cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

swiotlb.c (24643B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Dynamic DMA mapping support.
      4 *
      5 * This implementation is a fallback for platforms that do not support
      6 * I/O TLBs (aka DMA address translation hardware).
      7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
      8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
      9 * Copyright (C) 2000, 2003 Hewlett-Packard Co
     10 *	David Mosberger-Tang <davidm@hpl.hp.com>
     11 *
     12 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
     13 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
     14 *			unnecessary i-cache flushing.
     15 * 04/07/.. ak		Better overflow handling. Assorted fixes.
     16 * 05/09/10 linville	Add support for syncing ranges, support syncing for
     17 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
     18 * 08/12/11 beckyb	Add highmem support
     19 */
     20
     21#define pr_fmt(fmt) "software IO TLB: " fmt
     22
     23#include <linux/cache.h>
     24#include <linux/cc_platform.h>
     25#include <linux/ctype.h>
     26#include <linux/debugfs.h>
     27#include <linux/dma-direct.h>
     28#include <linux/dma-map-ops.h>
     29#include <linux/export.h>
     30#include <linux/gfp.h>
     31#include <linux/highmem.h>
     32#include <linux/io.h>
     33#include <linux/iommu-helper.h>
     34#include <linux/init.h>
     35#include <linux/memblock.h>
     36#include <linux/mm.h>
     37#include <linux/pfn.h>
     38#include <linux/scatterlist.h>
     39#include <linux/set_memory.h>
     40#include <linux/spinlock.h>
     41#include <linux/string.h>
     42#include <linux/swiotlb.h>
     43#include <linux/types.h>
     44#ifdef CONFIG_DMA_RESTRICTED_POOL
     45#include <linux/of.h>
     46#include <linux/of_fdt.h>
     47#include <linux/of_reserved_mem.h>
     48#include <linux/slab.h>
     49#endif
     50
     51#define CREATE_TRACE_POINTS
     52#include <trace/events/swiotlb.h>
     53
     54#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
     55
     56/*
     57 * Minimum IO TLB size to bother booting with.  Systems with mainly
     58 * 64bit capable cards will only lightly use the swiotlb.  If we can't
     59 * allocate a contiguous 1MB, we're probably in trouble anyway.
     60 */
     61#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
     62
     63#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
     64
     65static bool swiotlb_force_bounce;
     66static bool swiotlb_force_disable;
     67
     68struct io_tlb_mem io_tlb_default_mem;
     69
     70phys_addr_t swiotlb_unencrypted_base;
     71
     72static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
     73
     74static int __init
     75setup_io_tlb_npages(char *str)
     76{
     77	if (isdigit(*str)) {
     78		/* avoid tail segment of size < IO_TLB_SEGSIZE */
     79		default_nslabs =
     80			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
     81	}
     82	if (*str == ',')
     83		++str;
     84	if (!strcmp(str, "force"))
     85		swiotlb_force_bounce = true;
     86	else if (!strcmp(str, "noforce"))
     87		swiotlb_force_disable = true;
     88
     89	return 0;
     90}
     91early_param("swiotlb", setup_io_tlb_npages);
     92
     93unsigned int swiotlb_max_segment(void)
     94{
     95	if (!io_tlb_default_mem.nslabs)
     96		return 0;
     97	return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE);
     98}
     99EXPORT_SYMBOL_GPL(swiotlb_max_segment);
    100
    101unsigned long swiotlb_size_or_default(void)
    102{
    103	return default_nslabs << IO_TLB_SHIFT;
    104}
    105
    106void __init swiotlb_adjust_size(unsigned long size)
    107{
    108	/*
    109	 * If swiotlb parameter has not been specified, give a chance to
    110	 * architectures such as those supporting memory encryption to
    111	 * adjust/expand SWIOTLB size for their use.
    112	 */
    113	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
    114		return;
    115	size = ALIGN(size, IO_TLB_SIZE);
    116	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
    117	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
    118}
    119
    120void swiotlb_print_info(void)
    121{
    122	struct io_tlb_mem *mem = &io_tlb_default_mem;
    123
    124	if (!mem->nslabs) {
    125		pr_warn("No low mem\n");
    126		return;
    127	}
    128
    129	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
    130	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
    131}
    132
    133static inline unsigned long io_tlb_offset(unsigned long val)
    134{
    135	return val & (IO_TLB_SEGSIZE - 1);
    136}
    137
    138static inline unsigned long nr_slots(u64 val)
    139{
    140	return DIV_ROUND_UP(val, IO_TLB_SIZE);
    141}
    142
    143/*
    144 * Remap swioltb memory in the unencrypted physical address space
    145 * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP
    146 * Isolation VMs).
    147 */
    148#ifdef CONFIG_HAS_IOMEM
    149static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
    150{
    151	void *vaddr = NULL;
    152
    153	if (swiotlb_unencrypted_base) {
    154		phys_addr_t paddr = mem->start + swiotlb_unencrypted_base;
    155
    156		vaddr = memremap(paddr, bytes, MEMREMAP_WB);
    157		if (!vaddr)
    158			pr_err("Failed to map the unencrypted memory %pa size %lx.\n",
    159			       &paddr, bytes);
    160	}
    161
    162	return vaddr;
    163}
    164#else
    165static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
    166{
    167	return NULL;
    168}
    169#endif
    170
    171/*
    172 * Early SWIOTLB allocation may be too early to allow an architecture to
    173 * perform the desired operations.  This function allows the architecture to
    174 * call SWIOTLB when the operations are possible.  It needs to be called
    175 * before the SWIOTLB memory is used.
    176 */
    177void __init swiotlb_update_mem_attributes(void)
    178{
    179	struct io_tlb_mem *mem = &io_tlb_default_mem;
    180	void *vaddr;
    181	unsigned long bytes;
    182
    183	if (!mem->nslabs || mem->late_alloc)
    184		return;
    185	vaddr = phys_to_virt(mem->start);
    186	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
    187	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
    188
    189	mem->vaddr = swiotlb_mem_remap(mem, bytes);
    190	if (!mem->vaddr)
    191		mem->vaddr = vaddr;
    192}
    193
    194static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
    195		unsigned long nslabs, unsigned int flags, bool late_alloc)
    196{
    197	void *vaddr = phys_to_virt(start);
    198	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
    199
    200	mem->nslabs = nslabs;
    201	mem->start = start;
    202	mem->end = mem->start + bytes;
    203	mem->index = 0;
    204	mem->late_alloc = late_alloc;
    205
    206	mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
    207
    208	spin_lock_init(&mem->lock);
    209	for (i = 0; i < mem->nslabs; i++) {
    210		mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
    211		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
    212		mem->slots[i].alloc_size = 0;
    213	}
    214
    215	/*
    216	 * If swiotlb_unencrypted_base is set, the bounce buffer memory will
    217	 * be remapped and cleared in swiotlb_update_mem_attributes.
    218	 */
    219	if (swiotlb_unencrypted_base)
    220		return;
    221
    222	memset(vaddr, 0, bytes);
    223	mem->vaddr = vaddr;
    224	return;
    225}
    226
    227/*
    228 * Statically reserve bounce buffer space and initialize bounce buffer data
    229 * structures for the software IO TLB used to implement the DMA API.
    230 */
    231void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
    232		int (*remap)(void *tlb, unsigned long nslabs))
    233{
    234	struct io_tlb_mem *mem = &io_tlb_default_mem;
    235	unsigned long nslabs = default_nslabs;
    236	size_t alloc_size;
    237	size_t bytes;
    238	void *tlb;
    239
    240	if (!addressing_limit && !swiotlb_force_bounce)
    241		return;
    242	if (swiotlb_force_disable)
    243		return;
    244
    245	/*
    246	 * By default allocate the bounce buffer memory from low memory, but
    247	 * allow to pick a location everywhere for hypervisors with guest
    248	 * memory encryption.
    249	 */
    250retry:
    251	bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
    252	if (flags & SWIOTLB_ANY)
    253		tlb = memblock_alloc(bytes, PAGE_SIZE);
    254	else
    255		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
    256	if (!tlb) {
    257		pr_warn("%s: failed to allocate tlb structure\n", __func__);
    258		return;
    259	}
    260
    261	if (remap && remap(tlb, nslabs) < 0) {
    262		memblock_free(tlb, PAGE_ALIGN(bytes));
    263
    264		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
    265		if (nslabs < IO_TLB_MIN_SLABS)
    266			panic("%s: Failed to remap %zu bytes\n",
    267			      __func__, bytes);
    268		goto retry;
    269	}
    270
    271	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
    272	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
    273	if (!mem->slots)
    274		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
    275		      __func__, alloc_size, PAGE_SIZE);
    276
    277	swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false);
    278
    279	if (flags & SWIOTLB_VERBOSE)
    280		swiotlb_print_info();
    281}
    282
    283void __init swiotlb_init(bool addressing_limit, unsigned int flags)
    284{
    285	return swiotlb_init_remap(addressing_limit, flags, NULL);
    286}
    287
    288/*
    289 * Systems with larger DMA zones (those that don't support ISA) can
    290 * initialize the swiotlb later using the slab allocator if needed.
    291 * This should be just like above, but with some error catching.
    292 */
    293int swiotlb_init_late(size_t size, gfp_t gfp_mask,
    294		int (*remap)(void *tlb, unsigned long nslabs))
    295{
    296	struct io_tlb_mem *mem = &io_tlb_default_mem;
    297	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
    298	unsigned char *vstart = NULL;
    299	unsigned int order;
    300	bool retried = false;
    301	int rc = 0;
    302
    303	if (swiotlb_force_disable)
    304		return 0;
    305
    306retry:
    307	order = get_order(nslabs << IO_TLB_SHIFT);
    308	nslabs = SLABS_PER_PAGE << order;
    309
    310	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
    311		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
    312						  order);
    313		if (vstart)
    314			break;
    315		order--;
    316		nslabs = SLABS_PER_PAGE << order;
    317		retried = true;
    318	}
    319
    320	if (!vstart)
    321		return -ENOMEM;
    322
    323	if (remap)
    324		rc = remap(vstart, nslabs);
    325	if (rc) {
    326		free_pages((unsigned long)vstart, order);
    327
    328		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
    329		if (nslabs < IO_TLB_MIN_SLABS)
    330			return rc;
    331		retried = true;
    332		goto retry;
    333	}
    334
    335	if (retried) {
    336		pr_warn("only able to allocate %ld MB\n",
    337			(PAGE_SIZE << order) >> 20);
    338	}
    339
    340	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
    341		get_order(array_size(sizeof(*mem->slots), nslabs)));
    342	if (!mem->slots) {
    343		free_pages((unsigned long)vstart, order);
    344		return -ENOMEM;
    345	}
    346
    347	set_memory_decrypted((unsigned long)vstart,
    348			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
    349	swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true);
    350
    351	swiotlb_print_info();
    352	return 0;
    353}
    354
    355void __init swiotlb_exit(void)
    356{
    357	struct io_tlb_mem *mem = &io_tlb_default_mem;
    358	unsigned long tbl_vaddr;
    359	size_t tbl_size, slots_size;
    360
    361	if (swiotlb_force_bounce)
    362		return;
    363
    364	if (!mem->nslabs)
    365		return;
    366
    367	pr_info("tearing down default memory pool\n");
    368	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
    369	tbl_size = PAGE_ALIGN(mem->end - mem->start);
    370	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
    371
    372	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
    373	if (mem->late_alloc) {
    374		free_pages(tbl_vaddr, get_order(tbl_size));
    375		free_pages((unsigned long)mem->slots, get_order(slots_size));
    376	} else {
    377		memblock_free_late(mem->start, tbl_size);
    378		memblock_free_late(__pa(mem->slots), slots_size);
    379	}
    380
    381	memset(mem, 0, sizeof(*mem));
    382}
    383
    384/*
    385 * Return the offset into a iotlb slot required to keep the device happy.
    386 */
    387static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
    388{
    389	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
    390}
    391
    392/*
    393 * Bounce: copy the swiotlb buffer from or back to the original dma location
    394 */
    395static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
    396			   enum dma_data_direction dir)
    397{
    398	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
    399	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
    400	phys_addr_t orig_addr = mem->slots[index].orig_addr;
    401	size_t alloc_size = mem->slots[index].alloc_size;
    402	unsigned long pfn = PFN_DOWN(orig_addr);
    403	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
    404	unsigned int tlb_offset, orig_addr_offset;
    405
    406	if (orig_addr == INVALID_PHYS_ADDR)
    407		return;
    408
    409	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
    410	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
    411	if (tlb_offset < orig_addr_offset) {
    412		dev_WARN_ONCE(dev, 1,
    413			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
    414			orig_addr_offset, tlb_offset);
    415		return;
    416	}
    417
    418	tlb_offset -= orig_addr_offset;
    419	if (tlb_offset > alloc_size) {
    420		dev_WARN_ONCE(dev, 1,
    421			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
    422			alloc_size, size, tlb_offset);
    423		return;
    424	}
    425
    426	orig_addr += tlb_offset;
    427	alloc_size -= tlb_offset;
    428
    429	if (size > alloc_size) {
    430		dev_WARN_ONCE(dev, 1,
    431			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
    432			alloc_size, size);
    433		size = alloc_size;
    434	}
    435
    436	if (PageHighMem(pfn_to_page(pfn))) {
    437		/* The buffer does not have a mapping.  Map it in and copy */
    438		unsigned int offset = orig_addr & ~PAGE_MASK;
    439		char *buffer;
    440		unsigned int sz = 0;
    441		unsigned long flags;
    442
    443		while (size) {
    444			sz = min_t(size_t, PAGE_SIZE - offset, size);
    445
    446			local_irq_save(flags);
    447			buffer = kmap_atomic(pfn_to_page(pfn));
    448			if (dir == DMA_TO_DEVICE)
    449				memcpy(vaddr, buffer + offset, sz);
    450			else
    451				memcpy(buffer + offset, vaddr, sz);
    452			kunmap_atomic(buffer);
    453			local_irq_restore(flags);
    454
    455			size -= sz;
    456			pfn++;
    457			vaddr += sz;
    458			offset = 0;
    459		}
    460	} else if (dir == DMA_TO_DEVICE) {
    461		memcpy(vaddr, phys_to_virt(orig_addr), size);
    462	} else {
    463		memcpy(phys_to_virt(orig_addr), vaddr, size);
    464	}
    465}
    466
    467#define slot_addr(start, idx)	((start) + ((idx) << IO_TLB_SHIFT))
    468
    469/*
    470 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
    471 */
    472static inline unsigned long get_max_slots(unsigned long boundary_mask)
    473{
    474	if (boundary_mask == ~0UL)
    475		return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
    476	return nr_slots(boundary_mask + 1);
    477}
    478
    479static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
    480{
    481	if (index >= mem->nslabs)
    482		return 0;
    483	return index;
    484}
    485
    486/*
    487 * Find a suitable number of IO TLB entries size that will fit this request and
    488 * allocate a buffer from that IO TLB pool.
    489 */
    490static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
    491			      size_t alloc_size, unsigned int alloc_align_mask)
    492{
    493	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
    494	unsigned long boundary_mask = dma_get_seg_boundary(dev);
    495	dma_addr_t tbl_dma_addr =
    496		phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
    497	unsigned long max_slots = get_max_slots(boundary_mask);
    498	unsigned int iotlb_align_mask =
    499		dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
    500	unsigned int nslots = nr_slots(alloc_size), stride;
    501	unsigned int index, wrap, count = 0, i;
    502	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
    503	unsigned long flags;
    504
    505	BUG_ON(!nslots);
    506
    507	/*
    508	 * For mappings with an alignment requirement don't bother looping to
    509	 * unaligned slots once we found an aligned one.  For allocations of
    510	 * PAGE_SIZE or larger only look for page aligned allocations.
    511	 */
    512	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
    513	if (alloc_size >= PAGE_SIZE)
    514		stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
    515	stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
    516
    517	spin_lock_irqsave(&mem->lock, flags);
    518	if (unlikely(nslots > mem->nslabs - mem->used))
    519		goto not_found;
    520
    521	index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
    522	do {
    523		if (orig_addr &&
    524		    (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
    525			    (orig_addr & iotlb_align_mask)) {
    526			index = wrap_index(mem, index + 1);
    527			continue;
    528		}
    529
    530		/*
    531		 * If we find a slot that indicates we have 'nslots' number of
    532		 * contiguous buffers, we allocate the buffers from that slot
    533		 * and mark the entries as '0' indicating unavailable.
    534		 */
    535		if (!iommu_is_span_boundary(index, nslots,
    536					    nr_slots(tbl_dma_addr),
    537					    max_slots)) {
    538			if (mem->slots[index].list >= nslots)
    539				goto found;
    540		}
    541		index = wrap_index(mem, index + stride);
    542	} while (index != wrap);
    543
    544not_found:
    545	spin_unlock_irqrestore(&mem->lock, flags);
    546	return -1;
    547
    548found:
    549	for (i = index; i < index + nslots; i++) {
    550		mem->slots[i].list = 0;
    551		mem->slots[i].alloc_size =
    552			alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
    553	}
    554	for (i = index - 1;
    555	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
    556	     mem->slots[i].list; i--)
    557		mem->slots[i].list = ++count;
    558
    559	/*
    560	 * Update the indices to avoid searching in the next round.
    561	 */
    562	if (index + nslots < mem->nslabs)
    563		mem->index = index + nslots;
    564	else
    565		mem->index = 0;
    566	mem->used += nslots;
    567
    568	spin_unlock_irqrestore(&mem->lock, flags);
    569	return index;
    570}
    571
    572phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
    573		size_t mapping_size, size_t alloc_size,
    574		unsigned int alloc_align_mask, enum dma_data_direction dir,
    575		unsigned long attrs)
    576{
    577	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
    578	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
    579	unsigned int i;
    580	int index;
    581	phys_addr_t tlb_addr;
    582
    583	if (!mem)
    584		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
    585
    586	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
    587		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
    588
    589	if (mapping_size > alloc_size) {
    590		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
    591			      mapping_size, alloc_size);
    592		return (phys_addr_t)DMA_MAPPING_ERROR;
    593	}
    594
    595	index = swiotlb_find_slots(dev, orig_addr,
    596				   alloc_size + offset, alloc_align_mask);
    597	if (index == -1) {
    598		if (!(attrs & DMA_ATTR_NO_WARN))
    599			dev_warn_ratelimited(dev,
    600	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
    601				 alloc_size, mem->nslabs, mem->used);
    602		return (phys_addr_t)DMA_MAPPING_ERROR;
    603	}
    604
    605	/*
    606	 * Save away the mapping from the original address to the DMA address.
    607	 * This is needed when we sync the memory.  Then we sync the buffer if
    608	 * needed.
    609	 */
    610	for (i = 0; i < nr_slots(alloc_size + offset); i++)
    611		mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
    612	tlb_addr = slot_addr(mem->start, index) + offset;
    613	/*
    614	 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
    615	 * to the tlb buffer, if we knew for sure the device will
    616	 * overwirte the entire current content. But we don't. Thus
    617	 * unconditional bounce may prevent leaking swiotlb content (i.e.
    618	 * kernel memory) to user-space.
    619	 */
    620	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
    621	return tlb_addr;
    622}
    623
    624static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
    625{
    626	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
    627	unsigned long flags;
    628	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
    629	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
    630	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
    631	int count, i;
    632
    633	/*
    634	 * Return the buffer to the free list by setting the corresponding
    635	 * entries to indicate the number of contiguous entries available.
    636	 * While returning the entries to the free list, we merge the entries
    637	 * with slots below and above the pool being returned.
    638	 */
    639	spin_lock_irqsave(&mem->lock, flags);
    640	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
    641		count = mem->slots[index + nslots].list;
    642	else
    643		count = 0;
    644
    645	/*
    646	 * Step 1: return the slots to the free list, merging the slots with
    647	 * superceeding slots
    648	 */
    649	for (i = index + nslots - 1; i >= index; i--) {
    650		mem->slots[i].list = ++count;
    651		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
    652		mem->slots[i].alloc_size = 0;
    653	}
    654
    655	/*
    656	 * Step 2: merge the returned slots with the preceding slots, if
    657	 * available (non zero)
    658	 */
    659	for (i = index - 1;
    660	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
    661	     i--)
    662		mem->slots[i].list = ++count;
    663	mem->used -= nslots;
    664	spin_unlock_irqrestore(&mem->lock, flags);
    665}
    666
    667/*
    668 * tlb_addr is the physical address of the bounce buffer to unmap.
    669 */
    670void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
    671			      size_t mapping_size, enum dma_data_direction dir,
    672			      unsigned long attrs)
    673{
    674	/*
    675	 * First, sync the memory before unmapping the entry
    676	 */
    677	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
    678	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
    679		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
    680
    681	swiotlb_release_slots(dev, tlb_addr);
    682}
    683
    684void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
    685		size_t size, enum dma_data_direction dir)
    686{
    687	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
    688		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
    689	else
    690		BUG_ON(dir != DMA_FROM_DEVICE);
    691}
    692
    693void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
    694		size_t size, enum dma_data_direction dir)
    695{
    696	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
    697		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
    698	else
    699		BUG_ON(dir != DMA_TO_DEVICE);
    700}
    701
    702/*
    703 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
    704 * to the device copy the data into it as well.
    705 */
    706dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
    707		enum dma_data_direction dir, unsigned long attrs)
    708{
    709	phys_addr_t swiotlb_addr;
    710	dma_addr_t dma_addr;
    711
    712	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
    713
    714	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
    715			attrs);
    716	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
    717		return DMA_MAPPING_ERROR;
    718
    719	/* Ensure that the address returned is DMA'ble */
    720	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
    721	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
    722		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
    723			attrs | DMA_ATTR_SKIP_CPU_SYNC);
    724		dev_WARN_ONCE(dev, 1,
    725			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
    726			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
    727		return DMA_MAPPING_ERROR;
    728	}
    729
    730	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
    731		arch_sync_dma_for_device(swiotlb_addr, size, dir);
    732	return dma_addr;
    733}
    734
    735size_t swiotlb_max_mapping_size(struct device *dev)
    736{
    737	int min_align_mask = dma_get_min_align_mask(dev);
    738	int min_align = 0;
    739
    740	/*
    741	 * swiotlb_find_slots() skips slots according to
    742	 * min align mask. This affects max mapping size.
    743	 * Take it into acount here.
    744	 */
    745	if (min_align_mask)
    746		min_align = roundup(min_align_mask, IO_TLB_SIZE);
    747
    748	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
    749}
    750
    751bool is_swiotlb_active(struct device *dev)
    752{
    753	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
    754
    755	return mem && mem->nslabs;
    756}
    757EXPORT_SYMBOL_GPL(is_swiotlb_active);
    758
    759static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
    760					 const char *dirname)
    761{
    762	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
    763	if (!mem->nslabs)
    764		return;
    765
    766	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
    767	debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
    768}
    769
    770static int __init __maybe_unused swiotlb_create_default_debugfs(void)
    771{
    772	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
    773	return 0;
    774}
    775
    776#ifdef CONFIG_DEBUG_FS
    777late_initcall(swiotlb_create_default_debugfs);
    778#endif
    779
    780#ifdef CONFIG_DMA_RESTRICTED_POOL
    781
    782struct page *swiotlb_alloc(struct device *dev, size_t size)
    783{
    784	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
    785	phys_addr_t tlb_addr;
    786	int index;
    787
    788	if (!mem)
    789		return NULL;
    790
    791	index = swiotlb_find_slots(dev, 0, size, 0);
    792	if (index == -1)
    793		return NULL;
    794
    795	tlb_addr = slot_addr(mem->start, index);
    796
    797	return pfn_to_page(PFN_DOWN(tlb_addr));
    798}
    799
    800bool swiotlb_free(struct device *dev, struct page *page, size_t size)
    801{
    802	phys_addr_t tlb_addr = page_to_phys(page);
    803
    804	if (!is_swiotlb_buffer(dev, tlb_addr))
    805		return false;
    806
    807	swiotlb_release_slots(dev, tlb_addr);
    808
    809	return true;
    810}
    811
    812static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
    813				    struct device *dev)
    814{
    815	struct io_tlb_mem *mem = rmem->priv;
    816	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
    817
    818	/*
    819	 * Since multiple devices can share the same pool, the private data,
    820	 * io_tlb_mem struct, will be initialized by the first device attached
    821	 * to it.
    822	 */
    823	if (!mem) {
    824		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
    825		if (!mem)
    826			return -ENOMEM;
    827
    828		mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL);
    829		if (!mem->slots) {
    830			kfree(mem);
    831			return -ENOMEM;
    832		}
    833
    834		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
    835				     rmem->size >> PAGE_SHIFT);
    836		swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE,
    837				false);
    838		mem->for_alloc = true;
    839
    840		rmem->priv = mem;
    841
    842		swiotlb_create_debugfs_files(mem, rmem->name);
    843	}
    844
    845	dev->dma_io_tlb_mem = mem;
    846
    847	return 0;
    848}
    849
    850static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
    851					struct device *dev)
    852{
    853	dev->dma_io_tlb_mem = &io_tlb_default_mem;
    854}
    855
    856static const struct reserved_mem_ops rmem_swiotlb_ops = {
    857	.device_init = rmem_swiotlb_device_init,
    858	.device_release = rmem_swiotlb_device_release,
    859};
    860
    861static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
    862{
    863	unsigned long node = rmem->fdt_node;
    864
    865	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
    866	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
    867	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
    868	    of_get_flat_dt_prop(node, "no-map", NULL))
    869		return -EINVAL;
    870
    871	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
    872		pr_err("Restricted DMA pool must be accessible within the linear mapping.");
    873		return -EINVAL;
    874	}
    875
    876	rmem->ops = &rmem_swiotlb_ops;
    877	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
    878		&rmem->base, (unsigned long)rmem->size / SZ_1M);
    879	return 0;
    880}
    881
    882RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
    883#endif /* CONFIG_DMA_RESTRICTED_POOL */