cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cgroup-v1.c (34677B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2#include "cgroup-internal.h"
      3
      4#include <linux/ctype.h>
      5#include <linux/kmod.h>
      6#include <linux/sort.h>
      7#include <linux/delay.h>
      8#include <linux/mm.h>
      9#include <linux/sched/signal.h>
     10#include <linux/sched/task.h>
     11#include <linux/magic.h>
     12#include <linux/slab.h>
     13#include <linux/vmalloc.h>
     14#include <linux/delayacct.h>
     15#include <linux/pid_namespace.h>
     16#include <linux/cgroupstats.h>
     17#include <linux/fs_parser.h>
     18
     19#include <trace/events/cgroup.h>
     20
     21/*
     22 * pidlists linger the following amount before being destroyed.  The goal
     23 * is avoiding frequent destruction in the middle of consecutive read calls
     24 * Expiring in the middle is a performance problem not a correctness one.
     25 * 1 sec should be enough.
     26 */
     27#define CGROUP_PIDLIST_DESTROY_DELAY	HZ
     28
     29/* Controllers blocked by the commandline in v1 */
     30static u16 cgroup_no_v1_mask;
     31
     32/* disable named v1 mounts */
     33static bool cgroup_no_v1_named;
     34
     35/*
     36 * pidlist destructions need to be flushed on cgroup destruction.  Use a
     37 * separate workqueue as flush domain.
     38 */
     39static struct workqueue_struct *cgroup_pidlist_destroy_wq;
     40
     41/* protects cgroup_subsys->release_agent_path */
     42static DEFINE_SPINLOCK(release_agent_path_lock);
     43
     44bool cgroup1_ssid_disabled(int ssid)
     45{
     46	return cgroup_no_v1_mask & (1 << ssid);
     47}
     48
     49/**
     50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
     51 * @from: attach to all cgroups of a given task
     52 * @tsk: the task to be attached
     53 *
     54 * Return: %0 on success or a negative errno code on failure
     55 */
     56int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
     57{
     58	struct cgroup_root *root;
     59	int retval = 0;
     60
     61	mutex_lock(&cgroup_mutex);
     62	percpu_down_write(&cgroup_threadgroup_rwsem);
     63	for_each_root(root) {
     64		struct cgroup *from_cgrp;
     65
     66		spin_lock_irq(&css_set_lock);
     67		from_cgrp = task_cgroup_from_root(from, root);
     68		spin_unlock_irq(&css_set_lock);
     69
     70		retval = cgroup_attach_task(from_cgrp, tsk, false);
     71		if (retval)
     72			break;
     73	}
     74	percpu_up_write(&cgroup_threadgroup_rwsem);
     75	mutex_unlock(&cgroup_mutex);
     76
     77	return retval;
     78}
     79EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
     80
     81/**
     82 * cgroup_transfer_tasks - move tasks from one cgroup to another
     83 * @to: cgroup to which the tasks will be moved
     84 * @from: cgroup in which the tasks currently reside
     85 *
     86 * Locking rules between cgroup_post_fork() and the migration path
     87 * guarantee that, if a task is forking while being migrated, the new child
     88 * is guaranteed to be either visible in the source cgroup after the
     89 * parent's migration is complete or put into the target cgroup.  No task
     90 * can slip out of migration through forking.
     91 *
     92 * Return: %0 on success or a negative errno code on failure
     93 */
     94int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
     95{
     96	DEFINE_CGROUP_MGCTX(mgctx);
     97	struct cgrp_cset_link *link;
     98	struct css_task_iter it;
     99	struct task_struct *task;
    100	int ret;
    101
    102	if (cgroup_on_dfl(to))
    103		return -EINVAL;
    104
    105	ret = cgroup_migrate_vet_dst(to);
    106	if (ret)
    107		return ret;
    108
    109	mutex_lock(&cgroup_mutex);
    110
    111	percpu_down_write(&cgroup_threadgroup_rwsem);
    112
    113	/* all tasks in @from are being moved, all csets are source */
    114	spin_lock_irq(&css_set_lock);
    115	list_for_each_entry(link, &from->cset_links, cset_link)
    116		cgroup_migrate_add_src(link->cset, to, &mgctx);
    117	spin_unlock_irq(&css_set_lock);
    118
    119	ret = cgroup_migrate_prepare_dst(&mgctx);
    120	if (ret)
    121		goto out_err;
    122
    123	/*
    124	 * Migrate tasks one-by-one until @from is empty.  This fails iff
    125	 * ->can_attach() fails.
    126	 */
    127	do {
    128		css_task_iter_start(&from->self, 0, &it);
    129
    130		do {
    131			task = css_task_iter_next(&it);
    132		} while (task && (task->flags & PF_EXITING));
    133
    134		if (task)
    135			get_task_struct(task);
    136		css_task_iter_end(&it);
    137
    138		if (task) {
    139			ret = cgroup_migrate(task, false, &mgctx);
    140			if (!ret)
    141				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
    142			put_task_struct(task);
    143		}
    144	} while (task && !ret);
    145out_err:
    146	cgroup_migrate_finish(&mgctx);
    147	percpu_up_write(&cgroup_threadgroup_rwsem);
    148	mutex_unlock(&cgroup_mutex);
    149	return ret;
    150}
    151
    152/*
    153 * Stuff for reading the 'tasks'/'procs' files.
    154 *
    155 * Reading this file can return large amounts of data if a cgroup has
    156 * *lots* of attached tasks. So it may need several calls to read(),
    157 * but we cannot guarantee that the information we produce is correct
    158 * unless we produce it entirely atomically.
    159 *
    160 */
    161
    162/* which pidlist file are we talking about? */
    163enum cgroup_filetype {
    164	CGROUP_FILE_PROCS,
    165	CGROUP_FILE_TASKS,
    166};
    167
    168/*
    169 * A pidlist is a list of pids that virtually represents the contents of one
    170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
    171 * a pair (one each for procs, tasks) for each pid namespace that's relevant
    172 * to the cgroup.
    173 */
    174struct cgroup_pidlist {
    175	/*
    176	 * used to find which pidlist is wanted. doesn't change as long as
    177	 * this particular list stays in the list.
    178	*/
    179	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
    180	/* array of xids */
    181	pid_t *list;
    182	/* how many elements the above list has */
    183	int length;
    184	/* each of these stored in a list by its cgroup */
    185	struct list_head links;
    186	/* pointer to the cgroup we belong to, for list removal purposes */
    187	struct cgroup *owner;
    188	/* for delayed destruction */
    189	struct delayed_work destroy_dwork;
    190};
    191
    192/*
    193 * Used to destroy all pidlists lingering waiting for destroy timer.  None
    194 * should be left afterwards.
    195 */
    196void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
    197{
    198	struct cgroup_pidlist *l, *tmp_l;
    199
    200	mutex_lock(&cgrp->pidlist_mutex);
    201	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
    202		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
    203	mutex_unlock(&cgrp->pidlist_mutex);
    204
    205	flush_workqueue(cgroup_pidlist_destroy_wq);
    206	BUG_ON(!list_empty(&cgrp->pidlists));
    207}
    208
    209static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
    210{
    211	struct delayed_work *dwork = to_delayed_work(work);
    212	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
    213						destroy_dwork);
    214	struct cgroup_pidlist *tofree = NULL;
    215
    216	mutex_lock(&l->owner->pidlist_mutex);
    217
    218	/*
    219	 * Destroy iff we didn't get queued again.  The state won't change
    220	 * as destroy_dwork can only be queued while locked.
    221	 */
    222	if (!delayed_work_pending(dwork)) {
    223		list_del(&l->links);
    224		kvfree(l->list);
    225		put_pid_ns(l->key.ns);
    226		tofree = l;
    227	}
    228
    229	mutex_unlock(&l->owner->pidlist_mutex);
    230	kfree(tofree);
    231}
    232
    233/*
    234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
    235 * Returns the number of unique elements.
    236 */
    237static int pidlist_uniq(pid_t *list, int length)
    238{
    239	int src, dest = 1;
    240
    241	/*
    242	 * we presume the 0th element is unique, so i starts at 1. trivial
    243	 * edge cases first; no work needs to be done for either
    244	 */
    245	if (length == 0 || length == 1)
    246		return length;
    247	/* src and dest walk down the list; dest counts unique elements */
    248	for (src = 1; src < length; src++) {
    249		/* find next unique element */
    250		while (list[src] == list[src-1]) {
    251			src++;
    252			if (src == length)
    253				goto after;
    254		}
    255		/* dest always points to where the next unique element goes */
    256		list[dest] = list[src];
    257		dest++;
    258	}
    259after:
    260	return dest;
    261}
    262
    263/*
    264 * The two pid files - task and cgroup.procs - guaranteed that the result
    265 * is sorted, which forced this whole pidlist fiasco.  As pid order is
    266 * different per namespace, each namespace needs differently sorted list,
    267 * making it impossible to use, for example, single rbtree of member tasks
    268 * sorted by task pointer.  As pidlists can be fairly large, allocating one
    269 * per open file is dangerous, so cgroup had to implement shared pool of
    270 * pidlists keyed by cgroup and namespace.
    271 */
    272static int cmppid(const void *a, const void *b)
    273{
    274	return *(pid_t *)a - *(pid_t *)b;
    275}
    276
    277static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
    278						  enum cgroup_filetype type)
    279{
    280	struct cgroup_pidlist *l;
    281	/* don't need task_nsproxy() if we're looking at ourself */
    282	struct pid_namespace *ns = task_active_pid_ns(current);
    283
    284	lockdep_assert_held(&cgrp->pidlist_mutex);
    285
    286	list_for_each_entry(l, &cgrp->pidlists, links)
    287		if (l->key.type == type && l->key.ns == ns)
    288			return l;
    289	return NULL;
    290}
    291
    292/*
    293 * find the appropriate pidlist for our purpose (given procs vs tasks)
    294 * returns with the lock on that pidlist already held, and takes care
    295 * of the use count, or returns NULL with no locks held if we're out of
    296 * memory.
    297 */
    298static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
    299						enum cgroup_filetype type)
    300{
    301	struct cgroup_pidlist *l;
    302
    303	lockdep_assert_held(&cgrp->pidlist_mutex);
    304
    305	l = cgroup_pidlist_find(cgrp, type);
    306	if (l)
    307		return l;
    308
    309	/* entry not found; create a new one */
    310	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
    311	if (!l)
    312		return l;
    313
    314	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
    315	l->key.type = type;
    316	/* don't need task_nsproxy() if we're looking at ourself */
    317	l->key.ns = get_pid_ns(task_active_pid_ns(current));
    318	l->owner = cgrp;
    319	list_add(&l->links, &cgrp->pidlists);
    320	return l;
    321}
    322
    323/*
    324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
    325 */
    326static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
    327			      struct cgroup_pidlist **lp)
    328{
    329	pid_t *array;
    330	int length;
    331	int pid, n = 0; /* used for populating the array */
    332	struct css_task_iter it;
    333	struct task_struct *tsk;
    334	struct cgroup_pidlist *l;
    335
    336	lockdep_assert_held(&cgrp->pidlist_mutex);
    337
    338	/*
    339	 * If cgroup gets more users after we read count, we won't have
    340	 * enough space - tough.  This race is indistinguishable to the
    341	 * caller from the case that the additional cgroup users didn't
    342	 * show up until sometime later on.
    343	 */
    344	length = cgroup_task_count(cgrp);
    345	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
    346	if (!array)
    347		return -ENOMEM;
    348	/* now, populate the array */
    349	css_task_iter_start(&cgrp->self, 0, &it);
    350	while ((tsk = css_task_iter_next(&it))) {
    351		if (unlikely(n == length))
    352			break;
    353		/* get tgid or pid for procs or tasks file respectively */
    354		if (type == CGROUP_FILE_PROCS)
    355			pid = task_tgid_vnr(tsk);
    356		else
    357			pid = task_pid_vnr(tsk);
    358		if (pid > 0) /* make sure to only use valid results */
    359			array[n++] = pid;
    360	}
    361	css_task_iter_end(&it);
    362	length = n;
    363	/* now sort & (if procs) strip out duplicates */
    364	sort(array, length, sizeof(pid_t), cmppid, NULL);
    365	if (type == CGROUP_FILE_PROCS)
    366		length = pidlist_uniq(array, length);
    367
    368	l = cgroup_pidlist_find_create(cgrp, type);
    369	if (!l) {
    370		kvfree(array);
    371		return -ENOMEM;
    372	}
    373
    374	/* store array, freeing old if necessary */
    375	kvfree(l->list);
    376	l->list = array;
    377	l->length = length;
    378	*lp = l;
    379	return 0;
    380}
    381
    382/*
    383 * seq_file methods for the tasks/procs files. The seq_file position is the
    384 * next pid to display; the seq_file iterator is a pointer to the pid
    385 * in the cgroup->l->list array.
    386 */
    387
    388static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
    389{
    390	/*
    391	 * Initially we receive a position value that corresponds to
    392	 * one more than the last pid shown (or 0 on the first call or
    393	 * after a seek to the start). Use a binary-search to find the
    394	 * next pid to display, if any
    395	 */
    396	struct kernfs_open_file *of = s->private;
    397	struct cgroup_file_ctx *ctx = of->priv;
    398	struct cgroup *cgrp = seq_css(s)->cgroup;
    399	struct cgroup_pidlist *l;
    400	enum cgroup_filetype type = seq_cft(s)->private;
    401	int index = 0, pid = *pos;
    402	int *iter, ret;
    403
    404	mutex_lock(&cgrp->pidlist_mutex);
    405
    406	/*
    407	 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
    408	 * start() after open. If the matching pidlist is around, we can use
    409	 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
    410	 * directly. It could already have been destroyed.
    411	 */
    412	if (ctx->procs1.pidlist)
    413		ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
    414
    415	/*
    416	 * Either this is the first start() after open or the matching
    417	 * pidlist has been destroyed inbetween.  Create a new one.
    418	 */
    419	if (!ctx->procs1.pidlist) {
    420		ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
    421		if (ret)
    422			return ERR_PTR(ret);
    423	}
    424	l = ctx->procs1.pidlist;
    425
    426	if (pid) {
    427		int end = l->length;
    428
    429		while (index < end) {
    430			int mid = (index + end) / 2;
    431			if (l->list[mid] == pid) {
    432				index = mid;
    433				break;
    434			} else if (l->list[mid] <= pid)
    435				index = mid + 1;
    436			else
    437				end = mid;
    438		}
    439	}
    440	/* If we're off the end of the array, we're done */
    441	if (index >= l->length)
    442		return NULL;
    443	/* Update the abstract position to be the actual pid that we found */
    444	iter = l->list + index;
    445	*pos = *iter;
    446	return iter;
    447}
    448
    449static void cgroup_pidlist_stop(struct seq_file *s, void *v)
    450{
    451	struct kernfs_open_file *of = s->private;
    452	struct cgroup_file_ctx *ctx = of->priv;
    453	struct cgroup_pidlist *l = ctx->procs1.pidlist;
    454
    455	if (l)
    456		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
    457				 CGROUP_PIDLIST_DESTROY_DELAY);
    458	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
    459}
    460
    461static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
    462{
    463	struct kernfs_open_file *of = s->private;
    464	struct cgroup_file_ctx *ctx = of->priv;
    465	struct cgroup_pidlist *l = ctx->procs1.pidlist;
    466	pid_t *p = v;
    467	pid_t *end = l->list + l->length;
    468	/*
    469	 * Advance to the next pid in the array. If this goes off the
    470	 * end, we're done
    471	 */
    472	p++;
    473	if (p >= end) {
    474		(*pos)++;
    475		return NULL;
    476	} else {
    477		*pos = *p;
    478		return p;
    479	}
    480}
    481
    482static int cgroup_pidlist_show(struct seq_file *s, void *v)
    483{
    484	seq_printf(s, "%d\n", *(int *)v);
    485
    486	return 0;
    487}
    488
    489static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
    490				     char *buf, size_t nbytes, loff_t off,
    491				     bool threadgroup)
    492{
    493	struct cgroup *cgrp;
    494	struct task_struct *task;
    495	const struct cred *cred, *tcred;
    496	ssize_t ret;
    497	bool locked;
    498
    499	cgrp = cgroup_kn_lock_live(of->kn, false);
    500	if (!cgrp)
    501		return -ENODEV;
    502
    503	task = cgroup_procs_write_start(buf, threadgroup, &locked);
    504	ret = PTR_ERR_OR_ZERO(task);
    505	if (ret)
    506		goto out_unlock;
    507
    508	/*
    509	 * Even if we're attaching all tasks in the thread group, we only need
    510	 * to check permissions on one of them. Check permissions using the
    511	 * credentials from file open to protect against inherited fd attacks.
    512	 */
    513	cred = of->file->f_cred;
    514	tcred = get_task_cred(task);
    515	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
    516	    !uid_eq(cred->euid, tcred->uid) &&
    517	    !uid_eq(cred->euid, tcred->suid))
    518		ret = -EACCES;
    519	put_cred(tcred);
    520	if (ret)
    521		goto out_finish;
    522
    523	ret = cgroup_attach_task(cgrp, task, threadgroup);
    524
    525out_finish:
    526	cgroup_procs_write_finish(task, locked);
    527out_unlock:
    528	cgroup_kn_unlock(of->kn);
    529
    530	return ret ?: nbytes;
    531}
    532
    533static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
    534				   char *buf, size_t nbytes, loff_t off)
    535{
    536	return __cgroup1_procs_write(of, buf, nbytes, off, true);
    537}
    538
    539static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
    540				   char *buf, size_t nbytes, loff_t off)
    541{
    542	return __cgroup1_procs_write(of, buf, nbytes, off, false);
    543}
    544
    545static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
    546					  char *buf, size_t nbytes, loff_t off)
    547{
    548	struct cgroup *cgrp;
    549	struct cgroup_file_ctx *ctx;
    550
    551	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
    552
    553	/*
    554	 * Release agent gets called with all capabilities,
    555	 * require capabilities to set release agent.
    556	 */
    557	ctx = of->priv;
    558	if ((ctx->ns->user_ns != &init_user_ns) ||
    559	    !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
    560		return -EPERM;
    561
    562	cgrp = cgroup_kn_lock_live(of->kn, false);
    563	if (!cgrp)
    564		return -ENODEV;
    565	spin_lock(&release_agent_path_lock);
    566	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
    567		sizeof(cgrp->root->release_agent_path));
    568	spin_unlock(&release_agent_path_lock);
    569	cgroup_kn_unlock(of->kn);
    570	return nbytes;
    571}
    572
    573static int cgroup_release_agent_show(struct seq_file *seq, void *v)
    574{
    575	struct cgroup *cgrp = seq_css(seq)->cgroup;
    576
    577	spin_lock(&release_agent_path_lock);
    578	seq_puts(seq, cgrp->root->release_agent_path);
    579	spin_unlock(&release_agent_path_lock);
    580	seq_putc(seq, '\n');
    581	return 0;
    582}
    583
    584static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
    585{
    586	seq_puts(seq, "0\n");
    587	return 0;
    588}
    589
    590static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
    591					 struct cftype *cft)
    592{
    593	return notify_on_release(css->cgroup);
    594}
    595
    596static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
    597					  struct cftype *cft, u64 val)
    598{
    599	if (val)
    600		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
    601	else
    602		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
    603	return 0;
    604}
    605
    606static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
    607				      struct cftype *cft)
    608{
    609	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
    610}
    611
    612static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
    613				       struct cftype *cft, u64 val)
    614{
    615	if (val)
    616		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
    617	else
    618		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
    619	return 0;
    620}
    621
    622/* cgroup core interface files for the legacy hierarchies */
    623struct cftype cgroup1_base_files[] = {
    624	{
    625		.name = "cgroup.procs",
    626		.seq_start = cgroup_pidlist_start,
    627		.seq_next = cgroup_pidlist_next,
    628		.seq_stop = cgroup_pidlist_stop,
    629		.seq_show = cgroup_pidlist_show,
    630		.private = CGROUP_FILE_PROCS,
    631		.write = cgroup1_procs_write,
    632	},
    633	{
    634		.name = "cgroup.clone_children",
    635		.read_u64 = cgroup_clone_children_read,
    636		.write_u64 = cgroup_clone_children_write,
    637	},
    638	{
    639		.name = "cgroup.sane_behavior",
    640		.flags = CFTYPE_ONLY_ON_ROOT,
    641		.seq_show = cgroup_sane_behavior_show,
    642	},
    643	{
    644		.name = "tasks",
    645		.seq_start = cgroup_pidlist_start,
    646		.seq_next = cgroup_pidlist_next,
    647		.seq_stop = cgroup_pidlist_stop,
    648		.seq_show = cgroup_pidlist_show,
    649		.private = CGROUP_FILE_TASKS,
    650		.write = cgroup1_tasks_write,
    651	},
    652	{
    653		.name = "notify_on_release",
    654		.read_u64 = cgroup_read_notify_on_release,
    655		.write_u64 = cgroup_write_notify_on_release,
    656	},
    657	{
    658		.name = "release_agent",
    659		.flags = CFTYPE_ONLY_ON_ROOT,
    660		.seq_show = cgroup_release_agent_show,
    661		.write = cgroup_release_agent_write,
    662		.max_write_len = PATH_MAX - 1,
    663	},
    664	{ }	/* terminate */
    665};
    666
    667/* Display information about each subsystem and each hierarchy */
    668int proc_cgroupstats_show(struct seq_file *m, void *v)
    669{
    670	struct cgroup_subsys *ss;
    671	int i;
    672
    673	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
    674	/*
    675	 * Grab the subsystems state racily. No need to add avenue to
    676	 * cgroup_mutex contention.
    677	 */
    678
    679	for_each_subsys(ss, i)
    680		seq_printf(m, "%s\t%d\t%d\t%d\n",
    681			   ss->legacy_name, ss->root->hierarchy_id,
    682			   atomic_read(&ss->root->nr_cgrps),
    683			   cgroup_ssid_enabled(i));
    684
    685	return 0;
    686}
    687
    688/**
    689 * cgroupstats_build - build and fill cgroupstats
    690 * @stats: cgroupstats to fill information into
    691 * @dentry: A dentry entry belonging to the cgroup for which stats have
    692 * been requested.
    693 *
    694 * Build and fill cgroupstats so that taskstats can export it to user
    695 * space.
    696 *
    697 * Return: %0 on success or a negative errno code on failure
    698 */
    699int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
    700{
    701	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
    702	struct cgroup *cgrp;
    703	struct css_task_iter it;
    704	struct task_struct *tsk;
    705
    706	/* it should be kernfs_node belonging to cgroupfs and is a directory */
    707	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
    708	    kernfs_type(kn) != KERNFS_DIR)
    709		return -EINVAL;
    710
    711	/*
    712	 * We aren't being called from kernfs and there's no guarantee on
    713	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
    714	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
    715	 */
    716	rcu_read_lock();
    717	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
    718	if (!cgrp || !cgroup_tryget(cgrp)) {
    719		rcu_read_unlock();
    720		return -ENOENT;
    721	}
    722	rcu_read_unlock();
    723
    724	css_task_iter_start(&cgrp->self, 0, &it);
    725	while ((tsk = css_task_iter_next(&it))) {
    726		switch (READ_ONCE(tsk->__state)) {
    727		case TASK_RUNNING:
    728			stats->nr_running++;
    729			break;
    730		case TASK_INTERRUPTIBLE:
    731			stats->nr_sleeping++;
    732			break;
    733		case TASK_UNINTERRUPTIBLE:
    734			stats->nr_uninterruptible++;
    735			break;
    736		case TASK_STOPPED:
    737			stats->nr_stopped++;
    738			break;
    739		default:
    740			if (tsk->in_iowait)
    741				stats->nr_io_wait++;
    742			break;
    743		}
    744	}
    745	css_task_iter_end(&it);
    746
    747	cgroup_put(cgrp);
    748	return 0;
    749}
    750
    751void cgroup1_check_for_release(struct cgroup *cgrp)
    752{
    753	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
    754	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
    755		schedule_work(&cgrp->release_agent_work);
    756}
    757
    758/*
    759 * Notify userspace when a cgroup is released, by running the
    760 * configured release agent with the name of the cgroup (path
    761 * relative to the root of cgroup file system) as the argument.
    762 *
    763 * Most likely, this user command will try to rmdir this cgroup.
    764 *
    765 * This races with the possibility that some other task will be
    766 * attached to this cgroup before it is removed, or that some other
    767 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
    768 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
    769 * unused, and this cgroup will be reprieved from its death sentence,
    770 * to continue to serve a useful existence.  Next time it's released,
    771 * we will get notified again, if it still has 'notify_on_release' set.
    772 *
    773 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
    774 * means only wait until the task is successfully execve()'d.  The
    775 * separate release agent task is forked by call_usermodehelper(),
    776 * then control in this thread returns here, without waiting for the
    777 * release agent task.  We don't bother to wait because the caller of
    778 * this routine has no use for the exit status of the release agent
    779 * task, so no sense holding our caller up for that.
    780 */
    781void cgroup1_release_agent(struct work_struct *work)
    782{
    783	struct cgroup *cgrp =
    784		container_of(work, struct cgroup, release_agent_work);
    785	char *pathbuf, *agentbuf;
    786	char *argv[3], *envp[3];
    787	int ret;
    788
    789	/* snoop agent path and exit early if empty */
    790	if (!cgrp->root->release_agent_path[0])
    791		return;
    792
    793	/* prepare argument buffers */
    794	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
    795	agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
    796	if (!pathbuf || !agentbuf)
    797		goto out_free;
    798
    799	spin_lock(&release_agent_path_lock);
    800	strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
    801	spin_unlock(&release_agent_path_lock);
    802	if (!agentbuf[0])
    803		goto out_free;
    804
    805	ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
    806	if (ret < 0 || ret >= PATH_MAX)
    807		goto out_free;
    808
    809	argv[0] = agentbuf;
    810	argv[1] = pathbuf;
    811	argv[2] = NULL;
    812
    813	/* minimal command environment */
    814	envp[0] = "HOME=/";
    815	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
    816	envp[2] = NULL;
    817
    818	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
    819out_free:
    820	kfree(agentbuf);
    821	kfree(pathbuf);
    822}
    823
    824/*
    825 * cgroup_rename - Only allow simple rename of directories in place.
    826 */
    827static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
    828			  const char *new_name_str)
    829{
    830	struct cgroup *cgrp = kn->priv;
    831	int ret;
    832
    833	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
    834	if (strchr(new_name_str, '\n'))
    835		return -EINVAL;
    836
    837	if (kernfs_type(kn) != KERNFS_DIR)
    838		return -ENOTDIR;
    839	if (kn->parent != new_parent)
    840		return -EIO;
    841
    842	/*
    843	 * We're gonna grab cgroup_mutex which nests outside kernfs
    844	 * active_ref.  kernfs_rename() doesn't require active_ref
    845	 * protection.  Break them before grabbing cgroup_mutex.
    846	 */
    847	kernfs_break_active_protection(new_parent);
    848	kernfs_break_active_protection(kn);
    849
    850	mutex_lock(&cgroup_mutex);
    851
    852	ret = kernfs_rename(kn, new_parent, new_name_str);
    853	if (!ret)
    854		TRACE_CGROUP_PATH(rename, cgrp);
    855
    856	mutex_unlock(&cgroup_mutex);
    857
    858	kernfs_unbreak_active_protection(kn);
    859	kernfs_unbreak_active_protection(new_parent);
    860	return ret;
    861}
    862
    863static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
    864{
    865	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
    866	struct cgroup_subsys *ss;
    867	int ssid;
    868
    869	for_each_subsys(ss, ssid)
    870		if (root->subsys_mask & (1 << ssid))
    871			seq_show_option(seq, ss->legacy_name, NULL);
    872	if (root->flags & CGRP_ROOT_NOPREFIX)
    873		seq_puts(seq, ",noprefix");
    874	if (root->flags & CGRP_ROOT_XATTR)
    875		seq_puts(seq, ",xattr");
    876	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
    877		seq_puts(seq, ",cpuset_v2_mode");
    878
    879	spin_lock(&release_agent_path_lock);
    880	if (strlen(root->release_agent_path))
    881		seq_show_option(seq, "release_agent",
    882				root->release_agent_path);
    883	spin_unlock(&release_agent_path_lock);
    884
    885	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
    886		seq_puts(seq, ",clone_children");
    887	if (strlen(root->name))
    888		seq_show_option(seq, "name", root->name);
    889	return 0;
    890}
    891
    892enum cgroup1_param {
    893	Opt_all,
    894	Opt_clone_children,
    895	Opt_cpuset_v2_mode,
    896	Opt_name,
    897	Opt_none,
    898	Opt_noprefix,
    899	Opt_release_agent,
    900	Opt_xattr,
    901};
    902
    903const struct fs_parameter_spec cgroup1_fs_parameters[] = {
    904	fsparam_flag  ("all",		Opt_all),
    905	fsparam_flag  ("clone_children", Opt_clone_children),
    906	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
    907	fsparam_string("name",		Opt_name),
    908	fsparam_flag  ("none",		Opt_none),
    909	fsparam_flag  ("noprefix",	Opt_noprefix),
    910	fsparam_string("release_agent",	Opt_release_agent),
    911	fsparam_flag  ("xattr",		Opt_xattr),
    912	{}
    913};
    914
    915int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
    916{
    917	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
    918	struct cgroup_subsys *ss;
    919	struct fs_parse_result result;
    920	int opt, i;
    921
    922	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
    923	if (opt == -ENOPARAM) {
    924		int ret;
    925
    926		ret = vfs_parse_fs_param_source(fc, param);
    927		if (ret != -ENOPARAM)
    928			return ret;
    929		for_each_subsys(ss, i) {
    930			if (strcmp(param->key, ss->legacy_name))
    931				continue;
    932			if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
    933				return invalfc(fc, "Disabled controller '%s'",
    934					       param->key);
    935			ctx->subsys_mask |= (1 << i);
    936			return 0;
    937		}
    938		return invalfc(fc, "Unknown subsys name '%s'", param->key);
    939	}
    940	if (opt < 0)
    941		return opt;
    942
    943	switch (opt) {
    944	case Opt_none:
    945		/* Explicitly have no subsystems */
    946		ctx->none = true;
    947		break;
    948	case Opt_all:
    949		ctx->all_ss = true;
    950		break;
    951	case Opt_noprefix:
    952		ctx->flags |= CGRP_ROOT_NOPREFIX;
    953		break;
    954	case Opt_clone_children:
    955		ctx->cpuset_clone_children = true;
    956		break;
    957	case Opt_cpuset_v2_mode:
    958		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
    959		break;
    960	case Opt_xattr:
    961		ctx->flags |= CGRP_ROOT_XATTR;
    962		break;
    963	case Opt_release_agent:
    964		/* Specifying two release agents is forbidden */
    965		if (ctx->release_agent)
    966			return invalfc(fc, "release_agent respecified");
    967		/*
    968		 * Release agent gets called with all capabilities,
    969		 * require capabilities to set release agent.
    970		 */
    971		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
    972			return invalfc(fc, "Setting release_agent not allowed");
    973		ctx->release_agent = param->string;
    974		param->string = NULL;
    975		break;
    976	case Opt_name:
    977		/* blocked by boot param? */
    978		if (cgroup_no_v1_named)
    979			return -ENOENT;
    980		/* Can't specify an empty name */
    981		if (!param->size)
    982			return invalfc(fc, "Empty name");
    983		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
    984			return invalfc(fc, "Name too long");
    985		/* Must match [\w.-]+ */
    986		for (i = 0; i < param->size; i++) {
    987			char c = param->string[i];
    988			if (isalnum(c))
    989				continue;
    990			if ((c == '.') || (c == '-') || (c == '_'))
    991				continue;
    992			return invalfc(fc, "Invalid name");
    993		}
    994		/* Specifying two names is forbidden */
    995		if (ctx->name)
    996			return invalfc(fc, "name respecified");
    997		ctx->name = param->string;
    998		param->string = NULL;
    999		break;
   1000	}
   1001	return 0;
   1002}
   1003
   1004static int check_cgroupfs_options(struct fs_context *fc)
   1005{
   1006	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
   1007	u16 mask = U16_MAX;
   1008	u16 enabled = 0;
   1009	struct cgroup_subsys *ss;
   1010	int i;
   1011
   1012#ifdef CONFIG_CPUSETS
   1013	mask = ~((u16)1 << cpuset_cgrp_id);
   1014#endif
   1015	for_each_subsys(ss, i)
   1016		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
   1017			enabled |= 1 << i;
   1018
   1019	ctx->subsys_mask &= enabled;
   1020
   1021	/*
   1022	 * In absence of 'none', 'name=' and subsystem name options,
   1023	 * let's default to 'all'.
   1024	 */
   1025	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
   1026		ctx->all_ss = true;
   1027
   1028	if (ctx->all_ss) {
   1029		/* Mutually exclusive option 'all' + subsystem name */
   1030		if (ctx->subsys_mask)
   1031			return invalfc(fc, "subsys name conflicts with all");
   1032		/* 'all' => select all the subsystems */
   1033		ctx->subsys_mask = enabled;
   1034	}
   1035
   1036	/*
   1037	 * We either have to specify by name or by subsystems. (So all
   1038	 * empty hierarchies must have a name).
   1039	 */
   1040	if (!ctx->subsys_mask && !ctx->name)
   1041		return invalfc(fc, "Need name or subsystem set");
   1042
   1043	/*
   1044	 * Option noprefix was introduced just for backward compatibility
   1045	 * with the old cpuset, so we allow noprefix only if mounting just
   1046	 * the cpuset subsystem.
   1047	 */
   1048	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
   1049		return invalfc(fc, "noprefix used incorrectly");
   1050
   1051	/* Can't specify "none" and some subsystems */
   1052	if (ctx->subsys_mask && ctx->none)
   1053		return invalfc(fc, "none used incorrectly");
   1054
   1055	return 0;
   1056}
   1057
   1058int cgroup1_reconfigure(struct fs_context *fc)
   1059{
   1060	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
   1061	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
   1062	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
   1063	int ret = 0;
   1064	u16 added_mask, removed_mask;
   1065
   1066	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
   1067
   1068	/* See what subsystems are wanted */
   1069	ret = check_cgroupfs_options(fc);
   1070	if (ret)
   1071		goto out_unlock;
   1072
   1073	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
   1074		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
   1075			task_tgid_nr(current), current->comm);
   1076
   1077	added_mask = ctx->subsys_mask & ~root->subsys_mask;
   1078	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
   1079
   1080	/* Don't allow flags or name to change at remount */
   1081	if ((ctx->flags ^ root->flags) ||
   1082	    (ctx->name && strcmp(ctx->name, root->name))) {
   1083		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
   1084		       ctx->flags, ctx->name ?: "", root->flags, root->name);
   1085		ret = -EINVAL;
   1086		goto out_unlock;
   1087	}
   1088
   1089	/* remounting is not allowed for populated hierarchies */
   1090	if (!list_empty(&root->cgrp.self.children)) {
   1091		ret = -EBUSY;
   1092		goto out_unlock;
   1093	}
   1094
   1095	ret = rebind_subsystems(root, added_mask);
   1096	if (ret)
   1097		goto out_unlock;
   1098
   1099	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
   1100
   1101	if (ctx->release_agent) {
   1102		spin_lock(&release_agent_path_lock);
   1103		strcpy(root->release_agent_path, ctx->release_agent);
   1104		spin_unlock(&release_agent_path_lock);
   1105	}
   1106
   1107	trace_cgroup_remount(root);
   1108
   1109 out_unlock:
   1110	mutex_unlock(&cgroup_mutex);
   1111	return ret;
   1112}
   1113
   1114struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
   1115	.rename			= cgroup1_rename,
   1116	.show_options		= cgroup1_show_options,
   1117	.mkdir			= cgroup_mkdir,
   1118	.rmdir			= cgroup_rmdir,
   1119	.show_path		= cgroup_show_path,
   1120};
   1121
   1122/*
   1123 * The guts of cgroup1 mount - find or create cgroup_root to use.
   1124 * Called with cgroup_mutex held; returns 0 on success, -E... on
   1125 * error and positive - in case when the candidate is busy dying.
   1126 * On success it stashes a reference to cgroup_root into given
   1127 * cgroup_fs_context; that reference is *NOT* counting towards the
   1128 * cgroup_root refcount.
   1129 */
   1130static int cgroup1_root_to_use(struct fs_context *fc)
   1131{
   1132	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
   1133	struct cgroup_root *root;
   1134	struct cgroup_subsys *ss;
   1135	int i, ret;
   1136
   1137	/* First find the desired set of subsystems */
   1138	ret = check_cgroupfs_options(fc);
   1139	if (ret)
   1140		return ret;
   1141
   1142	/*
   1143	 * Destruction of cgroup root is asynchronous, so subsystems may
   1144	 * still be dying after the previous unmount.  Let's drain the
   1145	 * dying subsystems.  We just need to ensure that the ones
   1146	 * unmounted previously finish dying and don't care about new ones
   1147	 * starting.  Testing ref liveliness is good enough.
   1148	 */
   1149	for_each_subsys(ss, i) {
   1150		if (!(ctx->subsys_mask & (1 << i)) ||
   1151		    ss->root == &cgrp_dfl_root)
   1152			continue;
   1153
   1154		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
   1155			return 1;	/* restart */
   1156		cgroup_put(&ss->root->cgrp);
   1157	}
   1158
   1159	for_each_root(root) {
   1160		bool name_match = false;
   1161
   1162		if (root == &cgrp_dfl_root)
   1163			continue;
   1164
   1165		/*
   1166		 * If we asked for a name then it must match.  Also, if
   1167		 * name matches but sybsys_mask doesn't, we should fail.
   1168		 * Remember whether name matched.
   1169		 */
   1170		if (ctx->name) {
   1171			if (strcmp(ctx->name, root->name))
   1172				continue;
   1173			name_match = true;
   1174		}
   1175
   1176		/*
   1177		 * If we asked for subsystems (or explicitly for no
   1178		 * subsystems) then they must match.
   1179		 */
   1180		if ((ctx->subsys_mask || ctx->none) &&
   1181		    (ctx->subsys_mask != root->subsys_mask)) {
   1182			if (!name_match)
   1183				continue;
   1184			return -EBUSY;
   1185		}
   1186
   1187		if (root->flags ^ ctx->flags)
   1188			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
   1189
   1190		ctx->root = root;
   1191		return 0;
   1192	}
   1193
   1194	/*
   1195	 * No such thing, create a new one.  name= matching without subsys
   1196	 * specification is allowed for already existing hierarchies but we
   1197	 * can't create new one without subsys specification.
   1198	 */
   1199	if (!ctx->subsys_mask && !ctx->none)
   1200		return invalfc(fc, "No subsys list or none specified");
   1201
   1202	/* Hierarchies may only be created in the initial cgroup namespace. */
   1203	if (ctx->ns != &init_cgroup_ns)
   1204		return -EPERM;
   1205
   1206	root = kzalloc(sizeof(*root), GFP_KERNEL);
   1207	if (!root)
   1208		return -ENOMEM;
   1209
   1210	ctx->root = root;
   1211	init_cgroup_root(ctx);
   1212
   1213	ret = cgroup_setup_root(root, ctx->subsys_mask);
   1214	if (ret)
   1215		cgroup_free_root(root);
   1216	return ret;
   1217}
   1218
   1219int cgroup1_get_tree(struct fs_context *fc)
   1220{
   1221	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
   1222	int ret;
   1223
   1224	/* Check if the caller has permission to mount. */
   1225	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
   1226		return -EPERM;
   1227
   1228	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
   1229
   1230	ret = cgroup1_root_to_use(fc);
   1231	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
   1232		ret = 1;	/* restart */
   1233
   1234	mutex_unlock(&cgroup_mutex);
   1235
   1236	if (!ret)
   1237		ret = cgroup_do_get_tree(fc);
   1238
   1239	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
   1240		fc_drop_locked(fc);
   1241		ret = 1;
   1242	}
   1243
   1244	if (unlikely(ret > 0)) {
   1245		msleep(10);
   1246		return restart_syscall();
   1247	}
   1248	return ret;
   1249}
   1250
   1251static int __init cgroup1_wq_init(void)
   1252{
   1253	/*
   1254	 * Used to destroy pidlists and separate to serve as flush domain.
   1255	 * Cap @max_active to 1 too.
   1256	 */
   1257	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
   1258						    0, 1);
   1259	BUG_ON(!cgroup_pidlist_destroy_wq);
   1260	return 0;
   1261}
   1262core_initcall(cgroup1_wq_init);
   1263
   1264static int __init cgroup_no_v1(char *str)
   1265{
   1266	struct cgroup_subsys *ss;
   1267	char *token;
   1268	int i;
   1269
   1270	while ((token = strsep(&str, ",")) != NULL) {
   1271		if (!*token)
   1272			continue;
   1273
   1274		if (!strcmp(token, "all")) {
   1275			cgroup_no_v1_mask = U16_MAX;
   1276			continue;
   1277		}
   1278
   1279		if (!strcmp(token, "named")) {
   1280			cgroup_no_v1_named = true;
   1281			continue;
   1282		}
   1283
   1284		for_each_subsys(ss, i) {
   1285			if (strcmp(token, ss->name) &&
   1286			    strcmp(token, ss->legacy_name))
   1287				continue;
   1288
   1289			cgroup_no_v1_mask |= 1 << i;
   1290		}
   1291	}
   1292	return 1;
   1293}
   1294__setup("cgroup_no_v1=", cgroup_no_v1);