cgroup.c (180361B)
1/* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31#include "cgroup-internal.h" 32 33#include <linux/bpf-cgroup.h> 34#include <linux/cred.h> 35#include <linux/errno.h> 36#include <linux/init_task.h> 37#include <linux/kernel.h> 38#include <linux/magic.h> 39#include <linux/mutex.h> 40#include <linux/mount.h> 41#include <linux/pagemap.h> 42#include <linux/proc_fs.h> 43#include <linux/rcupdate.h> 44#include <linux/sched.h> 45#include <linux/sched/task.h> 46#include <linux/slab.h> 47#include <linux/spinlock.h> 48#include <linux/percpu-rwsem.h> 49#include <linux/string.h> 50#include <linux/hashtable.h> 51#include <linux/idr.h> 52#include <linux/kthread.h> 53#include <linux/atomic.h> 54#include <linux/cpuset.h> 55#include <linux/proc_ns.h> 56#include <linux/nsproxy.h> 57#include <linux/file.h> 58#include <linux/fs_parser.h> 59#include <linux/sched/cputime.h> 60#include <linux/psi.h> 61#include <net/sock.h> 62 63#define CREATE_TRACE_POINTS 64#include <trace/events/cgroup.h> 65 66#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 67 MAX_CFTYPE_NAME + 2) 68/* let's not notify more than 100 times per second */ 69#define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 70 71/* 72 * To avoid confusing the compiler (and generating warnings) with code 73 * that attempts to access what would be a 0-element array (i.e. sized 74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 75 * constant expression can be added. 76 */ 77#define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 78 79/* 80 * cgroup_mutex is the master lock. Any modification to cgroup or its 81 * hierarchy must be performed while holding it. 82 * 83 * css_set_lock protects task->cgroups pointer, the list of css_set 84 * objects, and the chain of tasks off each css_set. 85 * 86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 87 * cgroup.h can use them for lockdep annotations. 88 */ 89DEFINE_MUTEX(cgroup_mutex); 90DEFINE_SPINLOCK(css_set_lock); 91 92#ifdef CONFIG_PROVE_RCU 93EXPORT_SYMBOL_GPL(cgroup_mutex); 94EXPORT_SYMBOL_GPL(css_set_lock); 95#endif 96 97DEFINE_SPINLOCK(trace_cgroup_path_lock); 98char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 99static bool cgroup_debug __read_mostly; 100 101/* 102 * Protects cgroup_idr and css_idr so that IDs can be released without 103 * grabbing cgroup_mutex. 104 */ 105static DEFINE_SPINLOCK(cgroup_idr_lock); 106 107/* 108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 109 * against file removal/re-creation across css hiding. 110 */ 111static DEFINE_SPINLOCK(cgroup_file_kn_lock); 112 113DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 114 115#define cgroup_assert_mutex_or_rcu_locked() \ 116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 117 !lockdep_is_held(&cgroup_mutex), \ 118 "cgroup_mutex or RCU read lock required"); 119 120/* 121 * cgroup destruction makes heavy use of work items and there can be a lot 122 * of concurrent destructions. Use a separate workqueue so that cgroup 123 * destruction work items don't end up filling up max_active of system_wq 124 * which may lead to deadlock. 125 */ 126static struct workqueue_struct *cgroup_destroy_wq; 127 128/* generate an array of cgroup subsystem pointers */ 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 130struct cgroup_subsys *cgroup_subsys[] = { 131#include <linux/cgroup_subsys.h> 132}; 133#undef SUBSYS 134 135/* array of cgroup subsystem names */ 136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 137static const char *cgroup_subsys_name[] = { 138#include <linux/cgroup_subsys.h> 139}; 140#undef SUBSYS 141 142/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 143#define SUBSYS(_x) \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 148#include <linux/cgroup_subsys.h> 149#undef SUBSYS 150 151#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 152static struct static_key_true *cgroup_subsys_enabled_key[] = { 153#include <linux/cgroup_subsys.h> 154}; 155#undef SUBSYS 156 157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 158static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 159#include <linux/cgroup_subsys.h> 160}; 161#undef SUBSYS 162 163static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 164 165/* the default hierarchy */ 166struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 167EXPORT_SYMBOL_GPL(cgrp_dfl_root); 168 169/* 170 * The default hierarchy always exists but is hidden until mounted for the 171 * first time. This is for backward compatibility. 172 */ 173static bool cgrp_dfl_visible; 174 175/* some controllers are not supported in the default hierarchy */ 176static u16 cgrp_dfl_inhibit_ss_mask; 177 178/* some controllers are implicitly enabled on the default hierarchy */ 179static u16 cgrp_dfl_implicit_ss_mask; 180 181/* some controllers can be threaded on the default hierarchy */ 182static u16 cgrp_dfl_threaded_ss_mask; 183 184/* The list of hierarchy roots */ 185LIST_HEAD(cgroup_roots); 186static int cgroup_root_count; 187 188/* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 189static DEFINE_IDR(cgroup_hierarchy_idr); 190 191/* 192 * Assign a monotonically increasing serial number to csses. It guarantees 193 * cgroups with bigger numbers are newer than those with smaller numbers. 194 * Also, as csses are always appended to the parent's ->children list, it 195 * guarantees that sibling csses are always sorted in the ascending serial 196 * number order on the list. Protected by cgroup_mutex. 197 */ 198static u64 css_serial_nr_next = 1; 199 200/* 201 * These bitmasks identify subsystems with specific features to avoid 202 * having to do iterative checks repeatedly. 203 */ 204static u16 have_fork_callback __read_mostly; 205static u16 have_exit_callback __read_mostly; 206static u16 have_release_callback __read_mostly; 207static u16 have_canfork_callback __read_mostly; 208 209/* cgroup namespace for init task */ 210struct cgroup_namespace init_cgroup_ns = { 211 .ns.count = REFCOUNT_INIT(2), 212 .user_ns = &init_user_ns, 213 .ns.ops = &cgroupns_operations, 214 .ns.inum = PROC_CGROUP_INIT_INO, 215 .root_cset = &init_css_set, 216}; 217 218static struct file_system_type cgroup2_fs_type; 219static struct cftype cgroup_base_files[]; 220 221/* cgroup optional features */ 222enum cgroup_opt_features { 223#ifdef CONFIG_PSI 224 OPT_FEATURE_PRESSURE, 225#endif 226 OPT_FEATURE_COUNT 227}; 228 229static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 230#ifdef CONFIG_PSI 231 "pressure", 232#endif 233}; 234 235static u16 cgroup_feature_disable_mask __read_mostly; 236 237static int cgroup_apply_control(struct cgroup *cgrp); 238static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 239static void css_task_iter_skip(struct css_task_iter *it, 240 struct task_struct *task); 241static int cgroup_destroy_locked(struct cgroup *cgrp); 242static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 243 struct cgroup_subsys *ss); 244static void css_release(struct percpu_ref *ref); 245static void kill_css(struct cgroup_subsys_state *css); 246static int cgroup_addrm_files(struct cgroup_subsys_state *css, 247 struct cgroup *cgrp, struct cftype cfts[], 248 bool is_add); 249 250/** 251 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 252 * @ssid: subsys ID of interest 253 * 254 * cgroup_subsys_enabled() can only be used with literal subsys names which 255 * is fine for individual subsystems but unsuitable for cgroup core. This 256 * is slower static_key_enabled() based test indexed by @ssid. 257 */ 258bool cgroup_ssid_enabled(int ssid) 259{ 260 if (!CGROUP_HAS_SUBSYS_CONFIG) 261 return false; 262 263 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 264} 265 266/** 267 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 268 * @cgrp: the cgroup of interest 269 * 270 * The default hierarchy is the v2 interface of cgroup and this function 271 * can be used to test whether a cgroup is on the default hierarchy for 272 * cases where a subsystem should behave differently depending on the 273 * interface version. 274 * 275 * List of changed behaviors: 276 * 277 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 278 * and "name" are disallowed. 279 * 280 * - When mounting an existing superblock, mount options should match. 281 * 282 * - Remount is disallowed. 283 * 284 * - rename(2) is disallowed. 285 * 286 * - "tasks" is removed. Everything should be at process granularity. Use 287 * "cgroup.procs" instead. 288 * 289 * - "cgroup.procs" is not sorted. pids will be unique unless they got 290 * recycled in-between reads. 291 * 292 * - "release_agent" and "notify_on_release" are removed. Replacement 293 * notification mechanism will be implemented. 294 * 295 * - "cgroup.clone_children" is removed. 296 * 297 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 298 * and its descendants contain no task; otherwise, 1. The file also 299 * generates kernfs notification which can be monitored through poll and 300 * [di]notify when the value of the file changes. 301 * 302 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 303 * take masks of ancestors with non-empty cpus/mems, instead of being 304 * moved to an ancestor. 305 * 306 * - cpuset: a task can be moved into an empty cpuset, and again it takes 307 * masks of ancestors. 308 * 309 * - blkcg: blk-throttle becomes properly hierarchical. 310 * 311 * - debug: disallowed on the default hierarchy. 312 */ 313bool cgroup_on_dfl(const struct cgroup *cgrp) 314{ 315 return cgrp->root == &cgrp_dfl_root; 316} 317 318/* IDR wrappers which synchronize using cgroup_idr_lock */ 319static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 320 gfp_t gfp_mask) 321{ 322 int ret; 323 324 idr_preload(gfp_mask); 325 spin_lock_bh(&cgroup_idr_lock); 326 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 327 spin_unlock_bh(&cgroup_idr_lock); 328 idr_preload_end(); 329 return ret; 330} 331 332static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 333{ 334 void *ret; 335 336 spin_lock_bh(&cgroup_idr_lock); 337 ret = idr_replace(idr, ptr, id); 338 spin_unlock_bh(&cgroup_idr_lock); 339 return ret; 340} 341 342static void cgroup_idr_remove(struct idr *idr, int id) 343{ 344 spin_lock_bh(&cgroup_idr_lock); 345 idr_remove(idr, id); 346 spin_unlock_bh(&cgroup_idr_lock); 347} 348 349static bool cgroup_has_tasks(struct cgroup *cgrp) 350{ 351 return cgrp->nr_populated_csets; 352} 353 354bool cgroup_is_threaded(struct cgroup *cgrp) 355{ 356 return cgrp->dom_cgrp != cgrp; 357} 358 359/* can @cgrp host both domain and threaded children? */ 360static bool cgroup_is_mixable(struct cgroup *cgrp) 361{ 362 /* 363 * Root isn't under domain level resource control exempting it from 364 * the no-internal-process constraint, so it can serve as a thread 365 * root and a parent of resource domains at the same time. 366 */ 367 return !cgroup_parent(cgrp); 368} 369 370/* can @cgrp become a thread root? Should always be true for a thread root */ 371static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 372{ 373 /* mixables don't care */ 374 if (cgroup_is_mixable(cgrp)) 375 return true; 376 377 /* domain roots can't be nested under threaded */ 378 if (cgroup_is_threaded(cgrp)) 379 return false; 380 381 /* can only have either domain or threaded children */ 382 if (cgrp->nr_populated_domain_children) 383 return false; 384 385 /* and no domain controllers can be enabled */ 386 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 387 return false; 388 389 return true; 390} 391 392/* is @cgrp root of a threaded subtree? */ 393bool cgroup_is_thread_root(struct cgroup *cgrp) 394{ 395 /* thread root should be a domain */ 396 if (cgroup_is_threaded(cgrp)) 397 return false; 398 399 /* a domain w/ threaded children is a thread root */ 400 if (cgrp->nr_threaded_children) 401 return true; 402 403 /* 404 * A domain which has tasks and explicit threaded controllers 405 * enabled is a thread root. 406 */ 407 if (cgroup_has_tasks(cgrp) && 408 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 409 return true; 410 411 return false; 412} 413 414/* a domain which isn't connected to the root w/o brekage can't be used */ 415static bool cgroup_is_valid_domain(struct cgroup *cgrp) 416{ 417 /* the cgroup itself can be a thread root */ 418 if (cgroup_is_threaded(cgrp)) 419 return false; 420 421 /* but the ancestors can't be unless mixable */ 422 while ((cgrp = cgroup_parent(cgrp))) { 423 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 424 return false; 425 if (cgroup_is_threaded(cgrp)) 426 return false; 427 } 428 429 return true; 430} 431 432/* subsystems visibly enabled on a cgroup */ 433static u16 cgroup_control(struct cgroup *cgrp) 434{ 435 struct cgroup *parent = cgroup_parent(cgrp); 436 u16 root_ss_mask = cgrp->root->subsys_mask; 437 438 if (parent) { 439 u16 ss_mask = parent->subtree_control; 440 441 /* threaded cgroups can only have threaded controllers */ 442 if (cgroup_is_threaded(cgrp)) 443 ss_mask &= cgrp_dfl_threaded_ss_mask; 444 return ss_mask; 445 } 446 447 if (cgroup_on_dfl(cgrp)) 448 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 449 cgrp_dfl_implicit_ss_mask); 450 return root_ss_mask; 451} 452 453/* subsystems enabled on a cgroup */ 454static u16 cgroup_ss_mask(struct cgroup *cgrp) 455{ 456 struct cgroup *parent = cgroup_parent(cgrp); 457 458 if (parent) { 459 u16 ss_mask = parent->subtree_ss_mask; 460 461 /* threaded cgroups can only have threaded controllers */ 462 if (cgroup_is_threaded(cgrp)) 463 ss_mask &= cgrp_dfl_threaded_ss_mask; 464 return ss_mask; 465 } 466 467 return cgrp->root->subsys_mask; 468} 469 470/** 471 * cgroup_css - obtain a cgroup's css for the specified subsystem 472 * @cgrp: the cgroup of interest 473 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 474 * 475 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 476 * function must be called either under cgroup_mutex or rcu_read_lock() and 477 * the caller is responsible for pinning the returned css if it wants to 478 * keep accessing it outside the said locks. This function may return 479 * %NULL if @cgrp doesn't have @subsys_id enabled. 480 */ 481static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 482 struct cgroup_subsys *ss) 483{ 484 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 485 return rcu_dereference_check(cgrp->subsys[ss->id], 486 lockdep_is_held(&cgroup_mutex)); 487 else 488 return &cgrp->self; 489} 490 491/** 492 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 493 * @cgrp: the cgroup of interest 494 * @ss: the subsystem of interest 495 * 496 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 497 * or is offline, %NULL is returned. 498 */ 499static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 500 struct cgroup_subsys *ss) 501{ 502 struct cgroup_subsys_state *css; 503 504 rcu_read_lock(); 505 css = cgroup_css(cgrp, ss); 506 if (css && !css_tryget_online(css)) 507 css = NULL; 508 rcu_read_unlock(); 509 510 return css; 511} 512 513/** 514 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 515 * @cgrp: the cgroup of interest 516 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 517 * 518 * Similar to cgroup_css() but returns the effective css, which is defined 519 * as the matching css of the nearest ancestor including self which has @ss 520 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 521 * function is guaranteed to return non-NULL css. 522 */ 523static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 524 struct cgroup_subsys *ss) 525{ 526 lockdep_assert_held(&cgroup_mutex); 527 528 if (!ss) 529 return &cgrp->self; 530 531 /* 532 * This function is used while updating css associations and thus 533 * can't test the csses directly. Test ss_mask. 534 */ 535 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 536 cgrp = cgroup_parent(cgrp); 537 if (!cgrp) 538 return NULL; 539 } 540 541 return cgroup_css(cgrp, ss); 542} 543 544/** 545 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 546 * @cgrp: the cgroup of interest 547 * @ss: the subsystem of interest 548 * 549 * Find and get the effective css of @cgrp for @ss. The effective css is 550 * defined as the matching css of the nearest ancestor including self which 551 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 552 * the root css is returned, so this function always returns a valid css. 553 * 554 * The returned css is not guaranteed to be online, and therefore it is the 555 * callers responsibility to try get a reference for it. 556 */ 557struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 558 struct cgroup_subsys *ss) 559{ 560 struct cgroup_subsys_state *css; 561 562 if (!CGROUP_HAS_SUBSYS_CONFIG) 563 return NULL; 564 565 do { 566 css = cgroup_css(cgrp, ss); 567 568 if (css) 569 return css; 570 cgrp = cgroup_parent(cgrp); 571 } while (cgrp); 572 573 return init_css_set.subsys[ss->id]; 574} 575 576/** 577 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 578 * @cgrp: the cgroup of interest 579 * @ss: the subsystem of interest 580 * 581 * Find and get the effective css of @cgrp for @ss. The effective css is 582 * defined as the matching css of the nearest ancestor including self which 583 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 584 * the root css is returned, so this function always returns a valid css. 585 * The returned css must be put using css_put(). 586 */ 587struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 588 struct cgroup_subsys *ss) 589{ 590 struct cgroup_subsys_state *css; 591 592 if (!CGROUP_HAS_SUBSYS_CONFIG) 593 return NULL; 594 595 rcu_read_lock(); 596 597 do { 598 css = cgroup_css(cgrp, ss); 599 600 if (css && css_tryget_online(css)) 601 goto out_unlock; 602 cgrp = cgroup_parent(cgrp); 603 } while (cgrp); 604 605 css = init_css_set.subsys[ss->id]; 606 css_get(css); 607out_unlock: 608 rcu_read_unlock(); 609 return css; 610} 611EXPORT_SYMBOL_GPL(cgroup_get_e_css); 612 613static void cgroup_get_live(struct cgroup *cgrp) 614{ 615 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 616 css_get(&cgrp->self); 617} 618 619/** 620 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 621 * is responsible for taking the css_set_lock. 622 * @cgrp: the cgroup in question 623 */ 624int __cgroup_task_count(const struct cgroup *cgrp) 625{ 626 int count = 0; 627 struct cgrp_cset_link *link; 628 629 lockdep_assert_held(&css_set_lock); 630 631 list_for_each_entry(link, &cgrp->cset_links, cset_link) 632 count += link->cset->nr_tasks; 633 634 return count; 635} 636 637/** 638 * cgroup_task_count - count the number of tasks in a cgroup. 639 * @cgrp: the cgroup in question 640 */ 641int cgroup_task_count(const struct cgroup *cgrp) 642{ 643 int count; 644 645 spin_lock_irq(&css_set_lock); 646 count = __cgroup_task_count(cgrp); 647 spin_unlock_irq(&css_set_lock); 648 649 return count; 650} 651 652struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 653{ 654 struct cgroup *cgrp = of->kn->parent->priv; 655 struct cftype *cft = of_cft(of); 656 657 /* 658 * This is open and unprotected implementation of cgroup_css(). 659 * seq_css() is only called from a kernfs file operation which has 660 * an active reference on the file. Because all the subsystem 661 * files are drained before a css is disassociated with a cgroup, 662 * the matching css from the cgroup's subsys table is guaranteed to 663 * be and stay valid until the enclosing operation is complete. 664 */ 665 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 666 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 667 else 668 return &cgrp->self; 669} 670EXPORT_SYMBOL_GPL(of_css); 671 672/** 673 * for_each_css - iterate all css's of a cgroup 674 * @css: the iteration cursor 675 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 676 * @cgrp: the target cgroup to iterate css's of 677 * 678 * Should be called under cgroup_[tree_]mutex. 679 */ 680#define for_each_css(css, ssid, cgrp) \ 681 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 682 if (!((css) = rcu_dereference_check( \ 683 (cgrp)->subsys[(ssid)], \ 684 lockdep_is_held(&cgroup_mutex)))) { } \ 685 else 686 687/** 688 * for_each_e_css - iterate all effective css's of a cgroup 689 * @css: the iteration cursor 690 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 691 * @cgrp: the target cgroup to iterate css's of 692 * 693 * Should be called under cgroup_[tree_]mutex. 694 */ 695#define for_each_e_css(css, ssid, cgrp) \ 696 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 697 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 698 cgroup_subsys[(ssid)]))) \ 699 ; \ 700 else 701 702/** 703 * do_each_subsys_mask - filter for_each_subsys with a bitmask 704 * @ss: the iteration cursor 705 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 706 * @ss_mask: the bitmask 707 * 708 * The block will only run for cases where the ssid-th bit (1 << ssid) of 709 * @ss_mask is set. 710 */ 711#define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 712 unsigned long __ss_mask = (ss_mask); \ 713 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 714 (ssid) = 0; \ 715 break; \ 716 } \ 717 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 718 (ss) = cgroup_subsys[ssid]; \ 719 { 720 721#define while_each_subsys_mask() \ 722 } \ 723 } \ 724} while (false) 725 726/* iterate over child cgrps, lock should be held throughout iteration */ 727#define cgroup_for_each_live_child(child, cgrp) \ 728 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 729 if (({ lockdep_assert_held(&cgroup_mutex); \ 730 cgroup_is_dead(child); })) \ 731 ; \ 732 else 733 734/* walk live descendants in pre order */ 735#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 736 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 737 if (({ lockdep_assert_held(&cgroup_mutex); \ 738 (dsct) = (d_css)->cgroup; \ 739 cgroup_is_dead(dsct); })) \ 740 ; \ 741 else 742 743/* walk live descendants in postorder */ 744#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 745 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 746 if (({ lockdep_assert_held(&cgroup_mutex); \ 747 (dsct) = (d_css)->cgroup; \ 748 cgroup_is_dead(dsct); })) \ 749 ; \ 750 else 751 752/* 753 * The default css_set - used by init and its children prior to any 754 * hierarchies being mounted. It contains a pointer to the root state 755 * for each subsystem. Also used to anchor the list of css_sets. Not 756 * reference-counted, to improve performance when child cgroups 757 * haven't been created. 758 */ 759struct css_set init_css_set = { 760 .refcount = REFCOUNT_INIT(1), 761 .dom_cset = &init_css_set, 762 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 763 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 764 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 765 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 766 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 767 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 768 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 769 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 770 771 /* 772 * The following field is re-initialized when this cset gets linked 773 * in cgroup_init(). However, let's initialize the field 774 * statically too so that the default cgroup can be accessed safely 775 * early during boot. 776 */ 777 .dfl_cgrp = &cgrp_dfl_root.cgrp, 778}; 779 780static int css_set_count = 1; /* 1 for init_css_set */ 781 782static bool css_set_threaded(struct css_set *cset) 783{ 784 return cset->dom_cset != cset; 785} 786 787/** 788 * css_set_populated - does a css_set contain any tasks? 789 * @cset: target css_set 790 * 791 * css_set_populated() should be the same as !!cset->nr_tasks at steady 792 * state. However, css_set_populated() can be called while a task is being 793 * added to or removed from the linked list before the nr_tasks is 794 * properly updated. Hence, we can't just look at ->nr_tasks here. 795 */ 796static bool css_set_populated(struct css_set *cset) 797{ 798 lockdep_assert_held(&css_set_lock); 799 800 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 801} 802 803/** 804 * cgroup_update_populated - update the populated count of a cgroup 805 * @cgrp: the target cgroup 806 * @populated: inc or dec populated count 807 * 808 * One of the css_sets associated with @cgrp is either getting its first 809 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 810 * count is propagated towards root so that a given cgroup's 811 * nr_populated_children is zero iff none of its descendants contain any 812 * tasks. 813 * 814 * @cgrp's interface file "cgroup.populated" is zero if both 815 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 816 * 1 otherwise. When the sum changes from or to zero, userland is notified 817 * that the content of the interface file has changed. This can be used to 818 * detect when @cgrp and its descendants become populated or empty. 819 */ 820static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 821{ 822 struct cgroup *child = NULL; 823 int adj = populated ? 1 : -1; 824 825 lockdep_assert_held(&css_set_lock); 826 827 do { 828 bool was_populated = cgroup_is_populated(cgrp); 829 830 if (!child) { 831 cgrp->nr_populated_csets += adj; 832 } else { 833 if (cgroup_is_threaded(child)) 834 cgrp->nr_populated_threaded_children += adj; 835 else 836 cgrp->nr_populated_domain_children += adj; 837 } 838 839 if (was_populated == cgroup_is_populated(cgrp)) 840 break; 841 842 cgroup1_check_for_release(cgrp); 843 TRACE_CGROUP_PATH(notify_populated, cgrp, 844 cgroup_is_populated(cgrp)); 845 cgroup_file_notify(&cgrp->events_file); 846 847 child = cgrp; 848 cgrp = cgroup_parent(cgrp); 849 } while (cgrp); 850} 851 852/** 853 * css_set_update_populated - update populated state of a css_set 854 * @cset: target css_set 855 * @populated: whether @cset is populated or depopulated 856 * 857 * @cset is either getting the first task or losing the last. Update the 858 * populated counters of all associated cgroups accordingly. 859 */ 860static void css_set_update_populated(struct css_set *cset, bool populated) 861{ 862 struct cgrp_cset_link *link; 863 864 lockdep_assert_held(&css_set_lock); 865 866 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 867 cgroup_update_populated(link->cgrp, populated); 868} 869 870/* 871 * @task is leaving, advance task iterators which are pointing to it so 872 * that they can resume at the next position. Advancing an iterator might 873 * remove it from the list, use safe walk. See css_task_iter_skip() for 874 * details. 875 */ 876static void css_set_skip_task_iters(struct css_set *cset, 877 struct task_struct *task) 878{ 879 struct css_task_iter *it, *pos; 880 881 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 882 css_task_iter_skip(it, task); 883} 884 885/** 886 * css_set_move_task - move a task from one css_set to another 887 * @task: task being moved 888 * @from_cset: css_set @task currently belongs to (may be NULL) 889 * @to_cset: new css_set @task is being moved to (may be NULL) 890 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 891 * 892 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 893 * css_set, @from_cset can be NULL. If @task is being disassociated 894 * instead of moved, @to_cset can be NULL. 895 * 896 * This function automatically handles populated counter updates and 897 * css_task_iter adjustments but the caller is responsible for managing 898 * @from_cset and @to_cset's reference counts. 899 */ 900static void css_set_move_task(struct task_struct *task, 901 struct css_set *from_cset, struct css_set *to_cset, 902 bool use_mg_tasks) 903{ 904 lockdep_assert_held(&css_set_lock); 905 906 if (to_cset && !css_set_populated(to_cset)) 907 css_set_update_populated(to_cset, true); 908 909 if (from_cset) { 910 WARN_ON_ONCE(list_empty(&task->cg_list)); 911 912 css_set_skip_task_iters(from_cset, task); 913 list_del_init(&task->cg_list); 914 if (!css_set_populated(from_cset)) 915 css_set_update_populated(from_cset, false); 916 } else { 917 WARN_ON_ONCE(!list_empty(&task->cg_list)); 918 } 919 920 if (to_cset) { 921 /* 922 * We are synchronized through cgroup_threadgroup_rwsem 923 * against PF_EXITING setting such that we can't race 924 * against cgroup_exit()/cgroup_free() dropping the css_set. 925 */ 926 WARN_ON_ONCE(task->flags & PF_EXITING); 927 928 cgroup_move_task(task, to_cset); 929 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 930 &to_cset->tasks); 931 } 932} 933 934/* 935 * hash table for cgroup groups. This improves the performance to find 936 * an existing css_set. This hash doesn't (currently) take into 937 * account cgroups in empty hierarchies. 938 */ 939#define CSS_SET_HASH_BITS 7 940static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 941 942static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 943{ 944 unsigned long key = 0UL; 945 struct cgroup_subsys *ss; 946 int i; 947 948 for_each_subsys(ss, i) 949 key += (unsigned long)css[i]; 950 key = (key >> 16) ^ key; 951 952 return key; 953} 954 955void put_css_set_locked(struct css_set *cset) 956{ 957 struct cgrp_cset_link *link, *tmp_link; 958 struct cgroup_subsys *ss; 959 int ssid; 960 961 lockdep_assert_held(&css_set_lock); 962 963 if (!refcount_dec_and_test(&cset->refcount)) 964 return; 965 966 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 967 968 /* This css_set is dead. Unlink it and release cgroup and css refs */ 969 for_each_subsys(ss, ssid) { 970 list_del(&cset->e_cset_node[ssid]); 971 css_put(cset->subsys[ssid]); 972 } 973 hash_del(&cset->hlist); 974 css_set_count--; 975 976 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 977 list_del(&link->cset_link); 978 list_del(&link->cgrp_link); 979 if (cgroup_parent(link->cgrp)) 980 cgroup_put(link->cgrp); 981 kfree(link); 982 } 983 984 if (css_set_threaded(cset)) { 985 list_del(&cset->threaded_csets_node); 986 put_css_set_locked(cset->dom_cset); 987 } 988 989 kfree_rcu(cset, rcu_head); 990} 991 992/** 993 * compare_css_sets - helper function for find_existing_css_set(). 994 * @cset: candidate css_set being tested 995 * @old_cset: existing css_set for a task 996 * @new_cgrp: cgroup that's being entered by the task 997 * @template: desired set of css pointers in css_set (pre-calculated) 998 * 999 * Returns true if "cset" matches "old_cset" except for the hierarchy 1000 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1001 */ 1002static bool compare_css_sets(struct css_set *cset, 1003 struct css_set *old_cset, 1004 struct cgroup *new_cgrp, 1005 struct cgroup_subsys_state *template[]) 1006{ 1007 struct cgroup *new_dfl_cgrp; 1008 struct list_head *l1, *l2; 1009 1010 /* 1011 * On the default hierarchy, there can be csets which are 1012 * associated with the same set of cgroups but different csses. 1013 * Let's first ensure that csses match. 1014 */ 1015 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1016 return false; 1017 1018 1019 /* @cset's domain should match the default cgroup's */ 1020 if (cgroup_on_dfl(new_cgrp)) 1021 new_dfl_cgrp = new_cgrp; 1022 else 1023 new_dfl_cgrp = old_cset->dfl_cgrp; 1024 1025 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1026 return false; 1027 1028 /* 1029 * Compare cgroup pointers in order to distinguish between 1030 * different cgroups in hierarchies. As different cgroups may 1031 * share the same effective css, this comparison is always 1032 * necessary. 1033 */ 1034 l1 = &cset->cgrp_links; 1035 l2 = &old_cset->cgrp_links; 1036 while (1) { 1037 struct cgrp_cset_link *link1, *link2; 1038 struct cgroup *cgrp1, *cgrp2; 1039 1040 l1 = l1->next; 1041 l2 = l2->next; 1042 /* See if we reached the end - both lists are equal length. */ 1043 if (l1 == &cset->cgrp_links) { 1044 BUG_ON(l2 != &old_cset->cgrp_links); 1045 break; 1046 } else { 1047 BUG_ON(l2 == &old_cset->cgrp_links); 1048 } 1049 /* Locate the cgroups associated with these links. */ 1050 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1051 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1052 cgrp1 = link1->cgrp; 1053 cgrp2 = link2->cgrp; 1054 /* Hierarchies should be linked in the same order. */ 1055 BUG_ON(cgrp1->root != cgrp2->root); 1056 1057 /* 1058 * If this hierarchy is the hierarchy of the cgroup 1059 * that's changing, then we need to check that this 1060 * css_set points to the new cgroup; if it's any other 1061 * hierarchy, then this css_set should point to the 1062 * same cgroup as the old css_set. 1063 */ 1064 if (cgrp1->root == new_cgrp->root) { 1065 if (cgrp1 != new_cgrp) 1066 return false; 1067 } else { 1068 if (cgrp1 != cgrp2) 1069 return false; 1070 } 1071 } 1072 return true; 1073} 1074 1075/** 1076 * find_existing_css_set - init css array and find the matching css_set 1077 * @old_cset: the css_set that we're using before the cgroup transition 1078 * @cgrp: the cgroup that we're moving into 1079 * @template: out param for the new set of csses, should be clear on entry 1080 */ 1081static struct css_set *find_existing_css_set(struct css_set *old_cset, 1082 struct cgroup *cgrp, 1083 struct cgroup_subsys_state *template[]) 1084{ 1085 struct cgroup_root *root = cgrp->root; 1086 struct cgroup_subsys *ss; 1087 struct css_set *cset; 1088 unsigned long key; 1089 int i; 1090 1091 /* 1092 * Build the set of subsystem state objects that we want to see in the 1093 * new css_set. While subsystems can change globally, the entries here 1094 * won't change, so no need for locking. 1095 */ 1096 for_each_subsys(ss, i) { 1097 if (root->subsys_mask & (1UL << i)) { 1098 /* 1099 * @ss is in this hierarchy, so we want the 1100 * effective css from @cgrp. 1101 */ 1102 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1103 } else { 1104 /* 1105 * @ss is not in this hierarchy, so we don't want 1106 * to change the css. 1107 */ 1108 template[i] = old_cset->subsys[i]; 1109 } 1110 } 1111 1112 key = css_set_hash(template); 1113 hash_for_each_possible(css_set_table, cset, hlist, key) { 1114 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1115 continue; 1116 1117 /* This css_set matches what we need */ 1118 return cset; 1119 } 1120 1121 /* No existing cgroup group matched */ 1122 return NULL; 1123} 1124 1125static void free_cgrp_cset_links(struct list_head *links_to_free) 1126{ 1127 struct cgrp_cset_link *link, *tmp_link; 1128 1129 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1130 list_del(&link->cset_link); 1131 kfree(link); 1132 } 1133} 1134 1135/** 1136 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1137 * @count: the number of links to allocate 1138 * @tmp_links: list_head the allocated links are put on 1139 * 1140 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1141 * through ->cset_link. Returns 0 on success or -errno. 1142 */ 1143static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1144{ 1145 struct cgrp_cset_link *link; 1146 int i; 1147 1148 INIT_LIST_HEAD(tmp_links); 1149 1150 for (i = 0; i < count; i++) { 1151 link = kzalloc(sizeof(*link), GFP_KERNEL); 1152 if (!link) { 1153 free_cgrp_cset_links(tmp_links); 1154 return -ENOMEM; 1155 } 1156 list_add(&link->cset_link, tmp_links); 1157 } 1158 return 0; 1159} 1160 1161/** 1162 * link_css_set - a helper function to link a css_set to a cgroup 1163 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1164 * @cset: the css_set to be linked 1165 * @cgrp: the destination cgroup 1166 */ 1167static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1168 struct cgroup *cgrp) 1169{ 1170 struct cgrp_cset_link *link; 1171 1172 BUG_ON(list_empty(tmp_links)); 1173 1174 if (cgroup_on_dfl(cgrp)) 1175 cset->dfl_cgrp = cgrp; 1176 1177 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1178 link->cset = cset; 1179 link->cgrp = cgrp; 1180 1181 /* 1182 * Always add links to the tail of the lists so that the lists are 1183 * in chronological order. 1184 */ 1185 list_move_tail(&link->cset_link, &cgrp->cset_links); 1186 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1187 1188 if (cgroup_parent(cgrp)) 1189 cgroup_get_live(cgrp); 1190} 1191 1192/** 1193 * find_css_set - return a new css_set with one cgroup updated 1194 * @old_cset: the baseline css_set 1195 * @cgrp: the cgroup to be updated 1196 * 1197 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1198 * substituted into the appropriate hierarchy. 1199 */ 1200static struct css_set *find_css_set(struct css_set *old_cset, 1201 struct cgroup *cgrp) 1202{ 1203 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1204 struct css_set *cset; 1205 struct list_head tmp_links; 1206 struct cgrp_cset_link *link; 1207 struct cgroup_subsys *ss; 1208 unsigned long key; 1209 int ssid; 1210 1211 lockdep_assert_held(&cgroup_mutex); 1212 1213 /* First see if we already have a cgroup group that matches 1214 * the desired set */ 1215 spin_lock_irq(&css_set_lock); 1216 cset = find_existing_css_set(old_cset, cgrp, template); 1217 if (cset) 1218 get_css_set(cset); 1219 spin_unlock_irq(&css_set_lock); 1220 1221 if (cset) 1222 return cset; 1223 1224 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1225 if (!cset) 1226 return NULL; 1227 1228 /* Allocate all the cgrp_cset_link objects that we'll need */ 1229 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1230 kfree(cset); 1231 return NULL; 1232 } 1233 1234 refcount_set(&cset->refcount, 1); 1235 cset->dom_cset = cset; 1236 INIT_LIST_HEAD(&cset->tasks); 1237 INIT_LIST_HEAD(&cset->mg_tasks); 1238 INIT_LIST_HEAD(&cset->dying_tasks); 1239 INIT_LIST_HEAD(&cset->task_iters); 1240 INIT_LIST_HEAD(&cset->threaded_csets); 1241 INIT_HLIST_NODE(&cset->hlist); 1242 INIT_LIST_HEAD(&cset->cgrp_links); 1243 INIT_LIST_HEAD(&cset->mg_preload_node); 1244 INIT_LIST_HEAD(&cset->mg_node); 1245 1246 /* Copy the set of subsystem state objects generated in 1247 * find_existing_css_set() */ 1248 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1249 1250 spin_lock_irq(&css_set_lock); 1251 /* Add reference counts and links from the new css_set. */ 1252 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1253 struct cgroup *c = link->cgrp; 1254 1255 if (c->root == cgrp->root) 1256 c = cgrp; 1257 link_css_set(&tmp_links, cset, c); 1258 } 1259 1260 BUG_ON(!list_empty(&tmp_links)); 1261 1262 css_set_count++; 1263 1264 /* Add @cset to the hash table */ 1265 key = css_set_hash(cset->subsys); 1266 hash_add(css_set_table, &cset->hlist, key); 1267 1268 for_each_subsys(ss, ssid) { 1269 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1270 1271 list_add_tail(&cset->e_cset_node[ssid], 1272 &css->cgroup->e_csets[ssid]); 1273 css_get(css); 1274 } 1275 1276 spin_unlock_irq(&css_set_lock); 1277 1278 /* 1279 * If @cset should be threaded, look up the matching dom_cset and 1280 * link them up. We first fully initialize @cset then look for the 1281 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1282 * to stay empty until we return. 1283 */ 1284 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1285 struct css_set *dcset; 1286 1287 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1288 if (!dcset) { 1289 put_css_set(cset); 1290 return NULL; 1291 } 1292 1293 spin_lock_irq(&css_set_lock); 1294 cset->dom_cset = dcset; 1295 list_add_tail(&cset->threaded_csets_node, 1296 &dcset->threaded_csets); 1297 spin_unlock_irq(&css_set_lock); 1298 } 1299 1300 return cset; 1301} 1302 1303struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1304{ 1305 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1306 1307 return root_cgrp->root; 1308} 1309 1310static int cgroup_init_root_id(struct cgroup_root *root) 1311{ 1312 int id; 1313 1314 lockdep_assert_held(&cgroup_mutex); 1315 1316 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1317 if (id < 0) 1318 return id; 1319 1320 root->hierarchy_id = id; 1321 return 0; 1322} 1323 1324static void cgroup_exit_root_id(struct cgroup_root *root) 1325{ 1326 lockdep_assert_held(&cgroup_mutex); 1327 1328 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1329} 1330 1331void cgroup_free_root(struct cgroup_root *root) 1332{ 1333 kfree(root); 1334} 1335 1336static void cgroup_destroy_root(struct cgroup_root *root) 1337{ 1338 struct cgroup *cgrp = &root->cgrp; 1339 struct cgrp_cset_link *link, *tmp_link; 1340 1341 trace_cgroup_destroy_root(root); 1342 1343 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1344 1345 BUG_ON(atomic_read(&root->nr_cgrps)); 1346 BUG_ON(!list_empty(&cgrp->self.children)); 1347 1348 /* Rebind all subsystems back to the default hierarchy */ 1349 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1350 1351 /* 1352 * Release all the links from cset_links to this hierarchy's 1353 * root cgroup 1354 */ 1355 spin_lock_irq(&css_set_lock); 1356 1357 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1358 list_del(&link->cset_link); 1359 list_del(&link->cgrp_link); 1360 kfree(link); 1361 } 1362 1363 spin_unlock_irq(&css_set_lock); 1364 1365 if (!list_empty(&root->root_list)) { 1366 list_del(&root->root_list); 1367 cgroup_root_count--; 1368 } 1369 1370 cgroup_exit_root_id(root); 1371 1372 mutex_unlock(&cgroup_mutex); 1373 1374 cgroup_rstat_exit(cgrp); 1375 kernfs_destroy_root(root->kf_root); 1376 cgroup_free_root(root); 1377} 1378 1379/* 1380 * look up cgroup associated with current task's cgroup namespace on the 1381 * specified hierarchy 1382 */ 1383static struct cgroup * 1384current_cgns_cgroup_from_root(struct cgroup_root *root) 1385{ 1386 struct cgroup *res = NULL; 1387 struct css_set *cset; 1388 1389 lockdep_assert_held(&css_set_lock); 1390 1391 rcu_read_lock(); 1392 1393 cset = current->nsproxy->cgroup_ns->root_cset; 1394 if (cset == &init_css_set) { 1395 res = &root->cgrp; 1396 } else if (root == &cgrp_dfl_root) { 1397 res = cset->dfl_cgrp; 1398 } else { 1399 struct cgrp_cset_link *link; 1400 1401 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1402 struct cgroup *c = link->cgrp; 1403 1404 if (c->root == root) { 1405 res = c; 1406 break; 1407 } 1408 } 1409 } 1410 rcu_read_unlock(); 1411 1412 BUG_ON(!res); 1413 return res; 1414} 1415 1416/* look up cgroup associated with given css_set on the specified hierarchy */ 1417static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1418 struct cgroup_root *root) 1419{ 1420 struct cgroup *res = NULL; 1421 1422 lockdep_assert_held(&cgroup_mutex); 1423 lockdep_assert_held(&css_set_lock); 1424 1425 if (cset == &init_css_set) { 1426 res = &root->cgrp; 1427 } else if (root == &cgrp_dfl_root) { 1428 res = cset->dfl_cgrp; 1429 } else { 1430 struct cgrp_cset_link *link; 1431 1432 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1433 struct cgroup *c = link->cgrp; 1434 1435 if (c->root == root) { 1436 res = c; 1437 break; 1438 } 1439 } 1440 } 1441 1442 BUG_ON(!res); 1443 return res; 1444} 1445 1446/* 1447 * Return the cgroup for "task" from the given hierarchy. Must be 1448 * called with cgroup_mutex and css_set_lock held. 1449 */ 1450struct cgroup *task_cgroup_from_root(struct task_struct *task, 1451 struct cgroup_root *root) 1452{ 1453 /* 1454 * No need to lock the task - since we hold css_set_lock the 1455 * task can't change groups. 1456 */ 1457 return cset_cgroup_from_root(task_css_set(task), root); 1458} 1459 1460/* 1461 * A task must hold cgroup_mutex to modify cgroups. 1462 * 1463 * Any task can increment and decrement the count field without lock. 1464 * So in general, code holding cgroup_mutex can't rely on the count 1465 * field not changing. However, if the count goes to zero, then only 1466 * cgroup_attach_task() can increment it again. Because a count of zero 1467 * means that no tasks are currently attached, therefore there is no 1468 * way a task attached to that cgroup can fork (the other way to 1469 * increment the count). So code holding cgroup_mutex can safely 1470 * assume that if the count is zero, it will stay zero. Similarly, if 1471 * a task holds cgroup_mutex on a cgroup with zero count, it 1472 * knows that the cgroup won't be removed, as cgroup_rmdir() 1473 * needs that mutex. 1474 * 1475 * A cgroup can only be deleted if both its 'count' of using tasks 1476 * is zero, and its list of 'children' cgroups is empty. Since all 1477 * tasks in the system use _some_ cgroup, and since there is always at 1478 * least one task in the system (init, pid == 1), therefore, root cgroup 1479 * always has either children cgroups and/or using tasks. So we don't 1480 * need a special hack to ensure that root cgroup cannot be deleted. 1481 * 1482 * P.S. One more locking exception. RCU is used to guard the 1483 * update of a tasks cgroup pointer by cgroup_attach_task() 1484 */ 1485 1486static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1487 1488static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1489 char *buf) 1490{ 1491 struct cgroup_subsys *ss = cft->ss; 1492 1493 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1494 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1495 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1496 1497 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1498 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1499 cft->name); 1500 } else { 1501 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1502 } 1503 return buf; 1504} 1505 1506/** 1507 * cgroup_file_mode - deduce file mode of a control file 1508 * @cft: the control file in question 1509 * 1510 * S_IRUGO for read, S_IWUSR for write. 1511 */ 1512static umode_t cgroup_file_mode(const struct cftype *cft) 1513{ 1514 umode_t mode = 0; 1515 1516 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1517 mode |= S_IRUGO; 1518 1519 if (cft->write_u64 || cft->write_s64 || cft->write) { 1520 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1521 mode |= S_IWUGO; 1522 else 1523 mode |= S_IWUSR; 1524 } 1525 1526 return mode; 1527} 1528 1529/** 1530 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1531 * @subtree_control: the new subtree_control mask to consider 1532 * @this_ss_mask: available subsystems 1533 * 1534 * On the default hierarchy, a subsystem may request other subsystems to be 1535 * enabled together through its ->depends_on mask. In such cases, more 1536 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1537 * 1538 * This function calculates which subsystems need to be enabled if 1539 * @subtree_control is to be applied while restricted to @this_ss_mask. 1540 */ 1541static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1542{ 1543 u16 cur_ss_mask = subtree_control; 1544 struct cgroup_subsys *ss; 1545 int ssid; 1546 1547 lockdep_assert_held(&cgroup_mutex); 1548 1549 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1550 1551 while (true) { 1552 u16 new_ss_mask = cur_ss_mask; 1553 1554 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1555 new_ss_mask |= ss->depends_on; 1556 } while_each_subsys_mask(); 1557 1558 /* 1559 * Mask out subsystems which aren't available. This can 1560 * happen only if some depended-upon subsystems were bound 1561 * to non-default hierarchies. 1562 */ 1563 new_ss_mask &= this_ss_mask; 1564 1565 if (new_ss_mask == cur_ss_mask) 1566 break; 1567 cur_ss_mask = new_ss_mask; 1568 } 1569 1570 return cur_ss_mask; 1571} 1572 1573/** 1574 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1575 * @kn: the kernfs_node being serviced 1576 * 1577 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1578 * the method finishes if locking succeeded. Note that once this function 1579 * returns the cgroup returned by cgroup_kn_lock_live() may become 1580 * inaccessible any time. If the caller intends to continue to access the 1581 * cgroup, it should pin it before invoking this function. 1582 */ 1583void cgroup_kn_unlock(struct kernfs_node *kn) 1584{ 1585 struct cgroup *cgrp; 1586 1587 if (kernfs_type(kn) == KERNFS_DIR) 1588 cgrp = kn->priv; 1589 else 1590 cgrp = kn->parent->priv; 1591 1592 mutex_unlock(&cgroup_mutex); 1593 1594 kernfs_unbreak_active_protection(kn); 1595 cgroup_put(cgrp); 1596} 1597 1598/** 1599 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1600 * @kn: the kernfs_node being serviced 1601 * @drain_offline: perform offline draining on the cgroup 1602 * 1603 * This helper is to be used by a cgroup kernfs method currently servicing 1604 * @kn. It breaks the active protection, performs cgroup locking and 1605 * verifies that the associated cgroup is alive. Returns the cgroup if 1606 * alive; otherwise, %NULL. A successful return should be undone by a 1607 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1608 * cgroup is drained of offlining csses before return. 1609 * 1610 * Any cgroup kernfs method implementation which requires locking the 1611 * associated cgroup should use this helper. It avoids nesting cgroup 1612 * locking under kernfs active protection and allows all kernfs operations 1613 * including self-removal. 1614 */ 1615struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1616{ 1617 struct cgroup *cgrp; 1618 1619 if (kernfs_type(kn) == KERNFS_DIR) 1620 cgrp = kn->priv; 1621 else 1622 cgrp = kn->parent->priv; 1623 1624 /* 1625 * We're gonna grab cgroup_mutex which nests outside kernfs 1626 * active_ref. cgroup liveliness check alone provides enough 1627 * protection against removal. Ensure @cgrp stays accessible and 1628 * break the active_ref protection. 1629 */ 1630 if (!cgroup_tryget(cgrp)) 1631 return NULL; 1632 kernfs_break_active_protection(kn); 1633 1634 if (drain_offline) 1635 cgroup_lock_and_drain_offline(cgrp); 1636 else 1637 mutex_lock(&cgroup_mutex); 1638 1639 if (!cgroup_is_dead(cgrp)) 1640 return cgrp; 1641 1642 cgroup_kn_unlock(kn); 1643 return NULL; 1644} 1645 1646static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1647{ 1648 char name[CGROUP_FILE_NAME_MAX]; 1649 1650 lockdep_assert_held(&cgroup_mutex); 1651 1652 if (cft->file_offset) { 1653 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1654 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1655 1656 spin_lock_irq(&cgroup_file_kn_lock); 1657 cfile->kn = NULL; 1658 spin_unlock_irq(&cgroup_file_kn_lock); 1659 1660 del_timer_sync(&cfile->notify_timer); 1661 } 1662 1663 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1664} 1665 1666/** 1667 * css_clear_dir - remove subsys files in a cgroup directory 1668 * @css: target css 1669 */ 1670static void css_clear_dir(struct cgroup_subsys_state *css) 1671{ 1672 struct cgroup *cgrp = css->cgroup; 1673 struct cftype *cfts; 1674 1675 if (!(css->flags & CSS_VISIBLE)) 1676 return; 1677 1678 css->flags &= ~CSS_VISIBLE; 1679 1680 if (!css->ss) { 1681 if (cgroup_on_dfl(cgrp)) 1682 cfts = cgroup_base_files; 1683 else 1684 cfts = cgroup1_base_files; 1685 1686 cgroup_addrm_files(css, cgrp, cfts, false); 1687 } else { 1688 list_for_each_entry(cfts, &css->ss->cfts, node) 1689 cgroup_addrm_files(css, cgrp, cfts, false); 1690 } 1691} 1692 1693/** 1694 * css_populate_dir - create subsys files in a cgroup directory 1695 * @css: target css 1696 * 1697 * On failure, no file is added. 1698 */ 1699static int css_populate_dir(struct cgroup_subsys_state *css) 1700{ 1701 struct cgroup *cgrp = css->cgroup; 1702 struct cftype *cfts, *failed_cfts; 1703 int ret; 1704 1705 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1706 return 0; 1707 1708 if (!css->ss) { 1709 if (cgroup_on_dfl(cgrp)) 1710 cfts = cgroup_base_files; 1711 else 1712 cfts = cgroup1_base_files; 1713 1714 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1715 if (ret < 0) 1716 return ret; 1717 } else { 1718 list_for_each_entry(cfts, &css->ss->cfts, node) { 1719 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1720 if (ret < 0) { 1721 failed_cfts = cfts; 1722 goto err; 1723 } 1724 } 1725 } 1726 1727 css->flags |= CSS_VISIBLE; 1728 1729 return 0; 1730err: 1731 list_for_each_entry(cfts, &css->ss->cfts, node) { 1732 if (cfts == failed_cfts) 1733 break; 1734 cgroup_addrm_files(css, cgrp, cfts, false); 1735 } 1736 return ret; 1737} 1738 1739int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1740{ 1741 struct cgroup *dcgrp = &dst_root->cgrp; 1742 struct cgroup_subsys *ss; 1743 int ssid, i, ret; 1744 u16 dfl_disable_ss_mask = 0; 1745 1746 lockdep_assert_held(&cgroup_mutex); 1747 1748 do_each_subsys_mask(ss, ssid, ss_mask) { 1749 /* 1750 * If @ss has non-root csses attached to it, can't move. 1751 * If @ss is an implicit controller, it is exempt from this 1752 * rule and can be stolen. 1753 */ 1754 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1755 !ss->implicit_on_dfl) 1756 return -EBUSY; 1757 1758 /* can't move between two non-dummy roots either */ 1759 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1760 return -EBUSY; 1761 1762 /* 1763 * Collect ssid's that need to be disabled from default 1764 * hierarchy. 1765 */ 1766 if (ss->root == &cgrp_dfl_root) 1767 dfl_disable_ss_mask |= 1 << ssid; 1768 1769 } while_each_subsys_mask(); 1770 1771 if (dfl_disable_ss_mask) { 1772 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1773 1774 /* 1775 * Controllers from default hierarchy that need to be rebound 1776 * are all disabled together in one go. 1777 */ 1778 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1779 WARN_ON(cgroup_apply_control(scgrp)); 1780 cgroup_finalize_control(scgrp, 0); 1781 } 1782 1783 do_each_subsys_mask(ss, ssid, ss_mask) { 1784 struct cgroup_root *src_root = ss->root; 1785 struct cgroup *scgrp = &src_root->cgrp; 1786 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1787 struct css_set *cset; 1788 1789 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1790 1791 if (src_root != &cgrp_dfl_root) { 1792 /* disable from the source */ 1793 src_root->subsys_mask &= ~(1 << ssid); 1794 WARN_ON(cgroup_apply_control(scgrp)); 1795 cgroup_finalize_control(scgrp, 0); 1796 } 1797 1798 /* rebind */ 1799 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1800 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1801 ss->root = dst_root; 1802 css->cgroup = dcgrp; 1803 1804 spin_lock_irq(&css_set_lock); 1805 hash_for_each(css_set_table, i, cset, hlist) 1806 list_move_tail(&cset->e_cset_node[ss->id], 1807 &dcgrp->e_csets[ss->id]); 1808 spin_unlock_irq(&css_set_lock); 1809 1810 if (ss->css_rstat_flush) { 1811 list_del_rcu(&css->rstat_css_node); 1812 list_add_rcu(&css->rstat_css_node, 1813 &dcgrp->rstat_css_list); 1814 } 1815 1816 /* default hierarchy doesn't enable controllers by default */ 1817 dst_root->subsys_mask |= 1 << ssid; 1818 if (dst_root == &cgrp_dfl_root) { 1819 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1820 } else { 1821 dcgrp->subtree_control |= 1 << ssid; 1822 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1823 } 1824 1825 ret = cgroup_apply_control(dcgrp); 1826 if (ret) 1827 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1828 ss->name, ret); 1829 1830 if (ss->bind) 1831 ss->bind(css); 1832 } while_each_subsys_mask(); 1833 1834 kernfs_activate(dcgrp->kn); 1835 return 0; 1836} 1837 1838int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1839 struct kernfs_root *kf_root) 1840{ 1841 int len = 0; 1842 char *buf = NULL; 1843 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1844 struct cgroup *ns_cgroup; 1845 1846 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1847 if (!buf) 1848 return -ENOMEM; 1849 1850 spin_lock_irq(&css_set_lock); 1851 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1852 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1853 spin_unlock_irq(&css_set_lock); 1854 1855 if (len >= PATH_MAX) 1856 len = -ERANGE; 1857 else if (len > 0) { 1858 seq_escape(sf, buf, " \t\n\\"); 1859 len = 0; 1860 } 1861 kfree(buf); 1862 return len; 1863} 1864 1865enum cgroup2_param { 1866 Opt_nsdelegate, 1867 Opt_memory_localevents, 1868 Opt_memory_recursiveprot, 1869 nr__cgroup2_params 1870}; 1871 1872static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1873 fsparam_flag("nsdelegate", Opt_nsdelegate), 1874 fsparam_flag("memory_localevents", Opt_memory_localevents), 1875 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1876 {} 1877}; 1878 1879static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1880{ 1881 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1882 struct fs_parse_result result; 1883 int opt; 1884 1885 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1886 if (opt < 0) 1887 return opt; 1888 1889 switch (opt) { 1890 case Opt_nsdelegate: 1891 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1892 return 0; 1893 case Opt_memory_localevents: 1894 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1895 return 0; 1896 case Opt_memory_recursiveprot: 1897 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1898 return 0; 1899 } 1900 return -EINVAL; 1901} 1902 1903static void apply_cgroup_root_flags(unsigned int root_flags) 1904{ 1905 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1906 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1907 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1908 else 1909 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1910 1911 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1912 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1913 else 1914 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1915 1916 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1917 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1918 else 1919 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1920 } 1921} 1922 1923static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1924{ 1925 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1926 seq_puts(seq, ",nsdelegate"); 1927 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1928 seq_puts(seq, ",memory_localevents"); 1929 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1930 seq_puts(seq, ",memory_recursiveprot"); 1931 return 0; 1932} 1933 1934static int cgroup_reconfigure(struct fs_context *fc) 1935{ 1936 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1937 1938 apply_cgroup_root_flags(ctx->flags); 1939 return 0; 1940} 1941 1942static void init_cgroup_housekeeping(struct cgroup *cgrp) 1943{ 1944 struct cgroup_subsys *ss; 1945 int ssid; 1946 1947 INIT_LIST_HEAD(&cgrp->self.sibling); 1948 INIT_LIST_HEAD(&cgrp->self.children); 1949 INIT_LIST_HEAD(&cgrp->cset_links); 1950 INIT_LIST_HEAD(&cgrp->pidlists); 1951 mutex_init(&cgrp->pidlist_mutex); 1952 cgrp->self.cgroup = cgrp; 1953 cgrp->self.flags |= CSS_ONLINE; 1954 cgrp->dom_cgrp = cgrp; 1955 cgrp->max_descendants = INT_MAX; 1956 cgrp->max_depth = INT_MAX; 1957 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1958 prev_cputime_init(&cgrp->prev_cputime); 1959 1960 for_each_subsys(ss, ssid) 1961 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1962 1963 init_waitqueue_head(&cgrp->offline_waitq); 1964 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1965} 1966 1967void init_cgroup_root(struct cgroup_fs_context *ctx) 1968{ 1969 struct cgroup_root *root = ctx->root; 1970 struct cgroup *cgrp = &root->cgrp; 1971 1972 INIT_LIST_HEAD(&root->root_list); 1973 atomic_set(&root->nr_cgrps, 1); 1974 cgrp->root = root; 1975 init_cgroup_housekeeping(cgrp); 1976 1977 root->flags = ctx->flags; 1978 if (ctx->release_agent) 1979 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1980 if (ctx->name) 1981 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1982 if (ctx->cpuset_clone_children) 1983 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1984} 1985 1986int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1987{ 1988 LIST_HEAD(tmp_links); 1989 struct cgroup *root_cgrp = &root->cgrp; 1990 struct kernfs_syscall_ops *kf_sops; 1991 struct css_set *cset; 1992 int i, ret; 1993 1994 lockdep_assert_held(&cgroup_mutex); 1995 1996 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1997 0, GFP_KERNEL); 1998 if (ret) 1999 goto out; 2000 2001 /* 2002 * We're accessing css_set_count without locking css_set_lock here, 2003 * but that's OK - it can only be increased by someone holding 2004 * cgroup_lock, and that's us. Later rebinding may disable 2005 * controllers on the default hierarchy and thus create new csets, 2006 * which can't be more than the existing ones. Allocate 2x. 2007 */ 2008 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2009 if (ret) 2010 goto cancel_ref; 2011 2012 ret = cgroup_init_root_id(root); 2013 if (ret) 2014 goto cancel_ref; 2015 2016 kf_sops = root == &cgrp_dfl_root ? 2017 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2018 2019 root->kf_root = kernfs_create_root(kf_sops, 2020 KERNFS_ROOT_CREATE_DEACTIVATED | 2021 KERNFS_ROOT_SUPPORT_EXPORTOP | 2022 KERNFS_ROOT_SUPPORT_USER_XATTR, 2023 root_cgrp); 2024 if (IS_ERR(root->kf_root)) { 2025 ret = PTR_ERR(root->kf_root); 2026 goto exit_root_id; 2027 } 2028 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2029 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2030 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 2031 2032 ret = css_populate_dir(&root_cgrp->self); 2033 if (ret) 2034 goto destroy_root; 2035 2036 ret = cgroup_rstat_init(root_cgrp); 2037 if (ret) 2038 goto destroy_root; 2039 2040 ret = rebind_subsystems(root, ss_mask); 2041 if (ret) 2042 goto exit_stats; 2043 2044 ret = cgroup_bpf_inherit(root_cgrp); 2045 WARN_ON_ONCE(ret); 2046 2047 trace_cgroup_setup_root(root); 2048 2049 /* 2050 * There must be no failure case after here, since rebinding takes 2051 * care of subsystems' refcounts, which are explicitly dropped in 2052 * the failure exit path. 2053 */ 2054 list_add(&root->root_list, &cgroup_roots); 2055 cgroup_root_count++; 2056 2057 /* 2058 * Link the root cgroup in this hierarchy into all the css_set 2059 * objects. 2060 */ 2061 spin_lock_irq(&css_set_lock); 2062 hash_for_each(css_set_table, i, cset, hlist) { 2063 link_css_set(&tmp_links, cset, root_cgrp); 2064 if (css_set_populated(cset)) 2065 cgroup_update_populated(root_cgrp, true); 2066 } 2067 spin_unlock_irq(&css_set_lock); 2068 2069 BUG_ON(!list_empty(&root_cgrp->self.children)); 2070 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2071 2072 ret = 0; 2073 goto out; 2074 2075exit_stats: 2076 cgroup_rstat_exit(root_cgrp); 2077destroy_root: 2078 kernfs_destroy_root(root->kf_root); 2079 root->kf_root = NULL; 2080exit_root_id: 2081 cgroup_exit_root_id(root); 2082cancel_ref: 2083 percpu_ref_exit(&root_cgrp->self.refcnt); 2084out: 2085 free_cgrp_cset_links(&tmp_links); 2086 return ret; 2087} 2088 2089int cgroup_do_get_tree(struct fs_context *fc) 2090{ 2091 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2092 int ret; 2093 2094 ctx->kfc.root = ctx->root->kf_root; 2095 if (fc->fs_type == &cgroup2_fs_type) 2096 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2097 else 2098 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2099 ret = kernfs_get_tree(fc); 2100 2101 /* 2102 * In non-init cgroup namespace, instead of root cgroup's dentry, 2103 * we return the dentry corresponding to the cgroupns->root_cgrp. 2104 */ 2105 if (!ret && ctx->ns != &init_cgroup_ns) { 2106 struct dentry *nsdentry; 2107 struct super_block *sb = fc->root->d_sb; 2108 struct cgroup *cgrp; 2109 2110 mutex_lock(&cgroup_mutex); 2111 spin_lock_irq(&css_set_lock); 2112 2113 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2114 2115 spin_unlock_irq(&css_set_lock); 2116 mutex_unlock(&cgroup_mutex); 2117 2118 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2119 dput(fc->root); 2120 if (IS_ERR(nsdentry)) { 2121 deactivate_locked_super(sb); 2122 ret = PTR_ERR(nsdentry); 2123 nsdentry = NULL; 2124 } 2125 fc->root = nsdentry; 2126 } 2127 2128 if (!ctx->kfc.new_sb_created) 2129 cgroup_put(&ctx->root->cgrp); 2130 2131 return ret; 2132} 2133 2134/* 2135 * Destroy a cgroup filesystem context. 2136 */ 2137static void cgroup_fs_context_free(struct fs_context *fc) 2138{ 2139 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2140 2141 kfree(ctx->name); 2142 kfree(ctx->release_agent); 2143 put_cgroup_ns(ctx->ns); 2144 kernfs_free_fs_context(fc); 2145 kfree(ctx); 2146} 2147 2148static int cgroup_get_tree(struct fs_context *fc) 2149{ 2150 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2151 int ret; 2152 2153 cgrp_dfl_visible = true; 2154 cgroup_get_live(&cgrp_dfl_root.cgrp); 2155 ctx->root = &cgrp_dfl_root; 2156 2157 ret = cgroup_do_get_tree(fc); 2158 if (!ret) 2159 apply_cgroup_root_flags(ctx->flags); 2160 return ret; 2161} 2162 2163static const struct fs_context_operations cgroup_fs_context_ops = { 2164 .free = cgroup_fs_context_free, 2165 .parse_param = cgroup2_parse_param, 2166 .get_tree = cgroup_get_tree, 2167 .reconfigure = cgroup_reconfigure, 2168}; 2169 2170static const struct fs_context_operations cgroup1_fs_context_ops = { 2171 .free = cgroup_fs_context_free, 2172 .parse_param = cgroup1_parse_param, 2173 .get_tree = cgroup1_get_tree, 2174 .reconfigure = cgroup1_reconfigure, 2175}; 2176 2177/* 2178 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2179 * we select the namespace we're going to use. 2180 */ 2181static int cgroup_init_fs_context(struct fs_context *fc) 2182{ 2183 struct cgroup_fs_context *ctx; 2184 2185 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2186 if (!ctx) 2187 return -ENOMEM; 2188 2189 ctx->ns = current->nsproxy->cgroup_ns; 2190 get_cgroup_ns(ctx->ns); 2191 fc->fs_private = &ctx->kfc; 2192 if (fc->fs_type == &cgroup2_fs_type) 2193 fc->ops = &cgroup_fs_context_ops; 2194 else 2195 fc->ops = &cgroup1_fs_context_ops; 2196 put_user_ns(fc->user_ns); 2197 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2198 fc->global = true; 2199 return 0; 2200} 2201 2202static void cgroup_kill_sb(struct super_block *sb) 2203{ 2204 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2205 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2206 2207 /* 2208 * If @root doesn't have any children, start killing it. 2209 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2210 * 2211 * And don't kill the default root. 2212 */ 2213 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2214 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2215 cgroup_bpf_offline(&root->cgrp); 2216 percpu_ref_kill(&root->cgrp.self.refcnt); 2217 } 2218 cgroup_put(&root->cgrp); 2219 kernfs_kill_sb(sb); 2220} 2221 2222struct file_system_type cgroup_fs_type = { 2223 .name = "cgroup", 2224 .init_fs_context = cgroup_init_fs_context, 2225 .parameters = cgroup1_fs_parameters, 2226 .kill_sb = cgroup_kill_sb, 2227 .fs_flags = FS_USERNS_MOUNT, 2228}; 2229 2230static struct file_system_type cgroup2_fs_type = { 2231 .name = "cgroup2", 2232 .init_fs_context = cgroup_init_fs_context, 2233 .parameters = cgroup2_fs_parameters, 2234 .kill_sb = cgroup_kill_sb, 2235 .fs_flags = FS_USERNS_MOUNT, 2236}; 2237 2238#ifdef CONFIG_CPUSETS 2239static const struct fs_context_operations cpuset_fs_context_ops = { 2240 .get_tree = cgroup1_get_tree, 2241 .free = cgroup_fs_context_free, 2242}; 2243 2244/* 2245 * This is ugly, but preserves the userspace API for existing cpuset 2246 * users. If someone tries to mount the "cpuset" filesystem, we 2247 * silently switch it to mount "cgroup" instead 2248 */ 2249static int cpuset_init_fs_context(struct fs_context *fc) 2250{ 2251 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2252 struct cgroup_fs_context *ctx; 2253 int err; 2254 2255 err = cgroup_init_fs_context(fc); 2256 if (err) { 2257 kfree(agent); 2258 return err; 2259 } 2260 2261 fc->ops = &cpuset_fs_context_ops; 2262 2263 ctx = cgroup_fc2context(fc); 2264 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2265 ctx->flags |= CGRP_ROOT_NOPREFIX; 2266 ctx->release_agent = agent; 2267 2268 get_filesystem(&cgroup_fs_type); 2269 put_filesystem(fc->fs_type); 2270 fc->fs_type = &cgroup_fs_type; 2271 2272 return 0; 2273} 2274 2275static struct file_system_type cpuset_fs_type = { 2276 .name = "cpuset", 2277 .init_fs_context = cpuset_init_fs_context, 2278 .fs_flags = FS_USERNS_MOUNT, 2279}; 2280#endif 2281 2282int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2283 struct cgroup_namespace *ns) 2284{ 2285 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2286 2287 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2288} 2289 2290int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2291 struct cgroup_namespace *ns) 2292{ 2293 int ret; 2294 2295 mutex_lock(&cgroup_mutex); 2296 spin_lock_irq(&css_set_lock); 2297 2298 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2299 2300 spin_unlock_irq(&css_set_lock); 2301 mutex_unlock(&cgroup_mutex); 2302 2303 return ret; 2304} 2305EXPORT_SYMBOL_GPL(cgroup_path_ns); 2306 2307/** 2308 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2309 * @task: target task 2310 * @buf: the buffer to write the path into 2311 * @buflen: the length of the buffer 2312 * 2313 * Determine @task's cgroup on the first (the one with the lowest non-zero 2314 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2315 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2316 * cgroup controller callbacks. 2317 * 2318 * Return value is the same as kernfs_path(). 2319 */ 2320int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2321{ 2322 struct cgroup_root *root; 2323 struct cgroup *cgrp; 2324 int hierarchy_id = 1; 2325 int ret; 2326 2327 mutex_lock(&cgroup_mutex); 2328 spin_lock_irq(&css_set_lock); 2329 2330 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2331 2332 if (root) { 2333 cgrp = task_cgroup_from_root(task, root); 2334 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2335 } else { 2336 /* if no hierarchy exists, everyone is in "/" */ 2337 ret = strlcpy(buf, "/", buflen); 2338 } 2339 2340 spin_unlock_irq(&css_set_lock); 2341 mutex_unlock(&cgroup_mutex); 2342 return ret; 2343} 2344EXPORT_SYMBOL_GPL(task_cgroup_path); 2345 2346/** 2347 * cgroup_migrate_add_task - add a migration target task to a migration context 2348 * @task: target task 2349 * @mgctx: target migration context 2350 * 2351 * Add @task, which is a migration target, to @mgctx->tset. This function 2352 * becomes noop if @task doesn't need to be migrated. @task's css_set 2353 * should have been added as a migration source and @task->cg_list will be 2354 * moved from the css_set's tasks list to mg_tasks one. 2355 */ 2356static void cgroup_migrate_add_task(struct task_struct *task, 2357 struct cgroup_mgctx *mgctx) 2358{ 2359 struct css_set *cset; 2360 2361 lockdep_assert_held(&css_set_lock); 2362 2363 /* @task either already exited or can't exit until the end */ 2364 if (task->flags & PF_EXITING) 2365 return; 2366 2367 /* cgroup_threadgroup_rwsem protects racing against forks */ 2368 WARN_ON_ONCE(list_empty(&task->cg_list)); 2369 2370 cset = task_css_set(task); 2371 if (!cset->mg_src_cgrp) 2372 return; 2373 2374 mgctx->tset.nr_tasks++; 2375 2376 list_move_tail(&task->cg_list, &cset->mg_tasks); 2377 if (list_empty(&cset->mg_node)) 2378 list_add_tail(&cset->mg_node, 2379 &mgctx->tset.src_csets); 2380 if (list_empty(&cset->mg_dst_cset->mg_node)) 2381 list_add_tail(&cset->mg_dst_cset->mg_node, 2382 &mgctx->tset.dst_csets); 2383} 2384 2385/** 2386 * cgroup_taskset_first - reset taskset and return the first task 2387 * @tset: taskset of interest 2388 * @dst_cssp: output variable for the destination css 2389 * 2390 * @tset iteration is initialized and the first task is returned. 2391 */ 2392struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2393 struct cgroup_subsys_state **dst_cssp) 2394{ 2395 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2396 tset->cur_task = NULL; 2397 2398 return cgroup_taskset_next(tset, dst_cssp); 2399} 2400 2401/** 2402 * cgroup_taskset_next - iterate to the next task in taskset 2403 * @tset: taskset of interest 2404 * @dst_cssp: output variable for the destination css 2405 * 2406 * Return the next task in @tset. Iteration must have been initialized 2407 * with cgroup_taskset_first(). 2408 */ 2409struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2410 struct cgroup_subsys_state **dst_cssp) 2411{ 2412 struct css_set *cset = tset->cur_cset; 2413 struct task_struct *task = tset->cur_task; 2414 2415 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2416 if (!task) 2417 task = list_first_entry(&cset->mg_tasks, 2418 struct task_struct, cg_list); 2419 else 2420 task = list_next_entry(task, cg_list); 2421 2422 if (&task->cg_list != &cset->mg_tasks) { 2423 tset->cur_cset = cset; 2424 tset->cur_task = task; 2425 2426 /* 2427 * This function may be called both before and 2428 * after cgroup_taskset_migrate(). The two cases 2429 * can be distinguished by looking at whether @cset 2430 * has its ->mg_dst_cset set. 2431 */ 2432 if (cset->mg_dst_cset) 2433 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2434 else 2435 *dst_cssp = cset->subsys[tset->ssid]; 2436 2437 return task; 2438 } 2439 2440 cset = list_next_entry(cset, mg_node); 2441 task = NULL; 2442 } 2443 2444 return NULL; 2445} 2446 2447/** 2448 * cgroup_migrate_execute - migrate a taskset 2449 * @mgctx: migration context 2450 * 2451 * Migrate tasks in @mgctx as setup by migration preparation functions. 2452 * This function fails iff one of the ->can_attach callbacks fails and 2453 * guarantees that either all or none of the tasks in @mgctx are migrated. 2454 * @mgctx is consumed regardless of success. 2455 */ 2456static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2457{ 2458 struct cgroup_taskset *tset = &mgctx->tset; 2459 struct cgroup_subsys *ss; 2460 struct task_struct *task, *tmp_task; 2461 struct css_set *cset, *tmp_cset; 2462 int ssid, failed_ssid, ret; 2463 2464 /* check that we can legitimately attach to the cgroup */ 2465 if (tset->nr_tasks) { 2466 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2467 if (ss->can_attach) { 2468 tset->ssid = ssid; 2469 ret = ss->can_attach(tset); 2470 if (ret) { 2471 failed_ssid = ssid; 2472 goto out_cancel_attach; 2473 } 2474 } 2475 } while_each_subsys_mask(); 2476 } 2477 2478 /* 2479 * Now that we're guaranteed success, proceed to move all tasks to 2480 * the new cgroup. There are no failure cases after here, so this 2481 * is the commit point. 2482 */ 2483 spin_lock_irq(&css_set_lock); 2484 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2485 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2486 struct css_set *from_cset = task_css_set(task); 2487 struct css_set *to_cset = cset->mg_dst_cset; 2488 2489 get_css_set(to_cset); 2490 to_cset->nr_tasks++; 2491 css_set_move_task(task, from_cset, to_cset, true); 2492 from_cset->nr_tasks--; 2493 /* 2494 * If the source or destination cgroup is frozen, 2495 * the task might require to change its state. 2496 */ 2497 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2498 to_cset->dfl_cgrp); 2499 put_css_set_locked(from_cset); 2500 2501 } 2502 } 2503 spin_unlock_irq(&css_set_lock); 2504 2505 /* 2506 * Migration is committed, all target tasks are now on dst_csets. 2507 * Nothing is sensitive to fork() after this point. Notify 2508 * controllers that migration is complete. 2509 */ 2510 tset->csets = &tset->dst_csets; 2511 2512 if (tset->nr_tasks) { 2513 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2514 if (ss->attach) { 2515 tset->ssid = ssid; 2516 ss->attach(tset); 2517 } 2518 } while_each_subsys_mask(); 2519 } 2520 2521 ret = 0; 2522 goto out_release_tset; 2523 2524out_cancel_attach: 2525 if (tset->nr_tasks) { 2526 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2527 if (ssid == failed_ssid) 2528 break; 2529 if (ss->cancel_attach) { 2530 tset->ssid = ssid; 2531 ss->cancel_attach(tset); 2532 } 2533 } while_each_subsys_mask(); 2534 } 2535out_release_tset: 2536 spin_lock_irq(&css_set_lock); 2537 list_splice_init(&tset->dst_csets, &tset->src_csets); 2538 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2539 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2540 list_del_init(&cset->mg_node); 2541 } 2542 spin_unlock_irq(&css_set_lock); 2543 2544 /* 2545 * Re-initialize the cgroup_taskset structure in case it is reused 2546 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2547 * iteration. 2548 */ 2549 tset->nr_tasks = 0; 2550 tset->csets = &tset->src_csets; 2551 return ret; 2552} 2553 2554/** 2555 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2556 * @dst_cgrp: destination cgroup to test 2557 * 2558 * On the default hierarchy, except for the mixable, (possible) thread root 2559 * and threaded cgroups, subtree_control must be zero for migration 2560 * destination cgroups with tasks so that child cgroups don't compete 2561 * against tasks. 2562 */ 2563int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2564{ 2565 /* v1 doesn't have any restriction */ 2566 if (!cgroup_on_dfl(dst_cgrp)) 2567 return 0; 2568 2569 /* verify @dst_cgrp can host resources */ 2570 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2571 return -EOPNOTSUPP; 2572 2573 /* mixables don't care */ 2574 if (cgroup_is_mixable(dst_cgrp)) 2575 return 0; 2576 2577 /* 2578 * If @dst_cgrp is already or can become a thread root or is 2579 * threaded, it doesn't matter. 2580 */ 2581 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2582 return 0; 2583 2584 /* apply no-internal-process constraint */ 2585 if (dst_cgrp->subtree_control) 2586 return -EBUSY; 2587 2588 return 0; 2589} 2590 2591/** 2592 * cgroup_migrate_finish - cleanup after attach 2593 * @mgctx: migration context 2594 * 2595 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2596 * those functions for details. 2597 */ 2598void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2599{ 2600 LIST_HEAD(preloaded); 2601 struct css_set *cset, *tmp_cset; 2602 2603 lockdep_assert_held(&cgroup_mutex); 2604 2605 spin_lock_irq(&css_set_lock); 2606 2607 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2608 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2609 2610 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2611 cset->mg_src_cgrp = NULL; 2612 cset->mg_dst_cgrp = NULL; 2613 cset->mg_dst_cset = NULL; 2614 list_del_init(&cset->mg_preload_node); 2615 put_css_set_locked(cset); 2616 } 2617 2618 spin_unlock_irq(&css_set_lock); 2619} 2620 2621/** 2622 * cgroup_migrate_add_src - add a migration source css_set 2623 * @src_cset: the source css_set to add 2624 * @dst_cgrp: the destination cgroup 2625 * @mgctx: migration context 2626 * 2627 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2628 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2629 * up by cgroup_migrate_finish(). 2630 * 2631 * This function may be called without holding cgroup_threadgroup_rwsem 2632 * even if the target is a process. Threads may be created and destroyed 2633 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2634 * into play and the preloaded css_sets are guaranteed to cover all 2635 * migrations. 2636 */ 2637void cgroup_migrate_add_src(struct css_set *src_cset, 2638 struct cgroup *dst_cgrp, 2639 struct cgroup_mgctx *mgctx) 2640{ 2641 struct cgroup *src_cgrp; 2642 2643 lockdep_assert_held(&cgroup_mutex); 2644 lockdep_assert_held(&css_set_lock); 2645 2646 /* 2647 * If ->dead, @src_set is associated with one or more dead cgroups 2648 * and doesn't contain any migratable tasks. Ignore it early so 2649 * that the rest of migration path doesn't get confused by it. 2650 */ 2651 if (src_cset->dead) 2652 return; 2653 2654 if (!list_empty(&src_cset->mg_preload_node)) 2655 return; 2656 2657 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2658 2659 WARN_ON(src_cset->mg_src_cgrp); 2660 WARN_ON(src_cset->mg_dst_cgrp); 2661 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2662 WARN_ON(!list_empty(&src_cset->mg_node)); 2663 2664 src_cset->mg_src_cgrp = src_cgrp; 2665 src_cset->mg_dst_cgrp = dst_cgrp; 2666 get_css_set(src_cset); 2667 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2668} 2669 2670/** 2671 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2672 * @mgctx: migration context 2673 * 2674 * Tasks are about to be moved and all the source css_sets have been 2675 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2676 * pins all destination css_sets, links each to its source, and append them 2677 * to @mgctx->preloaded_dst_csets. 2678 * 2679 * This function must be called after cgroup_migrate_add_src() has been 2680 * called on each migration source css_set. After migration is performed 2681 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2682 * @mgctx. 2683 */ 2684int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2685{ 2686 struct css_set *src_cset, *tmp_cset; 2687 2688 lockdep_assert_held(&cgroup_mutex); 2689 2690 /* look up the dst cset for each src cset and link it to src */ 2691 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2692 mg_preload_node) { 2693 struct css_set *dst_cset; 2694 struct cgroup_subsys *ss; 2695 int ssid; 2696 2697 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2698 if (!dst_cset) 2699 return -ENOMEM; 2700 2701 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2702 2703 /* 2704 * If src cset equals dst, it's noop. Drop the src. 2705 * cgroup_migrate() will skip the cset too. Note that we 2706 * can't handle src == dst as some nodes are used by both. 2707 */ 2708 if (src_cset == dst_cset) { 2709 src_cset->mg_src_cgrp = NULL; 2710 src_cset->mg_dst_cgrp = NULL; 2711 list_del_init(&src_cset->mg_preload_node); 2712 put_css_set(src_cset); 2713 put_css_set(dst_cset); 2714 continue; 2715 } 2716 2717 src_cset->mg_dst_cset = dst_cset; 2718 2719 if (list_empty(&dst_cset->mg_preload_node)) 2720 list_add_tail(&dst_cset->mg_preload_node, 2721 &mgctx->preloaded_dst_csets); 2722 else 2723 put_css_set(dst_cset); 2724 2725 for_each_subsys(ss, ssid) 2726 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2727 mgctx->ss_mask |= 1 << ssid; 2728 } 2729 2730 return 0; 2731} 2732 2733/** 2734 * cgroup_migrate - migrate a process or task to a cgroup 2735 * @leader: the leader of the process or the task to migrate 2736 * @threadgroup: whether @leader points to the whole process or a single task 2737 * @mgctx: migration context 2738 * 2739 * Migrate a process or task denoted by @leader. If migrating a process, 2740 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2741 * responsible for invoking cgroup_migrate_add_src() and 2742 * cgroup_migrate_prepare_dst() on the targets before invoking this 2743 * function and following up with cgroup_migrate_finish(). 2744 * 2745 * As long as a controller's ->can_attach() doesn't fail, this function is 2746 * guaranteed to succeed. This means that, excluding ->can_attach() 2747 * failure, when migrating multiple targets, the success or failure can be 2748 * decided for all targets by invoking group_migrate_prepare_dst() before 2749 * actually starting migrating. 2750 */ 2751int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2752 struct cgroup_mgctx *mgctx) 2753{ 2754 struct task_struct *task; 2755 2756 /* 2757 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2758 * already PF_EXITING could be freed from underneath us unless we 2759 * take an rcu_read_lock. 2760 */ 2761 spin_lock_irq(&css_set_lock); 2762 rcu_read_lock(); 2763 task = leader; 2764 do { 2765 cgroup_migrate_add_task(task, mgctx); 2766 if (!threadgroup) 2767 break; 2768 } while_each_thread(leader, task); 2769 rcu_read_unlock(); 2770 spin_unlock_irq(&css_set_lock); 2771 2772 return cgroup_migrate_execute(mgctx); 2773} 2774 2775/** 2776 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2777 * @dst_cgrp: the cgroup to attach to 2778 * @leader: the task or the leader of the threadgroup to be attached 2779 * @threadgroup: attach the whole threadgroup? 2780 * 2781 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2782 */ 2783int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2784 bool threadgroup) 2785{ 2786 DEFINE_CGROUP_MGCTX(mgctx); 2787 struct task_struct *task; 2788 int ret = 0; 2789 2790 /* look up all src csets */ 2791 spin_lock_irq(&css_set_lock); 2792 rcu_read_lock(); 2793 task = leader; 2794 do { 2795 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2796 if (!threadgroup) 2797 break; 2798 } while_each_thread(leader, task); 2799 rcu_read_unlock(); 2800 spin_unlock_irq(&css_set_lock); 2801 2802 /* prepare dst csets and commit */ 2803 ret = cgroup_migrate_prepare_dst(&mgctx); 2804 if (!ret) 2805 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2806 2807 cgroup_migrate_finish(&mgctx); 2808 2809 if (!ret) 2810 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2811 2812 return ret; 2813} 2814 2815struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2816 bool *locked) 2817 __acquires(&cgroup_threadgroup_rwsem) 2818{ 2819 struct task_struct *tsk; 2820 pid_t pid; 2821 2822 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2823 return ERR_PTR(-EINVAL); 2824 2825 /* 2826 * If we migrate a single thread, we don't care about threadgroup 2827 * stability. If the thread is `current`, it won't exit(2) under our 2828 * hands or change PID through exec(2). We exclude 2829 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2830 * callers by cgroup_mutex. 2831 * Therefore, we can skip the global lock. 2832 */ 2833 lockdep_assert_held(&cgroup_mutex); 2834 if (pid || threadgroup) { 2835 percpu_down_write(&cgroup_threadgroup_rwsem); 2836 *locked = true; 2837 } else { 2838 *locked = false; 2839 } 2840 2841 rcu_read_lock(); 2842 if (pid) { 2843 tsk = find_task_by_vpid(pid); 2844 if (!tsk) { 2845 tsk = ERR_PTR(-ESRCH); 2846 goto out_unlock_threadgroup; 2847 } 2848 } else { 2849 tsk = current; 2850 } 2851 2852 if (threadgroup) 2853 tsk = tsk->group_leader; 2854 2855 /* 2856 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2857 * If userland migrates such a kthread to a non-root cgroup, it can 2858 * become trapped in a cpuset, or RT kthread may be born in a 2859 * cgroup with no rt_runtime allocated. Just say no. 2860 */ 2861 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2862 tsk = ERR_PTR(-EINVAL); 2863 goto out_unlock_threadgroup; 2864 } 2865 2866 get_task_struct(tsk); 2867 goto out_unlock_rcu; 2868 2869out_unlock_threadgroup: 2870 if (*locked) { 2871 percpu_up_write(&cgroup_threadgroup_rwsem); 2872 *locked = false; 2873 } 2874out_unlock_rcu: 2875 rcu_read_unlock(); 2876 return tsk; 2877} 2878 2879void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2880 __releases(&cgroup_threadgroup_rwsem) 2881{ 2882 struct cgroup_subsys *ss; 2883 int ssid; 2884 2885 /* release reference from cgroup_procs_write_start() */ 2886 put_task_struct(task); 2887 2888 if (locked) 2889 percpu_up_write(&cgroup_threadgroup_rwsem); 2890 for_each_subsys(ss, ssid) 2891 if (ss->post_attach) 2892 ss->post_attach(); 2893} 2894 2895static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2896{ 2897 struct cgroup_subsys *ss; 2898 bool printed = false; 2899 int ssid; 2900 2901 do_each_subsys_mask(ss, ssid, ss_mask) { 2902 if (printed) 2903 seq_putc(seq, ' '); 2904 seq_puts(seq, ss->name); 2905 printed = true; 2906 } while_each_subsys_mask(); 2907 if (printed) 2908 seq_putc(seq, '\n'); 2909} 2910 2911/* show controllers which are enabled from the parent */ 2912static int cgroup_controllers_show(struct seq_file *seq, void *v) 2913{ 2914 struct cgroup *cgrp = seq_css(seq)->cgroup; 2915 2916 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2917 return 0; 2918} 2919 2920/* show controllers which are enabled for a given cgroup's children */ 2921static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2922{ 2923 struct cgroup *cgrp = seq_css(seq)->cgroup; 2924 2925 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2926 return 0; 2927} 2928 2929/** 2930 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2931 * @cgrp: root of the subtree to update csses for 2932 * 2933 * @cgrp's control masks have changed and its subtree's css associations 2934 * need to be updated accordingly. This function looks up all css_sets 2935 * which are attached to the subtree, creates the matching updated css_sets 2936 * and migrates the tasks to the new ones. 2937 */ 2938static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2939{ 2940 DEFINE_CGROUP_MGCTX(mgctx); 2941 struct cgroup_subsys_state *d_css; 2942 struct cgroup *dsct; 2943 struct css_set *src_cset; 2944 int ret; 2945 2946 lockdep_assert_held(&cgroup_mutex); 2947 2948 percpu_down_write(&cgroup_threadgroup_rwsem); 2949 2950 /* look up all csses currently attached to @cgrp's subtree */ 2951 spin_lock_irq(&css_set_lock); 2952 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2953 struct cgrp_cset_link *link; 2954 2955 list_for_each_entry(link, &dsct->cset_links, cset_link) 2956 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2957 } 2958 spin_unlock_irq(&css_set_lock); 2959 2960 /* NULL dst indicates self on default hierarchy */ 2961 ret = cgroup_migrate_prepare_dst(&mgctx); 2962 if (ret) 2963 goto out_finish; 2964 2965 spin_lock_irq(&css_set_lock); 2966 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2967 struct task_struct *task, *ntask; 2968 2969 /* all tasks in src_csets need to be migrated */ 2970 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2971 cgroup_migrate_add_task(task, &mgctx); 2972 } 2973 spin_unlock_irq(&css_set_lock); 2974 2975 ret = cgroup_migrate_execute(&mgctx); 2976out_finish: 2977 cgroup_migrate_finish(&mgctx); 2978 percpu_up_write(&cgroup_threadgroup_rwsem); 2979 return ret; 2980} 2981 2982/** 2983 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2984 * @cgrp: root of the target subtree 2985 * 2986 * Because css offlining is asynchronous, userland may try to re-enable a 2987 * controller while the previous css is still around. This function grabs 2988 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2989 */ 2990void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2991 __acquires(&cgroup_mutex) 2992{ 2993 struct cgroup *dsct; 2994 struct cgroup_subsys_state *d_css; 2995 struct cgroup_subsys *ss; 2996 int ssid; 2997 2998restart: 2999 mutex_lock(&cgroup_mutex); 3000 3001 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3002 for_each_subsys(ss, ssid) { 3003 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3004 DEFINE_WAIT(wait); 3005 3006 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3007 continue; 3008 3009 cgroup_get_live(dsct); 3010 prepare_to_wait(&dsct->offline_waitq, &wait, 3011 TASK_UNINTERRUPTIBLE); 3012 3013 mutex_unlock(&cgroup_mutex); 3014 schedule(); 3015 finish_wait(&dsct->offline_waitq, &wait); 3016 3017 cgroup_put(dsct); 3018 goto restart; 3019 } 3020 } 3021} 3022 3023/** 3024 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3025 * @cgrp: root of the target subtree 3026 * 3027 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3028 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3029 * itself. 3030 */ 3031static void cgroup_save_control(struct cgroup *cgrp) 3032{ 3033 struct cgroup *dsct; 3034 struct cgroup_subsys_state *d_css; 3035 3036 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3037 dsct->old_subtree_control = dsct->subtree_control; 3038 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3039 dsct->old_dom_cgrp = dsct->dom_cgrp; 3040 } 3041} 3042 3043/** 3044 * cgroup_propagate_control - refresh control masks of a subtree 3045 * @cgrp: root of the target subtree 3046 * 3047 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3048 * ->subtree_control and propagate controller availability through the 3049 * subtree so that descendants don't have unavailable controllers enabled. 3050 */ 3051static void cgroup_propagate_control(struct cgroup *cgrp) 3052{ 3053 struct cgroup *dsct; 3054 struct cgroup_subsys_state *d_css; 3055 3056 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3057 dsct->subtree_control &= cgroup_control(dsct); 3058 dsct->subtree_ss_mask = 3059 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3060 cgroup_ss_mask(dsct)); 3061 } 3062} 3063 3064/** 3065 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3066 * @cgrp: root of the target subtree 3067 * 3068 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3069 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3070 * itself. 3071 */ 3072static void cgroup_restore_control(struct cgroup *cgrp) 3073{ 3074 struct cgroup *dsct; 3075 struct cgroup_subsys_state *d_css; 3076 3077 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3078 dsct->subtree_control = dsct->old_subtree_control; 3079 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3080 dsct->dom_cgrp = dsct->old_dom_cgrp; 3081 } 3082} 3083 3084static bool css_visible(struct cgroup_subsys_state *css) 3085{ 3086 struct cgroup_subsys *ss = css->ss; 3087 struct cgroup *cgrp = css->cgroup; 3088 3089 if (cgroup_control(cgrp) & (1 << ss->id)) 3090 return true; 3091 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3092 return false; 3093 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3094} 3095 3096/** 3097 * cgroup_apply_control_enable - enable or show csses according to control 3098 * @cgrp: root of the target subtree 3099 * 3100 * Walk @cgrp's subtree and create new csses or make the existing ones 3101 * visible. A css is created invisible if it's being implicitly enabled 3102 * through dependency. An invisible css is made visible when the userland 3103 * explicitly enables it. 3104 * 3105 * Returns 0 on success, -errno on failure. On failure, csses which have 3106 * been processed already aren't cleaned up. The caller is responsible for 3107 * cleaning up with cgroup_apply_control_disable(). 3108 */ 3109static int cgroup_apply_control_enable(struct cgroup *cgrp) 3110{ 3111 struct cgroup *dsct; 3112 struct cgroup_subsys_state *d_css; 3113 struct cgroup_subsys *ss; 3114 int ssid, ret; 3115 3116 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3117 for_each_subsys(ss, ssid) { 3118 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3119 3120 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3121 continue; 3122 3123 if (!css) { 3124 css = css_create(dsct, ss); 3125 if (IS_ERR(css)) 3126 return PTR_ERR(css); 3127 } 3128 3129 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3130 3131 if (css_visible(css)) { 3132 ret = css_populate_dir(css); 3133 if (ret) 3134 return ret; 3135 } 3136 } 3137 } 3138 3139 return 0; 3140} 3141 3142/** 3143 * cgroup_apply_control_disable - kill or hide csses according to control 3144 * @cgrp: root of the target subtree 3145 * 3146 * Walk @cgrp's subtree and kill and hide csses so that they match 3147 * cgroup_ss_mask() and cgroup_visible_mask(). 3148 * 3149 * A css is hidden when the userland requests it to be disabled while other 3150 * subsystems are still depending on it. The css must not actively control 3151 * resources and be in the vanilla state if it's made visible again later. 3152 * Controllers which may be depended upon should provide ->css_reset() for 3153 * this purpose. 3154 */ 3155static void cgroup_apply_control_disable(struct cgroup *cgrp) 3156{ 3157 struct cgroup *dsct; 3158 struct cgroup_subsys_state *d_css; 3159 struct cgroup_subsys *ss; 3160 int ssid; 3161 3162 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3163 for_each_subsys(ss, ssid) { 3164 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3165 3166 if (!css) 3167 continue; 3168 3169 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3170 3171 if (css->parent && 3172 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3173 kill_css(css); 3174 } else if (!css_visible(css)) { 3175 css_clear_dir(css); 3176 if (ss->css_reset) 3177 ss->css_reset(css); 3178 } 3179 } 3180 } 3181} 3182 3183/** 3184 * cgroup_apply_control - apply control mask updates to the subtree 3185 * @cgrp: root of the target subtree 3186 * 3187 * subsystems can be enabled and disabled in a subtree using the following 3188 * steps. 3189 * 3190 * 1. Call cgroup_save_control() to stash the current state. 3191 * 2. Update ->subtree_control masks in the subtree as desired. 3192 * 3. Call cgroup_apply_control() to apply the changes. 3193 * 4. Optionally perform other related operations. 3194 * 5. Call cgroup_finalize_control() to finish up. 3195 * 3196 * This function implements step 3 and propagates the mask changes 3197 * throughout @cgrp's subtree, updates csses accordingly and perform 3198 * process migrations. 3199 */ 3200static int cgroup_apply_control(struct cgroup *cgrp) 3201{ 3202 int ret; 3203 3204 cgroup_propagate_control(cgrp); 3205 3206 ret = cgroup_apply_control_enable(cgrp); 3207 if (ret) 3208 return ret; 3209 3210 /* 3211 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3212 * making the following cgroup_update_dfl_csses() properly update 3213 * css associations of all tasks in the subtree. 3214 */ 3215 ret = cgroup_update_dfl_csses(cgrp); 3216 if (ret) 3217 return ret; 3218 3219 return 0; 3220} 3221 3222/** 3223 * cgroup_finalize_control - finalize control mask update 3224 * @cgrp: root of the target subtree 3225 * @ret: the result of the update 3226 * 3227 * Finalize control mask update. See cgroup_apply_control() for more info. 3228 */ 3229static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3230{ 3231 if (ret) { 3232 cgroup_restore_control(cgrp); 3233 cgroup_propagate_control(cgrp); 3234 } 3235 3236 cgroup_apply_control_disable(cgrp); 3237} 3238 3239static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3240{ 3241 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3242 3243 /* if nothing is getting enabled, nothing to worry about */ 3244 if (!enable) 3245 return 0; 3246 3247 /* can @cgrp host any resources? */ 3248 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3249 return -EOPNOTSUPP; 3250 3251 /* mixables don't care */ 3252 if (cgroup_is_mixable(cgrp)) 3253 return 0; 3254 3255 if (domain_enable) { 3256 /* can't enable domain controllers inside a thread subtree */ 3257 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3258 return -EOPNOTSUPP; 3259 } else { 3260 /* 3261 * Threaded controllers can handle internal competitions 3262 * and are always allowed inside a (prospective) thread 3263 * subtree. 3264 */ 3265 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3266 return 0; 3267 } 3268 3269 /* 3270 * Controllers can't be enabled for a cgroup with tasks to avoid 3271 * child cgroups competing against tasks. 3272 */ 3273 if (cgroup_has_tasks(cgrp)) 3274 return -EBUSY; 3275 3276 return 0; 3277} 3278 3279/* change the enabled child controllers for a cgroup in the default hierarchy */ 3280static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3281 char *buf, size_t nbytes, 3282 loff_t off) 3283{ 3284 u16 enable = 0, disable = 0; 3285 struct cgroup *cgrp, *child; 3286 struct cgroup_subsys *ss; 3287 char *tok; 3288 int ssid, ret; 3289 3290 /* 3291 * Parse input - space separated list of subsystem names prefixed 3292 * with either + or -. 3293 */ 3294 buf = strstrip(buf); 3295 while ((tok = strsep(&buf, " "))) { 3296 if (tok[0] == '\0') 3297 continue; 3298 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3299 if (!cgroup_ssid_enabled(ssid) || 3300 strcmp(tok + 1, ss->name)) 3301 continue; 3302 3303 if (*tok == '+') { 3304 enable |= 1 << ssid; 3305 disable &= ~(1 << ssid); 3306 } else if (*tok == '-') { 3307 disable |= 1 << ssid; 3308 enable &= ~(1 << ssid); 3309 } else { 3310 return -EINVAL; 3311 } 3312 break; 3313 } while_each_subsys_mask(); 3314 if (ssid == CGROUP_SUBSYS_COUNT) 3315 return -EINVAL; 3316 } 3317 3318 cgrp = cgroup_kn_lock_live(of->kn, true); 3319 if (!cgrp) 3320 return -ENODEV; 3321 3322 for_each_subsys(ss, ssid) { 3323 if (enable & (1 << ssid)) { 3324 if (cgrp->subtree_control & (1 << ssid)) { 3325 enable &= ~(1 << ssid); 3326 continue; 3327 } 3328 3329 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3330 ret = -ENOENT; 3331 goto out_unlock; 3332 } 3333 } else if (disable & (1 << ssid)) { 3334 if (!(cgrp->subtree_control & (1 << ssid))) { 3335 disable &= ~(1 << ssid); 3336 continue; 3337 } 3338 3339 /* a child has it enabled? */ 3340 cgroup_for_each_live_child(child, cgrp) { 3341 if (child->subtree_control & (1 << ssid)) { 3342 ret = -EBUSY; 3343 goto out_unlock; 3344 } 3345 } 3346 } 3347 } 3348 3349 if (!enable && !disable) { 3350 ret = 0; 3351 goto out_unlock; 3352 } 3353 3354 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3355 if (ret) 3356 goto out_unlock; 3357 3358 /* save and update control masks and prepare csses */ 3359 cgroup_save_control(cgrp); 3360 3361 cgrp->subtree_control |= enable; 3362 cgrp->subtree_control &= ~disable; 3363 3364 ret = cgroup_apply_control(cgrp); 3365 cgroup_finalize_control(cgrp, ret); 3366 if (ret) 3367 goto out_unlock; 3368 3369 kernfs_activate(cgrp->kn); 3370out_unlock: 3371 cgroup_kn_unlock(of->kn); 3372 return ret ?: nbytes; 3373} 3374 3375/** 3376 * cgroup_enable_threaded - make @cgrp threaded 3377 * @cgrp: the target cgroup 3378 * 3379 * Called when "threaded" is written to the cgroup.type interface file and 3380 * tries to make @cgrp threaded and join the parent's resource domain. 3381 * This function is never called on the root cgroup as cgroup.type doesn't 3382 * exist on it. 3383 */ 3384static int cgroup_enable_threaded(struct cgroup *cgrp) 3385{ 3386 struct cgroup *parent = cgroup_parent(cgrp); 3387 struct cgroup *dom_cgrp = parent->dom_cgrp; 3388 struct cgroup *dsct; 3389 struct cgroup_subsys_state *d_css; 3390 int ret; 3391 3392 lockdep_assert_held(&cgroup_mutex); 3393 3394 /* noop if already threaded */ 3395 if (cgroup_is_threaded(cgrp)) 3396 return 0; 3397 3398 /* 3399 * If @cgroup is populated or has domain controllers enabled, it 3400 * can't be switched. While the below cgroup_can_be_thread_root() 3401 * test can catch the same conditions, that's only when @parent is 3402 * not mixable, so let's check it explicitly. 3403 */ 3404 if (cgroup_is_populated(cgrp) || 3405 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3406 return -EOPNOTSUPP; 3407 3408 /* we're joining the parent's domain, ensure its validity */ 3409 if (!cgroup_is_valid_domain(dom_cgrp) || 3410 !cgroup_can_be_thread_root(dom_cgrp)) 3411 return -EOPNOTSUPP; 3412 3413 /* 3414 * The following shouldn't cause actual migrations and should 3415 * always succeed. 3416 */ 3417 cgroup_save_control(cgrp); 3418 3419 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3420 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3421 dsct->dom_cgrp = dom_cgrp; 3422 3423 ret = cgroup_apply_control(cgrp); 3424 if (!ret) 3425 parent->nr_threaded_children++; 3426 3427 cgroup_finalize_control(cgrp, ret); 3428 return ret; 3429} 3430 3431static int cgroup_type_show(struct seq_file *seq, void *v) 3432{ 3433 struct cgroup *cgrp = seq_css(seq)->cgroup; 3434 3435 if (cgroup_is_threaded(cgrp)) 3436 seq_puts(seq, "threaded\n"); 3437 else if (!cgroup_is_valid_domain(cgrp)) 3438 seq_puts(seq, "domain invalid\n"); 3439 else if (cgroup_is_thread_root(cgrp)) 3440 seq_puts(seq, "domain threaded\n"); 3441 else 3442 seq_puts(seq, "domain\n"); 3443 3444 return 0; 3445} 3446 3447static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3448 size_t nbytes, loff_t off) 3449{ 3450 struct cgroup *cgrp; 3451 int ret; 3452 3453 /* only switching to threaded mode is supported */ 3454 if (strcmp(strstrip(buf), "threaded")) 3455 return -EINVAL; 3456 3457 /* drain dying csses before we re-apply (threaded) subtree control */ 3458 cgrp = cgroup_kn_lock_live(of->kn, true); 3459 if (!cgrp) 3460 return -ENOENT; 3461 3462 /* threaded can only be enabled */ 3463 ret = cgroup_enable_threaded(cgrp); 3464 3465 cgroup_kn_unlock(of->kn); 3466 return ret ?: nbytes; 3467} 3468 3469static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3470{ 3471 struct cgroup *cgrp = seq_css(seq)->cgroup; 3472 int descendants = READ_ONCE(cgrp->max_descendants); 3473 3474 if (descendants == INT_MAX) 3475 seq_puts(seq, "max\n"); 3476 else 3477 seq_printf(seq, "%d\n", descendants); 3478 3479 return 0; 3480} 3481 3482static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3483 char *buf, size_t nbytes, loff_t off) 3484{ 3485 struct cgroup *cgrp; 3486 int descendants; 3487 ssize_t ret; 3488 3489 buf = strstrip(buf); 3490 if (!strcmp(buf, "max")) { 3491 descendants = INT_MAX; 3492 } else { 3493 ret = kstrtoint(buf, 0, &descendants); 3494 if (ret) 3495 return ret; 3496 } 3497 3498 if (descendants < 0) 3499 return -ERANGE; 3500 3501 cgrp = cgroup_kn_lock_live(of->kn, false); 3502 if (!cgrp) 3503 return -ENOENT; 3504 3505 cgrp->max_descendants = descendants; 3506 3507 cgroup_kn_unlock(of->kn); 3508 3509 return nbytes; 3510} 3511 3512static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3513{ 3514 struct cgroup *cgrp = seq_css(seq)->cgroup; 3515 int depth = READ_ONCE(cgrp->max_depth); 3516 3517 if (depth == INT_MAX) 3518 seq_puts(seq, "max\n"); 3519 else 3520 seq_printf(seq, "%d\n", depth); 3521 3522 return 0; 3523} 3524 3525static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3526 char *buf, size_t nbytes, loff_t off) 3527{ 3528 struct cgroup *cgrp; 3529 ssize_t ret; 3530 int depth; 3531 3532 buf = strstrip(buf); 3533 if (!strcmp(buf, "max")) { 3534 depth = INT_MAX; 3535 } else { 3536 ret = kstrtoint(buf, 0, &depth); 3537 if (ret) 3538 return ret; 3539 } 3540 3541 if (depth < 0) 3542 return -ERANGE; 3543 3544 cgrp = cgroup_kn_lock_live(of->kn, false); 3545 if (!cgrp) 3546 return -ENOENT; 3547 3548 cgrp->max_depth = depth; 3549 3550 cgroup_kn_unlock(of->kn); 3551 3552 return nbytes; 3553} 3554 3555static int cgroup_events_show(struct seq_file *seq, void *v) 3556{ 3557 struct cgroup *cgrp = seq_css(seq)->cgroup; 3558 3559 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3560 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3561 3562 return 0; 3563} 3564 3565static int cgroup_stat_show(struct seq_file *seq, void *v) 3566{ 3567 struct cgroup *cgroup = seq_css(seq)->cgroup; 3568 3569 seq_printf(seq, "nr_descendants %d\n", 3570 cgroup->nr_descendants); 3571 seq_printf(seq, "nr_dying_descendants %d\n", 3572 cgroup->nr_dying_descendants); 3573 3574 return 0; 3575} 3576 3577static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3578 struct cgroup *cgrp, int ssid) 3579{ 3580 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3581 struct cgroup_subsys_state *css; 3582 int ret; 3583 3584 if (!ss->css_extra_stat_show) 3585 return 0; 3586 3587 css = cgroup_tryget_css(cgrp, ss); 3588 if (!css) 3589 return 0; 3590 3591 ret = ss->css_extra_stat_show(seq, css); 3592 css_put(css); 3593 return ret; 3594} 3595 3596static int cpu_stat_show(struct seq_file *seq, void *v) 3597{ 3598 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3599 int ret = 0; 3600 3601 cgroup_base_stat_cputime_show(seq); 3602#ifdef CONFIG_CGROUP_SCHED 3603 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3604#endif 3605 return ret; 3606} 3607 3608#ifdef CONFIG_PSI 3609static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3610{ 3611 struct cgroup *cgrp = seq_css(seq)->cgroup; 3612 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3613 3614 return psi_show(seq, psi, PSI_IO); 3615} 3616static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3617{ 3618 struct cgroup *cgrp = seq_css(seq)->cgroup; 3619 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3620 3621 return psi_show(seq, psi, PSI_MEM); 3622} 3623static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3624{ 3625 struct cgroup *cgrp = seq_css(seq)->cgroup; 3626 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3627 3628 return psi_show(seq, psi, PSI_CPU); 3629} 3630 3631static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3632 size_t nbytes, enum psi_res res) 3633{ 3634 struct cgroup_file_ctx *ctx = of->priv; 3635 struct psi_trigger *new; 3636 struct cgroup *cgrp; 3637 struct psi_group *psi; 3638 3639 cgrp = cgroup_kn_lock_live(of->kn, false); 3640 if (!cgrp) 3641 return -ENODEV; 3642 3643 cgroup_get(cgrp); 3644 cgroup_kn_unlock(of->kn); 3645 3646 /* Allow only one trigger per file descriptor */ 3647 if (ctx->psi.trigger) { 3648 cgroup_put(cgrp); 3649 return -EBUSY; 3650 } 3651 3652 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3653 new = psi_trigger_create(psi, buf, nbytes, res); 3654 if (IS_ERR(new)) { 3655 cgroup_put(cgrp); 3656 return PTR_ERR(new); 3657 } 3658 3659 smp_store_release(&ctx->psi.trigger, new); 3660 cgroup_put(cgrp); 3661 3662 return nbytes; 3663} 3664 3665static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3666 char *buf, size_t nbytes, 3667 loff_t off) 3668{ 3669 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3670} 3671 3672static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3673 char *buf, size_t nbytes, 3674 loff_t off) 3675{ 3676 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3677} 3678 3679static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3680 char *buf, size_t nbytes, 3681 loff_t off) 3682{ 3683 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3684} 3685 3686static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3687 poll_table *pt) 3688{ 3689 struct cgroup_file_ctx *ctx = of->priv; 3690 3691 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3692} 3693 3694static void cgroup_pressure_release(struct kernfs_open_file *of) 3695{ 3696 struct cgroup_file_ctx *ctx = of->priv; 3697 3698 psi_trigger_destroy(ctx->psi.trigger); 3699} 3700 3701bool cgroup_psi_enabled(void) 3702{ 3703 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3704} 3705 3706#else /* CONFIG_PSI */ 3707bool cgroup_psi_enabled(void) 3708{ 3709 return false; 3710} 3711 3712#endif /* CONFIG_PSI */ 3713 3714static int cgroup_freeze_show(struct seq_file *seq, void *v) 3715{ 3716 struct cgroup *cgrp = seq_css(seq)->cgroup; 3717 3718 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3719 3720 return 0; 3721} 3722 3723static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3724 char *buf, size_t nbytes, loff_t off) 3725{ 3726 struct cgroup *cgrp; 3727 ssize_t ret; 3728 int freeze; 3729 3730 ret = kstrtoint(strstrip(buf), 0, &freeze); 3731 if (ret) 3732 return ret; 3733 3734 if (freeze < 0 || freeze > 1) 3735 return -ERANGE; 3736 3737 cgrp = cgroup_kn_lock_live(of->kn, false); 3738 if (!cgrp) 3739 return -ENOENT; 3740 3741 cgroup_freeze(cgrp, freeze); 3742 3743 cgroup_kn_unlock(of->kn); 3744 3745 return nbytes; 3746} 3747 3748static void __cgroup_kill(struct cgroup *cgrp) 3749{ 3750 struct css_task_iter it; 3751 struct task_struct *task; 3752 3753 lockdep_assert_held(&cgroup_mutex); 3754 3755 spin_lock_irq(&css_set_lock); 3756 set_bit(CGRP_KILL, &cgrp->flags); 3757 spin_unlock_irq(&css_set_lock); 3758 3759 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3760 while ((task = css_task_iter_next(&it))) { 3761 /* Ignore kernel threads here. */ 3762 if (task->flags & PF_KTHREAD) 3763 continue; 3764 3765 /* Skip tasks that are already dying. */ 3766 if (__fatal_signal_pending(task)) 3767 continue; 3768 3769 send_sig(SIGKILL, task, 0); 3770 } 3771 css_task_iter_end(&it); 3772 3773 spin_lock_irq(&css_set_lock); 3774 clear_bit(CGRP_KILL, &cgrp->flags); 3775 spin_unlock_irq(&css_set_lock); 3776} 3777 3778static void cgroup_kill(struct cgroup *cgrp) 3779{ 3780 struct cgroup_subsys_state *css; 3781 struct cgroup *dsct; 3782 3783 lockdep_assert_held(&cgroup_mutex); 3784 3785 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3786 __cgroup_kill(dsct); 3787} 3788 3789static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3790 size_t nbytes, loff_t off) 3791{ 3792 ssize_t ret = 0; 3793 int kill; 3794 struct cgroup *cgrp; 3795 3796 ret = kstrtoint(strstrip(buf), 0, &kill); 3797 if (ret) 3798 return ret; 3799 3800 if (kill != 1) 3801 return -ERANGE; 3802 3803 cgrp = cgroup_kn_lock_live(of->kn, false); 3804 if (!cgrp) 3805 return -ENOENT; 3806 3807 /* 3808 * Killing is a process directed operation, i.e. the whole thread-group 3809 * is taken down so act like we do for cgroup.procs and only make this 3810 * writable in non-threaded cgroups. 3811 */ 3812 if (cgroup_is_threaded(cgrp)) 3813 ret = -EOPNOTSUPP; 3814 else 3815 cgroup_kill(cgrp); 3816 3817 cgroup_kn_unlock(of->kn); 3818 3819 return ret ?: nbytes; 3820} 3821 3822static int cgroup_file_open(struct kernfs_open_file *of) 3823{ 3824 struct cftype *cft = of_cft(of); 3825 struct cgroup_file_ctx *ctx; 3826 int ret; 3827 3828 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3829 if (!ctx) 3830 return -ENOMEM; 3831 3832 ctx->ns = current->nsproxy->cgroup_ns; 3833 get_cgroup_ns(ctx->ns); 3834 of->priv = ctx; 3835 3836 if (!cft->open) 3837 return 0; 3838 3839 ret = cft->open(of); 3840 if (ret) { 3841 put_cgroup_ns(ctx->ns); 3842 kfree(ctx); 3843 } 3844 return ret; 3845} 3846 3847static void cgroup_file_release(struct kernfs_open_file *of) 3848{ 3849 struct cftype *cft = of_cft(of); 3850 struct cgroup_file_ctx *ctx = of->priv; 3851 3852 if (cft->release) 3853 cft->release(of); 3854 put_cgroup_ns(ctx->ns); 3855 kfree(ctx); 3856} 3857 3858static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3859 size_t nbytes, loff_t off) 3860{ 3861 struct cgroup_file_ctx *ctx = of->priv; 3862 struct cgroup *cgrp = of->kn->parent->priv; 3863 struct cftype *cft = of_cft(of); 3864 struct cgroup_subsys_state *css; 3865 int ret; 3866 3867 if (!nbytes) 3868 return 0; 3869 3870 /* 3871 * If namespaces are delegation boundaries, disallow writes to 3872 * files in an non-init namespace root from inside the namespace 3873 * except for the files explicitly marked delegatable - 3874 * cgroup.procs and cgroup.subtree_control. 3875 */ 3876 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3877 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3878 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 3879 return -EPERM; 3880 3881 if (cft->write) 3882 return cft->write(of, buf, nbytes, off); 3883 3884 /* 3885 * kernfs guarantees that a file isn't deleted with operations in 3886 * flight, which means that the matching css is and stays alive and 3887 * doesn't need to be pinned. The RCU locking is not necessary 3888 * either. It's just for the convenience of using cgroup_css(). 3889 */ 3890 rcu_read_lock(); 3891 css = cgroup_css(cgrp, cft->ss); 3892 rcu_read_unlock(); 3893 3894 if (cft->write_u64) { 3895 unsigned long long v; 3896 ret = kstrtoull(buf, 0, &v); 3897 if (!ret) 3898 ret = cft->write_u64(css, cft, v); 3899 } else if (cft->write_s64) { 3900 long long v; 3901 ret = kstrtoll(buf, 0, &v); 3902 if (!ret) 3903 ret = cft->write_s64(css, cft, v); 3904 } else { 3905 ret = -EINVAL; 3906 } 3907 3908 return ret ?: nbytes; 3909} 3910 3911static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3912{ 3913 struct cftype *cft = of_cft(of); 3914 3915 if (cft->poll) 3916 return cft->poll(of, pt); 3917 3918 return kernfs_generic_poll(of, pt); 3919} 3920 3921static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3922{ 3923 return seq_cft(seq)->seq_start(seq, ppos); 3924} 3925 3926static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3927{ 3928 return seq_cft(seq)->seq_next(seq, v, ppos); 3929} 3930 3931static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3932{ 3933 if (seq_cft(seq)->seq_stop) 3934 seq_cft(seq)->seq_stop(seq, v); 3935} 3936 3937static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3938{ 3939 struct cftype *cft = seq_cft(m); 3940 struct cgroup_subsys_state *css = seq_css(m); 3941 3942 if (cft->seq_show) 3943 return cft->seq_show(m, arg); 3944 3945 if (cft->read_u64) 3946 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3947 else if (cft->read_s64) 3948 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3949 else 3950 return -EINVAL; 3951 return 0; 3952} 3953 3954static struct kernfs_ops cgroup_kf_single_ops = { 3955 .atomic_write_len = PAGE_SIZE, 3956 .open = cgroup_file_open, 3957 .release = cgroup_file_release, 3958 .write = cgroup_file_write, 3959 .poll = cgroup_file_poll, 3960 .seq_show = cgroup_seqfile_show, 3961}; 3962 3963static struct kernfs_ops cgroup_kf_ops = { 3964 .atomic_write_len = PAGE_SIZE, 3965 .open = cgroup_file_open, 3966 .release = cgroup_file_release, 3967 .write = cgroup_file_write, 3968 .poll = cgroup_file_poll, 3969 .seq_start = cgroup_seqfile_start, 3970 .seq_next = cgroup_seqfile_next, 3971 .seq_stop = cgroup_seqfile_stop, 3972 .seq_show = cgroup_seqfile_show, 3973}; 3974 3975/* set uid and gid of cgroup dirs and files to that of the creator */ 3976static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3977{ 3978 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3979 .ia_uid = current_fsuid(), 3980 .ia_gid = current_fsgid(), }; 3981 3982 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3983 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3984 return 0; 3985 3986 return kernfs_setattr(kn, &iattr); 3987} 3988 3989static void cgroup_file_notify_timer(struct timer_list *timer) 3990{ 3991 cgroup_file_notify(container_of(timer, struct cgroup_file, 3992 notify_timer)); 3993} 3994 3995static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3996 struct cftype *cft) 3997{ 3998 char name[CGROUP_FILE_NAME_MAX]; 3999 struct kernfs_node *kn; 4000 struct lock_class_key *key = NULL; 4001 int ret; 4002 4003#ifdef CONFIG_DEBUG_LOCK_ALLOC 4004 key = &cft->lockdep_key; 4005#endif 4006 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4007 cgroup_file_mode(cft), 4008 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4009 0, cft->kf_ops, cft, 4010 NULL, key); 4011 if (IS_ERR(kn)) 4012 return PTR_ERR(kn); 4013 4014 ret = cgroup_kn_set_ugid(kn); 4015 if (ret) { 4016 kernfs_remove(kn); 4017 return ret; 4018 } 4019 4020 if (cft->file_offset) { 4021 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4022 4023 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4024 4025 spin_lock_irq(&cgroup_file_kn_lock); 4026 cfile->kn = kn; 4027 spin_unlock_irq(&cgroup_file_kn_lock); 4028 } 4029 4030 return 0; 4031} 4032 4033/** 4034 * cgroup_addrm_files - add or remove files to a cgroup directory 4035 * @css: the target css 4036 * @cgrp: the target cgroup (usually css->cgroup) 4037 * @cfts: array of cftypes to be added 4038 * @is_add: whether to add or remove 4039 * 4040 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4041 * For removals, this function never fails. 4042 */ 4043static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4044 struct cgroup *cgrp, struct cftype cfts[], 4045 bool is_add) 4046{ 4047 struct cftype *cft, *cft_end = NULL; 4048 int ret = 0; 4049 4050 lockdep_assert_held(&cgroup_mutex); 4051 4052restart: 4053 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4054 /* does cft->flags tell us to skip this file on @cgrp? */ 4055 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4056 continue; 4057 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4058 continue; 4059 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4060 continue; 4061 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4062 continue; 4063 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4064 continue; 4065 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4066 continue; 4067 if (is_add) { 4068 ret = cgroup_add_file(css, cgrp, cft); 4069 if (ret) { 4070 pr_warn("%s: failed to add %s, err=%d\n", 4071 __func__, cft->name, ret); 4072 cft_end = cft; 4073 is_add = false; 4074 goto restart; 4075 } 4076 } else { 4077 cgroup_rm_file(cgrp, cft); 4078 } 4079 } 4080 return ret; 4081} 4082 4083static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4084{ 4085 struct cgroup_subsys *ss = cfts[0].ss; 4086 struct cgroup *root = &ss->root->cgrp; 4087 struct cgroup_subsys_state *css; 4088 int ret = 0; 4089 4090 lockdep_assert_held(&cgroup_mutex); 4091 4092 /* add/rm files for all cgroups created before */ 4093 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4094 struct cgroup *cgrp = css->cgroup; 4095 4096 if (!(css->flags & CSS_VISIBLE)) 4097 continue; 4098 4099 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4100 if (ret) 4101 break; 4102 } 4103 4104 if (is_add && !ret) 4105 kernfs_activate(root->kn); 4106 return ret; 4107} 4108 4109static void cgroup_exit_cftypes(struct cftype *cfts) 4110{ 4111 struct cftype *cft; 4112 4113 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4114 /* free copy for custom atomic_write_len, see init_cftypes() */ 4115 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4116 kfree(cft->kf_ops); 4117 cft->kf_ops = NULL; 4118 cft->ss = NULL; 4119 4120 /* revert flags set by cgroup core while adding @cfts */ 4121 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 4122 } 4123} 4124 4125static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4126{ 4127 struct cftype *cft; 4128 4129 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4130 struct kernfs_ops *kf_ops; 4131 4132 WARN_ON(cft->ss || cft->kf_ops); 4133 4134 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4135 continue; 4136 4137 if (cft->seq_start) 4138 kf_ops = &cgroup_kf_ops; 4139 else 4140 kf_ops = &cgroup_kf_single_ops; 4141 4142 /* 4143 * Ugh... if @cft wants a custom max_write_len, we need to 4144 * make a copy of kf_ops to set its atomic_write_len. 4145 */ 4146 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4147 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4148 if (!kf_ops) { 4149 cgroup_exit_cftypes(cfts); 4150 return -ENOMEM; 4151 } 4152 kf_ops->atomic_write_len = cft->max_write_len; 4153 } 4154 4155 cft->kf_ops = kf_ops; 4156 cft->ss = ss; 4157 } 4158 4159 return 0; 4160} 4161 4162static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4163{ 4164 lockdep_assert_held(&cgroup_mutex); 4165 4166 if (!cfts || !cfts[0].ss) 4167 return -ENOENT; 4168 4169 list_del(&cfts->node); 4170 cgroup_apply_cftypes(cfts, false); 4171 cgroup_exit_cftypes(cfts); 4172 return 0; 4173} 4174 4175/** 4176 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4177 * @cfts: zero-length name terminated array of cftypes 4178 * 4179 * Unregister @cfts. Files described by @cfts are removed from all 4180 * existing cgroups and all future cgroups won't have them either. This 4181 * function can be called anytime whether @cfts' subsys is attached or not. 4182 * 4183 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4184 * registered. 4185 */ 4186int cgroup_rm_cftypes(struct cftype *cfts) 4187{ 4188 int ret; 4189 4190 mutex_lock(&cgroup_mutex); 4191 ret = cgroup_rm_cftypes_locked(cfts); 4192 mutex_unlock(&cgroup_mutex); 4193 return ret; 4194} 4195 4196/** 4197 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4198 * @ss: target cgroup subsystem 4199 * @cfts: zero-length name terminated array of cftypes 4200 * 4201 * Register @cfts to @ss. Files described by @cfts are created for all 4202 * existing cgroups to which @ss is attached and all future cgroups will 4203 * have them too. This function can be called anytime whether @ss is 4204 * attached or not. 4205 * 4206 * Returns 0 on successful registration, -errno on failure. Note that this 4207 * function currently returns 0 as long as @cfts registration is successful 4208 * even if some file creation attempts on existing cgroups fail. 4209 */ 4210static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4211{ 4212 int ret; 4213 4214 if (!cgroup_ssid_enabled(ss->id)) 4215 return 0; 4216 4217 if (!cfts || cfts[0].name[0] == '\0') 4218 return 0; 4219 4220 ret = cgroup_init_cftypes(ss, cfts); 4221 if (ret) 4222 return ret; 4223 4224 mutex_lock(&cgroup_mutex); 4225 4226 list_add_tail(&cfts->node, &ss->cfts); 4227 ret = cgroup_apply_cftypes(cfts, true); 4228 if (ret) 4229 cgroup_rm_cftypes_locked(cfts); 4230 4231 mutex_unlock(&cgroup_mutex); 4232 return ret; 4233} 4234 4235/** 4236 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4237 * @ss: target cgroup subsystem 4238 * @cfts: zero-length name terminated array of cftypes 4239 * 4240 * Similar to cgroup_add_cftypes() but the added files are only used for 4241 * the default hierarchy. 4242 */ 4243int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4244{ 4245 struct cftype *cft; 4246 4247 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4248 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4249 return cgroup_add_cftypes(ss, cfts); 4250} 4251 4252/** 4253 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4254 * @ss: target cgroup subsystem 4255 * @cfts: zero-length name terminated array of cftypes 4256 * 4257 * Similar to cgroup_add_cftypes() but the added files are only used for 4258 * the legacy hierarchies. 4259 */ 4260int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4261{ 4262 struct cftype *cft; 4263 4264 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4265 cft->flags |= __CFTYPE_NOT_ON_DFL; 4266 return cgroup_add_cftypes(ss, cfts); 4267} 4268 4269/** 4270 * cgroup_file_notify - generate a file modified event for a cgroup_file 4271 * @cfile: target cgroup_file 4272 * 4273 * @cfile must have been obtained by setting cftype->file_offset. 4274 */ 4275void cgroup_file_notify(struct cgroup_file *cfile) 4276{ 4277 unsigned long flags; 4278 4279 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4280 if (cfile->kn) { 4281 unsigned long last = cfile->notified_at; 4282 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4283 4284 if (time_in_range(jiffies, last, next)) { 4285 timer_reduce(&cfile->notify_timer, next); 4286 } else { 4287 kernfs_notify(cfile->kn); 4288 cfile->notified_at = jiffies; 4289 } 4290 } 4291 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4292} 4293 4294/** 4295 * css_next_child - find the next child of a given css 4296 * @pos: the current position (%NULL to initiate traversal) 4297 * @parent: css whose children to walk 4298 * 4299 * This function returns the next child of @parent and should be called 4300 * under either cgroup_mutex or RCU read lock. The only requirement is 4301 * that @parent and @pos are accessible. The next sibling is guaranteed to 4302 * be returned regardless of their states. 4303 * 4304 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4305 * css which finished ->css_online() is guaranteed to be visible in the 4306 * future iterations and will stay visible until the last reference is put. 4307 * A css which hasn't finished ->css_online() or already finished 4308 * ->css_offline() may show up during traversal. It's each subsystem's 4309 * responsibility to synchronize against on/offlining. 4310 */ 4311struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4312 struct cgroup_subsys_state *parent) 4313{ 4314 struct cgroup_subsys_state *next; 4315 4316 cgroup_assert_mutex_or_rcu_locked(); 4317 4318 /* 4319 * @pos could already have been unlinked from the sibling list. 4320 * Once a cgroup is removed, its ->sibling.next is no longer 4321 * updated when its next sibling changes. CSS_RELEASED is set when 4322 * @pos is taken off list, at which time its next pointer is valid, 4323 * and, as releases are serialized, the one pointed to by the next 4324 * pointer is guaranteed to not have started release yet. This 4325 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4326 * critical section, the one pointed to by its next pointer is 4327 * guaranteed to not have finished its RCU grace period even if we 4328 * have dropped rcu_read_lock() in-between iterations. 4329 * 4330 * If @pos has CSS_RELEASED set, its next pointer can't be 4331 * dereferenced; however, as each css is given a monotonically 4332 * increasing unique serial number and always appended to the 4333 * sibling list, the next one can be found by walking the parent's 4334 * children until the first css with higher serial number than 4335 * @pos's. While this path can be slower, it happens iff iteration 4336 * races against release and the race window is very small. 4337 */ 4338 if (!pos) { 4339 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4340 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4341 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4342 } else { 4343 list_for_each_entry_rcu(next, &parent->children, sibling, 4344 lockdep_is_held(&cgroup_mutex)) 4345 if (next->serial_nr > pos->serial_nr) 4346 break; 4347 } 4348 4349 /* 4350 * @next, if not pointing to the head, can be dereferenced and is 4351 * the next sibling. 4352 */ 4353 if (&next->sibling != &parent->children) 4354 return next; 4355 return NULL; 4356} 4357 4358/** 4359 * css_next_descendant_pre - find the next descendant for pre-order walk 4360 * @pos: the current position (%NULL to initiate traversal) 4361 * @root: css whose descendants to walk 4362 * 4363 * To be used by css_for_each_descendant_pre(). Find the next descendant 4364 * to visit for pre-order traversal of @root's descendants. @root is 4365 * included in the iteration and the first node to be visited. 4366 * 4367 * While this function requires cgroup_mutex or RCU read locking, it 4368 * doesn't require the whole traversal to be contained in a single critical 4369 * section. This function will return the correct next descendant as long 4370 * as both @pos and @root are accessible and @pos is a descendant of @root. 4371 * 4372 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4373 * css which finished ->css_online() is guaranteed to be visible in the 4374 * future iterations and will stay visible until the last reference is put. 4375 * A css which hasn't finished ->css_online() or already finished 4376 * ->css_offline() may show up during traversal. It's each subsystem's 4377 * responsibility to synchronize against on/offlining. 4378 */ 4379struct cgroup_subsys_state * 4380css_next_descendant_pre(struct cgroup_subsys_state *pos, 4381 struct cgroup_subsys_state *root) 4382{ 4383 struct cgroup_subsys_state *next; 4384 4385 cgroup_assert_mutex_or_rcu_locked(); 4386 4387 /* if first iteration, visit @root */ 4388 if (!pos) 4389 return root; 4390 4391 /* visit the first child if exists */ 4392 next = css_next_child(NULL, pos); 4393 if (next) 4394 return next; 4395 4396 /* no child, visit my or the closest ancestor's next sibling */ 4397 while (pos != root) { 4398 next = css_next_child(pos, pos->parent); 4399 if (next) 4400 return next; 4401 pos = pos->parent; 4402 } 4403 4404 return NULL; 4405} 4406EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4407 4408/** 4409 * css_rightmost_descendant - return the rightmost descendant of a css 4410 * @pos: css of interest 4411 * 4412 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4413 * is returned. This can be used during pre-order traversal to skip 4414 * subtree of @pos. 4415 * 4416 * While this function requires cgroup_mutex or RCU read locking, it 4417 * doesn't require the whole traversal to be contained in a single critical 4418 * section. This function will return the correct rightmost descendant as 4419 * long as @pos is accessible. 4420 */ 4421struct cgroup_subsys_state * 4422css_rightmost_descendant(struct cgroup_subsys_state *pos) 4423{ 4424 struct cgroup_subsys_state *last, *tmp; 4425 4426 cgroup_assert_mutex_or_rcu_locked(); 4427 4428 do { 4429 last = pos; 4430 /* ->prev isn't RCU safe, walk ->next till the end */ 4431 pos = NULL; 4432 css_for_each_child(tmp, last) 4433 pos = tmp; 4434 } while (pos); 4435 4436 return last; 4437} 4438 4439static struct cgroup_subsys_state * 4440css_leftmost_descendant(struct cgroup_subsys_state *pos) 4441{ 4442 struct cgroup_subsys_state *last; 4443 4444 do { 4445 last = pos; 4446 pos = css_next_child(NULL, pos); 4447 } while (pos); 4448 4449 return last; 4450} 4451 4452/** 4453 * css_next_descendant_post - find the next descendant for post-order walk 4454 * @pos: the current position (%NULL to initiate traversal) 4455 * @root: css whose descendants to walk 4456 * 4457 * To be used by css_for_each_descendant_post(). Find the next descendant 4458 * to visit for post-order traversal of @root's descendants. @root is 4459 * included in the iteration and the last node to be visited. 4460 * 4461 * While this function requires cgroup_mutex or RCU read locking, it 4462 * doesn't require the whole traversal to be contained in a single critical 4463 * section. This function will return the correct next descendant as long 4464 * as both @pos and @cgroup are accessible and @pos is a descendant of 4465 * @cgroup. 4466 * 4467 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4468 * css which finished ->css_online() is guaranteed to be visible in the 4469 * future iterations and will stay visible until the last reference is put. 4470 * A css which hasn't finished ->css_online() or already finished 4471 * ->css_offline() may show up during traversal. It's each subsystem's 4472 * responsibility to synchronize against on/offlining. 4473 */ 4474struct cgroup_subsys_state * 4475css_next_descendant_post(struct cgroup_subsys_state *pos, 4476 struct cgroup_subsys_state *root) 4477{ 4478 struct cgroup_subsys_state *next; 4479 4480 cgroup_assert_mutex_or_rcu_locked(); 4481 4482 /* if first iteration, visit leftmost descendant which may be @root */ 4483 if (!pos) 4484 return css_leftmost_descendant(root); 4485 4486 /* if we visited @root, we're done */ 4487 if (pos == root) 4488 return NULL; 4489 4490 /* if there's an unvisited sibling, visit its leftmost descendant */ 4491 next = css_next_child(pos, pos->parent); 4492 if (next) 4493 return css_leftmost_descendant(next); 4494 4495 /* no sibling left, visit parent */ 4496 return pos->parent; 4497} 4498 4499/** 4500 * css_has_online_children - does a css have online children 4501 * @css: the target css 4502 * 4503 * Returns %true if @css has any online children; otherwise, %false. This 4504 * function can be called from any context but the caller is responsible 4505 * for synchronizing against on/offlining as necessary. 4506 */ 4507bool css_has_online_children(struct cgroup_subsys_state *css) 4508{ 4509 struct cgroup_subsys_state *child; 4510 bool ret = false; 4511 4512 rcu_read_lock(); 4513 css_for_each_child(child, css) { 4514 if (child->flags & CSS_ONLINE) { 4515 ret = true; 4516 break; 4517 } 4518 } 4519 rcu_read_unlock(); 4520 return ret; 4521} 4522 4523static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4524{ 4525 struct list_head *l; 4526 struct cgrp_cset_link *link; 4527 struct css_set *cset; 4528 4529 lockdep_assert_held(&css_set_lock); 4530 4531 /* find the next threaded cset */ 4532 if (it->tcset_pos) { 4533 l = it->tcset_pos->next; 4534 4535 if (l != it->tcset_head) { 4536 it->tcset_pos = l; 4537 return container_of(l, struct css_set, 4538 threaded_csets_node); 4539 } 4540 4541 it->tcset_pos = NULL; 4542 } 4543 4544 /* find the next cset */ 4545 l = it->cset_pos; 4546 l = l->next; 4547 if (l == it->cset_head) { 4548 it->cset_pos = NULL; 4549 return NULL; 4550 } 4551 4552 if (it->ss) { 4553 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4554 } else { 4555 link = list_entry(l, struct cgrp_cset_link, cset_link); 4556 cset = link->cset; 4557 } 4558 4559 it->cset_pos = l; 4560 4561 /* initialize threaded css_set walking */ 4562 if (it->flags & CSS_TASK_ITER_THREADED) { 4563 if (it->cur_dcset) 4564 put_css_set_locked(it->cur_dcset); 4565 it->cur_dcset = cset; 4566 get_css_set(cset); 4567 4568 it->tcset_head = &cset->threaded_csets; 4569 it->tcset_pos = &cset->threaded_csets; 4570 } 4571 4572 return cset; 4573} 4574 4575/** 4576 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4577 * @it: the iterator to advance 4578 * 4579 * Advance @it to the next css_set to walk. 4580 */ 4581static void css_task_iter_advance_css_set(struct css_task_iter *it) 4582{ 4583 struct css_set *cset; 4584 4585 lockdep_assert_held(&css_set_lock); 4586 4587 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4588 while ((cset = css_task_iter_next_css_set(it))) { 4589 if (!list_empty(&cset->tasks)) { 4590 it->cur_tasks_head = &cset->tasks; 4591 break; 4592 } else if (!list_empty(&cset->mg_tasks)) { 4593 it->cur_tasks_head = &cset->mg_tasks; 4594 break; 4595 } else if (!list_empty(&cset->dying_tasks)) { 4596 it->cur_tasks_head = &cset->dying_tasks; 4597 break; 4598 } 4599 } 4600 if (!cset) { 4601 it->task_pos = NULL; 4602 return; 4603 } 4604 it->task_pos = it->cur_tasks_head->next; 4605 4606 /* 4607 * We don't keep css_sets locked across iteration steps and thus 4608 * need to take steps to ensure that iteration can be resumed after 4609 * the lock is re-acquired. Iteration is performed at two levels - 4610 * css_sets and tasks in them. 4611 * 4612 * Once created, a css_set never leaves its cgroup lists, so a 4613 * pinned css_set is guaranteed to stay put and we can resume 4614 * iteration afterwards. 4615 * 4616 * Tasks may leave @cset across iteration steps. This is resolved 4617 * by registering each iterator with the css_set currently being 4618 * walked and making css_set_move_task() advance iterators whose 4619 * next task is leaving. 4620 */ 4621 if (it->cur_cset) { 4622 list_del(&it->iters_node); 4623 put_css_set_locked(it->cur_cset); 4624 } 4625 get_css_set(cset); 4626 it->cur_cset = cset; 4627 list_add(&it->iters_node, &cset->task_iters); 4628} 4629 4630static void css_task_iter_skip(struct css_task_iter *it, 4631 struct task_struct *task) 4632{ 4633 lockdep_assert_held(&css_set_lock); 4634 4635 if (it->task_pos == &task->cg_list) { 4636 it->task_pos = it->task_pos->next; 4637 it->flags |= CSS_TASK_ITER_SKIPPED; 4638 } 4639} 4640 4641static void css_task_iter_advance(struct css_task_iter *it) 4642{ 4643 struct task_struct *task; 4644 4645 lockdep_assert_held(&css_set_lock); 4646repeat: 4647 if (it->task_pos) { 4648 /* 4649 * Advance iterator to find next entry. We go through cset 4650 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4651 * the next cset. 4652 */ 4653 if (it->flags & CSS_TASK_ITER_SKIPPED) 4654 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4655 else 4656 it->task_pos = it->task_pos->next; 4657 4658 if (it->task_pos == &it->cur_cset->tasks) { 4659 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4660 it->task_pos = it->cur_tasks_head->next; 4661 } 4662 if (it->task_pos == &it->cur_cset->mg_tasks) { 4663 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4664 it->task_pos = it->cur_tasks_head->next; 4665 } 4666 if (it->task_pos == &it->cur_cset->dying_tasks) 4667 css_task_iter_advance_css_set(it); 4668 } else { 4669 /* called from start, proceed to the first cset */ 4670 css_task_iter_advance_css_set(it); 4671 } 4672 4673 if (!it->task_pos) 4674 return; 4675 4676 task = list_entry(it->task_pos, struct task_struct, cg_list); 4677 4678 if (it->flags & CSS_TASK_ITER_PROCS) { 4679 /* if PROCS, skip over tasks which aren't group leaders */ 4680 if (!thread_group_leader(task)) 4681 goto repeat; 4682 4683 /* and dying leaders w/o live member threads */ 4684 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4685 !atomic_read(&task->signal->live)) 4686 goto repeat; 4687 } else { 4688 /* skip all dying ones */ 4689 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4690 goto repeat; 4691 } 4692} 4693 4694/** 4695 * css_task_iter_start - initiate task iteration 4696 * @css: the css to walk tasks of 4697 * @flags: CSS_TASK_ITER_* flags 4698 * @it: the task iterator to use 4699 * 4700 * Initiate iteration through the tasks of @css. The caller can call 4701 * css_task_iter_next() to walk through the tasks until the function 4702 * returns NULL. On completion of iteration, css_task_iter_end() must be 4703 * called. 4704 */ 4705void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4706 struct css_task_iter *it) 4707{ 4708 memset(it, 0, sizeof(*it)); 4709 4710 spin_lock_irq(&css_set_lock); 4711 4712 it->ss = css->ss; 4713 it->flags = flags; 4714 4715 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4716 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4717 else 4718 it->cset_pos = &css->cgroup->cset_links; 4719 4720 it->cset_head = it->cset_pos; 4721 4722 css_task_iter_advance(it); 4723 4724 spin_unlock_irq(&css_set_lock); 4725} 4726 4727/** 4728 * css_task_iter_next - return the next task for the iterator 4729 * @it: the task iterator being iterated 4730 * 4731 * The "next" function for task iteration. @it should have been 4732 * initialized via css_task_iter_start(). Returns NULL when the iteration 4733 * reaches the end. 4734 */ 4735struct task_struct *css_task_iter_next(struct css_task_iter *it) 4736{ 4737 if (it->cur_task) { 4738 put_task_struct(it->cur_task); 4739 it->cur_task = NULL; 4740 } 4741 4742 spin_lock_irq(&css_set_lock); 4743 4744 /* @it may be half-advanced by skips, finish advancing */ 4745 if (it->flags & CSS_TASK_ITER_SKIPPED) 4746 css_task_iter_advance(it); 4747 4748 if (it->task_pos) { 4749 it->cur_task = list_entry(it->task_pos, struct task_struct, 4750 cg_list); 4751 get_task_struct(it->cur_task); 4752 css_task_iter_advance(it); 4753 } 4754 4755 spin_unlock_irq(&css_set_lock); 4756 4757 return it->cur_task; 4758} 4759 4760/** 4761 * css_task_iter_end - finish task iteration 4762 * @it: the task iterator to finish 4763 * 4764 * Finish task iteration started by css_task_iter_start(). 4765 */ 4766void css_task_iter_end(struct css_task_iter *it) 4767{ 4768 if (it->cur_cset) { 4769 spin_lock_irq(&css_set_lock); 4770 list_del(&it->iters_node); 4771 put_css_set_locked(it->cur_cset); 4772 spin_unlock_irq(&css_set_lock); 4773 } 4774 4775 if (it->cur_dcset) 4776 put_css_set(it->cur_dcset); 4777 4778 if (it->cur_task) 4779 put_task_struct(it->cur_task); 4780} 4781 4782static void cgroup_procs_release(struct kernfs_open_file *of) 4783{ 4784 struct cgroup_file_ctx *ctx = of->priv; 4785 4786 if (ctx->procs.started) 4787 css_task_iter_end(&ctx->procs.iter); 4788} 4789 4790static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4791{ 4792 struct kernfs_open_file *of = s->private; 4793 struct cgroup_file_ctx *ctx = of->priv; 4794 4795 if (pos) 4796 (*pos)++; 4797 4798 return css_task_iter_next(&ctx->procs.iter); 4799} 4800 4801static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4802 unsigned int iter_flags) 4803{ 4804 struct kernfs_open_file *of = s->private; 4805 struct cgroup *cgrp = seq_css(s)->cgroup; 4806 struct cgroup_file_ctx *ctx = of->priv; 4807 struct css_task_iter *it = &ctx->procs.iter; 4808 4809 /* 4810 * When a seq_file is seeked, it's always traversed sequentially 4811 * from position 0, so we can simply keep iterating on !0 *pos. 4812 */ 4813 if (!ctx->procs.started) { 4814 if (WARN_ON_ONCE((*pos))) 4815 return ERR_PTR(-EINVAL); 4816 css_task_iter_start(&cgrp->self, iter_flags, it); 4817 ctx->procs.started = true; 4818 } else if (!(*pos)) { 4819 css_task_iter_end(it); 4820 css_task_iter_start(&cgrp->self, iter_flags, it); 4821 } else 4822 return it->cur_task; 4823 4824 return cgroup_procs_next(s, NULL, NULL); 4825} 4826 4827static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4828{ 4829 struct cgroup *cgrp = seq_css(s)->cgroup; 4830 4831 /* 4832 * All processes of a threaded subtree belong to the domain cgroup 4833 * of the subtree. Only threads can be distributed across the 4834 * subtree. Reject reads on cgroup.procs in the subtree proper. 4835 * They're always empty anyway. 4836 */ 4837 if (cgroup_is_threaded(cgrp)) 4838 return ERR_PTR(-EOPNOTSUPP); 4839 4840 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4841 CSS_TASK_ITER_THREADED); 4842} 4843 4844static int cgroup_procs_show(struct seq_file *s, void *v) 4845{ 4846 seq_printf(s, "%d\n", task_pid_vnr(v)); 4847 return 0; 4848} 4849 4850static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4851{ 4852 int ret; 4853 struct inode *inode; 4854 4855 lockdep_assert_held(&cgroup_mutex); 4856 4857 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4858 if (!inode) 4859 return -ENOMEM; 4860 4861 ret = inode_permission(&init_user_ns, inode, MAY_WRITE); 4862 iput(inode); 4863 return ret; 4864} 4865 4866static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4867 struct cgroup *dst_cgrp, 4868 struct super_block *sb, 4869 struct cgroup_namespace *ns) 4870{ 4871 struct cgroup *com_cgrp = src_cgrp; 4872 int ret; 4873 4874 lockdep_assert_held(&cgroup_mutex); 4875 4876 /* find the common ancestor */ 4877 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4878 com_cgrp = cgroup_parent(com_cgrp); 4879 4880 /* %current should be authorized to migrate to the common ancestor */ 4881 ret = cgroup_may_write(com_cgrp, sb); 4882 if (ret) 4883 return ret; 4884 4885 /* 4886 * If namespaces are delegation boundaries, %current must be able 4887 * to see both source and destination cgroups from its namespace. 4888 */ 4889 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4890 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4891 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4892 return -ENOENT; 4893 4894 return 0; 4895} 4896 4897static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4898 struct cgroup *dst_cgrp, 4899 struct super_block *sb, bool threadgroup, 4900 struct cgroup_namespace *ns) 4901{ 4902 int ret = 0; 4903 4904 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 4905 if (ret) 4906 return ret; 4907 4908 ret = cgroup_migrate_vet_dst(dst_cgrp); 4909 if (ret) 4910 return ret; 4911 4912 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4913 ret = -EOPNOTSUPP; 4914 4915 return ret; 4916} 4917 4918static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 4919 bool threadgroup) 4920{ 4921 struct cgroup_file_ctx *ctx = of->priv; 4922 struct cgroup *src_cgrp, *dst_cgrp; 4923 struct task_struct *task; 4924 const struct cred *saved_cred; 4925 ssize_t ret; 4926 bool locked; 4927 4928 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4929 if (!dst_cgrp) 4930 return -ENODEV; 4931 4932 task = cgroup_procs_write_start(buf, threadgroup, &locked); 4933 ret = PTR_ERR_OR_ZERO(task); 4934 if (ret) 4935 goto out_unlock; 4936 4937 /* find the source cgroup */ 4938 spin_lock_irq(&css_set_lock); 4939 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4940 spin_unlock_irq(&css_set_lock); 4941 4942 /* 4943 * Process and thread migrations follow same delegation rule. Check 4944 * permissions using the credentials from file open to protect against 4945 * inherited fd attacks. 4946 */ 4947 saved_cred = override_creds(of->file->f_cred); 4948 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4949 of->file->f_path.dentry->d_sb, 4950 threadgroup, ctx->ns); 4951 revert_creds(saved_cred); 4952 if (ret) 4953 goto out_finish; 4954 4955 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 4956 4957out_finish: 4958 cgroup_procs_write_finish(task, locked); 4959out_unlock: 4960 cgroup_kn_unlock(of->kn); 4961 4962 return ret; 4963} 4964 4965static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4966 char *buf, size_t nbytes, loff_t off) 4967{ 4968 return __cgroup_procs_write(of, buf, true) ?: nbytes; 4969} 4970 4971static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4972{ 4973 return __cgroup_procs_start(s, pos, 0); 4974} 4975 4976static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4977 char *buf, size_t nbytes, loff_t off) 4978{ 4979 return __cgroup_procs_write(of, buf, false) ?: nbytes; 4980} 4981 4982/* cgroup core interface files for the default hierarchy */ 4983static struct cftype cgroup_base_files[] = { 4984 { 4985 .name = "cgroup.type", 4986 .flags = CFTYPE_NOT_ON_ROOT, 4987 .seq_show = cgroup_type_show, 4988 .write = cgroup_type_write, 4989 }, 4990 { 4991 .name = "cgroup.procs", 4992 .flags = CFTYPE_NS_DELEGATABLE, 4993 .file_offset = offsetof(struct cgroup, procs_file), 4994 .release = cgroup_procs_release, 4995 .seq_start = cgroup_procs_start, 4996 .seq_next = cgroup_procs_next, 4997 .seq_show = cgroup_procs_show, 4998 .write = cgroup_procs_write, 4999 }, 5000 { 5001 .name = "cgroup.threads", 5002 .flags = CFTYPE_NS_DELEGATABLE, 5003 .release = cgroup_procs_release, 5004 .seq_start = cgroup_threads_start, 5005 .seq_next = cgroup_procs_next, 5006 .seq_show = cgroup_procs_show, 5007 .write = cgroup_threads_write, 5008 }, 5009 { 5010 .name = "cgroup.controllers", 5011 .seq_show = cgroup_controllers_show, 5012 }, 5013 { 5014 .name = "cgroup.subtree_control", 5015 .flags = CFTYPE_NS_DELEGATABLE, 5016 .seq_show = cgroup_subtree_control_show, 5017 .write = cgroup_subtree_control_write, 5018 }, 5019 { 5020 .name = "cgroup.events", 5021 .flags = CFTYPE_NOT_ON_ROOT, 5022 .file_offset = offsetof(struct cgroup, events_file), 5023 .seq_show = cgroup_events_show, 5024 }, 5025 { 5026 .name = "cgroup.max.descendants", 5027 .seq_show = cgroup_max_descendants_show, 5028 .write = cgroup_max_descendants_write, 5029 }, 5030 { 5031 .name = "cgroup.max.depth", 5032 .seq_show = cgroup_max_depth_show, 5033 .write = cgroup_max_depth_write, 5034 }, 5035 { 5036 .name = "cgroup.stat", 5037 .seq_show = cgroup_stat_show, 5038 }, 5039 { 5040 .name = "cgroup.freeze", 5041 .flags = CFTYPE_NOT_ON_ROOT, 5042 .seq_show = cgroup_freeze_show, 5043 .write = cgroup_freeze_write, 5044 }, 5045 { 5046 .name = "cgroup.kill", 5047 .flags = CFTYPE_NOT_ON_ROOT, 5048 .write = cgroup_kill_write, 5049 }, 5050 { 5051 .name = "cpu.stat", 5052 .seq_show = cpu_stat_show, 5053 }, 5054#ifdef CONFIG_PSI 5055 { 5056 .name = "io.pressure", 5057 .flags = CFTYPE_PRESSURE, 5058 .seq_show = cgroup_io_pressure_show, 5059 .write = cgroup_io_pressure_write, 5060 .poll = cgroup_pressure_poll, 5061 .release = cgroup_pressure_release, 5062 }, 5063 { 5064 .name = "memory.pressure", 5065 .flags = CFTYPE_PRESSURE, 5066 .seq_show = cgroup_memory_pressure_show, 5067 .write = cgroup_memory_pressure_write, 5068 .poll = cgroup_pressure_poll, 5069 .release = cgroup_pressure_release, 5070 }, 5071 { 5072 .name = "cpu.pressure", 5073 .flags = CFTYPE_PRESSURE, 5074 .seq_show = cgroup_cpu_pressure_show, 5075 .write = cgroup_cpu_pressure_write, 5076 .poll = cgroup_pressure_poll, 5077 .release = cgroup_pressure_release, 5078 }, 5079#endif /* CONFIG_PSI */ 5080 { } /* terminate */ 5081}; 5082 5083/* 5084 * css destruction is four-stage process. 5085 * 5086 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5087 * Implemented in kill_css(). 5088 * 5089 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5090 * and thus css_tryget_online() is guaranteed to fail, the css can be 5091 * offlined by invoking offline_css(). After offlining, the base ref is 5092 * put. Implemented in css_killed_work_fn(). 5093 * 5094 * 3. When the percpu_ref reaches zero, the only possible remaining 5095 * accessors are inside RCU read sections. css_release() schedules the 5096 * RCU callback. 5097 * 5098 * 4. After the grace period, the css can be freed. Implemented in 5099 * css_free_work_fn(). 5100 * 5101 * It is actually hairier because both step 2 and 4 require process context 5102 * and thus involve punting to css->destroy_work adding two additional 5103 * steps to the already complex sequence. 5104 */ 5105static void css_free_rwork_fn(struct work_struct *work) 5106{ 5107 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5108 struct cgroup_subsys_state, destroy_rwork); 5109 struct cgroup_subsys *ss = css->ss; 5110 struct cgroup *cgrp = css->cgroup; 5111 5112 percpu_ref_exit(&css->refcnt); 5113 5114 if (ss) { 5115 /* css free path */ 5116 struct cgroup_subsys_state *parent = css->parent; 5117 int id = css->id; 5118 5119 ss->css_free(css); 5120 cgroup_idr_remove(&ss->css_idr, id); 5121 cgroup_put(cgrp); 5122 5123 if (parent) 5124 css_put(parent); 5125 } else { 5126 /* cgroup free path */ 5127 atomic_dec(&cgrp->root->nr_cgrps); 5128 cgroup1_pidlist_destroy_all(cgrp); 5129 cancel_work_sync(&cgrp->release_agent_work); 5130 5131 if (cgroup_parent(cgrp)) { 5132 /* 5133 * We get a ref to the parent, and put the ref when 5134 * this cgroup is being freed, so it's guaranteed 5135 * that the parent won't be destroyed before its 5136 * children. 5137 */ 5138 cgroup_put(cgroup_parent(cgrp)); 5139 kernfs_put(cgrp->kn); 5140 psi_cgroup_free(cgrp); 5141 cgroup_rstat_exit(cgrp); 5142 kfree(cgrp); 5143 } else { 5144 /* 5145 * This is root cgroup's refcnt reaching zero, 5146 * which indicates that the root should be 5147 * released. 5148 */ 5149 cgroup_destroy_root(cgrp->root); 5150 } 5151 } 5152} 5153 5154static void css_release_work_fn(struct work_struct *work) 5155{ 5156 struct cgroup_subsys_state *css = 5157 container_of(work, struct cgroup_subsys_state, destroy_work); 5158 struct cgroup_subsys *ss = css->ss; 5159 struct cgroup *cgrp = css->cgroup; 5160 5161 mutex_lock(&cgroup_mutex); 5162 5163 css->flags |= CSS_RELEASED; 5164 list_del_rcu(&css->sibling); 5165 5166 if (ss) { 5167 /* css release path */ 5168 if (!list_empty(&css->rstat_css_node)) { 5169 cgroup_rstat_flush(cgrp); 5170 list_del_rcu(&css->rstat_css_node); 5171 } 5172 5173 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5174 if (ss->css_released) 5175 ss->css_released(css); 5176 } else { 5177 struct cgroup *tcgrp; 5178 5179 /* cgroup release path */ 5180 TRACE_CGROUP_PATH(release, cgrp); 5181 5182 cgroup_rstat_flush(cgrp); 5183 5184 spin_lock_irq(&css_set_lock); 5185 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5186 tcgrp = cgroup_parent(tcgrp)) 5187 tcgrp->nr_dying_descendants--; 5188 spin_unlock_irq(&css_set_lock); 5189 5190 /* 5191 * There are two control paths which try to determine 5192 * cgroup from dentry without going through kernfs - 5193 * cgroupstats_build() and css_tryget_online_from_dir(). 5194 * Those are supported by RCU protecting clearing of 5195 * cgrp->kn->priv backpointer. 5196 */ 5197 if (cgrp->kn) 5198 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5199 NULL); 5200 } 5201 5202 mutex_unlock(&cgroup_mutex); 5203 5204 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5205 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5206} 5207 5208static void css_release(struct percpu_ref *ref) 5209{ 5210 struct cgroup_subsys_state *css = 5211 container_of(ref, struct cgroup_subsys_state, refcnt); 5212 5213 INIT_WORK(&css->destroy_work, css_release_work_fn); 5214 queue_work(cgroup_destroy_wq, &css->destroy_work); 5215} 5216 5217static void init_and_link_css(struct cgroup_subsys_state *css, 5218 struct cgroup_subsys *ss, struct cgroup *cgrp) 5219{ 5220 lockdep_assert_held(&cgroup_mutex); 5221 5222 cgroup_get_live(cgrp); 5223 5224 memset(css, 0, sizeof(*css)); 5225 css->cgroup = cgrp; 5226 css->ss = ss; 5227 css->id = -1; 5228 INIT_LIST_HEAD(&css->sibling); 5229 INIT_LIST_HEAD(&css->children); 5230 INIT_LIST_HEAD(&css->rstat_css_node); 5231 css->serial_nr = css_serial_nr_next++; 5232 atomic_set(&css->online_cnt, 0); 5233 5234 if (cgroup_parent(cgrp)) { 5235 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5236 css_get(css->parent); 5237 } 5238 5239 if (ss->css_rstat_flush) 5240 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5241 5242 BUG_ON(cgroup_css(cgrp, ss)); 5243} 5244 5245/* invoke ->css_online() on a new CSS and mark it online if successful */ 5246static int online_css(struct cgroup_subsys_state *css) 5247{ 5248 struct cgroup_subsys *ss = css->ss; 5249 int ret = 0; 5250 5251 lockdep_assert_held(&cgroup_mutex); 5252 5253 if (ss->css_online) 5254 ret = ss->css_online(css); 5255 if (!ret) { 5256 css->flags |= CSS_ONLINE; 5257 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5258 5259 atomic_inc(&css->online_cnt); 5260 if (css->parent) 5261 atomic_inc(&css->parent->online_cnt); 5262 } 5263 return ret; 5264} 5265 5266/* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5267static void offline_css(struct cgroup_subsys_state *css) 5268{ 5269 struct cgroup_subsys *ss = css->ss; 5270 5271 lockdep_assert_held(&cgroup_mutex); 5272 5273 if (!(css->flags & CSS_ONLINE)) 5274 return; 5275 5276 if (ss->css_offline) 5277 ss->css_offline(css); 5278 5279 css->flags &= ~CSS_ONLINE; 5280 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5281 5282 wake_up_all(&css->cgroup->offline_waitq); 5283} 5284 5285/** 5286 * css_create - create a cgroup_subsys_state 5287 * @cgrp: the cgroup new css will be associated with 5288 * @ss: the subsys of new css 5289 * 5290 * Create a new css associated with @cgrp - @ss pair. On success, the new 5291 * css is online and installed in @cgrp. This function doesn't create the 5292 * interface files. Returns 0 on success, -errno on failure. 5293 */ 5294static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5295 struct cgroup_subsys *ss) 5296{ 5297 struct cgroup *parent = cgroup_parent(cgrp); 5298 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5299 struct cgroup_subsys_state *css; 5300 int err; 5301 5302 lockdep_assert_held(&cgroup_mutex); 5303 5304 css = ss->css_alloc(parent_css); 5305 if (!css) 5306 css = ERR_PTR(-ENOMEM); 5307 if (IS_ERR(css)) 5308 return css; 5309 5310 init_and_link_css(css, ss, cgrp); 5311 5312 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5313 if (err) 5314 goto err_free_css; 5315 5316 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5317 if (err < 0) 5318 goto err_free_css; 5319 css->id = err; 5320 5321 /* @css is ready to be brought online now, make it visible */ 5322 list_add_tail_rcu(&css->sibling, &parent_css->children); 5323 cgroup_idr_replace(&ss->css_idr, css, css->id); 5324 5325 err = online_css(css); 5326 if (err) 5327 goto err_list_del; 5328 5329 return css; 5330 5331err_list_del: 5332 list_del_rcu(&css->sibling); 5333err_free_css: 5334 list_del_rcu(&css->rstat_css_node); 5335 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5336 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5337 return ERR_PTR(err); 5338} 5339 5340/* 5341 * The returned cgroup is fully initialized including its control mask, but 5342 * it isn't associated with its kernfs_node and doesn't have the control 5343 * mask applied. 5344 */ 5345static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5346 umode_t mode) 5347{ 5348 struct cgroup_root *root = parent->root; 5349 struct cgroup *cgrp, *tcgrp; 5350 struct kernfs_node *kn; 5351 int level = parent->level + 1; 5352 int ret; 5353 5354 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5355 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5356 GFP_KERNEL); 5357 if (!cgrp) 5358 return ERR_PTR(-ENOMEM); 5359 5360 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5361 if (ret) 5362 goto out_free_cgrp; 5363 5364 ret = cgroup_rstat_init(cgrp); 5365 if (ret) 5366 goto out_cancel_ref; 5367 5368 /* create the directory */ 5369 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5370 if (IS_ERR(kn)) { 5371 ret = PTR_ERR(kn); 5372 goto out_stat_exit; 5373 } 5374 cgrp->kn = kn; 5375 5376 init_cgroup_housekeeping(cgrp); 5377 5378 cgrp->self.parent = &parent->self; 5379 cgrp->root = root; 5380 cgrp->level = level; 5381 5382 ret = psi_cgroup_alloc(cgrp); 5383 if (ret) 5384 goto out_kernfs_remove; 5385 5386 ret = cgroup_bpf_inherit(cgrp); 5387 if (ret) 5388 goto out_psi_free; 5389 5390 /* 5391 * New cgroup inherits effective freeze counter, and 5392 * if the parent has to be frozen, the child has too. 5393 */ 5394 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5395 if (cgrp->freezer.e_freeze) { 5396 /* 5397 * Set the CGRP_FREEZE flag, so when a process will be 5398 * attached to the child cgroup, it will become frozen. 5399 * At this point the new cgroup is unpopulated, so we can 5400 * consider it frozen immediately. 5401 */ 5402 set_bit(CGRP_FREEZE, &cgrp->flags); 5403 set_bit(CGRP_FROZEN, &cgrp->flags); 5404 } 5405 5406 spin_lock_irq(&css_set_lock); 5407 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5408 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5409 5410 if (tcgrp != cgrp) { 5411 tcgrp->nr_descendants++; 5412 5413 /* 5414 * If the new cgroup is frozen, all ancestor cgroups 5415 * get a new frozen descendant, but their state can't 5416 * change because of this. 5417 */ 5418 if (cgrp->freezer.e_freeze) 5419 tcgrp->freezer.nr_frozen_descendants++; 5420 } 5421 } 5422 spin_unlock_irq(&css_set_lock); 5423 5424 if (notify_on_release(parent)) 5425 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5426 5427 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5428 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5429 5430 cgrp->self.serial_nr = css_serial_nr_next++; 5431 5432 /* allocation complete, commit to creation */ 5433 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5434 atomic_inc(&root->nr_cgrps); 5435 cgroup_get_live(parent); 5436 5437 /* 5438 * On the default hierarchy, a child doesn't automatically inherit 5439 * subtree_control from the parent. Each is configured manually. 5440 */ 5441 if (!cgroup_on_dfl(cgrp)) 5442 cgrp->subtree_control = cgroup_control(cgrp); 5443 5444 cgroup_propagate_control(cgrp); 5445 5446 return cgrp; 5447 5448out_psi_free: 5449 psi_cgroup_free(cgrp); 5450out_kernfs_remove: 5451 kernfs_remove(cgrp->kn); 5452out_stat_exit: 5453 cgroup_rstat_exit(cgrp); 5454out_cancel_ref: 5455 percpu_ref_exit(&cgrp->self.refcnt); 5456out_free_cgrp: 5457 kfree(cgrp); 5458 return ERR_PTR(ret); 5459} 5460 5461static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5462{ 5463 struct cgroup *cgroup; 5464 int ret = false; 5465 int level = 1; 5466 5467 lockdep_assert_held(&cgroup_mutex); 5468 5469 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5470 if (cgroup->nr_descendants >= cgroup->max_descendants) 5471 goto fail; 5472 5473 if (level > cgroup->max_depth) 5474 goto fail; 5475 5476 level++; 5477 } 5478 5479 ret = true; 5480fail: 5481 return ret; 5482} 5483 5484int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5485{ 5486 struct cgroup *parent, *cgrp; 5487 int ret; 5488 5489 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5490 if (strchr(name, '\n')) 5491 return -EINVAL; 5492 5493 parent = cgroup_kn_lock_live(parent_kn, false); 5494 if (!parent) 5495 return -ENODEV; 5496 5497 if (!cgroup_check_hierarchy_limits(parent)) { 5498 ret = -EAGAIN; 5499 goto out_unlock; 5500 } 5501 5502 cgrp = cgroup_create(parent, name, mode); 5503 if (IS_ERR(cgrp)) { 5504 ret = PTR_ERR(cgrp); 5505 goto out_unlock; 5506 } 5507 5508 /* 5509 * This extra ref will be put in cgroup_free_fn() and guarantees 5510 * that @cgrp->kn is always accessible. 5511 */ 5512 kernfs_get(cgrp->kn); 5513 5514 ret = cgroup_kn_set_ugid(cgrp->kn); 5515 if (ret) 5516 goto out_destroy; 5517 5518 ret = css_populate_dir(&cgrp->self); 5519 if (ret) 5520 goto out_destroy; 5521 5522 ret = cgroup_apply_control_enable(cgrp); 5523 if (ret) 5524 goto out_destroy; 5525 5526 TRACE_CGROUP_PATH(mkdir, cgrp); 5527 5528 /* let's create and online css's */ 5529 kernfs_activate(cgrp->kn); 5530 5531 ret = 0; 5532 goto out_unlock; 5533 5534out_destroy: 5535 cgroup_destroy_locked(cgrp); 5536out_unlock: 5537 cgroup_kn_unlock(parent_kn); 5538 return ret; 5539} 5540 5541/* 5542 * This is called when the refcnt of a css is confirmed to be killed. 5543 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5544 * initiate destruction and put the css ref from kill_css(). 5545 */ 5546static void css_killed_work_fn(struct work_struct *work) 5547{ 5548 struct cgroup_subsys_state *css = 5549 container_of(work, struct cgroup_subsys_state, destroy_work); 5550 5551 mutex_lock(&cgroup_mutex); 5552 5553 do { 5554 offline_css(css); 5555 css_put(css); 5556 /* @css can't go away while we're holding cgroup_mutex */ 5557 css = css->parent; 5558 } while (css && atomic_dec_and_test(&css->online_cnt)); 5559 5560 mutex_unlock(&cgroup_mutex); 5561} 5562 5563/* css kill confirmation processing requires process context, bounce */ 5564static void css_killed_ref_fn(struct percpu_ref *ref) 5565{ 5566 struct cgroup_subsys_state *css = 5567 container_of(ref, struct cgroup_subsys_state, refcnt); 5568 5569 if (atomic_dec_and_test(&css->online_cnt)) { 5570 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5571 queue_work(cgroup_destroy_wq, &css->destroy_work); 5572 } 5573} 5574 5575/** 5576 * kill_css - destroy a css 5577 * @css: css to destroy 5578 * 5579 * This function initiates destruction of @css by removing cgroup interface 5580 * files and putting its base reference. ->css_offline() will be invoked 5581 * asynchronously once css_tryget_online() is guaranteed to fail and when 5582 * the reference count reaches zero, @css will be released. 5583 */ 5584static void kill_css(struct cgroup_subsys_state *css) 5585{ 5586 lockdep_assert_held(&cgroup_mutex); 5587 5588 if (css->flags & CSS_DYING) 5589 return; 5590 5591 css->flags |= CSS_DYING; 5592 5593 /* 5594 * This must happen before css is disassociated with its cgroup. 5595 * See seq_css() for details. 5596 */ 5597 css_clear_dir(css); 5598 5599 /* 5600 * Killing would put the base ref, but we need to keep it alive 5601 * until after ->css_offline(). 5602 */ 5603 css_get(css); 5604 5605 /* 5606 * cgroup core guarantees that, by the time ->css_offline() is 5607 * invoked, no new css reference will be given out via 5608 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5609 * proceed to offlining css's because percpu_ref_kill() doesn't 5610 * guarantee that the ref is seen as killed on all CPUs on return. 5611 * 5612 * Use percpu_ref_kill_and_confirm() to get notifications as each 5613 * css is confirmed to be seen as killed on all CPUs. 5614 */ 5615 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5616} 5617 5618/** 5619 * cgroup_destroy_locked - the first stage of cgroup destruction 5620 * @cgrp: cgroup to be destroyed 5621 * 5622 * css's make use of percpu refcnts whose killing latency shouldn't be 5623 * exposed to userland and are RCU protected. Also, cgroup core needs to 5624 * guarantee that css_tryget_online() won't succeed by the time 5625 * ->css_offline() is invoked. To satisfy all the requirements, 5626 * destruction is implemented in the following two steps. 5627 * 5628 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5629 * userland visible parts and start killing the percpu refcnts of 5630 * css's. Set up so that the next stage will be kicked off once all 5631 * the percpu refcnts are confirmed to be killed. 5632 * 5633 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5634 * rest of destruction. Once all cgroup references are gone, the 5635 * cgroup is RCU-freed. 5636 * 5637 * This function implements s1. After this step, @cgrp is gone as far as 5638 * the userland is concerned and a new cgroup with the same name may be 5639 * created. As cgroup doesn't care about the names internally, this 5640 * doesn't cause any problem. 5641 */ 5642static int cgroup_destroy_locked(struct cgroup *cgrp) 5643 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5644{ 5645 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5646 struct cgroup_subsys_state *css; 5647 struct cgrp_cset_link *link; 5648 int ssid; 5649 5650 lockdep_assert_held(&cgroup_mutex); 5651 5652 /* 5653 * Only migration can raise populated from zero and we're already 5654 * holding cgroup_mutex. 5655 */ 5656 if (cgroup_is_populated(cgrp)) 5657 return -EBUSY; 5658 5659 /* 5660 * Make sure there's no live children. We can't test emptiness of 5661 * ->self.children as dead children linger on it while being 5662 * drained; otherwise, "rmdir parent/child parent" may fail. 5663 */ 5664 if (css_has_online_children(&cgrp->self)) 5665 return -EBUSY; 5666 5667 /* 5668 * Mark @cgrp and the associated csets dead. The former prevents 5669 * further task migration and child creation by disabling 5670 * cgroup_lock_live_group(). The latter makes the csets ignored by 5671 * the migration path. 5672 */ 5673 cgrp->self.flags &= ~CSS_ONLINE; 5674 5675 spin_lock_irq(&css_set_lock); 5676 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5677 link->cset->dead = true; 5678 spin_unlock_irq(&css_set_lock); 5679 5680 /* initiate massacre of all css's */ 5681 for_each_css(css, ssid, cgrp) 5682 kill_css(css); 5683 5684 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5685 css_clear_dir(&cgrp->self); 5686 kernfs_remove(cgrp->kn); 5687 5688 if (cgroup_is_threaded(cgrp)) 5689 parent->nr_threaded_children--; 5690 5691 spin_lock_irq(&css_set_lock); 5692 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5693 tcgrp->nr_descendants--; 5694 tcgrp->nr_dying_descendants++; 5695 /* 5696 * If the dying cgroup is frozen, decrease frozen descendants 5697 * counters of ancestor cgroups. 5698 */ 5699 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5700 tcgrp->freezer.nr_frozen_descendants--; 5701 } 5702 spin_unlock_irq(&css_set_lock); 5703 5704 cgroup1_check_for_release(parent); 5705 5706 cgroup_bpf_offline(cgrp); 5707 5708 /* put the base reference */ 5709 percpu_ref_kill(&cgrp->self.refcnt); 5710 5711 return 0; 5712}; 5713 5714int cgroup_rmdir(struct kernfs_node *kn) 5715{ 5716 struct cgroup *cgrp; 5717 int ret = 0; 5718 5719 cgrp = cgroup_kn_lock_live(kn, false); 5720 if (!cgrp) 5721 return 0; 5722 5723 ret = cgroup_destroy_locked(cgrp); 5724 if (!ret) 5725 TRACE_CGROUP_PATH(rmdir, cgrp); 5726 5727 cgroup_kn_unlock(kn); 5728 return ret; 5729} 5730 5731static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5732 .show_options = cgroup_show_options, 5733 .mkdir = cgroup_mkdir, 5734 .rmdir = cgroup_rmdir, 5735 .show_path = cgroup_show_path, 5736}; 5737 5738static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5739{ 5740 struct cgroup_subsys_state *css; 5741 5742 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5743 5744 mutex_lock(&cgroup_mutex); 5745 5746 idr_init(&ss->css_idr); 5747 INIT_LIST_HEAD(&ss->cfts); 5748 5749 /* Create the root cgroup state for this subsystem */ 5750 ss->root = &cgrp_dfl_root; 5751 css = ss->css_alloc(NULL); 5752 /* We don't handle early failures gracefully */ 5753 BUG_ON(IS_ERR(css)); 5754 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5755 5756 /* 5757 * Root csses are never destroyed and we can't initialize 5758 * percpu_ref during early init. Disable refcnting. 5759 */ 5760 css->flags |= CSS_NO_REF; 5761 5762 if (early) { 5763 /* allocation can't be done safely during early init */ 5764 css->id = 1; 5765 } else { 5766 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5767 BUG_ON(css->id < 0); 5768 } 5769 5770 /* Update the init_css_set to contain a subsys 5771 * pointer to this state - since the subsystem is 5772 * newly registered, all tasks and hence the 5773 * init_css_set is in the subsystem's root cgroup. */ 5774 init_css_set.subsys[ss->id] = css; 5775 5776 have_fork_callback |= (bool)ss->fork << ss->id; 5777 have_exit_callback |= (bool)ss->exit << ss->id; 5778 have_release_callback |= (bool)ss->release << ss->id; 5779 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5780 5781 /* At system boot, before all subsystems have been 5782 * registered, no tasks have been forked, so we don't 5783 * need to invoke fork callbacks here. */ 5784 BUG_ON(!list_empty(&init_task.tasks)); 5785 5786 BUG_ON(online_css(css)); 5787 5788 mutex_unlock(&cgroup_mutex); 5789} 5790 5791/** 5792 * cgroup_init_early - cgroup initialization at system boot 5793 * 5794 * Initialize cgroups at system boot, and initialize any 5795 * subsystems that request early init. 5796 */ 5797int __init cgroup_init_early(void) 5798{ 5799 static struct cgroup_fs_context __initdata ctx; 5800 struct cgroup_subsys *ss; 5801 int i; 5802 5803 ctx.root = &cgrp_dfl_root; 5804 init_cgroup_root(&ctx); 5805 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5806 5807 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5808 5809 for_each_subsys(ss, i) { 5810 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5811 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5812 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5813 ss->id, ss->name); 5814 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5815 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5816 5817 ss->id = i; 5818 ss->name = cgroup_subsys_name[i]; 5819 if (!ss->legacy_name) 5820 ss->legacy_name = cgroup_subsys_name[i]; 5821 5822 if (ss->early_init) 5823 cgroup_init_subsys(ss, true); 5824 } 5825 return 0; 5826} 5827 5828/** 5829 * cgroup_init - cgroup initialization 5830 * 5831 * Register cgroup filesystem and /proc file, and initialize 5832 * any subsystems that didn't request early init. 5833 */ 5834int __init cgroup_init(void) 5835{ 5836 struct cgroup_subsys *ss; 5837 int ssid; 5838 5839 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5840 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5841 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5842 5843 cgroup_rstat_boot(); 5844 5845 /* 5846 * The latency of the synchronize_rcu() is too high for cgroups, 5847 * avoid it at the cost of forcing all readers into the slow path. 5848 */ 5849 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5850 5851 get_user_ns(init_cgroup_ns.user_ns); 5852 5853 mutex_lock(&cgroup_mutex); 5854 5855 /* 5856 * Add init_css_set to the hash table so that dfl_root can link to 5857 * it during init. 5858 */ 5859 hash_add(css_set_table, &init_css_set.hlist, 5860 css_set_hash(init_css_set.subsys)); 5861 5862 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5863 5864 mutex_unlock(&cgroup_mutex); 5865 5866 for_each_subsys(ss, ssid) { 5867 if (ss->early_init) { 5868 struct cgroup_subsys_state *css = 5869 init_css_set.subsys[ss->id]; 5870 5871 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5872 GFP_KERNEL); 5873 BUG_ON(css->id < 0); 5874 } else { 5875 cgroup_init_subsys(ss, false); 5876 } 5877 5878 list_add_tail(&init_css_set.e_cset_node[ssid], 5879 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5880 5881 /* 5882 * Setting dfl_root subsys_mask needs to consider the 5883 * disabled flag and cftype registration needs kmalloc, 5884 * both of which aren't available during early_init. 5885 */ 5886 if (!cgroup_ssid_enabled(ssid)) 5887 continue; 5888 5889 if (cgroup1_ssid_disabled(ssid)) 5890 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5891 ss->name); 5892 5893 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5894 5895 /* implicit controllers must be threaded too */ 5896 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5897 5898 if (ss->implicit_on_dfl) 5899 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5900 else if (!ss->dfl_cftypes) 5901 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5902 5903 if (ss->threaded) 5904 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5905 5906 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5907 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5908 } else { 5909 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5910 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5911 } 5912 5913 if (ss->bind) 5914 ss->bind(init_css_set.subsys[ssid]); 5915 5916 mutex_lock(&cgroup_mutex); 5917 css_populate_dir(init_css_set.subsys[ssid]); 5918 mutex_unlock(&cgroup_mutex); 5919 } 5920 5921 /* init_css_set.subsys[] has been updated, re-hash */ 5922 hash_del(&init_css_set.hlist); 5923 hash_add(css_set_table, &init_css_set.hlist, 5924 css_set_hash(init_css_set.subsys)); 5925 5926 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5927 WARN_ON(register_filesystem(&cgroup_fs_type)); 5928 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5929 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5930#ifdef CONFIG_CPUSETS 5931 WARN_ON(register_filesystem(&cpuset_fs_type)); 5932#endif 5933 5934 return 0; 5935} 5936 5937static int __init cgroup_wq_init(void) 5938{ 5939 /* 5940 * There isn't much point in executing destruction path in 5941 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5942 * Use 1 for @max_active. 5943 * 5944 * We would prefer to do this in cgroup_init() above, but that 5945 * is called before init_workqueues(): so leave this until after. 5946 */ 5947 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5948 BUG_ON(!cgroup_destroy_wq); 5949 return 0; 5950} 5951core_initcall(cgroup_wq_init); 5952 5953void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5954{ 5955 struct kernfs_node *kn; 5956 5957 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5958 if (!kn) 5959 return; 5960 kernfs_path(kn, buf, buflen); 5961 kernfs_put(kn); 5962} 5963 5964/* 5965 * cgroup_get_from_id : get the cgroup associated with cgroup id 5966 * @id: cgroup id 5967 * On success return the cgrp, on failure return NULL 5968 */ 5969struct cgroup *cgroup_get_from_id(u64 id) 5970{ 5971 struct kernfs_node *kn; 5972 struct cgroup *cgrp = NULL; 5973 5974 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5975 if (!kn) 5976 goto out; 5977 5978 rcu_read_lock(); 5979 5980 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5981 if (cgrp && !cgroup_tryget(cgrp)) 5982 cgrp = NULL; 5983 5984 rcu_read_unlock(); 5985 5986 kernfs_put(kn); 5987out: 5988 return cgrp; 5989} 5990EXPORT_SYMBOL_GPL(cgroup_get_from_id); 5991 5992/* 5993 * proc_cgroup_show() 5994 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5995 * - Used for /proc/<pid>/cgroup. 5996 */ 5997int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5998 struct pid *pid, struct task_struct *tsk) 5999{ 6000 char *buf; 6001 int retval; 6002 struct cgroup_root *root; 6003 6004 retval = -ENOMEM; 6005 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6006 if (!buf) 6007 goto out; 6008 6009 mutex_lock(&cgroup_mutex); 6010 spin_lock_irq(&css_set_lock); 6011 6012 for_each_root(root) { 6013 struct cgroup_subsys *ss; 6014 struct cgroup *cgrp; 6015 int ssid, count = 0; 6016 6017 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 6018 continue; 6019 6020 seq_printf(m, "%d:", root->hierarchy_id); 6021 if (root != &cgrp_dfl_root) 6022 for_each_subsys(ss, ssid) 6023 if (root->subsys_mask & (1 << ssid)) 6024 seq_printf(m, "%s%s", count++ ? "," : "", 6025 ss->legacy_name); 6026 if (strlen(root->name)) 6027 seq_printf(m, "%sname=%s", count ? "," : "", 6028 root->name); 6029 seq_putc(m, ':'); 6030 6031 cgrp = task_cgroup_from_root(tsk, root); 6032 6033 /* 6034 * On traditional hierarchies, all zombie tasks show up as 6035 * belonging to the root cgroup. On the default hierarchy, 6036 * while a zombie doesn't show up in "cgroup.procs" and 6037 * thus can't be migrated, its /proc/PID/cgroup keeps 6038 * reporting the cgroup it belonged to before exiting. If 6039 * the cgroup is removed before the zombie is reaped, 6040 * " (deleted)" is appended to the cgroup path. 6041 */ 6042 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6043 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6044 current->nsproxy->cgroup_ns); 6045 if (retval >= PATH_MAX) 6046 retval = -ENAMETOOLONG; 6047 if (retval < 0) 6048 goto out_unlock; 6049 6050 seq_puts(m, buf); 6051 } else { 6052 seq_puts(m, "/"); 6053 } 6054 6055 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6056 seq_puts(m, " (deleted)\n"); 6057 else 6058 seq_putc(m, '\n'); 6059 } 6060 6061 retval = 0; 6062out_unlock: 6063 spin_unlock_irq(&css_set_lock); 6064 mutex_unlock(&cgroup_mutex); 6065 kfree(buf); 6066out: 6067 return retval; 6068} 6069 6070/** 6071 * cgroup_fork - initialize cgroup related fields during copy_process() 6072 * @child: pointer to task_struct of forking parent process. 6073 * 6074 * A task is associated with the init_css_set until cgroup_post_fork() 6075 * attaches it to the target css_set. 6076 */ 6077void cgroup_fork(struct task_struct *child) 6078{ 6079 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6080 INIT_LIST_HEAD(&child->cg_list); 6081} 6082 6083static struct cgroup *cgroup_get_from_file(struct file *f) 6084{ 6085 struct cgroup_subsys_state *css; 6086 struct cgroup *cgrp; 6087 6088 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6089 if (IS_ERR(css)) 6090 return ERR_CAST(css); 6091 6092 cgrp = css->cgroup; 6093 if (!cgroup_on_dfl(cgrp)) { 6094 cgroup_put(cgrp); 6095 return ERR_PTR(-EBADF); 6096 } 6097 6098 return cgrp; 6099} 6100 6101/** 6102 * cgroup_css_set_fork - find or create a css_set for a child process 6103 * @kargs: the arguments passed to create the child process 6104 * 6105 * This functions finds or creates a new css_set which the child 6106 * process will be attached to in cgroup_post_fork(). By default, 6107 * the child process will be given the same css_set as its parent. 6108 * 6109 * If CLONE_INTO_CGROUP is specified this function will try to find an 6110 * existing css_set which includes the requested cgroup and if not create 6111 * a new css_set that the child will be attached to later. If this function 6112 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6113 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6114 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6115 * to the target cgroup. 6116 */ 6117static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6118 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6119{ 6120 int ret; 6121 struct cgroup *dst_cgrp = NULL; 6122 struct css_set *cset; 6123 struct super_block *sb; 6124 struct file *f; 6125 6126 if (kargs->flags & CLONE_INTO_CGROUP) 6127 mutex_lock(&cgroup_mutex); 6128 6129 cgroup_threadgroup_change_begin(current); 6130 6131 spin_lock_irq(&css_set_lock); 6132 cset = task_css_set(current); 6133 get_css_set(cset); 6134 spin_unlock_irq(&css_set_lock); 6135 6136 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6137 kargs->cset = cset; 6138 return 0; 6139 } 6140 6141 f = fget_raw(kargs->cgroup); 6142 if (!f) { 6143 ret = -EBADF; 6144 goto err; 6145 } 6146 sb = f->f_path.dentry->d_sb; 6147 6148 dst_cgrp = cgroup_get_from_file(f); 6149 if (IS_ERR(dst_cgrp)) { 6150 ret = PTR_ERR(dst_cgrp); 6151 dst_cgrp = NULL; 6152 goto err; 6153 } 6154 6155 if (cgroup_is_dead(dst_cgrp)) { 6156 ret = -ENODEV; 6157 goto err; 6158 } 6159 6160 /* 6161 * Verify that we the target cgroup is writable for us. This is 6162 * usually done by the vfs layer but since we're not going through 6163 * the vfs layer here we need to do it "manually". 6164 */ 6165 ret = cgroup_may_write(dst_cgrp, sb); 6166 if (ret) 6167 goto err; 6168 6169 /* 6170 * Spawning a task directly into a cgroup works by passing a file 6171 * descriptor to the target cgroup directory. This can even be an O_PATH 6172 * file descriptor. But it can never be a cgroup.procs file descriptor. 6173 * This was done on purpose so spawning into a cgroup could be 6174 * conceptualized as an atomic 6175 * 6176 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6177 * write(fd, <child-pid>, ...); 6178 * 6179 * sequence, i.e. it's a shorthand for the caller opening and writing 6180 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6181 * to always use the caller's credentials. 6182 */ 6183 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6184 !(kargs->flags & CLONE_THREAD), 6185 current->nsproxy->cgroup_ns); 6186 if (ret) 6187 goto err; 6188 6189 kargs->cset = find_css_set(cset, dst_cgrp); 6190 if (!kargs->cset) { 6191 ret = -ENOMEM; 6192 goto err; 6193 } 6194 6195 put_css_set(cset); 6196 fput(f); 6197 kargs->cgrp = dst_cgrp; 6198 return ret; 6199 6200err: 6201 cgroup_threadgroup_change_end(current); 6202 mutex_unlock(&cgroup_mutex); 6203 if (f) 6204 fput(f); 6205 if (dst_cgrp) 6206 cgroup_put(dst_cgrp); 6207 put_css_set(cset); 6208 if (kargs->cset) 6209 put_css_set(kargs->cset); 6210 return ret; 6211} 6212 6213/** 6214 * cgroup_css_set_put_fork - drop references we took during fork 6215 * @kargs: the arguments passed to create the child process 6216 * 6217 * Drop references to the prepared css_set and target cgroup if 6218 * CLONE_INTO_CGROUP was requested. 6219 */ 6220static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6221 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6222{ 6223 cgroup_threadgroup_change_end(current); 6224 6225 if (kargs->flags & CLONE_INTO_CGROUP) { 6226 struct cgroup *cgrp = kargs->cgrp; 6227 struct css_set *cset = kargs->cset; 6228 6229 mutex_unlock(&cgroup_mutex); 6230 6231 if (cset) { 6232 put_css_set(cset); 6233 kargs->cset = NULL; 6234 } 6235 6236 if (cgrp) { 6237 cgroup_put(cgrp); 6238 kargs->cgrp = NULL; 6239 } 6240 } 6241} 6242 6243/** 6244 * cgroup_can_fork - called on a new task before the process is exposed 6245 * @child: the child process 6246 * @kargs: the arguments passed to create the child process 6247 * 6248 * This prepares a new css_set for the child process which the child will 6249 * be attached to in cgroup_post_fork(). 6250 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6251 * callback returns an error, the fork aborts with that error code. This 6252 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6253 */ 6254int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6255{ 6256 struct cgroup_subsys *ss; 6257 int i, j, ret; 6258 6259 ret = cgroup_css_set_fork(kargs); 6260 if (ret) 6261 return ret; 6262 6263 do_each_subsys_mask(ss, i, have_canfork_callback) { 6264 ret = ss->can_fork(child, kargs->cset); 6265 if (ret) 6266 goto out_revert; 6267 } while_each_subsys_mask(); 6268 6269 return 0; 6270 6271out_revert: 6272 for_each_subsys(ss, j) { 6273 if (j >= i) 6274 break; 6275 if (ss->cancel_fork) 6276 ss->cancel_fork(child, kargs->cset); 6277 } 6278 6279 cgroup_css_set_put_fork(kargs); 6280 6281 return ret; 6282} 6283 6284/** 6285 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6286 * @child: the child process 6287 * @kargs: the arguments passed to create the child process 6288 * 6289 * This calls the cancel_fork() callbacks if a fork failed *after* 6290 * cgroup_can_fork() succeeded and cleans up references we took to 6291 * prepare a new css_set for the child process in cgroup_can_fork(). 6292 */ 6293void cgroup_cancel_fork(struct task_struct *child, 6294 struct kernel_clone_args *kargs) 6295{ 6296 struct cgroup_subsys *ss; 6297 int i; 6298 6299 for_each_subsys(ss, i) 6300 if (ss->cancel_fork) 6301 ss->cancel_fork(child, kargs->cset); 6302 6303 cgroup_css_set_put_fork(kargs); 6304} 6305 6306/** 6307 * cgroup_post_fork - finalize cgroup setup for the child process 6308 * @child: the child process 6309 * @kargs: the arguments passed to create the child process 6310 * 6311 * Attach the child process to its css_set calling the subsystem fork() 6312 * callbacks. 6313 */ 6314void cgroup_post_fork(struct task_struct *child, 6315 struct kernel_clone_args *kargs) 6316 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6317{ 6318 unsigned long cgrp_flags = 0; 6319 bool kill = false; 6320 struct cgroup_subsys *ss; 6321 struct css_set *cset; 6322 int i; 6323 6324 cset = kargs->cset; 6325 kargs->cset = NULL; 6326 6327 spin_lock_irq(&css_set_lock); 6328 6329 /* init tasks are special, only link regular threads */ 6330 if (likely(child->pid)) { 6331 if (kargs->cgrp) 6332 cgrp_flags = kargs->cgrp->flags; 6333 else 6334 cgrp_flags = cset->dfl_cgrp->flags; 6335 6336 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6337 cset->nr_tasks++; 6338 css_set_move_task(child, NULL, cset, false); 6339 } else { 6340 put_css_set(cset); 6341 cset = NULL; 6342 } 6343 6344 if (!(child->flags & PF_KTHREAD)) { 6345 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6346 /* 6347 * If the cgroup has to be frozen, the new task has 6348 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6349 * get the task into the frozen state. 6350 */ 6351 spin_lock(&child->sighand->siglock); 6352 WARN_ON_ONCE(child->frozen); 6353 child->jobctl |= JOBCTL_TRAP_FREEZE; 6354 spin_unlock(&child->sighand->siglock); 6355 6356 /* 6357 * Calling cgroup_update_frozen() isn't required here, 6358 * because it will be called anyway a bit later from 6359 * do_freezer_trap(). So we avoid cgroup's transient 6360 * switch from the frozen state and back. 6361 */ 6362 } 6363 6364 /* 6365 * If the cgroup is to be killed notice it now and take the 6366 * child down right after we finished preparing it for 6367 * userspace. 6368 */ 6369 kill = test_bit(CGRP_KILL, &cgrp_flags); 6370 } 6371 6372 spin_unlock_irq(&css_set_lock); 6373 6374 /* 6375 * Call ss->fork(). This must happen after @child is linked on 6376 * css_set; otherwise, @child might change state between ->fork() 6377 * and addition to css_set. 6378 */ 6379 do_each_subsys_mask(ss, i, have_fork_callback) { 6380 ss->fork(child); 6381 } while_each_subsys_mask(); 6382 6383 /* Make the new cset the root_cset of the new cgroup namespace. */ 6384 if (kargs->flags & CLONE_NEWCGROUP) { 6385 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6386 6387 get_css_set(cset); 6388 child->nsproxy->cgroup_ns->root_cset = cset; 6389 put_css_set(rcset); 6390 } 6391 6392 /* Cgroup has to be killed so take down child immediately. */ 6393 if (unlikely(kill)) 6394 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6395 6396 cgroup_css_set_put_fork(kargs); 6397} 6398 6399/** 6400 * cgroup_exit - detach cgroup from exiting task 6401 * @tsk: pointer to task_struct of exiting process 6402 * 6403 * Description: Detach cgroup from @tsk. 6404 * 6405 */ 6406void cgroup_exit(struct task_struct *tsk) 6407{ 6408 struct cgroup_subsys *ss; 6409 struct css_set *cset; 6410 int i; 6411 6412 spin_lock_irq(&css_set_lock); 6413 6414 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6415 cset = task_css_set(tsk); 6416 css_set_move_task(tsk, cset, NULL, false); 6417 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6418 cset->nr_tasks--; 6419 6420 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6421 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6422 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6423 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6424 6425 spin_unlock_irq(&css_set_lock); 6426 6427 /* see cgroup_post_fork() for details */ 6428 do_each_subsys_mask(ss, i, have_exit_callback) { 6429 ss->exit(tsk); 6430 } while_each_subsys_mask(); 6431} 6432 6433void cgroup_release(struct task_struct *task) 6434{ 6435 struct cgroup_subsys *ss; 6436 int ssid; 6437 6438 do_each_subsys_mask(ss, ssid, have_release_callback) { 6439 ss->release(task); 6440 } while_each_subsys_mask(); 6441 6442 spin_lock_irq(&css_set_lock); 6443 css_set_skip_task_iters(task_css_set(task), task); 6444 list_del_init(&task->cg_list); 6445 spin_unlock_irq(&css_set_lock); 6446} 6447 6448void cgroup_free(struct task_struct *task) 6449{ 6450 struct css_set *cset = task_css_set(task); 6451 put_css_set(cset); 6452} 6453 6454static int __init cgroup_disable(char *str) 6455{ 6456 struct cgroup_subsys *ss; 6457 char *token; 6458 int i; 6459 6460 while ((token = strsep(&str, ",")) != NULL) { 6461 if (!*token) 6462 continue; 6463 6464 for_each_subsys(ss, i) { 6465 if (strcmp(token, ss->name) && 6466 strcmp(token, ss->legacy_name)) 6467 continue; 6468 6469 static_branch_disable(cgroup_subsys_enabled_key[i]); 6470 pr_info("Disabling %s control group subsystem\n", 6471 ss->name); 6472 } 6473 6474 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6475 if (strcmp(token, cgroup_opt_feature_names[i])) 6476 continue; 6477 cgroup_feature_disable_mask |= 1 << i; 6478 pr_info("Disabling %s control group feature\n", 6479 cgroup_opt_feature_names[i]); 6480 break; 6481 } 6482 } 6483 return 1; 6484} 6485__setup("cgroup_disable=", cgroup_disable); 6486 6487void __init __weak enable_debug_cgroup(void) { } 6488 6489static int __init enable_cgroup_debug(char *str) 6490{ 6491 cgroup_debug = true; 6492 enable_debug_cgroup(); 6493 return 1; 6494} 6495__setup("cgroup_debug", enable_cgroup_debug); 6496 6497/** 6498 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6499 * @dentry: directory dentry of interest 6500 * @ss: subsystem of interest 6501 * 6502 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6503 * to get the corresponding css and return it. If such css doesn't exist 6504 * or can't be pinned, an ERR_PTR value is returned. 6505 */ 6506struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6507 struct cgroup_subsys *ss) 6508{ 6509 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6510 struct file_system_type *s_type = dentry->d_sb->s_type; 6511 struct cgroup_subsys_state *css = NULL; 6512 struct cgroup *cgrp; 6513 6514 /* is @dentry a cgroup dir? */ 6515 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6516 !kn || kernfs_type(kn) != KERNFS_DIR) 6517 return ERR_PTR(-EBADF); 6518 6519 rcu_read_lock(); 6520 6521 /* 6522 * This path doesn't originate from kernfs and @kn could already 6523 * have been or be removed at any point. @kn->priv is RCU 6524 * protected for this access. See css_release_work_fn() for details. 6525 */ 6526 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6527 if (cgrp) 6528 css = cgroup_css(cgrp, ss); 6529 6530 if (!css || !css_tryget_online(css)) 6531 css = ERR_PTR(-ENOENT); 6532 6533 rcu_read_unlock(); 6534 return css; 6535} 6536 6537/** 6538 * css_from_id - lookup css by id 6539 * @id: the cgroup id 6540 * @ss: cgroup subsys to be looked into 6541 * 6542 * Returns the css if there's valid one with @id, otherwise returns NULL. 6543 * Should be called under rcu_read_lock(). 6544 */ 6545struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6546{ 6547 WARN_ON_ONCE(!rcu_read_lock_held()); 6548 return idr_find(&ss->css_idr, id); 6549} 6550 6551/** 6552 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6553 * @path: path on the default hierarchy 6554 * 6555 * Find the cgroup at @path on the default hierarchy, increment its 6556 * reference count and return it. Returns pointer to the found cgroup on 6557 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6558 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6559 */ 6560struct cgroup *cgroup_get_from_path(const char *path) 6561{ 6562 struct kernfs_node *kn; 6563 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6564 6565 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6566 if (!kn) 6567 goto out; 6568 6569 if (kernfs_type(kn) != KERNFS_DIR) { 6570 cgrp = ERR_PTR(-ENOTDIR); 6571 goto out_kernfs; 6572 } 6573 6574 rcu_read_lock(); 6575 6576 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6577 if (!cgrp || !cgroup_tryget(cgrp)) 6578 cgrp = ERR_PTR(-ENOENT); 6579 6580 rcu_read_unlock(); 6581 6582out_kernfs: 6583 kernfs_put(kn); 6584out: 6585 return cgrp; 6586} 6587EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6588 6589/** 6590 * cgroup_get_from_fd - get a cgroup pointer from a fd 6591 * @fd: fd obtained by open(cgroup2_dir) 6592 * 6593 * Find the cgroup from a fd which should be obtained 6594 * by opening a cgroup directory. Returns a pointer to the 6595 * cgroup on success. ERR_PTR is returned if the cgroup 6596 * cannot be found. 6597 */ 6598struct cgroup *cgroup_get_from_fd(int fd) 6599{ 6600 struct cgroup *cgrp; 6601 struct file *f; 6602 6603 f = fget_raw(fd); 6604 if (!f) 6605 return ERR_PTR(-EBADF); 6606 6607 cgrp = cgroup_get_from_file(f); 6608 fput(f); 6609 return cgrp; 6610} 6611EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6612 6613static u64 power_of_ten(int power) 6614{ 6615 u64 v = 1; 6616 while (power--) 6617 v *= 10; 6618 return v; 6619} 6620 6621/** 6622 * cgroup_parse_float - parse a floating number 6623 * @input: input string 6624 * @dec_shift: number of decimal digits to shift 6625 * @v: output 6626 * 6627 * Parse a decimal floating point number in @input and store the result in 6628 * @v with decimal point right shifted @dec_shift times. For example, if 6629 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6630 * Returns 0 on success, -errno otherwise. 6631 * 6632 * There's nothing cgroup specific about this function except that it's 6633 * currently the only user. 6634 */ 6635int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6636{ 6637 s64 whole, frac = 0; 6638 int fstart = 0, fend = 0, flen; 6639 6640 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6641 return -EINVAL; 6642 if (frac < 0) 6643 return -EINVAL; 6644 6645 flen = fend > fstart ? fend - fstart : 0; 6646 if (flen < dec_shift) 6647 frac *= power_of_ten(dec_shift - flen); 6648 else 6649 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6650 6651 *v = whole * power_of_ten(dec_shift) + frac; 6652 return 0; 6653} 6654 6655/* 6656 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6657 * definition in cgroup-defs.h. 6658 */ 6659#ifdef CONFIG_SOCK_CGROUP_DATA 6660 6661void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6662{ 6663 struct cgroup *cgroup; 6664 6665 rcu_read_lock(); 6666 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6667 if (in_interrupt()) { 6668 cgroup = &cgrp_dfl_root.cgrp; 6669 cgroup_get(cgroup); 6670 goto out; 6671 } 6672 6673 while (true) { 6674 struct css_set *cset; 6675 6676 cset = task_css_set(current); 6677 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6678 cgroup = cset->dfl_cgrp; 6679 break; 6680 } 6681 cpu_relax(); 6682 } 6683out: 6684 skcd->cgroup = cgroup; 6685 cgroup_bpf_get(cgroup); 6686 rcu_read_unlock(); 6687} 6688 6689void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6690{ 6691 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6692 6693 /* 6694 * We might be cloning a socket which is left in an empty 6695 * cgroup and the cgroup might have already been rmdir'd. 6696 * Don't use cgroup_get_live(). 6697 */ 6698 cgroup_get(cgrp); 6699 cgroup_bpf_get(cgrp); 6700} 6701 6702void cgroup_sk_free(struct sock_cgroup_data *skcd) 6703{ 6704 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6705 6706 cgroup_bpf_put(cgrp); 6707 cgroup_put(cgrp); 6708} 6709 6710#endif /* CONFIG_SOCK_CGROUP_DATA */ 6711 6712#ifdef CONFIG_SYSFS 6713static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6714 ssize_t size, const char *prefix) 6715{ 6716 struct cftype *cft; 6717 ssize_t ret = 0; 6718 6719 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6720 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6721 continue; 6722 6723 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 6724 continue; 6725 6726 if (prefix) 6727 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6728 6729 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6730 6731 if (WARN_ON(ret >= size)) 6732 break; 6733 } 6734 6735 return ret; 6736} 6737 6738static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6739 char *buf) 6740{ 6741 struct cgroup_subsys *ss; 6742 int ssid; 6743 ssize_t ret = 0; 6744 6745 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6746 NULL); 6747 6748 for_each_subsys(ss, ssid) 6749 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6750 PAGE_SIZE - ret, 6751 cgroup_subsys_name[ssid]); 6752 6753 return ret; 6754} 6755static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6756 6757static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6758 char *buf) 6759{ 6760 return snprintf(buf, PAGE_SIZE, 6761 "nsdelegate\n" 6762 "memory_localevents\n" 6763 "memory_recursiveprot\n"); 6764} 6765static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6766 6767static struct attribute *cgroup_sysfs_attrs[] = { 6768 &cgroup_delegate_attr.attr, 6769 &cgroup_features_attr.attr, 6770 NULL, 6771}; 6772 6773static const struct attribute_group cgroup_sysfs_attr_group = { 6774 .attrs = cgroup_sysfs_attrs, 6775 .name = "cgroup", 6776}; 6777 6778static int __init cgroup_sysfs_init(void) 6779{ 6780 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6781} 6782subsys_initcall(cgroup_sysfs_init); 6783 6784#endif /* CONFIG_SYSFS */