rstat.c (12745B)
1// SPDX-License-Identifier: GPL-2.0-only 2#include "cgroup-internal.h" 3 4#include <linux/sched/cputime.h> 5 6static DEFINE_SPINLOCK(cgroup_rstat_lock); 7static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); 8 9static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); 10 11static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) 12{ 13 return per_cpu_ptr(cgrp->rstat_cpu, cpu); 14} 15 16/** 17 * cgroup_rstat_updated - keep track of updated rstat_cpu 18 * @cgrp: target cgroup 19 * @cpu: cpu on which rstat_cpu was updated 20 * 21 * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching 22 * rstat_cpu->updated_children list. See the comment on top of 23 * cgroup_rstat_cpu definition for details. 24 */ 25void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) 26{ 27 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); 28 unsigned long flags; 29 30 /* 31 * Speculative already-on-list test. This may race leading to 32 * temporary inaccuracies, which is fine. 33 * 34 * Because @parent's updated_children is terminated with @parent 35 * instead of NULL, we can tell whether @cgrp is on the list by 36 * testing the next pointer for NULL. 37 */ 38 if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next)) 39 return; 40 41 raw_spin_lock_irqsave(cpu_lock, flags); 42 43 /* put @cgrp and all ancestors on the corresponding updated lists */ 44 while (true) { 45 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 46 struct cgroup *parent = cgroup_parent(cgrp); 47 struct cgroup_rstat_cpu *prstatc; 48 49 /* 50 * Both additions and removals are bottom-up. If a cgroup 51 * is already in the tree, all ancestors are. 52 */ 53 if (rstatc->updated_next) 54 break; 55 56 /* Root has no parent to link it to, but mark it busy */ 57 if (!parent) { 58 rstatc->updated_next = cgrp; 59 break; 60 } 61 62 prstatc = cgroup_rstat_cpu(parent, cpu); 63 rstatc->updated_next = prstatc->updated_children; 64 prstatc->updated_children = cgrp; 65 66 cgrp = parent; 67 } 68 69 raw_spin_unlock_irqrestore(cpu_lock, flags); 70} 71 72/** 73 * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree 74 * @pos: current position 75 * @root: root of the tree to traversal 76 * @cpu: target cpu 77 * 78 * Walks the updated rstat_cpu tree on @cpu from @root. %NULL @pos starts 79 * the traversal and %NULL return indicates the end. During traversal, 80 * each returned cgroup is unlinked from the tree. Must be called with the 81 * matching cgroup_rstat_cpu_lock held. 82 * 83 * The only ordering guarantee is that, for a parent and a child pair 84 * covered by a given traversal, if a child is visited, its parent is 85 * guaranteed to be visited afterwards. 86 */ 87static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos, 88 struct cgroup *root, int cpu) 89{ 90 struct cgroup_rstat_cpu *rstatc; 91 struct cgroup *parent; 92 93 if (pos == root) 94 return NULL; 95 96 /* 97 * We're gonna walk down to the first leaf and visit/remove it. We 98 * can pick whatever unvisited node as the starting point. 99 */ 100 if (!pos) { 101 pos = root; 102 /* return NULL if this subtree is not on-list */ 103 if (!cgroup_rstat_cpu(pos, cpu)->updated_next) 104 return NULL; 105 } else { 106 pos = cgroup_parent(pos); 107 } 108 109 /* walk down to the first leaf */ 110 while (true) { 111 rstatc = cgroup_rstat_cpu(pos, cpu); 112 if (rstatc->updated_children == pos) 113 break; 114 pos = rstatc->updated_children; 115 } 116 117 /* 118 * Unlink @pos from the tree. As the updated_children list is 119 * singly linked, we have to walk it to find the removal point. 120 * However, due to the way we traverse, @pos will be the first 121 * child in most cases. The only exception is @root. 122 */ 123 parent = cgroup_parent(pos); 124 if (parent) { 125 struct cgroup_rstat_cpu *prstatc; 126 struct cgroup **nextp; 127 128 prstatc = cgroup_rstat_cpu(parent, cpu); 129 nextp = &prstatc->updated_children; 130 while (*nextp != pos) { 131 struct cgroup_rstat_cpu *nrstatc; 132 133 nrstatc = cgroup_rstat_cpu(*nextp, cpu); 134 WARN_ON_ONCE(*nextp == parent); 135 nextp = &nrstatc->updated_next; 136 } 137 *nextp = rstatc->updated_next; 138 } 139 140 rstatc->updated_next = NULL; 141 return pos; 142} 143 144/* see cgroup_rstat_flush() */ 145static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep) 146 __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) 147{ 148 int cpu; 149 150 lockdep_assert_held(&cgroup_rstat_lock); 151 152 for_each_possible_cpu(cpu) { 153 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, 154 cpu); 155 struct cgroup *pos = NULL; 156 unsigned long flags; 157 158 /* 159 * The _irqsave() is needed because cgroup_rstat_lock is 160 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring 161 * this lock with the _irq() suffix only disables interrupts on 162 * a non-PREEMPT_RT kernel. The raw_spinlock_t below disables 163 * interrupts on both configurations. The _irqsave() ensures 164 * that interrupts are always disabled and later restored. 165 */ 166 raw_spin_lock_irqsave(cpu_lock, flags); 167 while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) { 168 struct cgroup_subsys_state *css; 169 170 cgroup_base_stat_flush(pos, cpu); 171 172 rcu_read_lock(); 173 list_for_each_entry_rcu(css, &pos->rstat_css_list, 174 rstat_css_node) 175 css->ss->css_rstat_flush(css, cpu); 176 rcu_read_unlock(); 177 } 178 raw_spin_unlock_irqrestore(cpu_lock, flags); 179 180 /* if @may_sleep, play nice and yield if necessary */ 181 if (may_sleep && (need_resched() || 182 spin_needbreak(&cgroup_rstat_lock))) { 183 spin_unlock_irq(&cgroup_rstat_lock); 184 if (!cond_resched()) 185 cpu_relax(); 186 spin_lock_irq(&cgroup_rstat_lock); 187 } 188 } 189} 190 191/** 192 * cgroup_rstat_flush - flush stats in @cgrp's subtree 193 * @cgrp: target cgroup 194 * 195 * Collect all per-cpu stats in @cgrp's subtree into the global counters 196 * and propagate them upwards. After this function returns, all cgroups in 197 * the subtree have up-to-date ->stat. 198 * 199 * This also gets all cgroups in the subtree including @cgrp off the 200 * ->updated_children lists. 201 * 202 * This function may block. 203 */ 204void cgroup_rstat_flush(struct cgroup *cgrp) 205{ 206 might_sleep(); 207 208 spin_lock_irq(&cgroup_rstat_lock); 209 cgroup_rstat_flush_locked(cgrp, true); 210 spin_unlock_irq(&cgroup_rstat_lock); 211} 212 213/** 214 * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush() 215 * @cgrp: target cgroup 216 * 217 * This function can be called from any context. 218 */ 219void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp) 220{ 221 unsigned long flags; 222 223 spin_lock_irqsave(&cgroup_rstat_lock, flags); 224 cgroup_rstat_flush_locked(cgrp, false); 225 spin_unlock_irqrestore(&cgroup_rstat_lock, flags); 226} 227 228/** 229 * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold 230 * @cgrp: target cgroup 231 * 232 * Flush stats in @cgrp's subtree and prevent further flushes. Must be 233 * paired with cgroup_rstat_flush_release(). 234 * 235 * This function may block. 236 */ 237void cgroup_rstat_flush_hold(struct cgroup *cgrp) 238 __acquires(&cgroup_rstat_lock) 239{ 240 might_sleep(); 241 spin_lock_irq(&cgroup_rstat_lock); 242 cgroup_rstat_flush_locked(cgrp, true); 243} 244 245/** 246 * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() 247 */ 248void cgroup_rstat_flush_release(void) 249 __releases(&cgroup_rstat_lock) 250{ 251 spin_unlock_irq(&cgroup_rstat_lock); 252} 253 254int cgroup_rstat_init(struct cgroup *cgrp) 255{ 256 int cpu; 257 258 /* the root cgrp has rstat_cpu preallocated */ 259 if (!cgrp->rstat_cpu) { 260 cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); 261 if (!cgrp->rstat_cpu) 262 return -ENOMEM; 263 } 264 265 /* ->updated_children list is self terminated */ 266 for_each_possible_cpu(cpu) { 267 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 268 269 rstatc->updated_children = cgrp; 270 u64_stats_init(&rstatc->bsync); 271 } 272 273 return 0; 274} 275 276void cgroup_rstat_exit(struct cgroup *cgrp) 277{ 278 int cpu; 279 280 cgroup_rstat_flush(cgrp); 281 282 /* sanity check */ 283 for_each_possible_cpu(cpu) { 284 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 285 286 if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || 287 WARN_ON_ONCE(rstatc->updated_next)) 288 return; 289 } 290 291 free_percpu(cgrp->rstat_cpu); 292 cgrp->rstat_cpu = NULL; 293} 294 295void __init cgroup_rstat_boot(void) 296{ 297 int cpu; 298 299 for_each_possible_cpu(cpu) 300 raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); 301} 302 303/* 304 * Functions for cgroup basic resource statistics implemented on top of 305 * rstat. 306 */ 307static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, 308 struct cgroup_base_stat *src_bstat) 309{ 310 dst_bstat->cputime.utime += src_bstat->cputime.utime; 311 dst_bstat->cputime.stime += src_bstat->cputime.stime; 312 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; 313} 314 315static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, 316 struct cgroup_base_stat *src_bstat) 317{ 318 dst_bstat->cputime.utime -= src_bstat->cputime.utime; 319 dst_bstat->cputime.stime -= src_bstat->cputime.stime; 320 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; 321} 322 323static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) 324{ 325 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 326 struct cgroup *parent = cgroup_parent(cgrp); 327 struct cgroup_base_stat delta; 328 unsigned seq; 329 330 /* Root-level stats are sourced from system-wide CPU stats */ 331 if (!parent) 332 return; 333 334 /* fetch the current per-cpu values */ 335 do { 336 seq = __u64_stats_fetch_begin(&rstatc->bsync); 337 delta = rstatc->bstat; 338 } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); 339 340 /* propagate percpu delta to global */ 341 cgroup_base_stat_sub(&delta, &rstatc->last_bstat); 342 cgroup_base_stat_add(&cgrp->bstat, &delta); 343 cgroup_base_stat_add(&rstatc->last_bstat, &delta); 344 345 /* propagate global delta to parent (unless that's root) */ 346 if (cgroup_parent(parent)) { 347 delta = cgrp->bstat; 348 cgroup_base_stat_sub(&delta, &cgrp->last_bstat); 349 cgroup_base_stat_add(&parent->bstat, &delta); 350 cgroup_base_stat_add(&cgrp->last_bstat, &delta); 351 } 352} 353 354static struct cgroup_rstat_cpu * 355cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) 356{ 357 struct cgroup_rstat_cpu *rstatc; 358 359 rstatc = get_cpu_ptr(cgrp->rstat_cpu); 360 *flags = u64_stats_update_begin_irqsave(&rstatc->bsync); 361 return rstatc; 362} 363 364static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, 365 struct cgroup_rstat_cpu *rstatc, 366 unsigned long flags) 367{ 368 u64_stats_update_end_irqrestore(&rstatc->bsync, flags); 369 cgroup_rstat_updated(cgrp, smp_processor_id()); 370 put_cpu_ptr(rstatc); 371} 372 373void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) 374{ 375 struct cgroup_rstat_cpu *rstatc; 376 unsigned long flags; 377 378 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 379 rstatc->bstat.cputime.sum_exec_runtime += delta_exec; 380 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 381} 382 383void __cgroup_account_cputime_field(struct cgroup *cgrp, 384 enum cpu_usage_stat index, u64 delta_exec) 385{ 386 struct cgroup_rstat_cpu *rstatc; 387 unsigned long flags; 388 389 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 390 391 switch (index) { 392 case CPUTIME_USER: 393 case CPUTIME_NICE: 394 rstatc->bstat.cputime.utime += delta_exec; 395 break; 396 case CPUTIME_SYSTEM: 397 case CPUTIME_IRQ: 398 case CPUTIME_SOFTIRQ: 399 rstatc->bstat.cputime.stime += delta_exec; 400 break; 401 default: 402 break; 403 } 404 405 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 406} 407 408/* 409 * compute the cputime for the root cgroup by getting the per cpu data 410 * at a global level, then categorizing the fields in a manner consistent 411 * with how it is done by __cgroup_account_cputime_field for each bit of 412 * cpu time attributed to a cgroup. 413 */ 414static void root_cgroup_cputime(struct task_cputime *cputime) 415{ 416 int i; 417 418 cputime->stime = 0; 419 cputime->utime = 0; 420 cputime->sum_exec_runtime = 0; 421 for_each_possible_cpu(i) { 422 struct kernel_cpustat kcpustat; 423 u64 *cpustat = kcpustat.cpustat; 424 u64 user = 0; 425 u64 sys = 0; 426 427 kcpustat_cpu_fetch(&kcpustat, i); 428 429 user += cpustat[CPUTIME_USER]; 430 user += cpustat[CPUTIME_NICE]; 431 cputime->utime += user; 432 433 sys += cpustat[CPUTIME_SYSTEM]; 434 sys += cpustat[CPUTIME_IRQ]; 435 sys += cpustat[CPUTIME_SOFTIRQ]; 436 cputime->stime += sys; 437 438 cputime->sum_exec_runtime += user; 439 cputime->sum_exec_runtime += sys; 440 cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; 441 } 442} 443 444void cgroup_base_stat_cputime_show(struct seq_file *seq) 445{ 446 struct cgroup *cgrp = seq_css(seq)->cgroup; 447 u64 usage, utime, stime; 448 struct task_cputime cputime; 449 450 if (cgroup_parent(cgrp)) { 451 cgroup_rstat_flush_hold(cgrp); 452 usage = cgrp->bstat.cputime.sum_exec_runtime; 453 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, 454 &utime, &stime); 455 cgroup_rstat_flush_release(); 456 } else { 457 root_cgroup_cputime(&cputime); 458 usage = cputime.sum_exec_runtime; 459 utime = cputime.utime; 460 stime = cputime.stime; 461 } 462 463 do_div(usage, NSEC_PER_USEC); 464 do_div(utime, NSEC_PER_USEC); 465 do_div(stime, NSEC_PER_USEC); 466 467 seq_printf(seq, "usage_usec %llu\n" 468 "user_usec %llu\n" 469 "system_usec %llu\n", 470 usage, utime, stime); 471}