cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kdb_main.c (70823B)


      1/*
      2 * Kernel Debugger Architecture Independent Main Code
      3 *
      4 * This file is subject to the terms and conditions of the GNU General Public
      5 * License.  See the file "COPYING" in the main directory of this archive
      6 * for more details.
      7 *
      8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
      9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
     10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
     11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
     12 */
     13
     14#include <linux/ctype.h>
     15#include <linux/types.h>
     16#include <linux/string.h>
     17#include <linux/kernel.h>
     18#include <linux/kmsg_dump.h>
     19#include <linux/reboot.h>
     20#include <linux/sched.h>
     21#include <linux/sched/loadavg.h>
     22#include <linux/sched/stat.h>
     23#include <linux/sched/debug.h>
     24#include <linux/sysrq.h>
     25#include <linux/smp.h>
     26#include <linux/utsname.h>
     27#include <linux/vmalloc.h>
     28#include <linux/atomic.h>
     29#include <linux/moduleparam.h>
     30#include <linux/mm.h>
     31#include <linux/init.h>
     32#include <linux/kallsyms.h>
     33#include <linux/kgdb.h>
     34#include <linux/kdb.h>
     35#include <linux/notifier.h>
     36#include <linux/interrupt.h>
     37#include <linux/delay.h>
     38#include <linux/nmi.h>
     39#include <linux/time.h>
     40#include <linux/ptrace.h>
     41#include <linux/sysctl.h>
     42#include <linux/cpu.h>
     43#include <linux/kdebug.h>
     44#include <linux/proc_fs.h>
     45#include <linux/uaccess.h>
     46#include <linux/slab.h>
     47#include <linux/security.h>
     48#include "kdb_private.h"
     49
     50#undef	MODULE_PARAM_PREFIX
     51#define	MODULE_PARAM_PREFIX "kdb."
     52
     53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
     54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
     55
     56char kdb_grep_string[KDB_GREP_STRLEN];
     57int kdb_grepping_flag;
     58EXPORT_SYMBOL(kdb_grepping_flag);
     59int kdb_grep_leading;
     60int kdb_grep_trailing;
     61
     62/*
     63 * Kernel debugger state flags
     64 */
     65unsigned int kdb_flags;
     66
     67/*
     68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
     69 * single thread processors through the kernel debugger.
     70 */
     71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
     72int kdb_nextline = 1;
     73int kdb_state;			/* General KDB state */
     74
     75struct task_struct *kdb_current_task;
     76struct pt_regs *kdb_current_regs;
     77
     78const char *kdb_diemsg;
     79static int kdb_go_count;
     80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
     81static unsigned int kdb_continue_catastrophic =
     82	CONFIG_KDB_CONTINUE_CATASTROPHIC;
     83#else
     84static unsigned int kdb_continue_catastrophic;
     85#endif
     86
     87/* kdb_cmds_head describes the available commands. */
     88static LIST_HEAD(kdb_cmds_head);
     89
     90typedef struct _kdbmsg {
     91	int	km_diag;	/* kdb diagnostic */
     92	char	*km_msg;	/* Corresponding message text */
     93} kdbmsg_t;
     94
     95#define KDBMSG(msgnum, text) \
     96	{ KDB_##msgnum, text }
     97
     98static kdbmsg_t kdbmsgs[] = {
     99	KDBMSG(NOTFOUND, "Command Not Found"),
    100	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
    101	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
    102	       "8 is only allowed on 64 bit systems"),
    103	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
    104	KDBMSG(NOTENV, "Cannot find environment variable"),
    105	KDBMSG(NOENVVALUE, "Environment variable should have value"),
    106	KDBMSG(NOTIMP, "Command not implemented"),
    107	KDBMSG(ENVFULL, "Environment full"),
    108	KDBMSG(ENVBUFFULL, "Environment buffer full"),
    109	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
    110#ifdef CONFIG_CPU_XSCALE
    111	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
    112#else
    113	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
    114#endif
    115	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
    116	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
    117	KDBMSG(BADMODE, "Invalid IDMODE"),
    118	KDBMSG(BADINT, "Illegal numeric value"),
    119	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
    120	KDBMSG(BADREG, "Invalid register name"),
    121	KDBMSG(BADCPUNUM, "Invalid cpu number"),
    122	KDBMSG(BADLENGTH, "Invalid length field"),
    123	KDBMSG(NOBP, "No Breakpoint exists"),
    124	KDBMSG(BADADDR, "Invalid address"),
    125	KDBMSG(NOPERM, "Permission denied"),
    126};
    127#undef KDBMSG
    128
    129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
    130
    131
    132/*
    133 * Initial environment.   This is all kept static and local to
    134 * this file.   We don't want to rely on the memory allocation
    135 * mechanisms in the kernel, so we use a very limited allocate-only
    136 * heap for new and altered environment variables.  The entire
    137 * environment is limited to a fixed number of entries (add more
    138 * to __env[] if required) and a fixed amount of heap (add more to
    139 * KDB_ENVBUFSIZE if required).
    140 */
    141
    142static char *__env[31] = {
    143#if defined(CONFIG_SMP)
    144	"PROMPT=[%d]kdb> ",
    145#else
    146	"PROMPT=kdb> ",
    147#endif
    148	"MOREPROMPT=more> ",
    149	"RADIX=16",
    150	"MDCOUNT=8",		/* lines of md output */
    151	KDB_PLATFORM_ENV,
    152	"DTABCOUNT=30",
    153	"NOSECT=1",
    154};
    155
    156static const int __nenv = ARRAY_SIZE(__env);
    157
    158struct task_struct *kdb_curr_task(int cpu)
    159{
    160	struct task_struct *p = curr_task(cpu);
    161#ifdef	_TIF_MCA_INIT
    162	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
    163		p = krp->p;
    164#endif
    165	return p;
    166}
    167
    168/*
    169 * Update the permissions flags (kdb_cmd_enabled) to match the
    170 * current lockdown state.
    171 *
    172 * Within this function the calls to security_locked_down() are "lazy". We
    173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
    174 * flags that might be subject to lockdown. Additionally we deliberately check
    175 * the lockdown flags independently (even though read lockdown implies write
    176 * lockdown) since that results in both simpler code and clearer messages to
    177 * the user on first-time debugger entry.
    178 *
    179 * The permission masks during a read+write lockdown permits the following
    180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
    181 *
    182 * The INSPECT commands are not blocked during lockdown because they are
    183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
    184 * forcing them to have no arguments) and lsmod. These commands do expose
    185 * some kernel state but do not allow the developer seated at the console to
    186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
    187 * given these are allowed for root during lockdown already.
    188 */
    189static void kdb_check_for_lockdown(void)
    190{
    191	const int write_flags = KDB_ENABLE_MEM_WRITE |
    192				KDB_ENABLE_REG_WRITE |
    193				KDB_ENABLE_FLOW_CTRL;
    194	const int read_flags = KDB_ENABLE_MEM_READ |
    195			       KDB_ENABLE_REG_READ;
    196
    197	bool need_to_lockdown_write = false;
    198	bool need_to_lockdown_read = false;
    199
    200	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
    201		need_to_lockdown_write =
    202			security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
    203
    204	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
    205		need_to_lockdown_read =
    206			security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
    207
    208	/* De-compose KDB_ENABLE_ALL if required */
    209	if (need_to_lockdown_write || need_to_lockdown_read)
    210		if (kdb_cmd_enabled & KDB_ENABLE_ALL)
    211			kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
    212
    213	if (need_to_lockdown_write)
    214		kdb_cmd_enabled &= ~write_flags;
    215
    216	if (need_to_lockdown_read)
    217		kdb_cmd_enabled &= ~read_flags;
    218}
    219
    220/*
    221 * Check whether the flags of the current command, the permissions of the kdb
    222 * console and the lockdown state allow a command to be run.
    223 */
    224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
    225				   bool no_args)
    226{
    227	/* permissions comes from userspace so needs massaging slightly */
    228	permissions &= KDB_ENABLE_MASK;
    229	permissions |= KDB_ENABLE_ALWAYS_SAFE;
    230
    231	/* some commands change group when launched with no arguments */
    232	if (no_args)
    233		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
    234
    235	flags |= KDB_ENABLE_ALL;
    236
    237	return permissions & flags;
    238}
    239
    240/*
    241 * kdbgetenv - This function will return the character string value of
    242 *	an environment variable.
    243 * Parameters:
    244 *	match	A character string representing an environment variable.
    245 * Returns:
    246 *	NULL	No environment variable matches 'match'
    247 *	char*	Pointer to string value of environment variable.
    248 */
    249char *kdbgetenv(const char *match)
    250{
    251	char **ep = __env;
    252	int matchlen = strlen(match);
    253	int i;
    254
    255	for (i = 0; i < __nenv; i++) {
    256		char *e = *ep++;
    257
    258		if (!e)
    259			continue;
    260
    261		if ((strncmp(match, e, matchlen) == 0)
    262		 && ((e[matchlen] == '\0')
    263		   || (e[matchlen] == '='))) {
    264			char *cp = strchr(e, '=');
    265			return cp ? ++cp : "";
    266		}
    267	}
    268	return NULL;
    269}
    270
    271/*
    272 * kdballocenv - This function is used to allocate bytes for
    273 *	environment entries.
    274 * Parameters:
    275 *	match	A character string representing a numeric value
    276 * Outputs:
    277 *	*value  the unsigned long representation of the env variable 'match'
    278 * Returns:
    279 *	Zero on success, a kdb diagnostic on failure.
    280 * Remarks:
    281 *	We use a static environment buffer (envbuffer) to hold the values
    282 *	of dynamically generated environment variables (see kdb_set).  Buffer
    283 *	space once allocated is never free'd, so over time, the amount of space
    284 *	(currently 512 bytes) will be exhausted if env variables are changed
    285 *	frequently.
    286 */
    287static char *kdballocenv(size_t bytes)
    288{
    289#define	KDB_ENVBUFSIZE	512
    290	static char envbuffer[KDB_ENVBUFSIZE];
    291	static int envbufsize;
    292	char *ep = NULL;
    293
    294	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
    295		ep = &envbuffer[envbufsize];
    296		envbufsize += bytes;
    297	}
    298	return ep;
    299}
    300
    301/*
    302 * kdbgetulenv - This function will return the value of an unsigned
    303 *	long-valued environment variable.
    304 * Parameters:
    305 *	match	A character string representing a numeric value
    306 * Outputs:
    307 *	*value  the unsigned long representation of the env variable 'match'
    308 * Returns:
    309 *	Zero on success, a kdb diagnostic on failure.
    310 */
    311static int kdbgetulenv(const char *match, unsigned long *value)
    312{
    313	char *ep;
    314
    315	ep = kdbgetenv(match);
    316	if (!ep)
    317		return KDB_NOTENV;
    318	if (strlen(ep) == 0)
    319		return KDB_NOENVVALUE;
    320
    321	*value = simple_strtoul(ep, NULL, 0);
    322
    323	return 0;
    324}
    325
    326/*
    327 * kdbgetintenv - This function will return the value of an
    328 *	integer-valued environment variable.
    329 * Parameters:
    330 *	match	A character string representing an integer-valued env variable
    331 * Outputs:
    332 *	*value  the integer representation of the environment variable 'match'
    333 * Returns:
    334 *	Zero on success, a kdb diagnostic on failure.
    335 */
    336int kdbgetintenv(const char *match, int *value)
    337{
    338	unsigned long val;
    339	int diag;
    340
    341	diag = kdbgetulenv(match, &val);
    342	if (!diag)
    343		*value = (int) val;
    344	return diag;
    345}
    346
    347/*
    348 * kdb_setenv() - Alter an existing environment variable or create a new one.
    349 * @var: Name of the variable
    350 * @val: Value of the variable
    351 *
    352 * Return: Zero on success, a kdb diagnostic on failure.
    353 */
    354static int kdb_setenv(const char *var, const char *val)
    355{
    356	int i;
    357	char *ep;
    358	size_t varlen, vallen;
    359
    360	varlen = strlen(var);
    361	vallen = strlen(val);
    362	ep = kdballocenv(varlen + vallen + 2);
    363	if (ep == (char *)0)
    364		return KDB_ENVBUFFULL;
    365
    366	sprintf(ep, "%s=%s", var, val);
    367
    368	for (i = 0; i < __nenv; i++) {
    369		if (__env[i]
    370		 && ((strncmp(__env[i], var, varlen) == 0)
    371		   && ((__env[i][varlen] == '\0')
    372		    || (__env[i][varlen] == '=')))) {
    373			__env[i] = ep;
    374			return 0;
    375		}
    376	}
    377
    378	/*
    379	 * Wasn't existing variable.  Fit into slot.
    380	 */
    381	for (i = 0; i < __nenv-1; i++) {
    382		if (__env[i] == (char *)0) {
    383			__env[i] = ep;
    384			return 0;
    385		}
    386	}
    387
    388	return KDB_ENVFULL;
    389}
    390
    391/*
    392 * kdb_printenv() - Display the current environment variables.
    393 */
    394static void kdb_printenv(void)
    395{
    396	int i;
    397
    398	for (i = 0; i < __nenv; i++) {
    399		if (__env[i])
    400			kdb_printf("%s\n", __env[i]);
    401	}
    402}
    403
    404/*
    405 * kdbgetularg - This function will convert a numeric string into an
    406 *	unsigned long value.
    407 * Parameters:
    408 *	arg	A character string representing a numeric value
    409 * Outputs:
    410 *	*value  the unsigned long representation of arg.
    411 * Returns:
    412 *	Zero on success, a kdb diagnostic on failure.
    413 */
    414int kdbgetularg(const char *arg, unsigned long *value)
    415{
    416	char *endp;
    417	unsigned long val;
    418
    419	val = simple_strtoul(arg, &endp, 0);
    420
    421	if (endp == arg) {
    422		/*
    423		 * Also try base 16, for us folks too lazy to type the
    424		 * leading 0x...
    425		 */
    426		val = simple_strtoul(arg, &endp, 16);
    427		if (endp == arg)
    428			return KDB_BADINT;
    429	}
    430
    431	*value = val;
    432
    433	return 0;
    434}
    435
    436int kdbgetu64arg(const char *arg, u64 *value)
    437{
    438	char *endp;
    439	u64 val;
    440
    441	val = simple_strtoull(arg, &endp, 0);
    442
    443	if (endp == arg) {
    444
    445		val = simple_strtoull(arg, &endp, 16);
    446		if (endp == arg)
    447			return KDB_BADINT;
    448	}
    449
    450	*value = val;
    451
    452	return 0;
    453}
    454
    455/*
    456 * kdb_set - This function implements the 'set' command.  Alter an
    457 *	existing environment variable or create a new one.
    458 */
    459int kdb_set(int argc, const char **argv)
    460{
    461	/*
    462	 * we can be invoked two ways:
    463	 *   set var=value    argv[1]="var", argv[2]="value"
    464	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
    465	 * - if the latter, shift 'em down.
    466	 */
    467	if (argc == 3) {
    468		argv[2] = argv[3];
    469		argc--;
    470	}
    471
    472	if (argc != 2)
    473		return KDB_ARGCOUNT;
    474
    475	/*
    476	 * Censor sensitive variables
    477	 */
    478	if (strcmp(argv[1], "PROMPT") == 0 &&
    479	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
    480		return KDB_NOPERM;
    481
    482	/*
    483	 * Check for internal variables
    484	 */
    485	if (strcmp(argv[1], "KDBDEBUG") == 0) {
    486		unsigned int debugflags;
    487		char *cp;
    488
    489		debugflags = simple_strtoul(argv[2], &cp, 0);
    490		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
    491			kdb_printf("kdb: illegal debug flags '%s'\n",
    492				    argv[2]);
    493			return 0;
    494		}
    495		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
    496			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
    497
    498		return 0;
    499	}
    500
    501	/*
    502	 * Tokenizer squashed the '=' sign.  argv[1] is variable
    503	 * name, argv[2] = value.
    504	 */
    505	return kdb_setenv(argv[1], argv[2]);
    506}
    507
    508static int kdb_check_regs(void)
    509{
    510	if (!kdb_current_regs) {
    511		kdb_printf("No current kdb registers."
    512			   "  You may need to select another task\n");
    513		return KDB_BADREG;
    514	}
    515	return 0;
    516}
    517
    518/*
    519 * kdbgetaddrarg - This function is responsible for parsing an
    520 *	address-expression and returning the value of the expression,
    521 *	symbol name, and offset to the caller.
    522 *
    523 *	The argument may consist of a numeric value (decimal or
    524 *	hexadecimal), a symbol name, a register name (preceded by the
    525 *	percent sign), an environment variable with a numeric value
    526 *	(preceded by a dollar sign) or a simple arithmetic expression
    527 *	consisting of a symbol name, +/-, and a numeric constant value
    528 *	(offset).
    529 * Parameters:
    530 *	argc	- count of arguments in argv
    531 *	argv	- argument vector
    532 *	*nextarg - index to next unparsed argument in argv[]
    533 *	regs	- Register state at time of KDB entry
    534 * Outputs:
    535 *	*value	- receives the value of the address-expression
    536 *	*offset - receives the offset specified, if any
    537 *	*name   - receives the symbol name, if any
    538 *	*nextarg - index to next unparsed argument in argv[]
    539 * Returns:
    540 *	zero is returned on success, a kdb diagnostic code is
    541 *      returned on error.
    542 */
    543int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
    544		  unsigned long *value,  long *offset,
    545		  char **name)
    546{
    547	unsigned long addr;
    548	unsigned long off = 0;
    549	int positive;
    550	int diag;
    551	int found = 0;
    552	char *symname;
    553	char symbol = '\0';
    554	char *cp;
    555	kdb_symtab_t symtab;
    556
    557	/*
    558	 * If the enable flags prohibit both arbitrary memory access
    559	 * and flow control then there are no reasonable grounds to
    560	 * provide symbol lookup.
    561	 */
    562	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
    563			     kdb_cmd_enabled, false))
    564		return KDB_NOPERM;
    565
    566	/*
    567	 * Process arguments which follow the following syntax:
    568	 *
    569	 *  symbol | numeric-address [+/- numeric-offset]
    570	 *  %register
    571	 *  $environment-variable
    572	 */
    573
    574	if (*nextarg > argc)
    575		return KDB_ARGCOUNT;
    576
    577	symname = (char *)argv[*nextarg];
    578
    579	/*
    580	 * If there is no whitespace between the symbol
    581	 * or address and the '+' or '-' symbols, we
    582	 * remember the character and replace it with a
    583	 * null so the symbol/value can be properly parsed
    584	 */
    585	cp = strpbrk(symname, "+-");
    586	if (cp != NULL) {
    587		symbol = *cp;
    588		*cp++ = '\0';
    589	}
    590
    591	if (symname[0] == '$') {
    592		diag = kdbgetulenv(&symname[1], &addr);
    593		if (diag)
    594			return diag;
    595	} else if (symname[0] == '%') {
    596		diag = kdb_check_regs();
    597		if (diag)
    598			return diag;
    599		/* Implement register values with % at a later time as it is
    600		 * arch optional.
    601		 */
    602		return KDB_NOTIMP;
    603	} else {
    604		found = kdbgetsymval(symname, &symtab);
    605		if (found) {
    606			addr = symtab.sym_start;
    607		} else {
    608			diag = kdbgetularg(argv[*nextarg], &addr);
    609			if (diag)
    610				return diag;
    611		}
    612	}
    613
    614	if (!found)
    615		found = kdbnearsym(addr, &symtab);
    616
    617	(*nextarg)++;
    618
    619	if (name)
    620		*name = symname;
    621	if (value)
    622		*value = addr;
    623	if (offset && name && *name)
    624		*offset = addr - symtab.sym_start;
    625
    626	if ((*nextarg > argc)
    627	 && (symbol == '\0'))
    628		return 0;
    629
    630	/*
    631	 * check for +/- and offset
    632	 */
    633
    634	if (symbol == '\0') {
    635		if ((argv[*nextarg][0] != '+')
    636		 && (argv[*nextarg][0] != '-')) {
    637			/*
    638			 * Not our argument.  Return.
    639			 */
    640			return 0;
    641		} else {
    642			positive = (argv[*nextarg][0] == '+');
    643			(*nextarg)++;
    644		}
    645	} else
    646		positive = (symbol == '+');
    647
    648	/*
    649	 * Now there must be an offset!
    650	 */
    651	if ((*nextarg > argc)
    652	 && (symbol == '\0')) {
    653		return KDB_INVADDRFMT;
    654	}
    655
    656	if (!symbol) {
    657		cp = (char *)argv[*nextarg];
    658		(*nextarg)++;
    659	}
    660
    661	diag = kdbgetularg(cp, &off);
    662	if (diag)
    663		return diag;
    664
    665	if (!positive)
    666		off = -off;
    667
    668	if (offset)
    669		*offset += off;
    670
    671	if (value)
    672		*value += off;
    673
    674	return 0;
    675}
    676
    677static void kdb_cmderror(int diag)
    678{
    679	int i;
    680
    681	if (diag >= 0) {
    682		kdb_printf("no error detected (diagnostic is %d)\n", diag);
    683		return;
    684	}
    685
    686	for (i = 0; i < __nkdb_err; i++) {
    687		if (kdbmsgs[i].km_diag == diag) {
    688			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
    689			return;
    690		}
    691	}
    692
    693	kdb_printf("Unknown diag %d\n", -diag);
    694}
    695
    696/*
    697 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
    698 *	command which defines one command as a set of other commands,
    699 *	terminated by endefcmd.  kdb_defcmd processes the initial
    700 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
    701 *	the following commands until 'endefcmd'.
    702 * Inputs:
    703 *	argc	argument count
    704 *	argv	argument vector
    705 * Returns:
    706 *	zero for success, a kdb diagnostic if error
    707 */
    708struct kdb_macro {
    709	kdbtab_t cmd;			/* Macro command */
    710	struct list_head statements;	/* Associated statement list */
    711};
    712
    713struct kdb_macro_statement {
    714	char *statement;		/* Statement text */
    715	struct list_head list_node;	/* Statement list node */
    716};
    717
    718static struct kdb_macro *kdb_macro;
    719static bool defcmd_in_progress;
    720
    721/* Forward references */
    722static int kdb_exec_defcmd(int argc, const char **argv);
    723
    724static int kdb_defcmd2(const char *cmdstr, const char *argv0)
    725{
    726	struct kdb_macro_statement *kms;
    727
    728	if (!kdb_macro)
    729		return KDB_NOTIMP;
    730
    731	if (strcmp(argv0, "endefcmd") == 0) {
    732		defcmd_in_progress = false;
    733		if (!list_empty(&kdb_macro->statements))
    734			kdb_register(&kdb_macro->cmd);
    735		return 0;
    736	}
    737
    738	kms = kmalloc(sizeof(*kms), GFP_KDB);
    739	if (!kms) {
    740		kdb_printf("Could not allocate new kdb macro command: %s\n",
    741			   cmdstr);
    742		return KDB_NOTIMP;
    743	}
    744
    745	kms->statement = kdb_strdup(cmdstr, GFP_KDB);
    746	list_add_tail(&kms->list_node, &kdb_macro->statements);
    747
    748	return 0;
    749}
    750
    751static int kdb_defcmd(int argc, const char **argv)
    752{
    753	kdbtab_t *mp;
    754
    755	if (defcmd_in_progress) {
    756		kdb_printf("kdb: nested defcmd detected, assuming missing "
    757			   "endefcmd\n");
    758		kdb_defcmd2("endefcmd", "endefcmd");
    759	}
    760	if (argc == 0) {
    761		kdbtab_t *kp;
    762		struct kdb_macro *kmp;
    763		struct kdb_macro_statement *kms;
    764
    765		list_for_each_entry(kp, &kdb_cmds_head, list_node) {
    766			if (kp->func == kdb_exec_defcmd) {
    767				kdb_printf("defcmd %s \"%s\" \"%s\"\n",
    768					   kp->name, kp->usage, kp->help);
    769				kmp = container_of(kp, struct kdb_macro, cmd);
    770				list_for_each_entry(kms, &kmp->statements,
    771						    list_node)
    772					kdb_printf("%s", kms->statement);
    773				kdb_printf("endefcmd\n");
    774			}
    775		}
    776		return 0;
    777	}
    778	if (argc != 3)
    779		return KDB_ARGCOUNT;
    780	if (in_dbg_master()) {
    781		kdb_printf("Command only available during kdb_init()\n");
    782		return KDB_NOTIMP;
    783	}
    784	kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
    785	if (!kdb_macro)
    786		goto fail_defcmd;
    787
    788	mp = &kdb_macro->cmd;
    789	mp->func = kdb_exec_defcmd;
    790	mp->minlen = 0;
    791	mp->flags = KDB_ENABLE_ALWAYS_SAFE;
    792	mp->name = kdb_strdup(argv[1], GFP_KDB);
    793	if (!mp->name)
    794		goto fail_name;
    795	mp->usage = kdb_strdup(argv[2], GFP_KDB);
    796	if (!mp->usage)
    797		goto fail_usage;
    798	mp->help = kdb_strdup(argv[3], GFP_KDB);
    799	if (!mp->help)
    800		goto fail_help;
    801	if (mp->usage[0] == '"') {
    802		strcpy(mp->usage, argv[2]+1);
    803		mp->usage[strlen(mp->usage)-1] = '\0';
    804	}
    805	if (mp->help[0] == '"') {
    806		strcpy(mp->help, argv[3]+1);
    807		mp->help[strlen(mp->help)-1] = '\0';
    808	}
    809
    810	INIT_LIST_HEAD(&kdb_macro->statements);
    811	defcmd_in_progress = true;
    812	return 0;
    813fail_help:
    814	kfree(mp->usage);
    815fail_usage:
    816	kfree(mp->name);
    817fail_name:
    818	kfree(kdb_macro);
    819fail_defcmd:
    820	kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
    821	return KDB_NOTIMP;
    822}
    823
    824/*
    825 * kdb_exec_defcmd - Execute the set of commands associated with this
    826 *	defcmd name.
    827 * Inputs:
    828 *	argc	argument count
    829 *	argv	argument vector
    830 * Returns:
    831 *	zero for success, a kdb diagnostic if error
    832 */
    833static int kdb_exec_defcmd(int argc, const char **argv)
    834{
    835	int ret;
    836	kdbtab_t *kp;
    837	struct kdb_macro *kmp;
    838	struct kdb_macro_statement *kms;
    839
    840	if (argc != 0)
    841		return KDB_ARGCOUNT;
    842
    843	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
    844		if (strcmp(kp->name, argv[0]) == 0)
    845			break;
    846	}
    847	if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
    848		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
    849			   argv[0]);
    850		return KDB_NOTIMP;
    851	}
    852	kmp = container_of(kp, struct kdb_macro, cmd);
    853	list_for_each_entry(kms, &kmp->statements, list_node) {
    854		/*
    855		 * Recursive use of kdb_parse, do not use argv after this point.
    856		 */
    857		argv = NULL;
    858		kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
    859		ret = kdb_parse(kms->statement);
    860		if (ret)
    861			return ret;
    862	}
    863	return 0;
    864}
    865
    866/* Command history */
    867#define KDB_CMD_HISTORY_COUNT	32
    868#define CMD_BUFLEN		200	/* kdb_printf: max printline
    869					 * size == 256 */
    870static unsigned int cmd_head, cmd_tail;
    871static unsigned int cmdptr;
    872static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
    873static char cmd_cur[CMD_BUFLEN];
    874
    875/*
    876 * The "str" argument may point to something like  | grep xyz
    877 */
    878static void parse_grep(const char *str)
    879{
    880	int	len;
    881	char	*cp = (char *)str, *cp2;
    882
    883	/* sanity check: we should have been called with the \ first */
    884	if (*cp != '|')
    885		return;
    886	cp++;
    887	while (isspace(*cp))
    888		cp++;
    889	if (!str_has_prefix(cp, "grep ")) {
    890		kdb_printf("invalid 'pipe', see grephelp\n");
    891		return;
    892	}
    893	cp += 5;
    894	while (isspace(*cp))
    895		cp++;
    896	cp2 = strchr(cp, '\n');
    897	if (cp2)
    898		*cp2 = '\0'; /* remove the trailing newline */
    899	len = strlen(cp);
    900	if (len == 0) {
    901		kdb_printf("invalid 'pipe', see grephelp\n");
    902		return;
    903	}
    904	/* now cp points to a nonzero length search string */
    905	if (*cp == '"') {
    906		/* allow it be "x y z" by removing the "'s - there must
    907		   be two of them */
    908		cp++;
    909		cp2 = strchr(cp, '"');
    910		if (!cp2) {
    911			kdb_printf("invalid quoted string, see grephelp\n");
    912			return;
    913		}
    914		*cp2 = '\0'; /* end the string where the 2nd " was */
    915	}
    916	kdb_grep_leading = 0;
    917	if (*cp == '^') {
    918		kdb_grep_leading = 1;
    919		cp++;
    920	}
    921	len = strlen(cp);
    922	kdb_grep_trailing = 0;
    923	if (*(cp+len-1) == '$') {
    924		kdb_grep_trailing = 1;
    925		*(cp+len-1) = '\0';
    926	}
    927	len = strlen(cp);
    928	if (!len)
    929		return;
    930	if (len >= KDB_GREP_STRLEN) {
    931		kdb_printf("search string too long\n");
    932		return;
    933	}
    934	strcpy(kdb_grep_string, cp);
    935	kdb_grepping_flag++;
    936	return;
    937}
    938
    939/*
    940 * kdb_parse - Parse the command line, search the command table for a
    941 *	matching command and invoke the command function.  This
    942 *	function may be called recursively, if it is, the second call
    943 *	will overwrite argv and cbuf.  It is the caller's
    944 *	responsibility to save their argv if they recursively call
    945 *	kdb_parse().
    946 * Parameters:
    947 *      cmdstr	The input command line to be parsed.
    948 *	regs	The registers at the time kdb was entered.
    949 * Returns:
    950 *	Zero for success, a kdb diagnostic if failure.
    951 * Remarks:
    952 *	Limited to 20 tokens.
    953 *
    954 *	Real rudimentary tokenization. Basically only whitespace
    955 *	is considered a token delimiter (but special consideration
    956 *	is taken of the '=' sign as used by the 'set' command).
    957 *
    958 *	The algorithm used to tokenize the input string relies on
    959 *	there being at least one whitespace (or otherwise useless)
    960 *	character between tokens as the character immediately following
    961 *	the token is altered in-place to a null-byte to terminate the
    962 *	token string.
    963 */
    964
    965#define MAXARGC	20
    966
    967int kdb_parse(const char *cmdstr)
    968{
    969	static char *argv[MAXARGC];
    970	static int argc;
    971	static char cbuf[CMD_BUFLEN+2];
    972	char *cp;
    973	char *cpp, quoted;
    974	kdbtab_t *tp;
    975	int escaped, ignore_errors = 0, check_grep = 0;
    976
    977	/*
    978	 * First tokenize the command string.
    979	 */
    980	cp = (char *)cmdstr;
    981
    982	if (KDB_FLAG(CMD_INTERRUPT)) {
    983		/* Previous command was interrupted, newline must not
    984		 * repeat the command */
    985		KDB_FLAG_CLEAR(CMD_INTERRUPT);
    986		KDB_STATE_SET(PAGER);
    987		argc = 0;	/* no repeat */
    988	}
    989
    990	if (*cp != '\n' && *cp != '\0') {
    991		argc = 0;
    992		cpp = cbuf;
    993		while (*cp) {
    994			/* skip whitespace */
    995			while (isspace(*cp))
    996				cp++;
    997			if ((*cp == '\0') || (*cp == '\n') ||
    998			    (*cp == '#' && !defcmd_in_progress))
    999				break;
   1000			/* special case: check for | grep pattern */
   1001			if (*cp == '|') {
   1002				check_grep++;
   1003				break;
   1004			}
   1005			if (cpp >= cbuf + CMD_BUFLEN) {
   1006				kdb_printf("kdb_parse: command buffer "
   1007					   "overflow, command ignored\n%s\n",
   1008					   cmdstr);
   1009				return KDB_NOTFOUND;
   1010			}
   1011			if (argc >= MAXARGC - 1) {
   1012				kdb_printf("kdb_parse: too many arguments, "
   1013					   "command ignored\n%s\n", cmdstr);
   1014				return KDB_NOTFOUND;
   1015			}
   1016			argv[argc++] = cpp;
   1017			escaped = 0;
   1018			quoted = '\0';
   1019			/* Copy to next unquoted and unescaped
   1020			 * whitespace or '=' */
   1021			while (*cp && *cp != '\n' &&
   1022			       (escaped || quoted || !isspace(*cp))) {
   1023				if (cpp >= cbuf + CMD_BUFLEN)
   1024					break;
   1025				if (escaped) {
   1026					escaped = 0;
   1027					*cpp++ = *cp++;
   1028					continue;
   1029				}
   1030				if (*cp == '\\') {
   1031					escaped = 1;
   1032					++cp;
   1033					continue;
   1034				}
   1035				if (*cp == quoted)
   1036					quoted = '\0';
   1037				else if (*cp == '\'' || *cp == '"')
   1038					quoted = *cp;
   1039				*cpp = *cp++;
   1040				if (*cpp == '=' && !quoted)
   1041					break;
   1042				++cpp;
   1043			}
   1044			*cpp++ = '\0';	/* Squash a ws or '=' character */
   1045		}
   1046	}
   1047	if (!argc)
   1048		return 0;
   1049	if (check_grep)
   1050		parse_grep(cp);
   1051	if (defcmd_in_progress) {
   1052		int result = kdb_defcmd2(cmdstr, argv[0]);
   1053		if (!defcmd_in_progress) {
   1054			argc = 0;	/* avoid repeat on endefcmd */
   1055			*(argv[0]) = '\0';
   1056		}
   1057		return result;
   1058	}
   1059	if (argv[0][0] == '-' && argv[0][1] &&
   1060	    (argv[0][1] < '0' || argv[0][1] > '9')) {
   1061		ignore_errors = 1;
   1062		++argv[0];
   1063	}
   1064
   1065	list_for_each_entry(tp, &kdb_cmds_head, list_node) {
   1066		/*
   1067		 * If this command is allowed to be abbreviated,
   1068		 * check to see if this is it.
   1069		 */
   1070		if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
   1071		    (strncmp(argv[0], tp->name, tp->minlen) == 0))
   1072			break;
   1073
   1074		if (strcmp(argv[0], tp->name) == 0)
   1075			break;
   1076	}
   1077
   1078	/*
   1079	 * If we don't find a command by this name, see if the first
   1080	 * few characters of this match any of the known commands.
   1081	 * e.g., md1c20 should match md.
   1082	 */
   1083	if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
   1084		list_for_each_entry(tp, &kdb_cmds_head, list_node) {
   1085			if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
   1086				break;
   1087		}
   1088	}
   1089
   1090	if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
   1091		int result;
   1092
   1093		if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
   1094			return KDB_NOPERM;
   1095
   1096		KDB_STATE_SET(CMD);
   1097		result = (*tp->func)(argc-1, (const char **)argv);
   1098		if (result && ignore_errors && result > KDB_CMD_GO)
   1099			result = 0;
   1100		KDB_STATE_CLEAR(CMD);
   1101
   1102		if (tp->flags & KDB_REPEAT_WITH_ARGS)
   1103			return result;
   1104
   1105		argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
   1106		if (argv[argc])
   1107			*(argv[argc]) = '\0';
   1108		return result;
   1109	}
   1110
   1111	/*
   1112	 * If the input with which we were presented does not
   1113	 * map to an existing command, attempt to parse it as an
   1114	 * address argument and display the result.   Useful for
   1115	 * obtaining the address of a variable, or the nearest symbol
   1116	 * to an address contained in a register.
   1117	 */
   1118	{
   1119		unsigned long value;
   1120		char *name = NULL;
   1121		long offset;
   1122		int nextarg = 0;
   1123
   1124		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
   1125				  &value, &offset, &name)) {
   1126			return KDB_NOTFOUND;
   1127		}
   1128
   1129		kdb_printf("%s = ", argv[0]);
   1130		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
   1131		kdb_printf("\n");
   1132		return 0;
   1133	}
   1134}
   1135
   1136
   1137static int handle_ctrl_cmd(char *cmd)
   1138{
   1139#define CTRL_P	16
   1140#define CTRL_N	14
   1141
   1142	/* initial situation */
   1143	if (cmd_head == cmd_tail)
   1144		return 0;
   1145	switch (*cmd) {
   1146	case CTRL_P:
   1147		if (cmdptr != cmd_tail)
   1148			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
   1149				 KDB_CMD_HISTORY_COUNT;
   1150		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
   1151		return 1;
   1152	case CTRL_N:
   1153		if (cmdptr != cmd_head)
   1154			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
   1155		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
   1156		return 1;
   1157	}
   1158	return 0;
   1159}
   1160
   1161/*
   1162 * kdb_reboot - This function implements the 'reboot' command.  Reboot
   1163 *	the system immediately, or loop for ever on failure.
   1164 */
   1165static int kdb_reboot(int argc, const char **argv)
   1166{
   1167	emergency_restart();
   1168	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
   1169	while (1)
   1170		cpu_relax();
   1171	/* NOTREACHED */
   1172	return 0;
   1173}
   1174
   1175static void kdb_dumpregs(struct pt_regs *regs)
   1176{
   1177	int old_lvl = console_loglevel;
   1178	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
   1179	kdb_trap_printk++;
   1180	show_regs(regs);
   1181	kdb_trap_printk--;
   1182	kdb_printf("\n");
   1183	console_loglevel = old_lvl;
   1184}
   1185
   1186static void kdb_set_current_task(struct task_struct *p)
   1187{
   1188	kdb_current_task = p;
   1189
   1190	if (kdb_task_has_cpu(p)) {
   1191		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
   1192		return;
   1193	}
   1194	kdb_current_regs = NULL;
   1195}
   1196
   1197static void drop_newline(char *buf)
   1198{
   1199	size_t len = strlen(buf);
   1200
   1201	if (len == 0)
   1202		return;
   1203	if (*(buf + len - 1) == '\n')
   1204		*(buf + len - 1) = '\0';
   1205}
   1206
   1207/*
   1208 * kdb_local - The main code for kdb.  This routine is invoked on a
   1209 *	specific processor, it is not global.  The main kdb() routine
   1210 *	ensures that only one processor at a time is in this routine.
   1211 *	This code is called with the real reason code on the first
   1212 *	entry to a kdb session, thereafter it is called with reason
   1213 *	SWITCH, even if the user goes back to the original cpu.
   1214 * Inputs:
   1215 *	reason		The reason KDB was invoked
   1216 *	error		The hardware-defined error code
   1217 *	regs		The exception frame at time of fault/breakpoint.
   1218 *	db_result	Result code from the break or debug point.
   1219 * Returns:
   1220 *	0	KDB was invoked for an event which it wasn't responsible
   1221 *	1	KDB handled the event for which it was invoked.
   1222 *	KDB_CMD_GO	User typed 'go'.
   1223 *	KDB_CMD_CPU	User switched to another cpu.
   1224 *	KDB_CMD_SS	Single step.
   1225 */
   1226static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
   1227		     kdb_dbtrap_t db_result)
   1228{
   1229	char *cmdbuf;
   1230	int diag;
   1231	struct task_struct *kdb_current =
   1232		kdb_curr_task(raw_smp_processor_id());
   1233
   1234	KDB_DEBUG_STATE("kdb_local 1", reason);
   1235
   1236	kdb_check_for_lockdown();
   1237
   1238	kdb_go_count = 0;
   1239	if (reason == KDB_REASON_DEBUG) {
   1240		/* special case below */
   1241	} else {
   1242		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
   1243			   kdb_current, kdb_current ? kdb_current->pid : 0);
   1244#if defined(CONFIG_SMP)
   1245		kdb_printf("on processor %d ", raw_smp_processor_id());
   1246#endif
   1247	}
   1248
   1249	switch (reason) {
   1250	case KDB_REASON_DEBUG:
   1251	{
   1252		/*
   1253		 * If re-entering kdb after a single step
   1254		 * command, don't print the message.
   1255		 */
   1256		switch (db_result) {
   1257		case KDB_DB_BPT:
   1258			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
   1259				   kdb_current, kdb_current->pid);
   1260#if defined(CONFIG_SMP)
   1261			kdb_printf("on processor %d ", raw_smp_processor_id());
   1262#endif
   1263			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
   1264				   instruction_pointer(regs));
   1265			break;
   1266		case KDB_DB_SS:
   1267			break;
   1268		case KDB_DB_SSBPT:
   1269			KDB_DEBUG_STATE("kdb_local 4", reason);
   1270			return 1;	/* kdba_db_trap did the work */
   1271		default:
   1272			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
   1273				   db_result);
   1274			break;
   1275		}
   1276
   1277	}
   1278		break;
   1279	case KDB_REASON_ENTER:
   1280		if (KDB_STATE(KEYBOARD))
   1281			kdb_printf("due to Keyboard Entry\n");
   1282		else
   1283			kdb_printf("due to KDB_ENTER()\n");
   1284		break;
   1285	case KDB_REASON_KEYBOARD:
   1286		KDB_STATE_SET(KEYBOARD);
   1287		kdb_printf("due to Keyboard Entry\n");
   1288		break;
   1289	case KDB_REASON_ENTER_SLAVE:
   1290		/* drop through, slaves only get released via cpu switch */
   1291	case KDB_REASON_SWITCH:
   1292		kdb_printf("due to cpu switch\n");
   1293		break;
   1294	case KDB_REASON_OOPS:
   1295		kdb_printf("Oops: %s\n", kdb_diemsg);
   1296		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
   1297			   instruction_pointer(regs));
   1298		kdb_dumpregs(regs);
   1299		break;
   1300	case KDB_REASON_SYSTEM_NMI:
   1301		kdb_printf("due to System NonMaskable Interrupt\n");
   1302		break;
   1303	case KDB_REASON_NMI:
   1304		kdb_printf("due to NonMaskable Interrupt @ "
   1305			   kdb_machreg_fmt "\n",
   1306			   instruction_pointer(regs));
   1307		break;
   1308	case KDB_REASON_SSTEP:
   1309	case KDB_REASON_BREAK:
   1310		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
   1311			   reason == KDB_REASON_BREAK ?
   1312			   "Breakpoint" : "SS trap", instruction_pointer(regs));
   1313		/*
   1314		 * Determine if this breakpoint is one that we
   1315		 * are interested in.
   1316		 */
   1317		if (db_result != KDB_DB_BPT) {
   1318			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
   1319				   db_result);
   1320			KDB_DEBUG_STATE("kdb_local 6", reason);
   1321			return 0;	/* Not for us, dismiss it */
   1322		}
   1323		break;
   1324	case KDB_REASON_RECURSE:
   1325		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
   1326			   instruction_pointer(regs));
   1327		break;
   1328	default:
   1329		kdb_printf("kdb: unexpected reason code: %d\n", reason);
   1330		KDB_DEBUG_STATE("kdb_local 8", reason);
   1331		return 0;	/* Not for us, dismiss it */
   1332	}
   1333
   1334	while (1) {
   1335		/*
   1336		 * Initialize pager context.
   1337		 */
   1338		kdb_nextline = 1;
   1339		KDB_STATE_CLEAR(SUPPRESS);
   1340		kdb_grepping_flag = 0;
   1341		/* ensure the old search does not leak into '/' commands */
   1342		kdb_grep_string[0] = '\0';
   1343
   1344		cmdbuf = cmd_cur;
   1345		*cmdbuf = '\0';
   1346		*(cmd_hist[cmd_head]) = '\0';
   1347
   1348do_full_getstr:
   1349		/* PROMPT can only be set if we have MEM_READ permission. */
   1350		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
   1351			 raw_smp_processor_id());
   1352		if (defcmd_in_progress)
   1353			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
   1354
   1355		/*
   1356		 * Fetch command from keyboard
   1357		 */
   1358		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
   1359		if (*cmdbuf != '\n') {
   1360			if (*cmdbuf < 32) {
   1361				if (cmdptr == cmd_head) {
   1362					strscpy(cmd_hist[cmd_head], cmd_cur,
   1363						CMD_BUFLEN);
   1364					*(cmd_hist[cmd_head] +
   1365					  strlen(cmd_hist[cmd_head])-1) = '\0';
   1366				}
   1367				if (!handle_ctrl_cmd(cmdbuf))
   1368					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
   1369				cmdbuf = cmd_cur;
   1370				goto do_full_getstr;
   1371			} else {
   1372				strscpy(cmd_hist[cmd_head], cmd_cur,
   1373					CMD_BUFLEN);
   1374			}
   1375
   1376			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
   1377			if (cmd_head == cmd_tail)
   1378				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
   1379		}
   1380
   1381		cmdptr = cmd_head;
   1382		diag = kdb_parse(cmdbuf);
   1383		if (diag == KDB_NOTFOUND) {
   1384			drop_newline(cmdbuf);
   1385			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
   1386			diag = 0;
   1387		}
   1388		if (diag == KDB_CMD_GO
   1389		 || diag == KDB_CMD_CPU
   1390		 || diag == KDB_CMD_SS
   1391		 || diag == KDB_CMD_KGDB)
   1392			break;
   1393
   1394		if (diag)
   1395			kdb_cmderror(diag);
   1396	}
   1397	KDB_DEBUG_STATE("kdb_local 9", diag);
   1398	return diag;
   1399}
   1400
   1401
   1402/*
   1403 * kdb_print_state - Print the state data for the current processor
   1404 *	for debugging.
   1405 * Inputs:
   1406 *	text		Identifies the debug point
   1407 *	value		Any integer value to be printed, e.g. reason code.
   1408 */
   1409void kdb_print_state(const char *text, int value)
   1410{
   1411	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
   1412		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
   1413		   kdb_state);
   1414}
   1415
   1416/*
   1417 * kdb_main_loop - After initial setup and assignment of the
   1418 *	controlling cpu, all cpus are in this loop.  One cpu is in
   1419 *	control and will issue the kdb prompt, the others will spin
   1420 *	until 'go' or cpu switch.
   1421 *
   1422 *	To get a consistent view of the kernel stacks for all
   1423 *	processes, this routine is invoked from the main kdb code via
   1424 *	an architecture specific routine.  kdba_main_loop is
   1425 *	responsible for making the kernel stacks consistent for all
   1426 *	processes, there should be no difference between a blocked
   1427 *	process and a running process as far as kdb is concerned.
   1428 * Inputs:
   1429 *	reason		The reason KDB was invoked
   1430 *	error		The hardware-defined error code
   1431 *	reason2		kdb's current reason code.
   1432 *			Initially error but can change
   1433 *			according to kdb state.
   1434 *	db_result	Result code from break or debug point.
   1435 *	regs		The exception frame at time of fault/breakpoint.
   1436 *			should always be valid.
   1437 * Returns:
   1438 *	0	KDB was invoked for an event which it wasn't responsible
   1439 *	1	KDB handled the event for which it was invoked.
   1440 */
   1441int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
   1442	      kdb_dbtrap_t db_result, struct pt_regs *regs)
   1443{
   1444	int result = 1;
   1445	/* Stay in kdb() until 'go', 'ss[b]' or an error */
   1446	while (1) {
   1447		/*
   1448		 * All processors except the one that is in control
   1449		 * will spin here.
   1450		 */
   1451		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
   1452		while (KDB_STATE(HOLD_CPU)) {
   1453			/* state KDB is turned off by kdb_cpu to see if the
   1454			 * other cpus are still live, each cpu in this loop
   1455			 * turns it back on.
   1456			 */
   1457			if (!KDB_STATE(KDB))
   1458				KDB_STATE_SET(KDB);
   1459		}
   1460
   1461		KDB_STATE_CLEAR(SUPPRESS);
   1462		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
   1463		if (KDB_STATE(LEAVING))
   1464			break;	/* Another cpu said 'go' */
   1465		/* Still using kdb, this processor is in control */
   1466		result = kdb_local(reason2, error, regs, db_result);
   1467		KDB_DEBUG_STATE("kdb_main_loop 3", result);
   1468
   1469		if (result == KDB_CMD_CPU)
   1470			break;
   1471
   1472		if (result == KDB_CMD_SS) {
   1473			KDB_STATE_SET(DOING_SS);
   1474			break;
   1475		}
   1476
   1477		if (result == KDB_CMD_KGDB) {
   1478			if (!KDB_STATE(DOING_KGDB))
   1479				kdb_printf("Entering please attach debugger "
   1480					   "or use $D#44+ or $3#33\n");
   1481			break;
   1482		}
   1483		if (result && result != 1 && result != KDB_CMD_GO)
   1484			kdb_printf("\nUnexpected kdb_local return code %d\n",
   1485				   result);
   1486		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
   1487		break;
   1488	}
   1489	if (KDB_STATE(DOING_SS))
   1490		KDB_STATE_CLEAR(SSBPT);
   1491
   1492	/* Clean up any keyboard devices before leaving */
   1493	kdb_kbd_cleanup_state();
   1494
   1495	return result;
   1496}
   1497
   1498/*
   1499 * kdb_mdr - This function implements the guts of the 'mdr', memory
   1500 * read command.
   1501 *	mdr  <addr arg>,<byte count>
   1502 * Inputs:
   1503 *	addr	Start address
   1504 *	count	Number of bytes
   1505 * Returns:
   1506 *	Always 0.  Any errors are detected and printed by kdb_getarea.
   1507 */
   1508static int kdb_mdr(unsigned long addr, unsigned int count)
   1509{
   1510	unsigned char c;
   1511	while (count--) {
   1512		if (kdb_getarea(c, addr))
   1513			return 0;
   1514		kdb_printf("%02x", c);
   1515		addr++;
   1516	}
   1517	kdb_printf("\n");
   1518	return 0;
   1519}
   1520
   1521/*
   1522 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
   1523 *	'md8' 'mdr' and 'mds' commands.
   1524 *
   1525 *	md|mds  [<addr arg> [<line count> [<radix>]]]
   1526 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
   1527 *		where W = is the width (1, 2, 4 or 8) and N is the count.
   1528 *		for eg., md1c20 reads 20 bytes, 1 at a time.
   1529 *	mdr  <addr arg>,<byte count>
   1530 */
   1531static void kdb_md_line(const char *fmtstr, unsigned long addr,
   1532			int symbolic, int nosect, int bytesperword,
   1533			int num, int repeat, int phys)
   1534{
   1535	/* print just one line of data */
   1536	kdb_symtab_t symtab;
   1537	char cbuf[32];
   1538	char *c = cbuf;
   1539	int i;
   1540	int j;
   1541	unsigned long word;
   1542
   1543	memset(cbuf, '\0', sizeof(cbuf));
   1544	if (phys)
   1545		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
   1546	else
   1547		kdb_printf(kdb_machreg_fmt0 " ", addr);
   1548
   1549	for (i = 0; i < num && repeat--; i++) {
   1550		if (phys) {
   1551			if (kdb_getphysword(&word, addr, bytesperword))
   1552				break;
   1553		} else if (kdb_getword(&word, addr, bytesperword))
   1554			break;
   1555		kdb_printf(fmtstr, word);
   1556		if (symbolic)
   1557			kdbnearsym(word, &symtab);
   1558		else
   1559			memset(&symtab, 0, sizeof(symtab));
   1560		if (symtab.sym_name) {
   1561			kdb_symbol_print(word, &symtab, 0);
   1562			if (!nosect) {
   1563				kdb_printf("\n");
   1564				kdb_printf("                       %s %s "
   1565					   kdb_machreg_fmt " "
   1566					   kdb_machreg_fmt " "
   1567					   kdb_machreg_fmt, symtab.mod_name,
   1568					   symtab.sec_name, symtab.sec_start,
   1569					   symtab.sym_start, symtab.sym_end);
   1570			}
   1571			addr += bytesperword;
   1572		} else {
   1573			union {
   1574				u64 word;
   1575				unsigned char c[8];
   1576			} wc;
   1577			unsigned char *cp;
   1578#ifdef	__BIG_ENDIAN
   1579			cp = wc.c + 8 - bytesperword;
   1580#else
   1581			cp = wc.c;
   1582#endif
   1583			wc.word = word;
   1584#define printable_char(c) \
   1585	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
   1586			for (j = 0; j < bytesperword; j++)
   1587				*c++ = printable_char(*cp++);
   1588			addr += bytesperword;
   1589#undef printable_char
   1590		}
   1591	}
   1592	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
   1593		   " ", cbuf);
   1594}
   1595
   1596static int kdb_md(int argc, const char **argv)
   1597{
   1598	static unsigned long last_addr;
   1599	static int last_radix, last_bytesperword, last_repeat;
   1600	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
   1601	int nosect = 0;
   1602	char fmtchar, fmtstr[64];
   1603	unsigned long addr;
   1604	unsigned long word;
   1605	long offset = 0;
   1606	int symbolic = 0;
   1607	int valid = 0;
   1608	int phys = 0;
   1609	int raw = 0;
   1610
   1611	kdbgetintenv("MDCOUNT", &mdcount);
   1612	kdbgetintenv("RADIX", &radix);
   1613	kdbgetintenv("BYTESPERWORD", &bytesperword);
   1614
   1615	/* Assume 'md <addr>' and start with environment values */
   1616	repeat = mdcount * 16 / bytesperword;
   1617
   1618	if (strcmp(argv[0], "mdr") == 0) {
   1619		if (argc == 2 || (argc == 0 && last_addr != 0))
   1620			valid = raw = 1;
   1621		else
   1622			return KDB_ARGCOUNT;
   1623	} else if (isdigit(argv[0][2])) {
   1624		bytesperword = (int)(argv[0][2] - '0');
   1625		if (bytesperword == 0) {
   1626			bytesperword = last_bytesperword;
   1627			if (bytesperword == 0)
   1628				bytesperword = 4;
   1629		}
   1630		last_bytesperword = bytesperword;
   1631		repeat = mdcount * 16 / bytesperword;
   1632		if (!argv[0][3])
   1633			valid = 1;
   1634		else if (argv[0][3] == 'c' && argv[0][4]) {
   1635			char *p;
   1636			repeat = simple_strtoul(argv[0] + 4, &p, 10);
   1637			mdcount = ((repeat * bytesperword) + 15) / 16;
   1638			valid = !*p;
   1639		}
   1640		last_repeat = repeat;
   1641	} else if (strcmp(argv[0], "md") == 0)
   1642		valid = 1;
   1643	else if (strcmp(argv[0], "mds") == 0)
   1644		valid = 1;
   1645	else if (strcmp(argv[0], "mdp") == 0) {
   1646		phys = valid = 1;
   1647	}
   1648	if (!valid)
   1649		return KDB_NOTFOUND;
   1650
   1651	if (argc == 0) {
   1652		if (last_addr == 0)
   1653			return KDB_ARGCOUNT;
   1654		addr = last_addr;
   1655		radix = last_radix;
   1656		bytesperword = last_bytesperword;
   1657		repeat = last_repeat;
   1658		if (raw)
   1659			mdcount = repeat;
   1660		else
   1661			mdcount = ((repeat * bytesperword) + 15) / 16;
   1662	}
   1663
   1664	if (argc) {
   1665		unsigned long val;
   1666		int diag, nextarg = 1;
   1667		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
   1668				     &offset, NULL);
   1669		if (diag)
   1670			return diag;
   1671		if (argc > nextarg+2)
   1672			return KDB_ARGCOUNT;
   1673
   1674		if (argc >= nextarg) {
   1675			diag = kdbgetularg(argv[nextarg], &val);
   1676			if (!diag) {
   1677				mdcount = (int) val;
   1678				if (raw)
   1679					repeat = mdcount;
   1680				else
   1681					repeat = mdcount * 16 / bytesperword;
   1682			}
   1683		}
   1684		if (argc >= nextarg+1) {
   1685			diag = kdbgetularg(argv[nextarg+1], &val);
   1686			if (!diag)
   1687				radix = (int) val;
   1688		}
   1689	}
   1690
   1691	if (strcmp(argv[0], "mdr") == 0) {
   1692		int ret;
   1693		last_addr = addr;
   1694		ret = kdb_mdr(addr, mdcount);
   1695		last_addr += mdcount;
   1696		last_repeat = mdcount;
   1697		last_bytesperword = bytesperword; // to make REPEAT happy
   1698		return ret;
   1699	}
   1700
   1701	switch (radix) {
   1702	case 10:
   1703		fmtchar = 'd';
   1704		break;
   1705	case 16:
   1706		fmtchar = 'x';
   1707		break;
   1708	case 8:
   1709		fmtchar = 'o';
   1710		break;
   1711	default:
   1712		return KDB_BADRADIX;
   1713	}
   1714
   1715	last_radix = radix;
   1716
   1717	if (bytesperword > KDB_WORD_SIZE)
   1718		return KDB_BADWIDTH;
   1719
   1720	switch (bytesperword) {
   1721	case 8:
   1722		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
   1723		break;
   1724	case 4:
   1725		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
   1726		break;
   1727	case 2:
   1728		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
   1729		break;
   1730	case 1:
   1731		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
   1732		break;
   1733	default:
   1734		return KDB_BADWIDTH;
   1735	}
   1736
   1737	last_repeat = repeat;
   1738	last_bytesperword = bytesperword;
   1739
   1740	if (strcmp(argv[0], "mds") == 0) {
   1741		symbolic = 1;
   1742		/* Do not save these changes as last_*, they are temporary mds
   1743		 * overrides.
   1744		 */
   1745		bytesperword = KDB_WORD_SIZE;
   1746		repeat = mdcount;
   1747		kdbgetintenv("NOSECT", &nosect);
   1748	}
   1749
   1750	/* Round address down modulo BYTESPERWORD */
   1751
   1752	addr &= ~(bytesperword-1);
   1753
   1754	while (repeat > 0) {
   1755		unsigned long a;
   1756		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
   1757
   1758		if (KDB_FLAG(CMD_INTERRUPT))
   1759			return 0;
   1760		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
   1761			if (phys) {
   1762				if (kdb_getphysword(&word, a, bytesperword)
   1763						|| word)
   1764					break;
   1765			} else if (kdb_getword(&word, a, bytesperword) || word)
   1766				break;
   1767		}
   1768		n = min(num, repeat);
   1769		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
   1770			    num, repeat, phys);
   1771		addr += bytesperword * n;
   1772		repeat -= n;
   1773		z = (z + num - 1) / num;
   1774		if (z > 2) {
   1775			int s = num * (z-2);
   1776			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
   1777				   " zero suppressed\n",
   1778				addr, addr + bytesperword * s - 1);
   1779			addr += bytesperword * s;
   1780			repeat -= s;
   1781		}
   1782	}
   1783	last_addr = addr;
   1784
   1785	return 0;
   1786}
   1787
   1788/*
   1789 * kdb_mm - This function implements the 'mm' command.
   1790 *	mm address-expression new-value
   1791 * Remarks:
   1792 *	mm works on machine words, mmW works on bytes.
   1793 */
   1794static int kdb_mm(int argc, const char **argv)
   1795{
   1796	int diag;
   1797	unsigned long addr;
   1798	long offset = 0;
   1799	unsigned long contents;
   1800	int nextarg;
   1801	int width;
   1802
   1803	if (argv[0][2] && !isdigit(argv[0][2]))
   1804		return KDB_NOTFOUND;
   1805
   1806	if (argc < 2)
   1807		return KDB_ARGCOUNT;
   1808
   1809	nextarg = 1;
   1810	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
   1811	if (diag)
   1812		return diag;
   1813
   1814	if (nextarg > argc)
   1815		return KDB_ARGCOUNT;
   1816	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
   1817	if (diag)
   1818		return diag;
   1819
   1820	if (nextarg != argc + 1)
   1821		return KDB_ARGCOUNT;
   1822
   1823	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
   1824	diag = kdb_putword(addr, contents, width);
   1825	if (diag)
   1826		return diag;
   1827
   1828	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
   1829
   1830	return 0;
   1831}
   1832
   1833/*
   1834 * kdb_go - This function implements the 'go' command.
   1835 *	go [address-expression]
   1836 */
   1837static int kdb_go(int argc, const char **argv)
   1838{
   1839	unsigned long addr;
   1840	int diag;
   1841	int nextarg;
   1842	long offset;
   1843
   1844	if (raw_smp_processor_id() != kdb_initial_cpu) {
   1845		kdb_printf("go must execute on the entry cpu, "
   1846			   "please use \"cpu %d\" and then execute go\n",
   1847			   kdb_initial_cpu);
   1848		return KDB_BADCPUNUM;
   1849	}
   1850	if (argc == 1) {
   1851		nextarg = 1;
   1852		diag = kdbgetaddrarg(argc, argv, &nextarg,
   1853				     &addr, &offset, NULL);
   1854		if (diag)
   1855			return diag;
   1856	} else if (argc) {
   1857		return KDB_ARGCOUNT;
   1858	}
   1859
   1860	diag = KDB_CMD_GO;
   1861	if (KDB_FLAG(CATASTROPHIC)) {
   1862		kdb_printf("Catastrophic error detected\n");
   1863		kdb_printf("kdb_continue_catastrophic=%d, ",
   1864			kdb_continue_catastrophic);
   1865		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
   1866			kdb_printf("type go a second time if you really want "
   1867				   "to continue\n");
   1868			return 0;
   1869		}
   1870		if (kdb_continue_catastrophic == 2) {
   1871			kdb_printf("forcing reboot\n");
   1872			kdb_reboot(0, NULL);
   1873		}
   1874		kdb_printf("attempting to continue\n");
   1875	}
   1876	return diag;
   1877}
   1878
   1879/*
   1880 * kdb_rd - This function implements the 'rd' command.
   1881 */
   1882static int kdb_rd(int argc, const char **argv)
   1883{
   1884	int len = kdb_check_regs();
   1885#if DBG_MAX_REG_NUM > 0
   1886	int i;
   1887	char *rname;
   1888	int rsize;
   1889	u64 reg64;
   1890	u32 reg32;
   1891	u16 reg16;
   1892	u8 reg8;
   1893
   1894	if (len)
   1895		return len;
   1896
   1897	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
   1898		rsize = dbg_reg_def[i].size * 2;
   1899		if (rsize > 16)
   1900			rsize = 2;
   1901		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
   1902			len = 0;
   1903			kdb_printf("\n");
   1904		}
   1905		if (len)
   1906			len += kdb_printf("  ");
   1907		switch(dbg_reg_def[i].size * 8) {
   1908		case 8:
   1909			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
   1910			if (!rname)
   1911				break;
   1912			len += kdb_printf("%s: %02x", rname, reg8);
   1913			break;
   1914		case 16:
   1915			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
   1916			if (!rname)
   1917				break;
   1918			len += kdb_printf("%s: %04x", rname, reg16);
   1919			break;
   1920		case 32:
   1921			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
   1922			if (!rname)
   1923				break;
   1924			len += kdb_printf("%s: %08x", rname, reg32);
   1925			break;
   1926		case 64:
   1927			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
   1928			if (!rname)
   1929				break;
   1930			len += kdb_printf("%s: %016llx", rname, reg64);
   1931			break;
   1932		default:
   1933			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
   1934		}
   1935	}
   1936	kdb_printf("\n");
   1937#else
   1938	if (len)
   1939		return len;
   1940
   1941	kdb_dumpregs(kdb_current_regs);
   1942#endif
   1943	return 0;
   1944}
   1945
   1946/*
   1947 * kdb_rm - This function implements the 'rm' (register modify)  command.
   1948 *	rm register-name new-contents
   1949 * Remarks:
   1950 *	Allows register modification with the same restrictions as gdb
   1951 */
   1952static int kdb_rm(int argc, const char **argv)
   1953{
   1954#if DBG_MAX_REG_NUM > 0
   1955	int diag;
   1956	const char *rname;
   1957	int i;
   1958	u64 reg64;
   1959	u32 reg32;
   1960	u16 reg16;
   1961	u8 reg8;
   1962
   1963	if (argc != 2)
   1964		return KDB_ARGCOUNT;
   1965	/*
   1966	 * Allow presence or absence of leading '%' symbol.
   1967	 */
   1968	rname = argv[1];
   1969	if (*rname == '%')
   1970		rname++;
   1971
   1972	diag = kdbgetu64arg(argv[2], &reg64);
   1973	if (diag)
   1974		return diag;
   1975
   1976	diag = kdb_check_regs();
   1977	if (diag)
   1978		return diag;
   1979
   1980	diag = KDB_BADREG;
   1981	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
   1982		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
   1983			diag = 0;
   1984			break;
   1985		}
   1986	}
   1987	if (!diag) {
   1988		switch(dbg_reg_def[i].size * 8) {
   1989		case 8:
   1990			reg8 = reg64;
   1991			dbg_set_reg(i, &reg8, kdb_current_regs);
   1992			break;
   1993		case 16:
   1994			reg16 = reg64;
   1995			dbg_set_reg(i, &reg16, kdb_current_regs);
   1996			break;
   1997		case 32:
   1998			reg32 = reg64;
   1999			dbg_set_reg(i, &reg32, kdb_current_regs);
   2000			break;
   2001		case 64:
   2002			dbg_set_reg(i, &reg64, kdb_current_regs);
   2003			break;
   2004		}
   2005	}
   2006	return diag;
   2007#else
   2008	kdb_printf("ERROR: Register set currently not implemented\n");
   2009    return 0;
   2010#endif
   2011}
   2012
   2013#if defined(CONFIG_MAGIC_SYSRQ)
   2014/*
   2015 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
   2016 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
   2017 *		sr <magic-sysrq-code>
   2018 */
   2019static int kdb_sr(int argc, const char **argv)
   2020{
   2021	bool check_mask =
   2022	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
   2023
   2024	if (argc != 1)
   2025		return KDB_ARGCOUNT;
   2026
   2027	kdb_trap_printk++;
   2028	__handle_sysrq(*argv[1], check_mask);
   2029	kdb_trap_printk--;
   2030
   2031	return 0;
   2032}
   2033#endif	/* CONFIG_MAGIC_SYSRQ */
   2034
   2035/*
   2036 * kdb_ef - This function implements the 'regs' (display exception
   2037 *	frame) command.  This command takes an address and expects to
   2038 *	find an exception frame at that address, formats and prints
   2039 *	it.
   2040 *		regs address-expression
   2041 * Remarks:
   2042 *	Not done yet.
   2043 */
   2044static int kdb_ef(int argc, const char **argv)
   2045{
   2046	int diag;
   2047	unsigned long addr;
   2048	long offset;
   2049	int nextarg;
   2050
   2051	if (argc != 1)
   2052		return KDB_ARGCOUNT;
   2053
   2054	nextarg = 1;
   2055	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
   2056	if (diag)
   2057		return diag;
   2058	show_regs((struct pt_regs *)addr);
   2059	return 0;
   2060}
   2061
   2062/*
   2063 * kdb_env - This function implements the 'env' command.  Display the
   2064 *	current environment variables.
   2065 */
   2066
   2067static int kdb_env(int argc, const char **argv)
   2068{
   2069	kdb_printenv();
   2070
   2071	if (KDB_DEBUG(MASK))
   2072		kdb_printf("KDBDEBUG=0x%x\n",
   2073			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
   2074
   2075	return 0;
   2076}
   2077
   2078#ifdef CONFIG_PRINTK
   2079/*
   2080 * kdb_dmesg - This function implements the 'dmesg' command to display
   2081 *	the contents of the syslog buffer.
   2082 *		dmesg [lines] [adjust]
   2083 */
   2084static int kdb_dmesg(int argc, const char **argv)
   2085{
   2086	int diag;
   2087	int logging;
   2088	int lines = 0;
   2089	int adjust = 0;
   2090	int n = 0;
   2091	int skip = 0;
   2092	struct kmsg_dump_iter iter;
   2093	size_t len;
   2094	char buf[201];
   2095
   2096	if (argc > 2)
   2097		return KDB_ARGCOUNT;
   2098	if (argc) {
   2099		char *cp;
   2100		lines = simple_strtol(argv[1], &cp, 0);
   2101		if (*cp)
   2102			lines = 0;
   2103		if (argc > 1) {
   2104			adjust = simple_strtoul(argv[2], &cp, 0);
   2105			if (*cp || adjust < 0)
   2106				adjust = 0;
   2107		}
   2108	}
   2109
   2110	/* disable LOGGING if set */
   2111	diag = kdbgetintenv("LOGGING", &logging);
   2112	if (!diag && logging) {
   2113		const char *setargs[] = { "set", "LOGGING", "0" };
   2114		kdb_set(2, setargs);
   2115	}
   2116
   2117	kmsg_dump_rewind(&iter);
   2118	while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
   2119		n++;
   2120
   2121	if (lines < 0) {
   2122		if (adjust >= n)
   2123			kdb_printf("buffer only contains %d lines, nothing "
   2124				   "printed\n", n);
   2125		else if (adjust - lines >= n)
   2126			kdb_printf("buffer only contains %d lines, last %d "
   2127				   "lines printed\n", n, n - adjust);
   2128		skip = adjust;
   2129		lines = abs(lines);
   2130	} else if (lines > 0) {
   2131		skip = n - lines - adjust;
   2132		lines = abs(lines);
   2133		if (adjust >= n) {
   2134			kdb_printf("buffer only contains %d lines, "
   2135				   "nothing printed\n", n);
   2136			skip = n;
   2137		} else if (skip < 0) {
   2138			lines += skip;
   2139			skip = 0;
   2140			kdb_printf("buffer only contains %d lines, first "
   2141				   "%d lines printed\n", n, lines);
   2142		}
   2143	} else {
   2144		lines = n;
   2145	}
   2146
   2147	if (skip >= n || skip < 0)
   2148		return 0;
   2149
   2150	kmsg_dump_rewind(&iter);
   2151	while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
   2152		if (skip) {
   2153			skip--;
   2154			continue;
   2155		}
   2156		if (!lines--)
   2157			break;
   2158		if (KDB_FLAG(CMD_INTERRUPT))
   2159			return 0;
   2160
   2161		kdb_printf("%.*s\n", (int)len - 1, buf);
   2162	}
   2163
   2164	return 0;
   2165}
   2166#endif /* CONFIG_PRINTK */
   2167
   2168/* Make sure we balance enable/disable calls, must disable first. */
   2169static atomic_t kdb_nmi_disabled;
   2170
   2171static int kdb_disable_nmi(int argc, const char *argv[])
   2172{
   2173	if (atomic_read(&kdb_nmi_disabled))
   2174		return 0;
   2175	atomic_set(&kdb_nmi_disabled, 1);
   2176	arch_kgdb_ops.enable_nmi(0);
   2177	return 0;
   2178}
   2179
   2180static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
   2181{
   2182	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
   2183		return -EINVAL;
   2184	arch_kgdb_ops.enable_nmi(1);
   2185	return 0;
   2186}
   2187
   2188static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
   2189	.set = kdb_param_enable_nmi,
   2190};
   2191module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
   2192
   2193/*
   2194 * kdb_cpu - This function implements the 'cpu' command.
   2195 *	cpu	[<cpunum>]
   2196 * Returns:
   2197 *	KDB_CMD_CPU for success, a kdb diagnostic if error
   2198 */
   2199static void kdb_cpu_status(void)
   2200{
   2201	int i, start_cpu, first_print = 1;
   2202	char state, prev_state = '?';
   2203
   2204	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
   2205	kdb_printf("Available cpus: ");
   2206	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
   2207		if (!cpu_online(i)) {
   2208			state = 'F';	/* cpu is offline */
   2209		} else if (!kgdb_info[i].enter_kgdb) {
   2210			state = 'D';	/* cpu is online but unresponsive */
   2211		} else {
   2212			state = ' ';	/* cpu is responding to kdb */
   2213			if (kdb_task_state_char(KDB_TSK(i)) == '-')
   2214				state = '-';	/* idle task */
   2215		}
   2216		if (state != prev_state) {
   2217			if (prev_state != '?') {
   2218				if (!first_print)
   2219					kdb_printf(", ");
   2220				first_print = 0;
   2221				kdb_printf("%d", start_cpu);
   2222				if (start_cpu < i-1)
   2223					kdb_printf("-%d", i-1);
   2224				if (prev_state != ' ')
   2225					kdb_printf("(%c)", prev_state);
   2226			}
   2227			prev_state = state;
   2228			start_cpu = i;
   2229		}
   2230	}
   2231	/* print the trailing cpus, ignoring them if they are all offline */
   2232	if (prev_state != 'F') {
   2233		if (!first_print)
   2234			kdb_printf(", ");
   2235		kdb_printf("%d", start_cpu);
   2236		if (start_cpu < i-1)
   2237			kdb_printf("-%d", i-1);
   2238		if (prev_state != ' ')
   2239			kdb_printf("(%c)", prev_state);
   2240	}
   2241	kdb_printf("\n");
   2242}
   2243
   2244static int kdb_cpu(int argc, const char **argv)
   2245{
   2246	unsigned long cpunum;
   2247	int diag;
   2248
   2249	if (argc == 0) {
   2250		kdb_cpu_status();
   2251		return 0;
   2252	}
   2253
   2254	if (argc != 1)
   2255		return KDB_ARGCOUNT;
   2256
   2257	diag = kdbgetularg(argv[1], &cpunum);
   2258	if (diag)
   2259		return diag;
   2260
   2261	/*
   2262	 * Validate cpunum
   2263	 */
   2264	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
   2265		return KDB_BADCPUNUM;
   2266
   2267	dbg_switch_cpu = cpunum;
   2268
   2269	/*
   2270	 * Switch to other cpu
   2271	 */
   2272	return KDB_CMD_CPU;
   2273}
   2274
   2275/* The user may not realize that ps/bta with no parameters does not print idle
   2276 * or sleeping system daemon processes, so tell them how many were suppressed.
   2277 */
   2278void kdb_ps_suppressed(void)
   2279{
   2280	int idle = 0, daemon = 0;
   2281	unsigned long cpu;
   2282	const struct task_struct *p, *g;
   2283	for_each_online_cpu(cpu) {
   2284		p = kdb_curr_task(cpu);
   2285		if (kdb_task_state(p, "-"))
   2286			++idle;
   2287	}
   2288	for_each_process_thread(g, p) {
   2289		if (kdb_task_state(p, "ims"))
   2290			++daemon;
   2291	}
   2292	if (idle || daemon) {
   2293		if (idle)
   2294			kdb_printf("%d idle process%s (state -)%s\n",
   2295				   idle, idle == 1 ? "" : "es",
   2296				   daemon ? " and " : "");
   2297		if (daemon)
   2298			kdb_printf("%d sleeping system daemon (state [ims]) "
   2299				   "process%s", daemon,
   2300				   daemon == 1 ? "" : "es");
   2301		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
   2302	}
   2303}
   2304
   2305void kdb_ps1(const struct task_struct *p)
   2306{
   2307	int cpu;
   2308	unsigned long tmp;
   2309
   2310	if (!p ||
   2311	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
   2312		return;
   2313
   2314	cpu = kdb_process_cpu(p);
   2315	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
   2316		   (void *)p, p->pid, p->parent->pid,
   2317		   kdb_task_has_cpu(p), kdb_process_cpu(p),
   2318		   kdb_task_state_char(p),
   2319		   (void *)(&p->thread),
   2320		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
   2321		   p->comm);
   2322	if (kdb_task_has_cpu(p)) {
   2323		if (!KDB_TSK(cpu)) {
   2324			kdb_printf("  Error: no saved data for this cpu\n");
   2325		} else {
   2326			if (KDB_TSK(cpu) != p)
   2327				kdb_printf("  Error: does not match running "
   2328				   "process table (0x%px)\n", KDB_TSK(cpu));
   2329		}
   2330	}
   2331}
   2332
   2333/*
   2334 * kdb_ps - This function implements the 'ps' command which shows a
   2335 *	    list of the active processes.
   2336 *
   2337 * ps [<state_chars>]   Show processes, optionally selecting only those whose
   2338 *                      state character is found in <state_chars>.
   2339 */
   2340static int kdb_ps(int argc, const char **argv)
   2341{
   2342	struct task_struct *g, *p;
   2343	const char *mask;
   2344	unsigned long cpu;
   2345
   2346	if (argc == 0)
   2347		kdb_ps_suppressed();
   2348	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
   2349		(int)(2*sizeof(void *))+2, "Task Addr",
   2350		(int)(2*sizeof(void *))+2, "Thread");
   2351	mask = argc ? argv[1] : kdbgetenv("PS");
   2352	/* Run the active tasks first */
   2353	for_each_online_cpu(cpu) {
   2354		if (KDB_FLAG(CMD_INTERRUPT))
   2355			return 0;
   2356		p = kdb_curr_task(cpu);
   2357		if (kdb_task_state(p, mask))
   2358			kdb_ps1(p);
   2359	}
   2360	kdb_printf("\n");
   2361	/* Now the real tasks */
   2362	for_each_process_thread(g, p) {
   2363		if (KDB_FLAG(CMD_INTERRUPT))
   2364			return 0;
   2365		if (kdb_task_state(p, mask))
   2366			kdb_ps1(p);
   2367	}
   2368
   2369	return 0;
   2370}
   2371
   2372/*
   2373 * kdb_pid - This function implements the 'pid' command which switches
   2374 *	the currently active process.
   2375 *		pid [<pid> | R]
   2376 */
   2377static int kdb_pid(int argc, const char **argv)
   2378{
   2379	struct task_struct *p;
   2380	unsigned long val;
   2381	int diag;
   2382
   2383	if (argc > 1)
   2384		return KDB_ARGCOUNT;
   2385
   2386	if (argc) {
   2387		if (strcmp(argv[1], "R") == 0) {
   2388			p = KDB_TSK(kdb_initial_cpu);
   2389		} else {
   2390			diag = kdbgetularg(argv[1], &val);
   2391			if (diag)
   2392				return KDB_BADINT;
   2393
   2394			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
   2395			if (!p) {
   2396				kdb_printf("No task with pid=%d\n", (pid_t)val);
   2397				return 0;
   2398			}
   2399		}
   2400		kdb_set_current_task(p);
   2401	}
   2402	kdb_printf("KDB current process is %s(pid=%d)\n",
   2403		   kdb_current_task->comm,
   2404		   kdb_current_task->pid);
   2405
   2406	return 0;
   2407}
   2408
   2409static int kdb_kgdb(int argc, const char **argv)
   2410{
   2411	return KDB_CMD_KGDB;
   2412}
   2413
   2414/*
   2415 * kdb_help - This function implements the 'help' and '?' commands.
   2416 */
   2417static int kdb_help(int argc, const char **argv)
   2418{
   2419	kdbtab_t *kt;
   2420
   2421	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
   2422	kdb_printf("-----------------------------"
   2423		   "-----------------------------\n");
   2424	list_for_each_entry(kt, &kdb_cmds_head, list_node) {
   2425		char *space = "";
   2426		if (KDB_FLAG(CMD_INTERRUPT))
   2427			return 0;
   2428		if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
   2429			continue;
   2430		if (strlen(kt->usage) > 20)
   2431			space = "\n                                    ";
   2432		kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
   2433			   kt->usage, space, kt->help);
   2434	}
   2435	return 0;
   2436}
   2437
   2438/*
   2439 * kdb_kill - This function implements the 'kill' commands.
   2440 */
   2441static int kdb_kill(int argc, const char **argv)
   2442{
   2443	long sig, pid;
   2444	char *endp;
   2445	struct task_struct *p;
   2446
   2447	if (argc != 2)
   2448		return KDB_ARGCOUNT;
   2449
   2450	sig = simple_strtol(argv[1], &endp, 0);
   2451	if (*endp)
   2452		return KDB_BADINT;
   2453	if ((sig >= 0) || !valid_signal(-sig)) {
   2454		kdb_printf("Invalid signal parameter.<-signal>\n");
   2455		return 0;
   2456	}
   2457	sig = -sig;
   2458
   2459	pid = simple_strtol(argv[2], &endp, 0);
   2460	if (*endp)
   2461		return KDB_BADINT;
   2462	if (pid <= 0) {
   2463		kdb_printf("Process ID must be large than 0.\n");
   2464		return 0;
   2465	}
   2466
   2467	/* Find the process. */
   2468	p = find_task_by_pid_ns(pid, &init_pid_ns);
   2469	if (!p) {
   2470		kdb_printf("The specified process isn't found.\n");
   2471		return 0;
   2472	}
   2473	p = p->group_leader;
   2474	kdb_send_sig(p, sig);
   2475	return 0;
   2476}
   2477
   2478/*
   2479 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
   2480 * I cannot call that code directly from kdb, it has an unconditional
   2481 * cli()/sti() and calls routines that take locks which can stop the debugger.
   2482 */
   2483static void kdb_sysinfo(struct sysinfo *val)
   2484{
   2485	u64 uptime = ktime_get_mono_fast_ns();
   2486
   2487	memset(val, 0, sizeof(*val));
   2488	val->uptime = div_u64(uptime, NSEC_PER_SEC);
   2489	val->loads[0] = avenrun[0];
   2490	val->loads[1] = avenrun[1];
   2491	val->loads[2] = avenrun[2];
   2492	val->procs = nr_threads-1;
   2493	si_meminfo(val);
   2494
   2495	return;
   2496}
   2497
   2498/*
   2499 * kdb_summary - This function implements the 'summary' command.
   2500 */
   2501static int kdb_summary(int argc, const char **argv)
   2502{
   2503	time64_t now;
   2504	struct sysinfo val;
   2505
   2506	if (argc)
   2507		return KDB_ARGCOUNT;
   2508
   2509	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
   2510	kdb_printf("release    %s\n", init_uts_ns.name.release);
   2511	kdb_printf("version    %s\n", init_uts_ns.name.version);
   2512	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
   2513	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
   2514	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
   2515
   2516	now = __ktime_get_real_seconds();
   2517	kdb_printf("date       %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
   2518	kdb_sysinfo(&val);
   2519	kdb_printf("uptime     ");
   2520	if (val.uptime > (24*60*60)) {
   2521		int days = val.uptime / (24*60*60);
   2522		val.uptime %= (24*60*60);
   2523		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
   2524	}
   2525	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
   2526
   2527	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
   2528		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
   2529		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
   2530		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
   2531
   2532	/* Display in kilobytes */
   2533#define K(x) ((x) << (PAGE_SHIFT - 10))
   2534	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
   2535		   "Buffers:        %8lu kB\n",
   2536		   K(val.totalram), K(val.freeram), K(val.bufferram));
   2537	return 0;
   2538}
   2539
   2540/*
   2541 * kdb_per_cpu - This function implements the 'per_cpu' command.
   2542 */
   2543static int kdb_per_cpu(int argc, const char **argv)
   2544{
   2545	char fmtstr[64];
   2546	int cpu, diag, nextarg = 1;
   2547	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
   2548
   2549	if (argc < 1 || argc > 3)
   2550		return KDB_ARGCOUNT;
   2551
   2552	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
   2553	if (diag)
   2554		return diag;
   2555
   2556	if (argc >= 2) {
   2557		diag = kdbgetularg(argv[2], &bytesperword);
   2558		if (diag)
   2559			return diag;
   2560	}
   2561	if (!bytesperword)
   2562		bytesperword = KDB_WORD_SIZE;
   2563	else if (bytesperword > KDB_WORD_SIZE)
   2564		return KDB_BADWIDTH;
   2565	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
   2566	if (argc >= 3) {
   2567		diag = kdbgetularg(argv[3], &whichcpu);
   2568		if (diag)
   2569			return diag;
   2570		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
   2571			kdb_printf("cpu %ld is not online\n", whichcpu);
   2572			return KDB_BADCPUNUM;
   2573		}
   2574	}
   2575
   2576	/* Most architectures use __per_cpu_offset[cpu], some use
   2577	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
   2578	 */
   2579#ifdef	__per_cpu_offset
   2580#define KDB_PCU(cpu) __per_cpu_offset(cpu)
   2581#else
   2582#ifdef	CONFIG_SMP
   2583#define KDB_PCU(cpu) __per_cpu_offset[cpu]
   2584#else
   2585#define KDB_PCU(cpu) 0
   2586#endif
   2587#endif
   2588	for_each_online_cpu(cpu) {
   2589		if (KDB_FLAG(CMD_INTERRUPT))
   2590			return 0;
   2591
   2592		if (whichcpu != ~0UL && whichcpu != cpu)
   2593			continue;
   2594		addr = symaddr + KDB_PCU(cpu);
   2595		diag = kdb_getword(&val, addr, bytesperword);
   2596		if (diag) {
   2597			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
   2598				   "read, diag=%d\n", cpu, addr, diag);
   2599			continue;
   2600		}
   2601		kdb_printf("%5d ", cpu);
   2602		kdb_md_line(fmtstr, addr,
   2603			bytesperword == KDB_WORD_SIZE,
   2604			1, bytesperword, 1, 1, 0);
   2605	}
   2606#undef KDB_PCU
   2607	return 0;
   2608}
   2609
   2610/*
   2611 * display help for the use of cmd | grep pattern
   2612 */
   2613static int kdb_grep_help(int argc, const char **argv)
   2614{
   2615	kdb_printf("Usage of  cmd args | grep pattern:\n");
   2616	kdb_printf("  Any command's output may be filtered through an ");
   2617	kdb_printf("emulated 'pipe'.\n");
   2618	kdb_printf("  'grep' is just a key word.\n");
   2619	kdb_printf("  The pattern may include a very limited set of "
   2620		   "metacharacters:\n");
   2621	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
   2622	kdb_printf("  And if there are spaces in the pattern, you may "
   2623		   "quote it:\n");
   2624	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
   2625		   " or \"^pat tern$\"\n");
   2626	return 0;
   2627}
   2628
   2629/**
   2630 * kdb_register() - This function is used to register a kernel debugger
   2631 *                  command.
   2632 * @cmd: pointer to kdb command
   2633 *
   2634 * Note that it's the job of the caller to keep the memory for the cmd
   2635 * allocated until unregister is called.
   2636 */
   2637int kdb_register(kdbtab_t *cmd)
   2638{
   2639	kdbtab_t *kp;
   2640
   2641	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
   2642		if (strcmp(kp->name, cmd->name) == 0) {
   2643			kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
   2644				   cmd->name, cmd->func, cmd->help);
   2645			return 1;
   2646		}
   2647	}
   2648
   2649	list_add_tail(&cmd->list_node, &kdb_cmds_head);
   2650	return 0;
   2651}
   2652EXPORT_SYMBOL_GPL(kdb_register);
   2653
   2654/**
   2655 * kdb_register_table() - This function is used to register a kdb command
   2656 *                        table.
   2657 * @kp: pointer to kdb command table
   2658 * @len: length of kdb command table
   2659 */
   2660void kdb_register_table(kdbtab_t *kp, size_t len)
   2661{
   2662	while (len--) {
   2663		list_add_tail(&kp->list_node, &kdb_cmds_head);
   2664		kp++;
   2665	}
   2666}
   2667
   2668/**
   2669 * kdb_unregister() - This function is used to unregister a kernel debugger
   2670 *                    command. It is generally called when a module which
   2671 *                    implements kdb command is unloaded.
   2672 * @cmd: pointer to kdb command
   2673 */
   2674void kdb_unregister(kdbtab_t *cmd)
   2675{
   2676	list_del(&cmd->list_node);
   2677}
   2678EXPORT_SYMBOL_GPL(kdb_unregister);
   2679
   2680static kdbtab_t maintab[] = {
   2681	{	.name = "md",
   2682		.func = kdb_md,
   2683		.usage = "<vaddr>",
   2684		.help = "Display Memory Contents, also mdWcN, e.g. md8c1",
   2685		.minlen = 1,
   2686		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
   2687	},
   2688	{	.name = "mdr",
   2689		.func = kdb_md,
   2690		.usage = "<vaddr> <bytes>",
   2691		.help = "Display Raw Memory",
   2692		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
   2693	},
   2694	{	.name = "mdp",
   2695		.func = kdb_md,
   2696		.usage = "<paddr> <bytes>",
   2697		.help = "Display Physical Memory",
   2698		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
   2699	},
   2700	{	.name = "mds",
   2701		.func = kdb_md,
   2702		.usage = "<vaddr>",
   2703		.help = "Display Memory Symbolically",
   2704		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
   2705	},
   2706	{	.name = "mm",
   2707		.func = kdb_mm,
   2708		.usage = "<vaddr> <contents>",
   2709		.help = "Modify Memory Contents",
   2710		.flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
   2711	},
   2712	{	.name = "go",
   2713		.func = kdb_go,
   2714		.usage = "[<vaddr>]",
   2715		.help = "Continue Execution",
   2716		.minlen = 1,
   2717		.flags = KDB_ENABLE_REG_WRITE |
   2718			     KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
   2719	},
   2720	{	.name = "rd",
   2721		.func = kdb_rd,
   2722		.usage = "",
   2723		.help = "Display Registers",
   2724		.flags = KDB_ENABLE_REG_READ,
   2725	},
   2726	{	.name = "rm",
   2727		.func = kdb_rm,
   2728		.usage = "<reg> <contents>",
   2729		.help = "Modify Registers",
   2730		.flags = KDB_ENABLE_REG_WRITE,
   2731	},
   2732	{	.name = "ef",
   2733		.func = kdb_ef,
   2734		.usage = "<vaddr>",
   2735		.help = "Display exception frame",
   2736		.flags = KDB_ENABLE_MEM_READ,
   2737	},
   2738	{	.name = "bt",
   2739		.func = kdb_bt,
   2740		.usage = "[<vaddr>]",
   2741		.help = "Stack traceback",
   2742		.minlen = 1,
   2743		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
   2744	},
   2745	{	.name = "btp",
   2746		.func = kdb_bt,
   2747		.usage = "<pid>",
   2748		.help = "Display stack for process <pid>",
   2749		.flags = KDB_ENABLE_INSPECT,
   2750	},
   2751	{	.name = "bta",
   2752		.func = kdb_bt,
   2753		.usage = "[<state_chars>|A]",
   2754		.help = "Backtrace all processes whose state matches",
   2755		.flags = KDB_ENABLE_INSPECT,
   2756	},
   2757	{	.name = "btc",
   2758		.func = kdb_bt,
   2759		.usage = "",
   2760		.help = "Backtrace current process on each cpu",
   2761		.flags = KDB_ENABLE_INSPECT,
   2762	},
   2763	{	.name = "btt",
   2764		.func = kdb_bt,
   2765		.usage = "<vaddr>",
   2766		.help = "Backtrace process given its struct task address",
   2767		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
   2768	},
   2769	{	.name = "env",
   2770		.func = kdb_env,
   2771		.usage = "",
   2772		.help = "Show environment variables",
   2773		.flags = KDB_ENABLE_ALWAYS_SAFE,
   2774	},
   2775	{	.name = "set",
   2776		.func = kdb_set,
   2777		.usage = "",
   2778		.help = "Set environment variables",
   2779		.flags = KDB_ENABLE_ALWAYS_SAFE,
   2780	},
   2781	{	.name = "help",
   2782		.func = kdb_help,
   2783		.usage = "",
   2784		.help = "Display Help Message",
   2785		.minlen = 1,
   2786		.flags = KDB_ENABLE_ALWAYS_SAFE,
   2787	},
   2788	{	.name = "?",
   2789		.func = kdb_help,
   2790		.usage = "",
   2791		.help = "Display Help Message",
   2792		.flags = KDB_ENABLE_ALWAYS_SAFE,
   2793	},
   2794	{	.name = "cpu",
   2795		.func = kdb_cpu,
   2796		.usage = "<cpunum>",
   2797		.help = "Switch to new cpu",
   2798		.flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
   2799	},
   2800	{	.name = "kgdb",
   2801		.func = kdb_kgdb,
   2802		.usage = "",
   2803		.help = "Enter kgdb mode",
   2804		.flags = 0,
   2805	},
   2806	{	.name = "ps",
   2807		.func = kdb_ps,
   2808		.usage = "[<state_chars>|A]",
   2809		.help = "Display active task list",
   2810		.flags = KDB_ENABLE_INSPECT,
   2811	},
   2812	{	.name = "pid",
   2813		.func = kdb_pid,
   2814		.usage = "<pidnum>",
   2815		.help = "Switch to another task",
   2816		.flags = KDB_ENABLE_INSPECT,
   2817	},
   2818	{	.name = "reboot",
   2819		.func = kdb_reboot,
   2820		.usage = "",
   2821		.help = "Reboot the machine immediately",
   2822		.flags = KDB_ENABLE_REBOOT,
   2823	},
   2824#if defined(CONFIG_MODULES)
   2825	{	.name = "lsmod",
   2826		.func = kdb_lsmod,
   2827		.usage = "",
   2828		.help = "List loaded kernel modules",
   2829		.flags = KDB_ENABLE_INSPECT,
   2830	},
   2831#endif
   2832#if defined(CONFIG_MAGIC_SYSRQ)
   2833	{	.name = "sr",
   2834		.func = kdb_sr,
   2835		.usage = "<key>",
   2836		.help = "Magic SysRq key",
   2837		.flags = KDB_ENABLE_ALWAYS_SAFE,
   2838	},
   2839#endif
   2840#if defined(CONFIG_PRINTK)
   2841	{	.name = "dmesg",
   2842		.func = kdb_dmesg,
   2843		.usage = "[lines]",
   2844		.help = "Display syslog buffer",
   2845		.flags = KDB_ENABLE_ALWAYS_SAFE,
   2846	},
   2847#endif
   2848	{	.name = "defcmd",
   2849		.func = kdb_defcmd,
   2850		.usage = "name \"usage\" \"help\"",
   2851		.help = "Define a set of commands, down to endefcmd",
   2852		/*
   2853		 * Macros are always safe because when executed each
   2854		 * internal command re-enters kdb_parse() and is safety
   2855		 * checked individually.
   2856		 */
   2857		.flags = KDB_ENABLE_ALWAYS_SAFE,
   2858	},
   2859	{	.name = "kill",
   2860		.func = kdb_kill,
   2861		.usage = "<-signal> <pid>",
   2862		.help = "Send a signal to a process",
   2863		.flags = KDB_ENABLE_SIGNAL,
   2864	},
   2865	{	.name = "summary",
   2866		.func = kdb_summary,
   2867		.usage = "",
   2868		.help = "Summarize the system",
   2869		.minlen = 4,
   2870		.flags = KDB_ENABLE_ALWAYS_SAFE,
   2871	},
   2872	{	.name = "per_cpu",
   2873		.func = kdb_per_cpu,
   2874		.usage = "<sym> [<bytes>] [<cpu>]",
   2875		.help = "Display per_cpu variables",
   2876		.minlen = 3,
   2877		.flags = KDB_ENABLE_MEM_READ,
   2878	},
   2879	{	.name = "grephelp",
   2880		.func = kdb_grep_help,
   2881		.usage = "",
   2882		.help = "Display help on | grep",
   2883		.flags = KDB_ENABLE_ALWAYS_SAFE,
   2884	},
   2885};
   2886
   2887static kdbtab_t nmicmd = {
   2888	.name = "disable_nmi",
   2889	.func = kdb_disable_nmi,
   2890	.usage = "",
   2891	.help = "Disable NMI entry to KDB",
   2892	.flags = KDB_ENABLE_ALWAYS_SAFE,
   2893};
   2894
   2895/* Initialize the kdb command table. */
   2896static void __init kdb_inittab(void)
   2897{
   2898	kdb_register_table(maintab, ARRAY_SIZE(maintab));
   2899	if (arch_kgdb_ops.enable_nmi)
   2900		kdb_register_table(&nmicmd, 1);
   2901}
   2902
   2903/* Execute any commands defined in kdb_cmds.  */
   2904static void __init kdb_cmd_init(void)
   2905{
   2906	int i, diag;
   2907	for (i = 0; kdb_cmds[i]; ++i) {
   2908		diag = kdb_parse(kdb_cmds[i]);
   2909		if (diag)
   2910			kdb_printf("kdb command %s failed, kdb diag %d\n",
   2911				kdb_cmds[i], diag);
   2912	}
   2913	if (defcmd_in_progress) {
   2914		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
   2915		kdb_parse("endefcmd");
   2916	}
   2917}
   2918
   2919/* Initialize kdb_printf, breakpoint tables and kdb state */
   2920void __init kdb_init(int lvl)
   2921{
   2922	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
   2923	int i;
   2924
   2925	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
   2926		return;
   2927	for (i = kdb_init_lvl; i < lvl; i++) {
   2928		switch (i) {
   2929		case KDB_NOT_INITIALIZED:
   2930			kdb_inittab();		/* Initialize Command Table */
   2931			kdb_initbptab();	/* Initialize Breakpoints */
   2932			break;
   2933		case KDB_INIT_EARLY:
   2934			kdb_cmd_init();		/* Build kdb_cmds tables */
   2935			break;
   2936		}
   2937	}
   2938	kdb_init_lvl = lvl;
   2939}