694	for (node = search_root; node;) {
    695		if (node->flags & LPM_TREE_NODE_FLAG_IM) {
    696			node = rcu_dereference(node->child[0]);
    697		} else {
    698			next_node = node;
    699			node = rcu_dereference(node->child[0]);
    700			if (!node)
    701				node = rcu_dereference(next_node->child[1]);
    702		}
    703	}
    704do_copy:
    705	next_key->prefixlen = next_node->prefixlen;
    706	memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
    707	       next_node->data, trie->data_size);
    708free_stack:
    709	kfree(node_stack);
    710	return err;
    711}
    712
    713static int trie_check_btf(const struct bpf_map *map,
    714			  const struct btf *btf,
    715			  const struct btf_type *key_type,
    716			  const struct btf_type *value_type)
    717{
    718	/* Keys must have struct bpf_lpm_trie_key embedded. */
    719	return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
    720	       -EINVAL : 0;
    721}
    722
    723BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
    724const struct bpf_map_ops trie_map_ops = {
    725	.map_meta_equal = bpf_map_meta_equal,
    726	.map_alloc = trie_alloc,
    727	.map_free = trie_free,
    728	.map_get_next_key = trie_get_next_key,
    729	.map_lookup_elem = trie_lookup_elem,
    730	.map_update_elem = trie_update_elem,
    731	.map_delete_elem = trie_delete_elem,
    732	.map_lookup_batch = generic_map_lookup_batch,
    733	.map_update_batch = generic_map_update_batch,
    734	.map_delete_batch = generic_map_delete_batch,
    735	.map_check_btf = trie_check_btf,
    736	.map_btf_id = &trie_map_btf_ids[0],
    737};