cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mapping.c (23609B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * arch-independent dma-mapping routines
      4 *
      5 * Copyright (c) 2006  SUSE Linux Products GmbH
      6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
      7 */
      8#include <linux/memblock.h> /* for max_pfn */
      9#include <linux/acpi.h>
     10#include <linux/dma-map-ops.h>
     11#include <linux/export.h>
     12#include <linux/gfp.h>
     13#include <linux/of_device.h>
     14#include <linux/slab.h>
     15#include <linux/vmalloc.h>
     16#include "debug.h"
     17#include "direct.h"
     18
     19bool dma_default_coherent;
     20
     21/*
     22 * Managed DMA API
     23 */
     24struct dma_devres {
     25	size_t		size;
     26	void		*vaddr;
     27	dma_addr_t	dma_handle;
     28	unsigned long	attrs;
     29};
     30
     31static void dmam_release(struct device *dev, void *res)
     32{
     33	struct dma_devres *this = res;
     34
     35	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
     36			this->attrs);
     37}
     38
     39static int dmam_match(struct device *dev, void *res, void *match_data)
     40{
     41	struct dma_devres *this = res, *match = match_data;
     42
     43	if (this->vaddr == match->vaddr) {
     44		WARN_ON(this->size != match->size ||
     45			this->dma_handle != match->dma_handle);
     46		return 1;
     47	}
     48	return 0;
     49}
     50
     51/**
     52 * dmam_free_coherent - Managed dma_free_coherent()
     53 * @dev: Device to free coherent memory for
     54 * @size: Size of allocation
     55 * @vaddr: Virtual address of the memory to free
     56 * @dma_handle: DMA handle of the memory to free
     57 *
     58 * Managed dma_free_coherent().
     59 */
     60void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
     61			dma_addr_t dma_handle)
     62{
     63	struct dma_devres match_data = { size, vaddr, dma_handle };
     64
     65	dma_free_coherent(dev, size, vaddr, dma_handle);
     66	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
     67}
     68EXPORT_SYMBOL(dmam_free_coherent);
     69
     70/**
     71 * dmam_alloc_attrs - Managed dma_alloc_attrs()
     72 * @dev: Device to allocate non_coherent memory for
     73 * @size: Size of allocation
     74 * @dma_handle: Out argument for allocated DMA handle
     75 * @gfp: Allocation flags
     76 * @attrs: Flags in the DMA_ATTR_* namespace.
     77 *
     78 * Managed dma_alloc_attrs().  Memory allocated using this function will be
     79 * automatically released on driver detach.
     80 *
     81 * RETURNS:
     82 * Pointer to allocated memory on success, NULL on failure.
     83 */
     84void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
     85		gfp_t gfp, unsigned long attrs)
     86{
     87	struct dma_devres *dr;
     88	void *vaddr;
     89
     90	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
     91	if (!dr)
     92		return NULL;
     93
     94	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
     95	if (!vaddr) {
     96		devres_free(dr);
     97		return NULL;
     98	}
     99
    100	dr->vaddr = vaddr;
    101	dr->dma_handle = *dma_handle;
    102	dr->size = size;
    103	dr->attrs = attrs;
    104
    105	devres_add(dev, dr);
    106
    107	return vaddr;
    108}
    109EXPORT_SYMBOL(dmam_alloc_attrs);
    110
    111static bool dma_go_direct(struct device *dev, dma_addr_t mask,
    112		const struct dma_map_ops *ops)
    113{
    114	if (likely(!ops))
    115		return true;
    116#ifdef CONFIG_DMA_OPS_BYPASS
    117	if (dev->dma_ops_bypass)
    118		return min_not_zero(mask, dev->bus_dma_limit) >=
    119			    dma_direct_get_required_mask(dev);
    120#endif
    121	return false;
    122}
    123
    124
    125/*
    126 * Check if the devices uses a direct mapping for streaming DMA operations.
    127 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
    128 * enough.
    129 */
    130static inline bool dma_alloc_direct(struct device *dev,
    131		const struct dma_map_ops *ops)
    132{
    133	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
    134}
    135
    136static inline bool dma_map_direct(struct device *dev,
    137		const struct dma_map_ops *ops)
    138{
    139	return dma_go_direct(dev, *dev->dma_mask, ops);
    140}
    141
    142dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
    143		size_t offset, size_t size, enum dma_data_direction dir,
    144		unsigned long attrs)
    145{
    146	const struct dma_map_ops *ops = get_dma_ops(dev);
    147	dma_addr_t addr;
    148
    149	BUG_ON(!valid_dma_direction(dir));
    150
    151	if (WARN_ON_ONCE(!dev->dma_mask))
    152		return DMA_MAPPING_ERROR;
    153
    154	if (dma_map_direct(dev, ops) ||
    155	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
    156		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
    157	else
    158		addr = ops->map_page(dev, page, offset, size, dir, attrs);
    159	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
    160
    161	return addr;
    162}
    163EXPORT_SYMBOL(dma_map_page_attrs);
    164
    165void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
    166		enum dma_data_direction dir, unsigned long attrs)
    167{
    168	const struct dma_map_ops *ops = get_dma_ops(dev);
    169
    170	BUG_ON(!valid_dma_direction(dir));
    171	if (dma_map_direct(dev, ops) ||
    172	    arch_dma_unmap_page_direct(dev, addr + size))
    173		dma_direct_unmap_page(dev, addr, size, dir, attrs);
    174	else if (ops->unmap_page)
    175		ops->unmap_page(dev, addr, size, dir, attrs);
    176	debug_dma_unmap_page(dev, addr, size, dir);
    177}
    178EXPORT_SYMBOL(dma_unmap_page_attrs);
    179
    180static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
    181	 int nents, enum dma_data_direction dir, unsigned long attrs)
    182{
    183	const struct dma_map_ops *ops = get_dma_ops(dev);
    184	int ents;
    185
    186	BUG_ON(!valid_dma_direction(dir));
    187
    188	if (WARN_ON_ONCE(!dev->dma_mask))
    189		return 0;
    190
    191	if (dma_map_direct(dev, ops) ||
    192	    arch_dma_map_sg_direct(dev, sg, nents))
    193		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
    194	else
    195		ents = ops->map_sg(dev, sg, nents, dir, attrs);
    196
    197	if (ents > 0)
    198		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
    199	else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
    200			      ents != -EIO))
    201		return -EIO;
    202
    203	return ents;
    204}
    205
    206/**
    207 * dma_map_sg_attrs - Map the given buffer for DMA
    208 * @dev:	The device for which to perform the DMA operation
    209 * @sg:		The sg_table object describing the buffer
    210 * @nents:	Number of entries to map
    211 * @dir:	DMA direction
    212 * @attrs:	Optional DMA attributes for the map operation
    213 *
    214 * Maps a buffer described by a scatterlist passed in the sg argument with
    215 * nents segments for the @dir DMA operation by the @dev device.
    216 *
    217 * Returns the number of mapped entries (which can be less than nents)
    218 * on success. Zero is returned for any error.
    219 *
    220 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
    221 * original sg and original nents (not the value returned by this funciton).
    222 */
    223unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
    224		    int nents, enum dma_data_direction dir, unsigned long attrs)
    225{
    226	int ret;
    227
    228	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
    229	if (ret < 0)
    230		return 0;
    231	return ret;
    232}
    233EXPORT_SYMBOL(dma_map_sg_attrs);
    234
    235/**
    236 * dma_map_sgtable - Map the given buffer for DMA
    237 * @dev:	The device for which to perform the DMA operation
    238 * @sgt:	The sg_table object describing the buffer
    239 * @dir:	DMA direction
    240 * @attrs:	Optional DMA attributes for the map operation
    241 *
    242 * Maps a buffer described by a scatterlist stored in the given sg_table
    243 * object for the @dir DMA operation by the @dev device. After success, the
    244 * ownership for the buffer is transferred to the DMA domain.  One has to
    245 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
    246 * ownership of the buffer back to the CPU domain before touching the
    247 * buffer by the CPU.
    248 *
    249 * Returns 0 on success or a negative error code on error. The following
    250 * error codes are supported with the given meaning:
    251 *
    252 *   -EINVAL	An invalid argument, unaligned access or other error
    253 *		in usage. Will not succeed if retried.
    254 *   -ENOMEM	Insufficient resources (like memory or IOVA space) to
    255 *		complete the mapping. Should succeed if retried later.
    256 *   -EIO	Legacy error code with an unknown meaning. eg. this is
    257 *		returned if a lower level call returned DMA_MAPPING_ERROR.
    258 */
    259int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
    260		    enum dma_data_direction dir, unsigned long attrs)
    261{
    262	int nents;
    263
    264	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
    265	if (nents < 0)
    266		return nents;
    267	sgt->nents = nents;
    268	return 0;
    269}
    270EXPORT_SYMBOL_GPL(dma_map_sgtable);
    271
    272void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
    273				      int nents, enum dma_data_direction dir,
    274				      unsigned long attrs)
    275{
    276	const struct dma_map_ops *ops = get_dma_ops(dev);
    277
    278	BUG_ON(!valid_dma_direction(dir));
    279	debug_dma_unmap_sg(dev, sg, nents, dir);
    280	if (dma_map_direct(dev, ops) ||
    281	    arch_dma_unmap_sg_direct(dev, sg, nents))
    282		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
    283	else if (ops->unmap_sg)
    284		ops->unmap_sg(dev, sg, nents, dir, attrs);
    285}
    286EXPORT_SYMBOL(dma_unmap_sg_attrs);
    287
    288dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
    289		size_t size, enum dma_data_direction dir, unsigned long attrs)
    290{
    291	const struct dma_map_ops *ops = get_dma_ops(dev);
    292	dma_addr_t addr = DMA_MAPPING_ERROR;
    293
    294	BUG_ON(!valid_dma_direction(dir));
    295
    296	if (WARN_ON_ONCE(!dev->dma_mask))
    297		return DMA_MAPPING_ERROR;
    298
    299	if (dma_map_direct(dev, ops))
    300		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
    301	else if (ops->map_resource)
    302		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
    303
    304	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
    305	return addr;
    306}
    307EXPORT_SYMBOL(dma_map_resource);
    308
    309void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
    310		enum dma_data_direction dir, unsigned long attrs)
    311{
    312	const struct dma_map_ops *ops = get_dma_ops(dev);
    313
    314	BUG_ON(!valid_dma_direction(dir));
    315	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
    316		ops->unmap_resource(dev, addr, size, dir, attrs);
    317	debug_dma_unmap_resource(dev, addr, size, dir);
    318}
    319EXPORT_SYMBOL(dma_unmap_resource);
    320
    321void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
    322		enum dma_data_direction dir)
    323{
    324	const struct dma_map_ops *ops = get_dma_ops(dev);
    325
    326	BUG_ON(!valid_dma_direction(dir));
    327	if (dma_map_direct(dev, ops))
    328		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
    329	else if (ops->sync_single_for_cpu)
    330		ops->sync_single_for_cpu(dev, addr, size, dir);
    331	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
    332}
    333EXPORT_SYMBOL(dma_sync_single_for_cpu);
    334
    335void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
    336		size_t size, enum dma_data_direction dir)
    337{
    338	const struct dma_map_ops *ops = get_dma_ops(dev);
    339
    340	BUG_ON(!valid_dma_direction(dir));
    341	if (dma_map_direct(dev, ops))
    342		dma_direct_sync_single_for_device(dev, addr, size, dir);
    343	else if (ops->sync_single_for_device)
    344		ops->sync_single_for_device(dev, addr, size, dir);
    345	debug_dma_sync_single_for_device(dev, addr, size, dir);
    346}
    347EXPORT_SYMBOL(dma_sync_single_for_device);
    348
    349void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
    350		    int nelems, enum dma_data_direction dir)
    351{
    352	const struct dma_map_ops *ops = get_dma_ops(dev);
    353
    354	BUG_ON(!valid_dma_direction(dir));
    355	if (dma_map_direct(dev, ops))
    356		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
    357	else if (ops->sync_sg_for_cpu)
    358		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
    359	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
    360}
    361EXPORT_SYMBOL(dma_sync_sg_for_cpu);
    362
    363void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
    364		       int nelems, enum dma_data_direction dir)
    365{
    366	const struct dma_map_ops *ops = get_dma_ops(dev);
    367
    368	BUG_ON(!valid_dma_direction(dir));
    369	if (dma_map_direct(dev, ops))
    370		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
    371	else if (ops->sync_sg_for_device)
    372		ops->sync_sg_for_device(dev, sg, nelems, dir);
    373	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
    374}
    375EXPORT_SYMBOL(dma_sync_sg_for_device);
    376
    377/*
    378 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
    379 * that the intention is to allow exporting memory allocated via the
    380 * coherent DMA APIs through the dma_buf API, which only accepts a
    381 * scattertable.  This presents a couple of problems:
    382 * 1. Not all memory allocated via the coherent DMA APIs is backed by
    383 *    a struct page
    384 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
    385 *    as we will try to flush the memory through a different alias to that
    386 *    actually being used (and the flushes are redundant.)
    387 */
    388int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
    389		void *cpu_addr, dma_addr_t dma_addr, size_t size,
    390		unsigned long attrs)
    391{
    392	const struct dma_map_ops *ops = get_dma_ops(dev);
    393
    394	if (dma_alloc_direct(dev, ops))
    395		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
    396				size, attrs);
    397	if (!ops->get_sgtable)
    398		return -ENXIO;
    399	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
    400}
    401EXPORT_SYMBOL(dma_get_sgtable_attrs);
    402
    403#ifdef CONFIG_MMU
    404/*
    405 * Return the page attributes used for mapping dma_alloc_* memory, either in
    406 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
    407 */
    408pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
    409{
    410	if (dev_is_dma_coherent(dev))
    411		return prot;
    412#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
    413	if (attrs & DMA_ATTR_WRITE_COMBINE)
    414		return pgprot_writecombine(prot);
    415#endif
    416	return pgprot_dmacoherent(prot);
    417}
    418#endif /* CONFIG_MMU */
    419
    420/**
    421 * dma_can_mmap - check if a given device supports dma_mmap_*
    422 * @dev: device to check
    423 *
    424 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
    425 * map DMA allocations to userspace.
    426 */
    427bool dma_can_mmap(struct device *dev)
    428{
    429	const struct dma_map_ops *ops = get_dma_ops(dev);
    430
    431	if (dma_alloc_direct(dev, ops))
    432		return dma_direct_can_mmap(dev);
    433	return ops->mmap != NULL;
    434}
    435EXPORT_SYMBOL_GPL(dma_can_mmap);
    436
    437/**
    438 * dma_mmap_attrs - map a coherent DMA allocation into user space
    439 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
    440 * @vma: vm_area_struct describing requested user mapping
    441 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
    442 * @dma_addr: device-view address returned from dma_alloc_attrs
    443 * @size: size of memory originally requested in dma_alloc_attrs
    444 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
    445 *
    446 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
    447 * space.  The coherent DMA buffer must not be freed by the driver until the
    448 * user space mapping has been released.
    449 */
    450int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
    451		void *cpu_addr, dma_addr_t dma_addr, size_t size,
    452		unsigned long attrs)
    453{
    454	const struct dma_map_ops *ops = get_dma_ops(dev);
    455
    456	if (dma_alloc_direct(dev, ops))
    457		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
    458				attrs);
    459	if (!ops->mmap)
    460		return -ENXIO;
    461	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
    462}
    463EXPORT_SYMBOL(dma_mmap_attrs);
    464
    465u64 dma_get_required_mask(struct device *dev)
    466{
    467	const struct dma_map_ops *ops = get_dma_ops(dev);
    468
    469	if (dma_alloc_direct(dev, ops))
    470		return dma_direct_get_required_mask(dev);
    471	if (ops->get_required_mask)
    472		return ops->get_required_mask(dev);
    473
    474	/*
    475	 * We require every DMA ops implementation to at least support a 32-bit
    476	 * DMA mask (and use bounce buffering if that isn't supported in
    477	 * hardware).  As the direct mapping code has its own routine to
    478	 * actually report an optimal mask we default to 32-bit here as that
    479	 * is the right thing for most IOMMUs, and at least not actively
    480	 * harmful in general.
    481	 */
    482	return DMA_BIT_MASK(32);
    483}
    484EXPORT_SYMBOL_GPL(dma_get_required_mask);
    485
    486void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
    487		gfp_t flag, unsigned long attrs)
    488{
    489	const struct dma_map_ops *ops = get_dma_ops(dev);
    490	void *cpu_addr;
    491
    492	WARN_ON_ONCE(!dev->coherent_dma_mask);
    493
    494	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
    495		return cpu_addr;
    496
    497	/* let the implementation decide on the zone to allocate from: */
    498	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
    499
    500	if (dma_alloc_direct(dev, ops))
    501		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
    502	else if (ops->alloc)
    503		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
    504	else
    505		return NULL;
    506
    507	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
    508	return cpu_addr;
    509}
    510EXPORT_SYMBOL(dma_alloc_attrs);
    511
    512void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
    513		dma_addr_t dma_handle, unsigned long attrs)
    514{
    515	const struct dma_map_ops *ops = get_dma_ops(dev);
    516
    517	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
    518		return;
    519	/*
    520	 * On non-coherent platforms which implement DMA-coherent buffers via
    521	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
    522	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
    523	 * sleep on some machines, and b) an indication that the driver is
    524	 * probably misusing the coherent API anyway.
    525	 */
    526	WARN_ON(irqs_disabled());
    527
    528	if (!cpu_addr)
    529		return;
    530
    531	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
    532	if (dma_alloc_direct(dev, ops))
    533		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
    534	else if (ops->free)
    535		ops->free(dev, size, cpu_addr, dma_handle, attrs);
    536}
    537EXPORT_SYMBOL(dma_free_attrs);
    538
    539static struct page *__dma_alloc_pages(struct device *dev, size_t size,
    540		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
    541{
    542	const struct dma_map_ops *ops = get_dma_ops(dev);
    543
    544	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
    545		return NULL;
    546	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
    547		return NULL;
    548
    549	size = PAGE_ALIGN(size);
    550	if (dma_alloc_direct(dev, ops))
    551		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
    552	if (!ops->alloc_pages)
    553		return NULL;
    554	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
    555}
    556
    557struct page *dma_alloc_pages(struct device *dev, size_t size,
    558		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
    559{
    560	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
    561
    562	if (page)
    563		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
    564	return page;
    565}
    566EXPORT_SYMBOL_GPL(dma_alloc_pages);
    567
    568static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
    569		dma_addr_t dma_handle, enum dma_data_direction dir)
    570{
    571	const struct dma_map_ops *ops = get_dma_ops(dev);
    572
    573	size = PAGE_ALIGN(size);
    574	if (dma_alloc_direct(dev, ops))
    575		dma_direct_free_pages(dev, size, page, dma_handle, dir);
    576	else if (ops->free_pages)
    577		ops->free_pages(dev, size, page, dma_handle, dir);
    578}
    579
    580void dma_free_pages(struct device *dev, size_t size, struct page *page,
    581		dma_addr_t dma_handle, enum dma_data_direction dir)
    582{
    583	debug_dma_unmap_page(dev, dma_handle, size, dir);
    584	__dma_free_pages(dev, size, page, dma_handle, dir);
    585}
    586EXPORT_SYMBOL_GPL(dma_free_pages);
    587
    588int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
    589		size_t size, struct page *page)
    590{
    591	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
    592
    593	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
    594		return -ENXIO;
    595	return remap_pfn_range(vma, vma->vm_start,
    596			       page_to_pfn(page) + vma->vm_pgoff,
    597			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
    598}
    599EXPORT_SYMBOL_GPL(dma_mmap_pages);
    600
    601static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
    602		enum dma_data_direction dir, gfp_t gfp)
    603{
    604	struct sg_table *sgt;
    605	struct page *page;
    606
    607	sgt = kmalloc(sizeof(*sgt), gfp);
    608	if (!sgt)
    609		return NULL;
    610	if (sg_alloc_table(sgt, 1, gfp))
    611		goto out_free_sgt;
    612	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
    613	if (!page)
    614		goto out_free_table;
    615	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
    616	sg_dma_len(sgt->sgl) = sgt->sgl->length;
    617	return sgt;
    618out_free_table:
    619	sg_free_table(sgt);
    620out_free_sgt:
    621	kfree(sgt);
    622	return NULL;
    623}
    624
    625struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
    626		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
    627{
    628	const struct dma_map_ops *ops = get_dma_ops(dev);
    629	struct sg_table *sgt;
    630
    631	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
    632		return NULL;
    633
    634	if (ops && ops->alloc_noncontiguous)
    635		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
    636	else
    637		sgt = alloc_single_sgt(dev, size, dir, gfp);
    638
    639	if (sgt) {
    640		sgt->nents = 1;
    641		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
    642	}
    643	return sgt;
    644}
    645EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
    646
    647static void free_single_sgt(struct device *dev, size_t size,
    648		struct sg_table *sgt, enum dma_data_direction dir)
    649{
    650	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
    651			 dir);
    652	sg_free_table(sgt);
    653	kfree(sgt);
    654}
    655
    656void dma_free_noncontiguous(struct device *dev, size_t size,
    657		struct sg_table *sgt, enum dma_data_direction dir)
    658{
    659	const struct dma_map_ops *ops = get_dma_ops(dev);
    660
    661	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
    662	if (ops && ops->free_noncontiguous)
    663		ops->free_noncontiguous(dev, size, sgt, dir);
    664	else
    665		free_single_sgt(dev, size, sgt, dir);
    666}
    667EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
    668
    669void *dma_vmap_noncontiguous(struct device *dev, size_t size,
    670		struct sg_table *sgt)
    671{
    672	const struct dma_map_ops *ops = get_dma_ops(dev);
    673	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
    674
    675	if (ops && ops->alloc_noncontiguous)
    676		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
    677	return page_address(sg_page(sgt->sgl));
    678}
    679EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
    680
    681void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
    682{
    683	const struct dma_map_ops *ops = get_dma_ops(dev);
    684
    685	if (ops && ops->alloc_noncontiguous)
    686		vunmap(vaddr);
    687}
    688EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
    689
    690int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
    691		size_t size, struct sg_table *sgt)
    692{
    693	const struct dma_map_ops *ops = get_dma_ops(dev);
    694
    695	if (ops && ops->alloc_noncontiguous) {
    696		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
    697
    698		if (vma->vm_pgoff >= count ||
    699		    vma_pages(vma) > count - vma->vm_pgoff)
    700			return -ENXIO;
    701		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
    702	}
    703	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
    704}
    705EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
    706
    707int dma_supported(struct device *dev, u64 mask)
    708{
    709	const struct dma_map_ops *ops = get_dma_ops(dev);
    710
    711	/*
    712	 * ->dma_supported sets the bypass flag, so we must always call
    713	 * into the method here unless the device is truly direct mapped.
    714	 */
    715	if (!ops)
    716		return dma_direct_supported(dev, mask);
    717	if (!ops->dma_supported)
    718		return 1;
    719	return ops->dma_supported(dev, mask);
    720}
    721EXPORT_SYMBOL(dma_supported);
    722
    723#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
    724void arch_dma_set_mask(struct device *dev, u64 mask);
    725#else
    726#define arch_dma_set_mask(dev, mask)	do { } while (0)
    727#endif
    728
    729int dma_set_mask(struct device *dev, u64 mask)
    730{
    731	/*
    732	 * Truncate the mask to the actually supported dma_addr_t width to
    733	 * avoid generating unsupportable addresses.
    734	 */
    735	mask = (dma_addr_t)mask;
    736
    737	if (!dev->dma_mask || !dma_supported(dev, mask))
    738		return -EIO;
    739
    740	arch_dma_set_mask(dev, mask);
    741	*dev->dma_mask = mask;
    742	return 0;
    743}
    744EXPORT_SYMBOL(dma_set_mask);
    745
    746int dma_set_coherent_mask(struct device *dev, u64 mask)
    747{
    748	/*
    749	 * Truncate the mask to the actually supported dma_addr_t width to
    750	 * avoid generating unsupportable addresses.
    751	 */
    752	mask = (dma_addr_t)mask;
    753
    754	if (!dma_supported(dev, mask))
    755		return -EIO;
    756
    757	dev->coherent_dma_mask = mask;
    758	return 0;
    759}
    760EXPORT_SYMBOL(dma_set_coherent_mask);
    761
    762size_t dma_max_mapping_size(struct device *dev)
    763{
    764	const struct dma_map_ops *ops = get_dma_ops(dev);
    765	size_t size = SIZE_MAX;
    766
    767	if (dma_map_direct(dev, ops))
    768		size = dma_direct_max_mapping_size(dev);
    769	else if (ops && ops->max_mapping_size)
    770		size = ops->max_mapping_size(dev);
    771
    772	return size;
    773}
    774EXPORT_SYMBOL_GPL(dma_max_mapping_size);
    775
    776bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
    777{
    778	const struct dma_map_ops *ops = get_dma_ops(dev);
    779
    780	if (dma_map_direct(dev, ops))
    781		return dma_direct_need_sync(dev, dma_addr);
    782	return ops->sync_single_for_cpu || ops->sync_single_for_device;
    783}
    784EXPORT_SYMBOL_GPL(dma_need_sync);
    785
    786unsigned long dma_get_merge_boundary(struct device *dev)
    787{
    788	const struct dma_map_ops *ops = get_dma_ops(dev);
    789
    790	if (!ops || !ops->get_merge_boundary)
    791		return 0;	/* can't merge */
    792
    793	return ops->get_merge_boundary(dev);
    794}
    795EXPORT_SYMBOL_GPL(dma_get_merge_boundary);