cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

coherent.c (11010B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Coherent per-device memory handling.
      4 * Borrowed from i386
      5 */
      6#include <linux/io.h>
      7#include <linux/slab.h>
      8#include <linux/kernel.h>
      9#include <linux/module.h>
     10#include <linux/dma-direct.h>
     11#include <linux/dma-map-ops.h>
     12
     13struct dma_coherent_mem {
     14	void		*virt_base;
     15	dma_addr_t	device_base;
     16	unsigned long	pfn_base;
     17	int		size;
     18	unsigned long	*bitmap;
     19	spinlock_t	spinlock;
     20	bool		use_dev_dma_pfn_offset;
     21};
     22
     23static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
     24{
     25	if (dev && dev->dma_mem)
     26		return dev->dma_mem;
     27	return NULL;
     28}
     29
     30static inline dma_addr_t dma_get_device_base(struct device *dev,
     31					     struct dma_coherent_mem * mem)
     32{
     33	if (mem->use_dev_dma_pfn_offset)
     34		return phys_to_dma(dev, PFN_PHYS(mem->pfn_base));
     35	return mem->device_base;
     36}
     37
     38static struct dma_coherent_mem *dma_init_coherent_memory(phys_addr_t phys_addr,
     39		dma_addr_t device_addr, size_t size, bool use_dma_pfn_offset)
     40{
     41	struct dma_coherent_mem *dma_mem;
     42	int pages = size >> PAGE_SHIFT;
     43	void *mem_base;
     44
     45	if (!size)
     46		return ERR_PTR(-EINVAL);
     47
     48	mem_base = memremap(phys_addr, size, MEMREMAP_WC);
     49	if (!mem_base)
     50		return ERR_PTR(-EINVAL);
     51
     52	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
     53	if (!dma_mem)
     54		goto out_unmap_membase;
     55	dma_mem->bitmap = bitmap_zalloc(pages, GFP_KERNEL);
     56	if (!dma_mem->bitmap)
     57		goto out_free_dma_mem;
     58
     59	dma_mem->virt_base = mem_base;
     60	dma_mem->device_base = device_addr;
     61	dma_mem->pfn_base = PFN_DOWN(phys_addr);
     62	dma_mem->size = pages;
     63	dma_mem->use_dev_dma_pfn_offset = use_dma_pfn_offset;
     64	spin_lock_init(&dma_mem->spinlock);
     65
     66	return dma_mem;
     67
     68out_free_dma_mem:
     69	kfree(dma_mem);
     70out_unmap_membase:
     71	memunmap(mem_base);
     72	pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %zd MiB\n",
     73		&phys_addr, size / SZ_1M);
     74	return ERR_PTR(-ENOMEM);
     75}
     76
     77static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
     78{
     79	if (!mem)
     80		return;
     81
     82	memunmap(mem->virt_base);
     83	bitmap_free(mem->bitmap);
     84	kfree(mem);
     85}
     86
     87static int dma_assign_coherent_memory(struct device *dev,
     88				      struct dma_coherent_mem *mem)
     89{
     90	if (!dev)
     91		return -ENODEV;
     92
     93	if (dev->dma_mem)
     94		return -EBUSY;
     95
     96	dev->dma_mem = mem;
     97	return 0;
     98}
     99
    100/*
    101 * Declare a region of memory to be handed out by dma_alloc_coherent() when it
    102 * is asked for coherent memory for this device.  This shall only be used
    103 * from platform code, usually based on the device tree description.
    104 *
    105 * phys_addr is the CPU physical address to which the memory is currently
    106 * assigned (this will be ioremapped so the CPU can access the region).
    107 *
    108 * device_addr is the DMA address the device needs to be programmed with to
    109 * actually address this memory (this will be handed out as the dma_addr_t in
    110 * dma_alloc_coherent()).
    111 *
    112 * size is the size of the area (must be a multiple of PAGE_SIZE).
    113 *
    114 * As a simplification for the platforms, only *one* such region of memory may
    115 * be declared per device.
    116 */
    117int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
    118				dma_addr_t device_addr, size_t size)
    119{
    120	struct dma_coherent_mem *mem;
    121	int ret;
    122
    123	mem = dma_init_coherent_memory(phys_addr, device_addr, size, false);
    124	if (IS_ERR(mem))
    125		return PTR_ERR(mem);
    126
    127	ret = dma_assign_coherent_memory(dev, mem);
    128	if (ret)
    129		dma_release_coherent_memory(mem);
    130	return ret;
    131}
    132
    133static void *__dma_alloc_from_coherent(struct device *dev,
    134				       struct dma_coherent_mem *mem,
    135				       ssize_t size, dma_addr_t *dma_handle)
    136{
    137	int order = get_order(size);
    138	unsigned long flags;
    139	int pageno;
    140	void *ret;
    141
    142	spin_lock_irqsave(&mem->spinlock, flags);
    143
    144	if (unlikely(size > ((dma_addr_t)mem->size << PAGE_SHIFT)))
    145		goto err;
    146
    147	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
    148	if (unlikely(pageno < 0))
    149		goto err;
    150
    151	/*
    152	 * Memory was found in the coherent area.
    153	 */
    154	*dma_handle = dma_get_device_base(dev, mem) +
    155			((dma_addr_t)pageno << PAGE_SHIFT);
    156	ret = mem->virt_base + ((dma_addr_t)pageno << PAGE_SHIFT);
    157	spin_unlock_irqrestore(&mem->spinlock, flags);
    158	memset(ret, 0, size);
    159	return ret;
    160err:
    161	spin_unlock_irqrestore(&mem->spinlock, flags);
    162	return NULL;
    163}
    164
    165/**
    166 * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
    167 * @dev:	device from which we allocate memory
    168 * @size:	size of requested memory area
    169 * @dma_handle:	This will be filled with the correct dma handle
    170 * @ret:	This pointer will be filled with the virtual address
    171 *		to allocated area.
    172 *
    173 * This function should be only called from per-arch dma_alloc_coherent()
    174 * to support allocation from per-device coherent memory pools.
    175 *
    176 * Returns 0 if dma_alloc_coherent should continue with allocating from
    177 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
    178 */
    179int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
    180		dma_addr_t *dma_handle, void **ret)
    181{
    182	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
    183
    184	if (!mem)
    185		return 0;
    186
    187	*ret = __dma_alloc_from_coherent(dev, mem, size, dma_handle);
    188	return 1;
    189}
    190
    191static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
    192				       int order, void *vaddr)
    193{
    194	if (mem && vaddr >= mem->virt_base && vaddr <
    195		   (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
    196		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
    197		unsigned long flags;
    198
    199		spin_lock_irqsave(&mem->spinlock, flags);
    200		bitmap_release_region(mem->bitmap, page, order);
    201		spin_unlock_irqrestore(&mem->spinlock, flags);
    202		return 1;
    203	}
    204	return 0;
    205}
    206
    207/**
    208 * dma_release_from_dev_coherent() - free memory to device coherent memory pool
    209 * @dev:	device from which the memory was allocated
    210 * @order:	the order of pages allocated
    211 * @vaddr:	virtual address of allocated pages
    212 *
    213 * This checks whether the memory was allocated from the per-device
    214 * coherent memory pool and if so, releases that memory.
    215 *
    216 * Returns 1 if we correctly released the memory, or 0 if the caller should
    217 * proceed with releasing memory from generic pools.
    218 */
    219int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
    220{
    221	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
    222
    223	return __dma_release_from_coherent(mem, order, vaddr);
    224}
    225
    226static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
    227		struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
    228{
    229	if (mem && vaddr >= mem->virt_base && vaddr + size <=
    230		   (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
    231		unsigned long off = vma->vm_pgoff;
    232		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
    233		unsigned long user_count = vma_pages(vma);
    234		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
    235
    236		*ret = -ENXIO;
    237		if (off < count && user_count <= count - off) {
    238			unsigned long pfn = mem->pfn_base + start + off;
    239			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
    240					       user_count << PAGE_SHIFT,
    241					       vma->vm_page_prot);
    242		}
    243		return 1;
    244	}
    245	return 0;
    246}
    247
    248/**
    249 * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
    250 * @dev:	device from which the memory was allocated
    251 * @vma:	vm_area for the userspace memory
    252 * @vaddr:	cpu address returned by dma_alloc_from_dev_coherent
    253 * @size:	size of the memory buffer allocated
    254 * @ret:	result from remap_pfn_range()
    255 *
    256 * This checks whether the memory was allocated from the per-device
    257 * coherent memory pool and if so, maps that memory to the provided vma.
    258 *
    259 * Returns 1 if @vaddr belongs to the device coherent pool and the caller
    260 * should return @ret, or 0 if they should proceed with mapping memory from
    261 * generic areas.
    262 */
    263int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
    264			   void *vaddr, size_t size, int *ret)
    265{
    266	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
    267
    268	return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
    269}
    270
    271#ifdef CONFIG_DMA_GLOBAL_POOL
    272static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
    273
    274void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
    275				     dma_addr_t *dma_handle)
    276{
    277	if (!dma_coherent_default_memory)
    278		return NULL;
    279
    280	return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size,
    281					 dma_handle);
    282}
    283
    284int dma_release_from_global_coherent(int order, void *vaddr)
    285{
    286	if (!dma_coherent_default_memory)
    287		return 0;
    288
    289	return __dma_release_from_coherent(dma_coherent_default_memory, order,
    290			vaddr);
    291}
    292
    293int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
    294				   size_t size, int *ret)
    295{
    296	if (!dma_coherent_default_memory)
    297		return 0;
    298
    299	return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
    300					vaddr, size, ret);
    301}
    302
    303int dma_init_global_coherent(phys_addr_t phys_addr, size_t size)
    304{
    305	struct dma_coherent_mem *mem;
    306
    307	mem = dma_init_coherent_memory(phys_addr, phys_addr, size, true);
    308	if (IS_ERR(mem))
    309		return PTR_ERR(mem);
    310	dma_coherent_default_memory = mem;
    311	pr_info("DMA: default coherent area is set\n");
    312	return 0;
    313}
    314#endif /* CONFIG_DMA_GLOBAL_POOL */
    315
    316/*
    317 * Support for reserved memory regions defined in device tree
    318 */
    319#ifdef CONFIG_OF_RESERVED_MEM
    320#include <linux/of.h>
    321#include <linux/of_fdt.h>
    322#include <linux/of_reserved_mem.h>
    323
    324#ifdef CONFIG_DMA_GLOBAL_POOL
    325static struct reserved_mem *dma_reserved_default_memory __initdata;
    326#endif
    327
    328static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
    329{
    330	if (!rmem->priv) {
    331		struct dma_coherent_mem *mem;
    332
    333		mem = dma_init_coherent_memory(rmem->base, rmem->base,
    334					       rmem->size, true);
    335		if (IS_ERR(mem))
    336			return PTR_ERR(mem);
    337		rmem->priv = mem;
    338	}
    339	dma_assign_coherent_memory(dev, rmem->priv);
    340	return 0;
    341}
    342
    343static void rmem_dma_device_release(struct reserved_mem *rmem,
    344				    struct device *dev)
    345{
    346	if (dev)
    347		dev->dma_mem = NULL;
    348}
    349
    350static const struct reserved_mem_ops rmem_dma_ops = {
    351	.device_init	= rmem_dma_device_init,
    352	.device_release	= rmem_dma_device_release,
    353};
    354
    355static int __init rmem_dma_setup(struct reserved_mem *rmem)
    356{
    357	unsigned long node = rmem->fdt_node;
    358
    359	if (of_get_flat_dt_prop(node, "reusable", NULL))
    360		return -EINVAL;
    361
    362#ifdef CONFIG_ARM
    363	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
    364		pr_err("Reserved memory: regions without no-map are not yet supported\n");
    365		return -EINVAL;
    366	}
    367#endif
    368
    369#ifdef CONFIG_DMA_GLOBAL_POOL
    370	if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
    371		WARN(dma_reserved_default_memory,
    372		     "Reserved memory: region for default DMA coherent area is redefined\n");
    373		dma_reserved_default_memory = rmem;
    374	}
    375#endif
    376
    377	rmem->ops = &rmem_dma_ops;
    378	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
    379		&rmem->base, (unsigned long)rmem->size / SZ_1M);
    380	return 0;
    381}
    382
    383#ifdef CONFIG_DMA_GLOBAL_POOL
    384static int __init dma_init_reserved_memory(void)
    385{
    386	if (!dma_reserved_default_memory)
    387		return -ENOMEM;
    388	return dma_init_global_coherent(dma_reserved_default_memory->base,
    389					dma_reserved_default_memory->size);
    390}
    391core_initcall(dma_init_reserved_memory);
    392#endif /* CONFIG_DMA_GLOBAL_POOL */
    393
    394RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
    395#endif