cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hw_breakpoint.c (16796B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Copyright (C) 2007 Alan Stern
      4 * Copyright (C) IBM Corporation, 2009
      5 * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
      6 *
      7 * Thanks to Ingo Molnar for his many suggestions.
      8 *
      9 * Authors: Alan Stern <stern@rowland.harvard.edu>
     10 *          K.Prasad <prasad@linux.vnet.ibm.com>
     11 *          Frederic Weisbecker <fweisbec@gmail.com>
     12 */
     13
     14/*
     15 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
     16 * using the CPU's debug registers.
     17 * This file contains the arch-independent routines.
     18 */
     19
     20#include <linux/irqflags.h>
     21#include <linux/kallsyms.h>
     22#include <linux/notifier.h>
     23#include <linux/kprobes.h>
     24#include <linux/kdebug.h>
     25#include <linux/kernel.h>
     26#include <linux/module.h>
     27#include <linux/percpu.h>
     28#include <linux/sched.h>
     29#include <linux/init.h>
     30#include <linux/slab.h>
     31#include <linux/list.h>
     32#include <linux/cpu.h>
     33#include <linux/smp.h>
     34#include <linux/bug.h>
     35
     36#include <linux/hw_breakpoint.h>
     37/*
     38 * Constraints data
     39 */
     40struct bp_cpuinfo {
     41	/* Number of pinned cpu breakpoints in a cpu */
     42	unsigned int	cpu_pinned;
     43	/* tsk_pinned[n] is the number of tasks having n+1 breakpoints */
     44	unsigned int	*tsk_pinned;
     45	/* Number of non-pinned cpu/task breakpoints in a cpu */
     46	unsigned int	flexible; /* XXX: placeholder, see fetch_this_slot() */
     47};
     48
     49static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
     50static int nr_slots[TYPE_MAX];
     51
     52static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
     53{
     54	return per_cpu_ptr(bp_cpuinfo + type, cpu);
     55}
     56
     57/* Keep track of the breakpoints attached to tasks */
     58static LIST_HEAD(bp_task_head);
     59
     60static int constraints_initialized;
     61
     62/* Gather the number of total pinned and un-pinned bp in a cpuset */
     63struct bp_busy_slots {
     64	unsigned int pinned;
     65	unsigned int flexible;
     66};
     67
     68/* Serialize accesses to the above constraints */
     69static DEFINE_MUTEX(nr_bp_mutex);
     70
     71__weak int hw_breakpoint_weight(struct perf_event *bp)
     72{
     73	return 1;
     74}
     75
     76static inline enum bp_type_idx find_slot_idx(u64 bp_type)
     77{
     78	if (bp_type & HW_BREAKPOINT_RW)
     79		return TYPE_DATA;
     80
     81	return TYPE_INST;
     82}
     83
     84/*
     85 * Report the maximum number of pinned breakpoints a task
     86 * have in this cpu
     87 */
     88static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
     89{
     90	unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
     91	int i;
     92
     93	for (i = nr_slots[type] - 1; i >= 0; i--) {
     94		if (tsk_pinned[i] > 0)
     95			return i + 1;
     96	}
     97
     98	return 0;
     99}
    100
    101/*
    102 * Count the number of breakpoints of the same type and same task.
    103 * The given event must be not on the list.
    104 */
    105static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
    106{
    107	struct task_struct *tsk = bp->hw.target;
    108	struct perf_event *iter;
    109	int count = 0;
    110
    111	list_for_each_entry(iter, &bp_task_head, hw.bp_list) {
    112		if (iter->hw.target == tsk &&
    113		    find_slot_idx(iter->attr.bp_type) == type &&
    114		    (iter->cpu < 0 || cpu == iter->cpu))
    115			count += hw_breakpoint_weight(iter);
    116	}
    117
    118	return count;
    119}
    120
    121static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
    122{
    123	if (bp->cpu >= 0)
    124		return cpumask_of(bp->cpu);
    125	return cpu_possible_mask;
    126}
    127
    128/*
    129 * Report the number of pinned/un-pinned breakpoints we have in
    130 * a given cpu (cpu > -1) or in all of them (cpu = -1).
    131 */
    132static void
    133fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp,
    134		    enum bp_type_idx type)
    135{
    136	const struct cpumask *cpumask = cpumask_of_bp(bp);
    137	int cpu;
    138
    139	for_each_cpu(cpu, cpumask) {
    140		struct bp_cpuinfo *info = get_bp_info(cpu, type);
    141		int nr;
    142
    143		nr = info->cpu_pinned;
    144		if (!bp->hw.target)
    145			nr += max_task_bp_pinned(cpu, type);
    146		else
    147			nr += task_bp_pinned(cpu, bp, type);
    148
    149		if (nr > slots->pinned)
    150			slots->pinned = nr;
    151
    152		nr = info->flexible;
    153		if (nr > slots->flexible)
    154			slots->flexible = nr;
    155	}
    156}
    157
    158/*
    159 * For now, continue to consider flexible as pinned, until we can
    160 * ensure no flexible event can ever be scheduled before a pinned event
    161 * in a same cpu.
    162 */
    163static void
    164fetch_this_slot(struct bp_busy_slots *slots, int weight)
    165{
    166	slots->pinned += weight;
    167}
    168
    169/*
    170 * Add a pinned breakpoint for the given task in our constraint table
    171 */
    172static void toggle_bp_task_slot(struct perf_event *bp, int cpu,
    173				enum bp_type_idx type, int weight)
    174{
    175	unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
    176	int old_idx, new_idx;
    177
    178	old_idx = task_bp_pinned(cpu, bp, type) - 1;
    179	new_idx = old_idx + weight;
    180
    181	if (old_idx >= 0)
    182		tsk_pinned[old_idx]--;
    183	if (new_idx >= 0)
    184		tsk_pinned[new_idx]++;
    185}
    186
    187/*
    188 * Add/remove the given breakpoint in our constraint table
    189 */
    190static void
    191toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type,
    192	       int weight)
    193{
    194	const struct cpumask *cpumask = cpumask_of_bp(bp);
    195	int cpu;
    196
    197	if (!enable)
    198		weight = -weight;
    199
    200	/* Pinned counter cpu profiling */
    201	if (!bp->hw.target) {
    202		get_bp_info(bp->cpu, type)->cpu_pinned += weight;
    203		return;
    204	}
    205
    206	/* Pinned counter task profiling */
    207	for_each_cpu(cpu, cpumask)
    208		toggle_bp_task_slot(bp, cpu, type, weight);
    209
    210	if (enable)
    211		list_add_tail(&bp->hw.bp_list, &bp_task_head);
    212	else
    213		list_del(&bp->hw.bp_list);
    214}
    215
    216__weak int arch_reserve_bp_slot(struct perf_event *bp)
    217{
    218	return 0;
    219}
    220
    221__weak void arch_release_bp_slot(struct perf_event *bp)
    222{
    223}
    224
    225/*
    226 * Function to perform processor-specific cleanup during unregistration
    227 */
    228__weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
    229{
    230	/*
    231	 * A weak stub function here for those archs that don't define
    232	 * it inside arch/.../kernel/hw_breakpoint.c
    233	 */
    234}
    235
    236/*
    237 * Constraints to check before allowing this new breakpoint counter:
    238 *
    239 *  == Non-pinned counter == (Considered as pinned for now)
    240 *
    241 *   - If attached to a single cpu, check:
    242 *
    243 *       (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
    244 *           + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
    245 *
    246 *       -> If there are already non-pinned counters in this cpu, it means
    247 *          there is already a free slot for them.
    248 *          Otherwise, we check that the maximum number of per task
    249 *          breakpoints (for this cpu) plus the number of per cpu breakpoint
    250 *          (for this cpu) doesn't cover every registers.
    251 *
    252 *   - If attached to every cpus, check:
    253 *
    254 *       (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
    255 *           + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
    256 *
    257 *       -> This is roughly the same, except we check the number of per cpu
    258 *          bp for every cpu and we keep the max one. Same for the per tasks
    259 *          breakpoints.
    260 *
    261 *
    262 * == Pinned counter ==
    263 *
    264 *   - If attached to a single cpu, check:
    265 *
    266 *       ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
    267 *            + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
    268 *
    269 *       -> Same checks as before. But now the info->flexible, if any, must keep
    270 *          one register at least (or they will never be fed).
    271 *
    272 *   - If attached to every cpus, check:
    273 *
    274 *       ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
    275 *            + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
    276 */
    277static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
    278{
    279	struct bp_busy_slots slots = {0};
    280	enum bp_type_idx type;
    281	int weight;
    282	int ret;
    283
    284	/* We couldn't initialize breakpoint constraints on boot */
    285	if (!constraints_initialized)
    286		return -ENOMEM;
    287
    288	/* Basic checks */
    289	if (bp_type == HW_BREAKPOINT_EMPTY ||
    290	    bp_type == HW_BREAKPOINT_INVALID)
    291		return -EINVAL;
    292
    293	type = find_slot_idx(bp_type);
    294	weight = hw_breakpoint_weight(bp);
    295
    296	fetch_bp_busy_slots(&slots, bp, type);
    297	/*
    298	 * Simulate the addition of this breakpoint to the constraints
    299	 * and see the result.
    300	 */
    301	fetch_this_slot(&slots, weight);
    302
    303	/* Flexible counters need to keep at least one slot */
    304	if (slots.pinned + (!!slots.flexible) > nr_slots[type])
    305		return -ENOSPC;
    306
    307	ret = arch_reserve_bp_slot(bp);
    308	if (ret)
    309		return ret;
    310
    311	toggle_bp_slot(bp, true, type, weight);
    312
    313	return 0;
    314}
    315
    316int reserve_bp_slot(struct perf_event *bp)
    317{
    318	int ret;
    319
    320	mutex_lock(&nr_bp_mutex);
    321
    322	ret = __reserve_bp_slot(bp, bp->attr.bp_type);
    323
    324	mutex_unlock(&nr_bp_mutex);
    325
    326	return ret;
    327}
    328
    329static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
    330{
    331	enum bp_type_idx type;
    332	int weight;
    333
    334	arch_release_bp_slot(bp);
    335
    336	type = find_slot_idx(bp_type);
    337	weight = hw_breakpoint_weight(bp);
    338	toggle_bp_slot(bp, false, type, weight);
    339}
    340
    341void release_bp_slot(struct perf_event *bp)
    342{
    343	mutex_lock(&nr_bp_mutex);
    344
    345	arch_unregister_hw_breakpoint(bp);
    346	__release_bp_slot(bp, bp->attr.bp_type);
    347
    348	mutex_unlock(&nr_bp_mutex);
    349}
    350
    351static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
    352{
    353	int err;
    354
    355	__release_bp_slot(bp, old_type);
    356
    357	err = __reserve_bp_slot(bp, new_type);
    358	if (err) {
    359		/*
    360		 * Reserve the old_type slot back in case
    361		 * there's no space for the new type.
    362		 *
    363		 * This must succeed, because we just released
    364		 * the old_type slot in the __release_bp_slot
    365		 * call above. If not, something is broken.
    366		 */
    367		WARN_ON(__reserve_bp_slot(bp, old_type));
    368	}
    369
    370	return err;
    371}
    372
    373static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
    374{
    375	int ret;
    376
    377	mutex_lock(&nr_bp_mutex);
    378	ret = __modify_bp_slot(bp, old_type, new_type);
    379	mutex_unlock(&nr_bp_mutex);
    380	return ret;
    381}
    382
    383/*
    384 * Allow the kernel debugger to reserve breakpoint slots without
    385 * taking a lock using the dbg_* variant of for the reserve and
    386 * release breakpoint slots.
    387 */
    388int dbg_reserve_bp_slot(struct perf_event *bp)
    389{
    390	if (mutex_is_locked(&nr_bp_mutex))
    391		return -1;
    392
    393	return __reserve_bp_slot(bp, bp->attr.bp_type);
    394}
    395
    396int dbg_release_bp_slot(struct perf_event *bp)
    397{
    398	if (mutex_is_locked(&nr_bp_mutex))
    399		return -1;
    400
    401	__release_bp_slot(bp, bp->attr.bp_type);
    402
    403	return 0;
    404}
    405
    406static int hw_breakpoint_parse(struct perf_event *bp,
    407			       const struct perf_event_attr *attr,
    408			       struct arch_hw_breakpoint *hw)
    409{
    410	int err;
    411
    412	err = hw_breakpoint_arch_parse(bp, attr, hw);
    413	if (err)
    414		return err;
    415
    416	if (arch_check_bp_in_kernelspace(hw)) {
    417		if (attr->exclude_kernel)
    418			return -EINVAL;
    419		/*
    420		 * Don't let unprivileged users set a breakpoint in the trap
    421		 * path to avoid trap recursion attacks.
    422		 */
    423		if (!capable(CAP_SYS_ADMIN))
    424			return -EPERM;
    425	}
    426
    427	return 0;
    428}
    429
    430int register_perf_hw_breakpoint(struct perf_event *bp)
    431{
    432	struct arch_hw_breakpoint hw = { };
    433	int err;
    434
    435	err = reserve_bp_slot(bp);
    436	if (err)
    437		return err;
    438
    439	err = hw_breakpoint_parse(bp, &bp->attr, &hw);
    440	if (err) {
    441		release_bp_slot(bp);
    442		return err;
    443	}
    444
    445	bp->hw.info = hw;
    446
    447	return 0;
    448}
    449
    450/**
    451 * register_user_hw_breakpoint - register a hardware breakpoint for user space
    452 * @attr: breakpoint attributes
    453 * @triggered: callback to trigger when we hit the breakpoint
    454 * @context: context data could be used in the triggered callback
    455 * @tsk: pointer to 'task_struct' of the process to which the address belongs
    456 */
    457struct perf_event *
    458register_user_hw_breakpoint(struct perf_event_attr *attr,
    459			    perf_overflow_handler_t triggered,
    460			    void *context,
    461			    struct task_struct *tsk)
    462{
    463	return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
    464						context);
    465}
    466EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
    467
    468static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
    469				    struct perf_event_attr *from)
    470{
    471	to->bp_addr = from->bp_addr;
    472	to->bp_type = from->bp_type;
    473	to->bp_len  = from->bp_len;
    474	to->disabled = from->disabled;
    475}
    476
    477int
    478modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
    479			        bool check)
    480{
    481	struct arch_hw_breakpoint hw = { };
    482	int err;
    483
    484	err = hw_breakpoint_parse(bp, attr, &hw);
    485	if (err)
    486		return err;
    487
    488	if (check) {
    489		struct perf_event_attr old_attr;
    490
    491		old_attr = bp->attr;
    492		hw_breakpoint_copy_attr(&old_attr, attr);
    493		if (memcmp(&old_attr, attr, sizeof(*attr)))
    494			return -EINVAL;
    495	}
    496
    497	if (bp->attr.bp_type != attr->bp_type) {
    498		err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
    499		if (err)
    500			return err;
    501	}
    502
    503	hw_breakpoint_copy_attr(&bp->attr, attr);
    504	bp->hw.info = hw;
    505
    506	return 0;
    507}
    508
    509/**
    510 * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
    511 * @bp: the breakpoint structure to modify
    512 * @attr: new breakpoint attributes
    513 */
    514int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
    515{
    516	int err;
    517
    518	/*
    519	 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
    520	 * will not be possible to raise IPIs that invoke __perf_event_disable.
    521	 * So call the function directly after making sure we are targeting the
    522	 * current task.
    523	 */
    524	if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
    525		perf_event_disable_local(bp);
    526	else
    527		perf_event_disable(bp);
    528
    529	err = modify_user_hw_breakpoint_check(bp, attr, false);
    530
    531	if (!bp->attr.disabled)
    532		perf_event_enable(bp);
    533
    534	return err;
    535}
    536EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
    537
    538/**
    539 * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
    540 * @bp: the breakpoint structure to unregister
    541 */
    542void unregister_hw_breakpoint(struct perf_event *bp)
    543{
    544	if (!bp)
    545		return;
    546	perf_event_release_kernel(bp);
    547}
    548EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
    549
    550/**
    551 * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
    552 * @attr: breakpoint attributes
    553 * @triggered: callback to trigger when we hit the breakpoint
    554 * @context: context data could be used in the triggered callback
    555 *
    556 * @return a set of per_cpu pointers to perf events
    557 */
    558struct perf_event * __percpu *
    559register_wide_hw_breakpoint(struct perf_event_attr *attr,
    560			    perf_overflow_handler_t triggered,
    561			    void *context)
    562{
    563	struct perf_event * __percpu *cpu_events, *bp;
    564	long err = 0;
    565	int cpu;
    566
    567	cpu_events = alloc_percpu(typeof(*cpu_events));
    568	if (!cpu_events)
    569		return (void __percpu __force *)ERR_PTR(-ENOMEM);
    570
    571	cpus_read_lock();
    572	for_each_online_cpu(cpu) {
    573		bp = perf_event_create_kernel_counter(attr, cpu, NULL,
    574						      triggered, context);
    575		if (IS_ERR(bp)) {
    576			err = PTR_ERR(bp);
    577			break;
    578		}
    579
    580		per_cpu(*cpu_events, cpu) = bp;
    581	}
    582	cpus_read_unlock();
    583
    584	if (likely(!err))
    585		return cpu_events;
    586
    587	unregister_wide_hw_breakpoint(cpu_events);
    588	return (void __percpu __force *)ERR_PTR(err);
    589}
    590EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
    591
    592/**
    593 * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
    594 * @cpu_events: the per cpu set of events to unregister
    595 */
    596void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
    597{
    598	int cpu;
    599
    600	for_each_possible_cpu(cpu)
    601		unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
    602
    603	free_percpu(cpu_events);
    604}
    605EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
    606
    607static struct notifier_block hw_breakpoint_exceptions_nb = {
    608	.notifier_call = hw_breakpoint_exceptions_notify,
    609	/* we need to be notified first */
    610	.priority = 0x7fffffff
    611};
    612
    613static void bp_perf_event_destroy(struct perf_event *event)
    614{
    615	release_bp_slot(event);
    616}
    617
    618static int hw_breakpoint_event_init(struct perf_event *bp)
    619{
    620	int err;
    621
    622	if (bp->attr.type != PERF_TYPE_BREAKPOINT)
    623		return -ENOENT;
    624
    625	/*
    626	 * no branch sampling for breakpoint events
    627	 */
    628	if (has_branch_stack(bp))
    629		return -EOPNOTSUPP;
    630
    631	err = register_perf_hw_breakpoint(bp);
    632	if (err)
    633		return err;
    634
    635	bp->destroy = bp_perf_event_destroy;
    636
    637	return 0;
    638}
    639
    640static int hw_breakpoint_add(struct perf_event *bp, int flags)
    641{
    642	if (!(flags & PERF_EF_START))
    643		bp->hw.state = PERF_HES_STOPPED;
    644
    645	if (is_sampling_event(bp)) {
    646		bp->hw.last_period = bp->hw.sample_period;
    647		perf_swevent_set_period(bp);
    648	}
    649
    650	return arch_install_hw_breakpoint(bp);
    651}
    652
    653static void hw_breakpoint_del(struct perf_event *bp, int flags)
    654{
    655	arch_uninstall_hw_breakpoint(bp);
    656}
    657
    658static void hw_breakpoint_start(struct perf_event *bp, int flags)
    659{
    660	bp->hw.state = 0;
    661}
    662
    663static void hw_breakpoint_stop(struct perf_event *bp, int flags)
    664{
    665	bp->hw.state = PERF_HES_STOPPED;
    666}
    667
    668static struct pmu perf_breakpoint = {
    669	.task_ctx_nr	= perf_sw_context, /* could eventually get its own */
    670
    671	.event_init	= hw_breakpoint_event_init,
    672	.add		= hw_breakpoint_add,
    673	.del		= hw_breakpoint_del,
    674	.start		= hw_breakpoint_start,
    675	.stop		= hw_breakpoint_stop,
    676	.read		= hw_breakpoint_pmu_read,
    677};
    678
    679int __init init_hw_breakpoint(void)
    680{
    681	int cpu, err_cpu;
    682	int i;
    683
    684	for (i = 0; i < TYPE_MAX; i++)
    685		nr_slots[i] = hw_breakpoint_slots(i);
    686
    687	for_each_possible_cpu(cpu) {
    688		for (i = 0; i < TYPE_MAX; i++) {
    689			struct bp_cpuinfo *info = get_bp_info(cpu, i);
    690
    691			info->tsk_pinned = kcalloc(nr_slots[i], sizeof(int),
    692							GFP_KERNEL);
    693			if (!info->tsk_pinned)
    694				goto err_alloc;
    695		}
    696	}
    697
    698	constraints_initialized = 1;
    699
    700	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
    701
    702	return register_die_notifier(&hw_breakpoint_exceptions_nb);
    703
    704 err_alloc:
    705	for_each_possible_cpu(err_cpu) {
    706		for (i = 0; i < TYPE_MAX; i++)
    707			kfree(get_bp_info(err_cpu, i)->tsk_pinned);
    708		if (err_cpu == cpu)
    709			break;
    710	}
    711
    712	return -ENOMEM;
    713}
    714
    715