cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fork.c (81334B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/kernel/fork.c
      4 *
      5 *  Copyright (C) 1991, 1992  Linus Torvalds
      6 */
      7
      8/*
      9 *  'fork.c' contains the help-routines for the 'fork' system call
     10 * (see also entry.S and others).
     11 * Fork is rather simple, once you get the hang of it, but the memory
     12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
     13 */
     14
     15#include <linux/anon_inodes.h>
     16#include <linux/slab.h>
     17#include <linux/sched/autogroup.h>
     18#include <linux/sched/mm.h>
     19#include <linux/sched/coredump.h>
     20#include <linux/sched/user.h>
     21#include <linux/sched/numa_balancing.h>
     22#include <linux/sched/stat.h>
     23#include <linux/sched/task.h>
     24#include <linux/sched/task_stack.h>
     25#include <linux/sched/cputime.h>
     26#include <linux/seq_file.h>
     27#include <linux/rtmutex.h>
     28#include <linux/init.h>
     29#include <linux/unistd.h>
     30#include <linux/module.h>
     31#include <linux/vmalloc.h>
     32#include <linux/completion.h>
     33#include <linux/personality.h>
     34#include <linux/mempolicy.h>
     35#include <linux/sem.h>
     36#include <linux/file.h>
     37#include <linux/fdtable.h>
     38#include <linux/iocontext.h>
     39#include <linux/key.h>
     40#include <linux/binfmts.h>
     41#include <linux/mman.h>
     42#include <linux/mmu_notifier.h>
     43#include <linux/fs.h>
     44#include <linux/mm.h>
     45#include <linux/mm_inline.h>
     46#include <linux/vmacache.h>
     47#include <linux/nsproxy.h>
     48#include <linux/capability.h>
     49#include <linux/cpu.h>
     50#include <linux/cgroup.h>
     51#include <linux/security.h>
     52#include <linux/hugetlb.h>
     53#include <linux/seccomp.h>
     54#include <linux/swap.h>
     55#include <linux/syscalls.h>
     56#include <linux/jiffies.h>
     57#include <linux/futex.h>
     58#include <linux/compat.h>
     59#include <linux/kthread.h>
     60#include <linux/task_io_accounting_ops.h>
     61#include <linux/rcupdate.h>
     62#include <linux/ptrace.h>
     63#include <linux/mount.h>
     64#include <linux/audit.h>
     65#include <linux/memcontrol.h>
     66#include <linux/ftrace.h>
     67#include <linux/proc_fs.h>
     68#include <linux/profile.h>
     69#include <linux/rmap.h>
     70#include <linux/ksm.h>
     71#include <linux/acct.h>
     72#include <linux/userfaultfd_k.h>
     73#include <linux/tsacct_kern.h>
     74#include <linux/cn_proc.h>
     75#include <linux/freezer.h>
     76#include <linux/delayacct.h>
     77#include <linux/taskstats_kern.h>
     78#include <linux/random.h>
     79#include <linux/tty.h>
     80#include <linux/fs_struct.h>
     81#include <linux/magic.h>
     82#include <linux/perf_event.h>
     83#include <linux/posix-timers.h>
     84#include <linux/user-return-notifier.h>
     85#include <linux/oom.h>
     86#include <linux/khugepaged.h>
     87#include <linux/signalfd.h>
     88#include <linux/uprobes.h>
     89#include <linux/aio.h>
     90#include <linux/compiler.h>
     91#include <linux/sysctl.h>
     92#include <linux/kcov.h>
     93#include <linux/livepatch.h>
     94#include <linux/thread_info.h>
     95#include <linux/stackleak.h>
     96#include <linux/kasan.h>
     97#include <linux/scs.h>
     98#include <linux/io_uring.h>
     99#include <linux/bpf.h>
    100#include <linux/sched/mm.h>
    101
    102#include <asm/pgalloc.h>
    103#include <linux/uaccess.h>
    104#include <asm/mmu_context.h>
    105#include <asm/cacheflush.h>
    106#include <asm/tlbflush.h>
    107
    108#include <trace/events/sched.h>
    109
    110#define CREATE_TRACE_POINTS
    111#include <trace/events/task.h>
    112
    113/*
    114 * Minimum number of threads to boot the kernel
    115 */
    116#define MIN_THREADS 20
    117
    118/*
    119 * Maximum number of threads
    120 */
    121#define MAX_THREADS FUTEX_TID_MASK
    122
    123/*
    124 * Protected counters by write_lock_irq(&tasklist_lock)
    125 */
    126unsigned long total_forks;	/* Handle normal Linux uptimes. */
    127int nr_threads;			/* The idle threads do not count.. */
    128
    129static int max_threads;		/* tunable limit on nr_threads */
    130
    131#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
    132
    133static const char * const resident_page_types[] = {
    134	NAMED_ARRAY_INDEX(MM_FILEPAGES),
    135	NAMED_ARRAY_INDEX(MM_ANONPAGES),
    136	NAMED_ARRAY_INDEX(MM_SWAPENTS),
    137	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
    138};
    139
    140DEFINE_PER_CPU(unsigned long, process_counts) = 0;
    141
    142__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
    143
    144#ifdef CONFIG_PROVE_RCU
    145int lockdep_tasklist_lock_is_held(void)
    146{
    147	return lockdep_is_held(&tasklist_lock);
    148}
    149EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
    150#endif /* #ifdef CONFIG_PROVE_RCU */
    151
    152int nr_processes(void)
    153{
    154	int cpu;
    155	int total = 0;
    156
    157	for_each_possible_cpu(cpu)
    158		total += per_cpu(process_counts, cpu);
    159
    160	return total;
    161}
    162
    163void __weak arch_release_task_struct(struct task_struct *tsk)
    164{
    165}
    166
    167#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
    168static struct kmem_cache *task_struct_cachep;
    169
    170static inline struct task_struct *alloc_task_struct_node(int node)
    171{
    172	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
    173}
    174
    175static inline void free_task_struct(struct task_struct *tsk)
    176{
    177	kmem_cache_free(task_struct_cachep, tsk);
    178}
    179#endif
    180
    181#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
    182
    183/*
    184 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
    185 * kmemcache based allocator.
    186 */
    187# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
    188
    189#  ifdef CONFIG_VMAP_STACK
    190/*
    191 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
    192 * flush.  Try to minimize the number of calls by caching stacks.
    193 */
    194#define NR_CACHED_STACKS 2
    195static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
    196
    197struct vm_stack {
    198	struct rcu_head rcu;
    199	struct vm_struct *stack_vm_area;
    200};
    201
    202static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
    203{
    204	unsigned int i;
    205
    206	for (i = 0; i < NR_CACHED_STACKS; i++) {
    207		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
    208			continue;
    209		return true;
    210	}
    211	return false;
    212}
    213
    214static void thread_stack_free_rcu(struct rcu_head *rh)
    215{
    216	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
    217
    218	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
    219		return;
    220
    221	vfree(vm_stack);
    222}
    223
    224static void thread_stack_delayed_free(struct task_struct *tsk)
    225{
    226	struct vm_stack *vm_stack = tsk->stack;
    227
    228	vm_stack->stack_vm_area = tsk->stack_vm_area;
    229	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
    230}
    231
    232static int free_vm_stack_cache(unsigned int cpu)
    233{
    234	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
    235	int i;
    236
    237	for (i = 0; i < NR_CACHED_STACKS; i++) {
    238		struct vm_struct *vm_stack = cached_vm_stacks[i];
    239
    240		if (!vm_stack)
    241			continue;
    242
    243		vfree(vm_stack->addr);
    244		cached_vm_stacks[i] = NULL;
    245	}
    246
    247	return 0;
    248}
    249
    250static int memcg_charge_kernel_stack(struct vm_struct *vm)
    251{
    252	int i;
    253	int ret;
    254
    255	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
    256	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
    257
    258	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
    259		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
    260		if (ret)
    261			goto err;
    262	}
    263	return 0;
    264err:
    265	/*
    266	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
    267	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
    268	 * ignore this page.
    269	 */
    270	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
    271		memcg_kmem_uncharge_page(vm->pages[i], 0);
    272	return ret;
    273}
    274
    275static int alloc_thread_stack_node(struct task_struct *tsk, int node)
    276{
    277	struct vm_struct *vm;
    278	void *stack;
    279	int i;
    280
    281	for (i = 0; i < NR_CACHED_STACKS; i++) {
    282		struct vm_struct *s;
    283
    284		s = this_cpu_xchg(cached_stacks[i], NULL);
    285
    286		if (!s)
    287			continue;
    288
    289		/* Reset stack metadata. */
    290		kasan_unpoison_range(s->addr, THREAD_SIZE);
    291
    292		stack = kasan_reset_tag(s->addr);
    293
    294		/* Clear stale pointers from reused stack. */
    295		memset(stack, 0, THREAD_SIZE);
    296
    297		if (memcg_charge_kernel_stack(s)) {
    298			vfree(s->addr);
    299			return -ENOMEM;
    300		}
    301
    302		tsk->stack_vm_area = s;
    303		tsk->stack = stack;
    304		return 0;
    305	}
    306
    307	/*
    308	 * Allocated stacks are cached and later reused by new threads,
    309	 * so memcg accounting is performed manually on assigning/releasing
    310	 * stacks to tasks. Drop __GFP_ACCOUNT.
    311	 */
    312	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
    313				     VMALLOC_START, VMALLOC_END,
    314				     THREADINFO_GFP & ~__GFP_ACCOUNT,
    315				     PAGE_KERNEL,
    316				     0, node, __builtin_return_address(0));
    317	if (!stack)
    318		return -ENOMEM;
    319
    320	vm = find_vm_area(stack);
    321	if (memcg_charge_kernel_stack(vm)) {
    322		vfree(stack);
    323		return -ENOMEM;
    324	}
    325	/*
    326	 * We can't call find_vm_area() in interrupt context, and
    327	 * free_thread_stack() can be called in interrupt context,
    328	 * so cache the vm_struct.
    329	 */
    330	tsk->stack_vm_area = vm;
    331	stack = kasan_reset_tag(stack);
    332	tsk->stack = stack;
    333	return 0;
    334}
    335
    336static void free_thread_stack(struct task_struct *tsk)
    337{
    338	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
    339		thread_stack_delayed_free(tsk);
    340
    341	tsk->stack = NULL;
    342	tsk->stack_vm_area = NULL;
    343}
    344
    345#  else /* !CONFIG_VMAP_STACK */
    346
    347static void thread_stack_free_rcu(struct rcu_head *rh)
    348{
    349	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
    350}
    351
    352static void thread_stack_delayed_free(struct task_struct *tsk)
    353{
    354	struct rcu_head *rh = tsk->stack;
    355
    356	call_rcu(rh, thread_stack_free_rcu);
    357}
    358
    359static int alloc_thread_stack_node(struct task_struct *tsk, int node)
    360{
    361	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
    362					     THREAD_SIZE_ORDER);
    363
    364	if (likely(page)) {
    365		tsk->stack = kasan_reset_tag(page_address(page));
    366		return 0;
    367	}
    368	return -ENOMEM;
    369}
    370
    371static void free_thread_stack(struct task_struct *tsk)
    372{
    373	thread_stack_delayed_free(tsk);
    374	tsk->stack = NULL;
    375}
    376
    377#  endif /* CONFIG_VMAP_STACK */
    378# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
    379
    380static struct kmem_cache *thread_stack_cache;
    381
    382static void thread_stack_free_rcu(struct rcu_head *rh)
    383{
    384	kmem_cache_free(thread_stack_cache, rh);
    385}
    386
    387static void thread_stack_delayed_free(struct task_struct *tsk)
    388{
    389	struct rcu_head *rh = tsk->stack;
    390
    391	call_rcu(rh, thread_stack_free_rcu);
    392}
    393
    394static int alloc_thread_stack_node(struct task_struct *tsk, int node)
    395{
    396	unsigned long *stack;
    397	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
    398	stack = kasan_reset_tag(stack);
    399	tsk->stack = stack;
    400	return stack ? 0 : -ENOMEM;
    401}
    402
    403static void free_thread_stack(struct task_struct *tsk)
    404{
    405	thread_stack_delayed_free(tsk);
    406	tsk->stack = NULL;
    407}
    408
    409void thread_stack_cache_init(void)
    410{
    411	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
    412					THREAD_SIZE, THREAD_SIZE, 0, 0,
    413					THREAD_SIZE, NULL);
    414	BUG_ON(thread_stack_cache == NULL);
    415}
    416
    417# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
    418#else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
    419
    420static int alloc_thread_stack_node(struct task_struct *tsk, int node)
    421{
    422	unsigned long *stack;
    423
    424	stack = arch_alloc_thread_stack_node(tsk, node);
    425	tsk->stack = stack;
    426	return stack ? 0 : -ENOMEM;
    427}
    428
    429static void free_thread_stack(struct task_struct *tsk)
    430{
    431	arch_free_thread_stack(tsk);
    432	tsk->stack = NULL;
    433}
    434
    435#endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
    436
    437/* SLAB cache for signal_struct structures (tsk->signal) */
    438static struct kmem_cache *signal_cachep;
    439
    440/* SLAB cache for sighand_struct structures (tsk->sighand) */
    441struct kmem_cache *sighand_cachep;
    442
    443/* SLAB cache for files_struct structures (tsk->files) */
    444struct kmem_cache *files_cachep;
    445
    446/* SLAB cache for fs_struct structures (tsk->fs) */
    447struct kmem_cache *fs_cachep;
    448
    449/* SLAB cache for vm_area_struct structures */
    450static struct kmem_cache *vm_area_cachep;
    451
    452/* SLAB cache for mm_struct structures (tsk->mm) */
    453static struct kmem_cache *mm_cachep;
    454
    455struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
    456{
    457	struct vm_area_struct *vma;
    458
    459	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
    460	if (vma)
    461		vma_init(vma, mm);
    462	return vma;
    463}
    464
    465struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
    466{
    467	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
    468
    469	if (new) {
    470		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
    471		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
    472		/*
    473		 * orig->shared.rb may be modified concurrently, but the clone
    474		 * will be reinitialized.
    475		 */
    476		*new = data_race(*orig);
    477		INIT_LIST_HEAD(&new->anon_vma_chain);
    478		new->vm_next = new->vm_prev = NULL;
    479		dup_anon_vma_name(orig, new);
    480	}
    481	return new;
    482}
    483
    484void vm_area_free(struct vm_area_struct *vma)
    485{
    486	free_anon_vma_name(vma);
    487	kmem_cache_free(vm_area_cachep, vma);
    488}
    489
    490static void account_kernel_stack(struct task_struct *tsk, int account)
    491{
    492	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
    493		struct vm_struct *vm = task_stack_vm_area(tsk);
    494		int i;
    495
    496		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
    497			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
    498					      account * (PAGE_SIZE / 1024));
    499	} else {
    500		void *stack = task_stack_page(tsk);
    501
    502		/* All stack pages are in the same node. */
    503		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
    504				      account * (THREAD_SIZE / 1024));
    505	}
    506}
    507
    508void exit_task_stack_account(struct task_struct *tsk)
    509{
    510	account_kernel_stack(tsk, -1);
    511
    512	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
    513		struct vm_struct *vm;
    514		int i;
    515
    516		vm = task_stack_vm_area(tsk);
    517		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
    518			memcg_kmem_uncharge_page(vm->pages[i], 0);
    519	}
    520}
    521
    522static void release_task_stack(struct task_struct *tsk)
    523{
    524	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
    525		return;  /* Better to leak the stack than to free prematurely */
    526
    527	free_thread_stack(tsk);
    528}
    529
    530#ifdef CONFIG_THREAD_INFO_IN_TASK
    531void put_task_stack(struct task_struct *tsk)
    532{
    533	if (refcount_dec_and_test(&tsk->stack_refcount))
    534		release_task_stack(tsk);
    535}
    536#endif
    537
    538void free_task(struct task_struct *tsk)
    539{
    540	release_user_cpus_ptr(tsk);
    541	scs_release(tsk);
    542
    543#ifndef CONFIG_THREAD_INFO_IN_TASK
    544	/*
    545	 * The task is finally done with both the stack and thread_info,
    546	 * so free both.
    547	 */
    548	release_task_stack(tsk);
    549#else
    550	/*
    551	 * If the task had a separate stack allocation, it should be gone
    552	 * by now.
    553	 */
    554	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
    555#endif
    556	rt_mutex_debug_task_free(tsk);
    557	ftrace_graph_exit_task(tsk);
    558	arch_release_task_struct(tsk);
    559	if (tsk->flags & PF_KTHREAD)
    560		free_kthread_struct(tsk);
    561	free_task_struct(tsk);
    562}
    563EXPORT_SYMBOL(free_task);
    564
    565static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
    566{
    567	struct file *exe_file;
    568
    569	exe_file = get_mm_exe_file(oldmm);
    570	RCU_INIT_POINTER(mm->exe_file, exe_file);
    571	/*
    572	 * We depend on the oldmm having properly denied write access to the
    573	 * exe_file already.
    574	 */
    575	if (exe_file && deny_write_access(exe_file))
    576		pr_warn_once("deny_write_access() failed in %s\n", __func__);
    577}
    578
    579#ifdef CONFIG_MMU
    580static __latent_entropy int dup_mmap(struct mm_struct *mm,
    581					struct mm_struct *oldmm)
    582{
    583	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
    584	struct rb_node **rb_link, *rb_parent;
    585	int retval;
    586	unsigned long charge;
    587	LIST_HEAD(uf);
    588
    589	uprobe_start_dup_mmap();
    590	if (mmap_write_lock_killable(oldmm)) {
    591		retval = -EINTR;
    592		goto fail_uprobe_end;
    593	}
    594	flush_cache_dup_mm(oldmm);
    595	uprobe_dup_mmap(oldmm, mm);
    596	/*
    597	 * Not linked in yet - no deadlock potential:
    598	 */
    599	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
    600
    601	/* No ordering required: file already has been exposed. */
    602	dup_mm_exe_file(mm, oldmm);
    603
    604	mm->total_vm = oldmm->total_vm;
    605	mm->data_vm = oldmm->data_vm;
    606	mm->exec_vm = oldmm->exec_vm;
    607	mm->stack_vm = oldmm->stack_vm;
    608
    609	rb_link = &mm->mm_rb.rb_node;
    610	rb_parent = NULL;
    611	pprev = &mm->mmap;
    612	retval = ksm_fork(mm, oldmm);
    613	if (retval)
    614		goto out;
    615	khugepaged_fork(mm, oldmm);
    616
    617	prev = NULL;
    618	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
    619		struct file *file;
    620
    621		if (mpnt->vm_flags & VM_DONTCOPY) {
    622			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
    623			continue;
    624		}
    625		charge = 0;
    626		/*
    627		 * Don't duplicate many vmas if we've been oom-killed (for
    628		 * example)
    629		 */
    630		if (fatal_signal_pending(current)) {
    631			retval = -EINTR;
    632			goto out;
    633		}
    634		if (mpnt->vm_flags & VM_ACCOUNT) {
    635			unsigned long len = vma_pages(mpnt);
    636
    637			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
    638				goto fail_nomem;
    639			charge = len;
    640		}
    641		tmp = vm_area_dup(mpnt);
    642		if (!tmp)
    643			goto fail_nomem;
    644		retval = vma_dup_policy(mpnt, tmp);
    645		if (retval)
    646			goto fail_nomem_policy;
    647		tmp->vm_mm = mm;
    648		retval = dup_userfaultfd(tmp, &uf);
    649		if (retval)
    650			goto fail_nomem_anon_vma_fork;
    651		if (tmp->vm_flags & VM_WIPEONFORK) {
    652			/*
    653			 * VM_WIPEONFORK gets a clean slate in the child.
    654			 * Don't prepare anon_vma until fault since we don't
    655			 * copy page for current vma.
    656			 */
    657			tmp->anon_vma = NULL;
    658		} else if (anon_vma_fork(tmp, mpnt))
    659			goto fail_nomem_anon_vma_fork;
    660		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
    661		file = tmp->vm_file;
    662		if (file) {
    663			struct address_space *mapping = file->f_mapping;
    664
    665			get_file(file);
    666			i_mmap_lock_write(mapping);
    667			if (tmp->vm_flags & VM_SHARED)
    668				mapping_allow_writable(mapping);
    669			flush_dcache_mmap_lock(mapping);
    670			/* insert tmp into the share list, just after mpnt */
    671			vma_interval_tree_insert_after(tmp, mpnt,
    672					&mapping->i_mmap);
    673			flush_dcache_mmap_unlock(mapping);
    674			i_mmap_unlock_write(mapping);
    675		}
    676
    677		/*
    678		 * Clear hugetlb-related page reserves for children. This only
    679		 * affects MAP_PRIVATE mappings. Faults generated by the child
    680		 * are not guaranteed to succeed, even if read-only
    681		 */
    682		if (is_vm_hugetlb_page(tmp))
    683			reset_vma_resv_huge_pages(tmp);
    684
    685		/*
    686		 * Link in the new vma and copy the page table entries.
    687		 */
    688		*pprev = tmp;
    689		pprev = &tmp->vm_next;
    690		tmp->vm_prev = prev;
    691		prev = tmp;
    692
    693		__vma_link_rb(mm, tmp, rb_link, rb_parent);
    694		rb_link = &tmp->vm_rb.rb_right;
    695		rb_parent = &tmp->vm_rb;
    696
    697		mm->map_count++;
    698		if (!(tmp->vm_flags & VM_WIPEONFORK))
    699			retval = copy_page_range(tmp, mpnt);
    700
    701		if (tmp->vm_ops && tmp->vm_ops->open)
    702			tmp->vm_ops->open(tmp);
    703
    704		if (retval)
    705			goto out;
    706	}
    707	/* a new mm has just been created */
    708	retval = arch_dup_mmap(oldmm, mm);
    709out:
    710	mmap_write_unlock(mm);
    711	flush_tlb_mm(oldmm);
    712	mmap_write_unlock(oldmm);
    713	dup_userfaultfd_complete(&uf);
    714fail_uprobe_end:
    715	uprobe_end_dup_mmap();
    716	return retval;
    717fail_nomem_anon_vma_fork:
    718	mpol_put(vma_policy(tmp));
    719fail_nomem_policy:
    720	vm_area_free(tmp);
    721fail_nomem:
    722	retval = -ENOMEM;
    723	vm_unacct_memory(charge);
    724	goto out;
    725}
    726
    727static inline int mm_alloc_pgd(struct mm_struct *mm)
    728{
    729	mm->pgd = pgd_alloc(mm);
    730	if (unlikely(!mm->pgd))
    731		return -ENOMEM;
    732	return 0;
    733}
    734
    735static inline void mm_free_pgd(struct mm_struct *mm)
    736{
    737	pgd_free(mm, mm->pgd);
    738}
    739#else
    740static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
    741{
    742	mmap_write_lock(oldmm);
    743	dup_mm_exe_file(mm, oldmm);
    744	mmap_write_unlock(oldmm);
    745	return 0;
    746}
    747#define mm_alloc_pgd(mm)	(0)
    748#define mm_free_pgd(mm)
    749#endif /* CONFIG_MMU */
    750
    751static void check_mm(struct mm_struct *mm)
    752{
    753	int i;
    754
    755	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
    756			 "Please make sure 'struct resident_page_types[]' is updated as well");
    757
    758	for (i = 0; i < NR_MM_COUNTERS; i++) {
    759		long x = atomic_long_read(&mm->rss_stat.count[i]);
    760
    761		if (unlikely(x))
    762			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
    763				 mm, resident_page_types[i], x);
    764	}
    765
    766	if (mm_pgtables_bytes(mm))
    767		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
    768				mm_pgtables_bytes(mm));
    769
    770#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
    771	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
    772#endif
    773}
    774
    775#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
    776#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
    777
    778/*
    779 * Called when the last reference to the mm
    780 * is dropped: either by a lazy thread or by
    781 * mmput. Free the page directory and the mm.
    782 */
    783void __mmdrop(struct mm_struct *mm)
    784{
    785	BUG_ON(mm == &init_mm);
    786	WARN_ON_ONCE(mm == current->mm);
    787	WARN_ON_ONCE(mm == current->active_mm);
    788	mm_free_pgd(mm);
    789	destroy_context(mm);
    790	mmu_notifier_subscriptions_destroy(mm);
    791	check_mm(mm);
    792	put_user_ns(mm->user_ns);
    793	mm_pasid_drop(mm);
    794	free_mm(mm);
    795}
    796EXPORT_SYMBOL_GPL(__mmdrop);
    797
    798static void mmdrop_async_fn(struct work_struct *work)
    799{
    800	struct mm_struct *mm;
    801
    802	mm = container_of(work, struct mm_struct, async_put_work);
    803	__mmdrop(mm);
    804}
    805
    806static void mmdrop_async(struct mm_struct *mm)
    807{
    808	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
    809		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
    810		schedule_work(&mm->async_put_work);
    811	}
    812}
    813
    814static inline void free_signal_struct(struct signal_struct *sig)
    815{
    816	taskstats_tgid_free(sig);
    817	sched_autogroup_exit(sig);
    818	/*
    819	 * __mmdrop is not safe to call from softirq context on x86 due to
    820	 * pgd_dtor so postpone it to the async context
    821	 */
    822	if (sig->oom_mm)
    823		mmdrop_async(sig->oom_mm);
    824	kmem_cache_free(signal_cachep, sig);
    825}
    826
    827static inline void put_signal_struct(struct signal_struct *sig)
    828{
    829	if (refcount_dec_and_test(&sig->sigcnt))
    830		free_signal_struct(sig);
    831}
    832
    833void __put_task_struct(struct task_struct *tsk)
    834{
    835	WARN_ON(!tsk->exit_state);
    836	WARN_ON(refcount_read(&tsk->usage));
    837	WARN_ON(tsk == current);
    838
    839	io_uring_free(tsk);
    840	cgroup_free(tsk);
    841	task_numa_free(tsk, true);
    842	security_task_free(tsk);
    843	bpf_task_storage_free(tsk);
    844	exit_creds(tsk);
    845	delayacct_tsk_free(tsk);
    846	put_signal_struct(tsk->signal);
    847	sched_core_free(tsk);
    848	free_task(tsk);
    849}
    850EXPORT_SYMBOL_GPL(__put_task_struct);
    851
    852void __init __weak arch_task_cache_init(void) { }
    853
    854/*
    855 * set_max_threads
    856 */
    857static void set_max_threads(unsigned int max_threads_suggested)
    858{
    859	u64 threads;
    860	unsigned long nr_pages = totalram_pages();
    861
    862	/*
    863	 * The number of threads shall be limited such that the thread
    864	 * structures may only consume a small part of the available memory.
    865	 */
    866	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
    867		threads = MAX_THREADS;
    868	else
    869		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
    870				    (u64) THREAD_SIZE * 8UL);
    871
    872	if (threads > max_threads_suggested)
    873		threads = max_threads_suggested;
    874
    875	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
    876}
    877
    878#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
    879/* Initialized by the architecture: */
    880int arch_task_struct_size __read_mostly;
    881#endif
    882
    883#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
    884static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
    885{
    886	/* Fetch thread_struct whitelist for the architecture. */
    887	arch_thread_struct_whitelist(offset, size);
    888
    889	/*
    890	 * Handle zero-sized whitelist or empty thread_struct, otherwise
    891	 * adjust offset to position of thread_struct in task_struct.
    892	 */
    893	if (unlikely(*size == 0))
    894		*offset = 0;
    895	else
    896		*offset += offsetof(struct task_struct, thread);
    897}
    898#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
    899
    900void __init fork_init(void)
    901{
    902	int i;
    903#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
    904#ifndef ARCH_MIN_TASKALIGN
    905#define ARCH_MIN_TASKALIGN	0
    906#endif
    907	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
    908	unsigned long useroffset, usersize;
    909
    910	/* create a slab on which task_structs can be allocated */
    911	task_struct_whitelist(&useroffset, &usersize);
    912	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
    913			arch_task_struct_size, align,
    914			SLAB_PANIC|SLAB_ACCOUNT,
    915			useroffset, usersize, NULL);
    916#endif
    917
    918	/* do the arch specific task caches init */
    919	arch_task_cache_init();
    920
    921	set_max_threads(MAX_THREADS);
    922
    923	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
    924	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
    925	init_task.signal->rlim[RLIMIT_SIGPENDING] =
    926		init_task.signal->rlim[RLIMIT_NPROC];
    927
    928	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
    929		init_user_ns.ucount_max[i] = max_threads/2;
    930
    931	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
    932	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
    933	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
    934	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
    935
    936#ifdef CONFIG_VMAP_STACK
    937	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
    938			  NULL, free_vm_stack_cache);
    939#endif
    940
    941	scs_init();
    942
    943	lockdep_init_task(&init_task);
    944	uprobes_init();
    945}
    946
    947int __weak arch_dup_task_struct(struct task_struct *dst,
    948					       struct task_struct *src)
    949{
    950	*dst = *src;
    951	return 0;
    952}
    953
    954void set_task_stack_end_magic(struct task_struct *tsk)
    955{
    956	unsigned long *stackend;
    957
    958	stackend = end_of_stack(tsk);
    959	*stackend = STACK_END_MAGIC;	/* for overflow detection */
    960}
    961
    962static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
    963{
    964	struct task_struct *tsk;
    965	int err;
    966
    967	if (node == NUMA_NO_NODE)
    968		node = tsk_fork_get_node(orig);
    969	tsk = alloc_task_struct_node(node);
    970	if (!tsk)
    971		return NULL;
    972
    973	err = arch_dup_task_struct(tsk, orig);
    974	if (err)
    975		goto free_tsk;
    976
    977	err = alloc_thread_stack_node(tsk, node);
    978	if (err)
    979		goto free_tsk;
    980
    981#ifdef CONFIG_THREAD_INFO_IN_TASK
    982	refcount_set(&tsk->stack_refcount, 1);
    983#endif
    984	account_kernel_stack(tsk, 1);
    985
    986	err = scs_prepare(tsk, node);
    987	if (err)
    988		goto free_stack;
    989
    990#ifdef CONFIG_SECCOMP
    991	/*
    992	 * We must handle setting up seccomp filters once we're under
    993	 * the sighand lock in case orig has changed between now and
    994	 * then. Until then, filter must be NULL to avoid messing up
    995	 * the usage counts on the error path calling free_task.
    996	 */
    997	tsk->seccomp.filter = NULL;
    998#endif
    999
   1000	setup_thread_stack(tsk, orig);
   1001	clear_user_return_notifier(tsk);
   1002	clear_tsk_need_resched(tsk);
   1003	set_task_stack_end_magic(tsk);
   1004	clear_syscall_work_syscall_user_dispatch(tsk);
   1005
   1006#ifdef CONFIG_STACKPROTECTOR
   1007	tsk->stack_canary = get_random_canary();
   1008#endif
   1009	if (orig->cpus_ptr == &orig->cpus_mask)
   1010		tsk->cpus_ptr = &tsk->cpus_mask;
   1011	dup_user_cpus_ptr(tsk, orig, node);
   1012
   1013	/*
   1014	 * One for the user space visible state that goes away when reaped.
   1015	 * One for the scheduler.
   1016	 */
   1017	refcount_set(&tsk->rcu_users, 2);
   1018	/* One for the rcu users */
   1019	refcount_set(&tsk->usage, 1);
   1020#ifdef CONFIG_BLK_DEV_IO_TRACE
   1021	tsk->btrace_seq = 0;
   1022#endif
   1023	tsk->splice_pipe = NULL;
   1024	tsk->task_frag.page = NULL;
   1025	tsk->wake_q.next = NULL;
   1026	tsk->worker_private = NULL;
   1027
   1028	kcov_task_init(tsk);
   1029	kmap_local_fork(tsk);
   1030
   1031#ifdef CONFIG_FAULT_INJECTION
   1032	tsk->fail_nth = 0;
   1033#endif
   1034
   1035#ifdef CONFIG_BLK_CGROUP
   1036	tsk->throttle_queue = NULL;
   1037	tsk->use_memdelay = 0;
   1038#endif
   1039
   1040#ifdef CONFIG_IOMMU_SVA
   1041	tsk->pasid_activated = 0;
   1042#endif
   1043
   1044#ifdef CONFIG_MEMCG
   1045	tsk->active_memcg = NULL;
   1046#endif
   1047
   1048#ifdef CONFIG_CPU_SUP_INTEL
   1049	tsk->reported_split_lock = 0;
   1050#endif
   1051
   1052	return tsk;
   1053
   1054free_stack:
   1055	exit_task_stack_account(tsk);
   1056	free_thread_stack(tsk);
   1057free_tsk:
   1058	free_task_struct(tsk);
   1059	return NULL;
   1060}
   1061
   1062__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
   1063
   1064static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
   1065
   1066static int __init coredump_filter_setup(char *s)
   1067{
   1068	default_dump_filter =
   1069		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
   1070		MMF_DUMP_FILTER_MASK;
   1071	return 1;
   1072}
   1073
   1074__setup("coredump_filter=", coredump_filter_setup);
   1075
   1076#include <linux/init_task.h>
   1077
   1078static void mm_init_aio(struct mm_struct *mm)
   1079{
   1080#ifdef CONFIG_AIO
   1081	spin_lock_init(&mm->ioctx_lock);
   1082	mm->ioctx_table = NULL;
   1083#endif
   1084}
   1085
   1086static __always_inline void mm_clear_owner(struct mm_struct *mm,
   1087					   struct task_struct *p)
   1088{
   1089#ifdef CONFIG_MEMCG
   1090	if (mm->owner == p)
   1091		WRITE_ONCE(mm->owner, NULL);
   1092#endif
   1093}
   1094
   1095static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
   1096{
   1097#ifdef CONFIG_MEMCG
   1098	mm->owner = p;
   1099#endif
   1100}
   1101
   1102static void mm_init_uprobes_state(struct mm_struct *mm)
   1103{
   1104#ifdef CONFIG_UPROBES
   1105	mm->uprobes_state.xol_area = NULL;
   1106#endif
   1107}
   1108
   1109static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
   1110	struct user_namespace *user_ns)
   1111{
   1112	mm->mmap = NULL;
   1113	mm->mm_rb = RB_ROOT;
   1114	mm->vmacache_seqnum = 0;
   1115	atomic_set(&mm->mm_users, 1);
   1116	atomic_set(&mm->mm_count, 1);
   1117	seqcount_init(&mm->write_protect_seq);
   1118	mmap_init_lock(mm);
   1119	INIT_LIST_HEAD(&mm->mmlist);
   1120	mm_pgtables_bytes_init(mm);
   1121	mm->map_count = 0;
   1122	mm->locked_vm = 0;
   1123	atomic64_set(&mm->pinned_vm, 0);
   1124	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
   1125	spin_lock_init(&mm->page_table_lock);
   1126	spin_lock_init(&mm->arg_lock);
   1127	mm_init_cpumask(mm);
   1128	mm_init_aio(mm);
   1129	mm_init_owner(mm, p);
   1130	mm_pasid_init(mm);
   1131	RCU_INIT_POINTER(mm->exe_file, NULL);
   1132	mmu_notifier_subscriptions_init(mm);
   1133	init_tlb_flush_pending(mm);
   1134#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
   1135	mm->pmd_huge_pte = NULL;
   1136#endif
   1137	mm_init_uprobes_state(mm);
   1138	hugetlb_count_init(mm);
   1139
   1140	if (current->mm) {
   1141		mm->flags = current->mm->flags & MMF_INIT_MASK;
   1142		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
   1143	} else {
   1144		mm->flags = default_dump_filter;
   1145		mm->def_flags = 0;
   1146	}
   1147
   1148	if (mm_alloc_pgd(mm))
   1149		goto fail_nopgd;
   1150
   1151	if (init_new_context(p, mm))
   1152		goto fail_nocontext;
   1153
   1154	mm->user_ns = get_user_ns(user_ns);
   1155	return mm;
   1156
   1157fail_nocontext:
   1158	mm_free_pgd(mm);
   1159fail_nopgd:
   1160	free_mm(mm);
   1161	return NULL;
   1162}
   1163
   1164/*
   1165 * Allocate and initialize an mm_struct.
   1166 */
   1167struct mm_struct *mm_alloc(void)
   1168{
   1169	struct mm_struct *mm;
   1170
   1171	mm = allocate_mm();
   1172	if (!mm)
   1173		return NULL;
   1174
   1175	memset(mm, 0, sizeof(*mm));
   1176	return mm_init(mm, current, current_user_ns());
   1177}
   1178
   1179static inline void __mmput(struct mm_struct *mm)
   1180{
   1181	VM_BUG_ON(atomic_read(&mm->mm_users));
   1182
   1183	uprobe_clear_state(mm);
   1184	exit_aio(mm);
   1185	ksm_exit(mm);
   1186	khugepaged_exit(mm); /* must run before exit_mmap */
   1187	exit_mmap(mm);
   1188	mm_put_huge_zero_page(mm);
   1189	set_mm_exe_file(mm, NULL);
   1190	if (!list_empty(&mm->mmlist)) {
   1191		spin_lock(&mmlist_lock);
   1192		list_del(&mm->mmlist);
   1193		spin_unlock(&mmlist_lock);
   1194	}
   1195	if (mm->binfmt)
   1196		module_put(mm->binfmt->module);
   1197	mmdrop(mm);
   1198}
   1199
   1200/*
   1201 * Decrement the use count and release all resources for an mm.
   1202 */
   1203void mmput(struct mm_struct *mm)
   1204{
   1205	might_sleep();
   1206
   1207	if (atomic_dec_and_test(&mm->mm_users))
   1208		__mmput(mm);
   1209}
   1210EXPORT_SYMBOL_GPL(mmput);
   1211
   1212#ifdef CONFIG_MMU
   1213static void mmput_async_fn(struct work_struct *work)
   1214{
   1215	struct mm_struct *mm = container_of(work, struct mm_struct,
   1216					    async_put_work);
   1217
   1218	__mmput(mm);
   1219}
   1220
   1221void mmput_async(struct mm_struct *mm)
   1222{
   1223	if (atomic_dec_and_test(&mm->mm_users)) {
   1224		INIT_WORK(&mm->async_put_work, mmput_async_fn);
   1225		schedule_work(&mm->async_put_work);
   1226	}
   1227}
   1228#endif
   1229
   1230/**
   1231 * set_mm_exe_file - change a reference to the mm's executable file
   1232 *
   1233 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
   1234 *
   1235 * Main users are mmput() and sys_execve(). Callers prevent concurrent
   1236 * invocations: in mmput() nobody alive left, in execve task is single
   1237 * threaded.
   1238 *
   1239 * Can only fail if new_exe_file != NULL.
   1240 */
   1241int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
   1242{
   1243	struct file *old_exe_file;
   1244
   1245	/*
   1246	 * It is safe to dereference the exe_file without RCU as
   1247	 * this function is only called if nobody else can access
   1248	 * this mm -- see comment above for justification.
   1249	 */
   1250	old_exe_file = rcu_dereference_raw(mm->exe_file);
   1251
   1252	if (new_exe_file) {
   1253		/*
   1254		 * We expect the caller (i.e., sys_execve) to already denied
   1255		 * write access, so this is unlikely to fail.
   1256		 */
   1257		if (unlikely(deny_write_access(new_exe_file)))
   1258			return -EACCES;
   1259		get_file(new_exe_file);
   1260	}
   1261	rcu_assign_pointer(mm->exe_file, new_exe_file);
   1262	if (old_exe_file) {
   1263		allow_write_access(old_exe_file);
   1264		fput(old_exe_file);
   1265	}
   1266	return 0;
   1267}
   1268
   1269/**
   1270 * replace_mm_exe_file - replace a reference to the mm's executable file
   1271 *
   1272 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
   1273 * dealing with concurrent invocation and without grabbing the mmap lock in
   1274 * write mode.
   1275 *
   1276 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
   1277 */
   1278int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
   1279{
   1280	struct vm_area_struct *vma;
   1281	struct file *old_exe_file;
   1282	int ret = 0;
   1283
   1284	/* Forbid mm->exe_file change if old file still mapped. */
   1285	old_exe_file = get_mm_exe_file(mm);
   1286	if (old_exe_file) {
   1287		mmap_read_lock(mm);
   1288		for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
   1289			if (!vma->vm_file)
   1290				continue;
   1291			if (path_equal(&vma->vm_file->f_path,
   1292				       &old_exe_file->f_path))
   1293				ret = -EBUSY;
   1294		}
   1295		mmap_read_unlock(mm);
   1296		fput(old_exe_file);
   1297		if (ret)
   1298			return ret;
   1299	}
   1300
   1301	/* set the new file, lockless */
   1302	ret = deny_write_access(new_exe_file);
   1303	if (ret)
   1304		return -EACCES;
   1305	get_file(new_exe_file);
   1306
   1307	old_exe_file = xchg(&mm->exe_file, new_exe_file);
   1308	if (old_exe_file) {
   1309		/*
   1310		 * Don't race with dup_mmap() getting the file and disallowing
   1311		 * write access while someone might open the file writable.
   1312		 */
   1313		mmap_read_lock(mm);
   1314		allow_write_access(old_exe_file);
   1315		fput(old_exe_file);
   1316		mmap_read_unlock(mm);
   1317	}
   1318	return 0;
   1319}
   1320
   1321/**
   1322 * get_mm_exe_file - acquire a reference to the mm's executable file
   1323 *
   1324 * Returns %NULL if mm has no associated executable file.
   1325 * User must release file via fput().
   1326 */
   1327struct file *get_mm_exe_file(struct mm_struct *mm)
   1328{
   1329	struct file *exe_file;
   1330
   1331	rcu_read_lock();
   1332	exe_file = rcu_dereference(mm->exe_file);
   1333	if (exe_file && !get_file_rcu(exe_file))
   1334		exe_file = NULL;
   1335	rcu_read_unlock();
   1336	return exe_file;
   1337}
   1338
   1339/**
   1340 * get_task_exe_file - acquire a reference to the task's executable file
   1341 *
   1342 * Returns %NULL if task's mm (if any) has no associated executable file or
   1343 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
   1344 * User must release file via fput().
   1345 */
   1346struct file *get_task_exe_file(struct task_struct *task)
   1347{
   1348	struct file *exe_file = NULL;
   1349	struct mm_struct *mm;
   1350
   1351	task_lock(task);
   1352	mm = task->mm;
   1353	if (mm) {
   1354		if (!(task->flags & PF_KTHREAD))
   1355			exe_file = get_mm_exe_file(mm);
   1356	}
   1357	task_unlock(task);
   1358	return exe_file;
   1359}
   1360
   1361/**
   1362 * get_task_mm - acquire a reference to the task's mm
   1363 *
   1364 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
   1365 * this kernel workthread has transiently adopted a user mm with use_mm,
   1366 * to do its AIO) is not set and if so returns a reference to it, after
   1367 * bumping up the use count.  User must release the mm via mmput()
   1368 * after use.  Typically used by /proc and ptrace.
   1369 */
   1370struct mm_struct *get_task_mm(struct task_struct *task)
   1371{
   1372	struct mm_struct *mm;
   1373
   1374	task_lock(task);
   1375	mm = task->mm;
   1376	if (mm) {
   1377		if (task->flags & PF_KTHREAD)
   1378			mm = NULL;
   1379		else
   1380			mmget(mm);
   1381	}
   1382	task_unlock(task);
   1383	return mm;
   1384}
   1385EXPORT_SYMBOL_GPL(get_task_mm);
   1386
   1387struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
   1388{
   1389	struct mm_struct *mm;
   1390	int err;
   1391
   1392	err =  down_read_killable(&task->signal->exec_update_lock);
   1393	if (err)
   1394		return ERR_PTR(err);
   1395
   1396	mm = get_task_mm(task);
   1397	if (mm && mm != current->mm &&
   1398			!ptrace_may_access(task, mode)) {
   1399		mmput(mm);
   1400		mm = ERR_PTR(-EACCES);
   1401	}
   1402	up_read(&task->signal->exec_update_lock);
   1403
   1404	return mm;
   1405}
   1406
   1407static void complete_vfork_done(struct task_struct *tsk)
   1408{
   1409	struct completion *vfork;
   1410
   1411	task_lock(tsk);
   1412	vfork = tsk->vfork_done;
   1413	if (likely(vfork)) {
   1414		tsk->vfork_done = NULL;
   1415		complete(vfork);
   1416	}
   1417	task_unlock(tsk);
   1418}
   1419
   1420static int wait_for_vfork_done(struct task_struct *child,
   1421				struct completion *vfork)
   1422{
   1423	int killed;
   1424
   1425	freezer_do_not_count();
   1426	cgroup_enter_frozen();
   1427	killed = wait_for_completion_killable(vfork);
   1428	cgroup_leave_frozen(false);
   1429	freezer_count();
   1430
   1431	if (killed) {
   1432		task_lock(child);
   1433		child->vfork_done = NULL;
   1434		task_unlock(child);
   1435	}
   1436
   1437	put_task_struct(child);
   1438	return killed;
   1439}
   1440
   1441/* Please note the differences between mmput and mm_release.
   1442 * mmput is called whenever we stop holding onto a mm_struct,
   1443 * error success whatever.
   1444 *
   1445 * mm_release is called after a mm_struct has been removed
   1446 * from the current process.
   1447 *
   1448 * This difference is important for error handling, when we
   1449 * only half set up a mm_struct for a new process and need to restore
   1450 * the old one.  Because we mmput the new mm_struct before
   1451 * restoring the old one. . .
   1452 * Eric Biederman 10 January 1998
   1453 */
   1454static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
   1455{
   1456	uprobe_free_utask(tsk);
   1457
   1458	/* Get rid of any cached register state */
   1459	deactivate_mm(tsk, mm);
   1460
   1461	/*
   1462	 * Signal userspace if we're not exiting with a core dump
   1463	 * because we want to leave the value intact for debugging
   1464	 * purposes.
   1465	 */
   1466	if (tsk->clear_child_tid) {
   1467		if (atomic_read(&mm->mm_users) > 1) {
   1468			/*
   1469			 * We don't check the error code - if userspace has
   1470			 * not set up a proper pointer then tough luck.
   1471			 */
   1472			put_user(0, tsk->clear_child_tid);
   1473			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
   1474					1, NULL, NULL, 0, 0);
   1475		}
   1476		tsk->clear_child_tid = NULL;
   1477	}
   1478
   1479	/*
   1480	 * All done, finally we can wake up parent and return this mm to him.
   1481	 * Also kthread_stop() uses this completion for synchronization.
   1482	 */
   1483	if (tsk->vfork_done)
   1484		complete_vfork_done(tsk);
   1485}
   1486
   1487void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
   1488{
   1489	futex_exit_release(tsk);
   1490	mm_release(tsk, mm);
   1491}
   1492
   1493void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
   1494{
   1495	futex_exec_release(tsk);
   1496	mm_release(tsk, mm);
   1497}
   1498
   1499/**
   1500 * dup_mm() - duplicates an existing mm structure
   1501 * @tsk: the task_struct with which the new mm will be associated.
   1502 * @oldmm: the mm to duplicate.
   1503 *
   1504 * Allocates a new mm structure and duplicates the provided @oldmm structure
   1505 * content into it.
   1506 *
   1507 * Return: the duplicated mm or NULL on failure.
   1508 */
   1509static struct mm_struct *dup_mm(struct task_struct *tsk,
   1510				struct mm_struct *oldmm)
   1511{
   1512	struct mm_struct *mm;
   1513	int err;
   1514
   1515	mm = allocate_mm();
   1516	if (!mm)
   1517		goto fail_nomem;
   1518
   1519	memcpy(mm, oldmm, sizeof(*mm));
   1520
   1521	if (!mm_init(mm, tsk, mm->user_ns))
   1522		goto fail_nomem;
   1523
   1524	err = dup_mmap(mm, oldmm);
   1525	if (err)
   1526		goto free_pt;
   1527
   1528	mm->hiwater_rss = get_mm_rss(mm);
   1529	mm->hiwater_vm = mm->total_vm;
   1530
   1531	if (mm->binfmt && !try_module_get(mm->binfmt->module))
   1532		goto free_pt;
   1533
   1534	return mm;
   1535
   1536free_pt:
   1537	/* don't put binfmt in mmput, we haven't got module yet */
   1538	mm->binfmt = NULL;
   1539	mm_init_owner(mm, NULL);
   1540	mmput(mm);
   1541
   1542fail_nomem:
   1543	return NULL;
   1544}
   1545
   1546static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
   1547{
   1548	struct mm_struct *mm, *oldmm;
   1549
   1550	tsk->min_flt = tsk->maj_flt = 0;
   1551	tsk->nvcsw = tsk->nivcsw = 0;
   1552#ifdef CONFIG_DETECT_HUNG_TASK
   1553	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
   1554	tsk->last_switch_time = 0;
   1555#endif
   1556
   1557	tsk->mm = NULL;
   1558	tsk->active_mm = NULL;
   1559
   1560	/*
   1561	 * Are we cloning a kernel thread?
   1562	 *
   1563	 * We need to steal a active VM for that..
   1564	 */
   1565	oldmm = current->mm;
   1566	if (!oldmm)
   1567		return 0;
   1568
   1569	/* initialize the new vmacache entries */
   1570	vmacache_flush(tsk);
   1571
   1572	if (clone_flags & CLONE_VM) {
   1573		mmget(oldmm);
   1574		mm = oldmm;
   1575	} else {
   1576		mm = dup_mm(tsk, current->mm);
   1577		if (!mm)
   1578			return -ENOMEM;
   1579	}
   1580
   1581	tsk->mm = mm;
   1582	tsk->active_mm = mm;
   1583	return 0;
   1584}
   1585
   1586static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
   1587{
   1588	struct fs_struct *fs = current->fs;
   1589	if (clone_flags & CLONE_FS) {
   1590		/* tsk->fs is already what we want */
   1591		spin_lock(&fs->lock);
   1592		if (fs->in_exec) {
   1593			spin_unlock(&fs->lock);
   1594			return -EAGAIN;
   1595		}
   1596		fs->users++;
   1597		spin_unlock(&fs->lock);
   1598		return 0;
   1599	}
   1600	tsk->fs = copy_fs_struct(fs);
   1601	if (!tsk->fs)
   1602		return -ENOMEM;
   1603	return 0;
   1604}
   1605
   1606static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
   1607{
   1608	struct files_struct *oldf, *newf;
   1609	int error = 0;
   1610
   1611	/*
   1612	 * A background process may not have any files ...
   1613	 */
   1614	oldf = current->files;
   1615	if (!oldf)
   1616		goto out;
   1617
   1618	if (clone_flags & CLONE_FILES) {
   1619		atomic_inc(&oldf->count);
   1620		goto out;
   1621	}
   1622
   1623	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
   1624	if (!newf)
   1625		goto out;
   1626
   1627	tsk->files = newf;
   1628	error = 0;
   1629out:
   1630	return error;
   1631}
   1632
   1633static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
   1634{
   1635	struct sighand_struct *sig;
   1636
   1637	if (clone_flags & CLONE_SIGHAND) {
   1638		refcount_inc(&current->sighand->count);
   1639		return 0;
   1640	}
   1641	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
   1642	RCU_INIT_POINTER(tsk->sighand, sig);
   1643	if (!sig)
   1644		return -ENOMEM;
   1645
   1646	refcount_set(&sig->count, 1);
   1647	spin_lock_irq(&current->sighand->siglock);
   1648	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
   1649	spin_unlock_irq(&current->sighand->siglock);
   1650
   1651	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
   1652	if (clone_flags & CLONE_CLEAR_SIGHAND)
   1653		flush_signal_handlers(tsk, 0);
   1654
   1655	return 0;
   1656}
   1657
   1658void __cleanup_sighand(struct sighand_struct *sighand)
   1659{
   1660	if (refcount_dec_and_test(&sighand->count)) {
   1661		signalfd_cleanup(sighand);
   1662		/*
   1663		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
   1664		 * without an RCU grace period, see __lock_task_sighand().
   1665		 */
   1666		kmem_cache_free(sighand_cachep, sighand);
   1667	}
   1668}
   1669
   1670/*
   1671 * Initialize POSIX timer handling for a thread group.
   1672 */
   1673static void posix_cpu_timers_init_group(struct signal_struct *sig)
   1674{
   1675	struct posix_cputimers *pct = &sig->posix_cputimers;
   1676	unsigned long cpu_limit;
   1677
   1678	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
   1679	posix_cputimers_group_init(pct, cpu_limit);
   1680}
   1681
   1682static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
   1683{
   1684	struct signal_struct *sig;
   1685
   1686	if (clone_flags & CLONE_THREAD)
   1687		return 0;
   1688
   1689	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
   1690	tsk->signal = sig;
   1691	if (!sig)
   1692		return -ENOMEM;
   1693
   1694	sig->nr_threads = 1;
   1695	atomic_set(&sig->live, 1);
   1696	refcount_set(&sig->sigcnt, 1);
   1697
   1698	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
   1699	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
   1700	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
   1701
   1702	init_waitqueue_head(&sig->wait_chldexit);
   1703	sig->curr_target = tsk;
   1704	init_sigpending(&sig->shared_pending);
   1705	INIT_HLIST_HEAD(&sig->multiprocess);
   1706	seqlock_init(&sig->stats_lock);
   1707	prev_cputime_init(&sig->prev_cputime);
   1708
   1709#ifdef CONFIG_POSIX_TIMERS
   1710	INIT_LIST_HEAD(&sig->posix_timers);
   1711	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
   1712	sig->real_timer.function = it_real_fn;
   1713#endif
   1714
   1715	task_lock(current->group_leader);
   1716	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
   1717	task_unlock(current->group_leader);
   1718
   1719	posix_cpu_timers_init_group(sig);
   1720
   1721	tty_audit_fork(sig);
   1722	sched_autogroup_fork(sig);
   1723
   1724	sig->oom_score_adj = current->signal->oom_score_adj;
   1725	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
   1726
   1727	mutex_init(&sig->cred_guard_mutex);
   1728	init_rwsem(&sig->exec_update_lock);
   1729
   1730	return 0;
   1731}
   1732
   1733static void copy_seccomp(struct task_struct *p)
   1734{
   1735#ifdef CONFIG_SECCOMP
   1736	/*
   1737	 * Must be called with sighand->lock held, which is common to
   1738	 * all threads in the group. Holding cred_guard_mutex is not
   1739	 * needed because this new task is not yet running and cannot
   1740	 * be racing exec.
   1741	 */
   1742	assert_spin_locked(&current->sighand->siglock);
   1743
   1744	/* Ref-count the new filter user, and assign it. */
   1745	get_seccomp_filter(current);
   1746	p->seccomp = current->seccomp;
   1747
   1748	/*
   1749	 * Explicitly enable no_new_privs here in case it got set
   1750	 * between the task_struct being duplicated and holding the
   1751	 * sighand lock. The seccomp state and nnp must be in sync.
   1752	 */
   1753	if (task_no_new_privs(current))
   1754		task_set_no_new_privs(p);
   1755
   1756	/*
   1757	 * If the parent gained a seccomp mode after copying thread
   1758	 * flags and between before we held the sighand lock, we have
   1759	 * to manually enable the seccomp thread flag here.
   1760	 */
   1761	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
   1762		set_task_syscall_work(p, SECCOMP);
   1763#endif
   1764}
   1765
   1766SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
   1767{
   1768	current->clear_child_tid = tidptr;
   1769
   1770	return task_pid_vnr(current);
   1771}
   1772
   1773static void rt_mutex_init_task(struct task_struct *p)
   1774{
   1775	raw_spin_lock_init(&p->pi_lock);
   1776#ifdef CONFIG_RT_MUTEXES
   1777	p->pi_waiters = RB_ROOT_CACHED;
   1778	p->pi_top_task = NULL;
   1779	p->pi_blocked_on = NULL;
   1780#endif
   1781}
   1782
   1783static inline void init_task_pid_links(struct task_struct *task)
   1784{
   1785	enum pid_type type;
   1786
   1787	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
   1788		INIT_HLIST_NODE(&task->pid_links[type]);
   1789}
   1790
   1791static inline void
   1792init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
   1793{
   1794	if (type == PIDTYPE_PID)
   1795		task->thread_pid = pid;
   1796	else
   1797		task->signal->pids[type] = pid;
   1798}
   1799
   1800static inline void rcu_copy_process(struct task_struct *p)
   1801{
   1802#ifdef CONFIG_PREEMPT_RCU
   1803	p->rcu_read_lock_nesting = 0;
   1804	p->rcu_read_unlock_special.s = 0;
   1805	p->rcu_blocked_node = NULL;
   1806	INIT_LIST_HEAD(&p->rcu_node_entry);
   1807#endif /* #ifdef CONFIG_PREEMPT_RCU */
   1808#ifdef CONFIG_TASKS_RCU
   1809	p->rcu_tasks_holdout = false;
   1810	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
   1811	p->rcu_tasks_idle_cpu = -1;
   1812#endif /* #ifdef CONFIG_TASKS_RCU */
   1813#ifdef CONFIG_TASKS_TRACE_RCU
   1814	p->trc_reader_nesting = 0;
   1815	p->trc_reader_special.s = 0;
   1816	INIT_LIST_HEAD(&p->trc_holdout_list);
   1817#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
   1818}
   1819
   1820struct pid *pidfd_pid(const struct file *file)
   1821{
   1822	if (file->f_op == &pidfd_fops)
   1823		return file->private_data;
   1824
   1825	return ERR_PTR(-EBADF);
   1826}
   1827
   1828static int pidfd_release(struct inode *inode, struct file *file)
   1829{
   1830	struct pid *pid = file->private_data;
   1831
   1832	file->private_data = NULL;
   1833	put_pid(pid);
   1834	return 0;
   1835}
   1836
   1837#ifdef CONFIG_PROC_FS
   1838/**
   1839 * pidfd_show_fdinfo - print information about a pidfd
   1840 * @m: proc fdinfo file
   1841 * @f: file referencing a pidfd
   1842 *
   1843 * Pid:
   1844 * This function will print the pid that a given pidfd refers to in the
   1845 * pid namespace of the procfs instance.
   1846 * If the pid namespace of the process is not a descendant of the pid
   1847 * namespace of the procfs instance 0 will be shown as its pid. This is
   1848 * similar to calling getppid() on a process whose parent is outside of
   1849 * its pid namespace.
   1850 *
   1851 * NSpid:
   1852 * If pid namespaces are supported then this function will also print
   1853 * the pid of a given pidfd refers to for all descendant pid namespaces
   1854 * starting from the current pid namespace of the instance, i.e. the
   1855 * Pid field and the first entry in the NSpid field will be identical.
   1856 * If the pid namespace of the process is not a descendant of the pid
   1857 * namespace of the procfs instance 0 will be shown as its first NSpid
   1858 * entry and no others will be shown.
   1859 * Note that this differs from the Pid and NSpid fields in
   1860 * /proc/<pid>/status where Pid and NSpid are always shown relative to
   1861 * the  pid namespace of the procfs instance. The difference becomes
   1862 * obvious when sending around a pidfd between pid namespaces from a
   1863 * different branch of the tree, i.e. where no ancestral relation is
   1864 * present between the pid namespaces:
   1865 * - create two new pid namespaces ns1 and ns2 in the initial pid
   1866 *   namespace (also take care to create new mount namespaces in the
   1867 *   new pid namespace and mount procfs)
   1868 * - create a process with a pidfd in ns1
   1869 * - send pidfd from ns1 to ns2
   1870 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
   1871 *   have exactly one entry, which is 0
   1872 */
   1873static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
   1874{
   1875	struct pid *pid = f->private_data;
   1876	struct pid_namespace *ns;
   1877	pid_t nr = -1;
   1878
   1879	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
   1880		ns = proc_pid_ns(file_inode(m->file)->i_sb);
   1881		nr = pid_nr_ns(pid, ns);
   1882	}
   1883
   1884	seq_put_decimal_ll(m, "Pid:\t", nr);
   1885
   1886#ifdef CONFIG_PID_NS
   1887	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
   1888	if (nr > 0) {
   1889		int i;
   1890
   1891		/* If nr is non-zero it means that 'pid' is valid and that
   1892		 * ns, i.e. the pid namespace associated with the procfs
   1893		 * instance, is in the pid namespace hierarchy of pid.
   1894		 * Start at one below the already printed level.
   1895		 */
   1896		for (i = ns->level + 1; i <= pid->level; i++)
   1897			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
   1898	}
   1899#endif
   1900	seq_putc(m, '\n');
   1901}
   1902#endif
   1903
   1904/*
   1905 * Poll support for process exit notification.
   1906 */
   1907static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
   1908{
   1909	struct pid *pid = file->private_data;
   1910	__poll_t poll_flags = 0;
   1911
   1912	poll_wait(file, &pid->wait_pidfd, pts);
   1913
   1914	/*
   1915	 * Inform pollers only when the whole thread group exits.
   1916	 * If the thread group leader exits before all other threads in the
   1917	 * group, then poll(2) should block, similar to the wait(2) family.
   1918	 */
   1919	if (thread_group_exited(pid))
   1920		poll_flags = EPOLLIN | EPOLLRDNORM;
   1921
   1922	return poll_flags;
   1923}
   1924
   1925const struct file_operations pidfd_fops = {
   1926	.release = pidfd_release,
   1927	.poll = pidfd_poll,
   1928#ifdef CONFIG_PROC_FS
   1929	.show_fdinfo = pidfd_show_fdinfo,
   1930#endif
   1931};
   1932
   1933static void __delayed_free_task(struct rcu_head *rhp)
   1934{
   1935	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
   1936
   1937	free_task(tsk);
   1938}
   1939
   1940static __always_inline void delayed_free_task(struct task_struct *tsk)
   1941{
   1942	if (IS_ENABLED(CONFIG_MEMCG))
   1943		call_rcu(&tsk->rcu, __delayed_free_task);
   1944	else
   1945		free_task(tsk);
   1946}
   1947
   1948static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
   1949{
   1950	/* Skip if kernel thread */
   1951	if (!tsk->mm)
   1952		return;
   1953
   1954	/* Skip if spawning a thread or using vfork */
   1955	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
   1956		return;
   1957
   1958	/* We need to synchronize with __set_oom_adj */
   1959	mutex_lock(&oom_adj_mutex);
   1960	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
   1961	/* Update the values in case they were changed after copy_signal */
   1962	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
   1963	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
   1964	mutex_unlock(&oom_adj_mutex);
   1965}
   1966
   1967/*
   1968 * This creates a new process as a copy of the old one,
   1969 * but does not actually start it yet.
   1970 *
   1971 * It copies the registers, and all the appropriate
   1972 * parts of the process environment (as per the clone
   1973 * flags). The actual kick-off is left to the caller.
   1974 */
   1975static __latent_entropy struct task_struct *copy_process(
   1976					struct pid *pid,
   1977					int trace,
   1978					int node,
   1979					struct kernel_clone_args *args)
   1980{
   1981	int pidfd = -1, retval;
   1982	struct task_struct *p;
   1983	struct multiprocess_signals delayed;
   1984	struct file *pidfile = NULL;
   1985	const u64 clone_flags = args->flags;
   1986	struct nsproxy *nsp = current->nsproxy;
   1987
   1988	/*
   1989	 * Don't allow sharing the root directory with processes in a different
   1990	 * namespace
   1991	 */
   1992	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
   1993		return ERR_PTR(-EINVAL);
   1994
   1995	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
   1996		return ERR_PTR(-EINVAL);
   1997
   1998	/*
   1999	 * Thread groups must share signals as well, and detached threads
   2000	 * can only be started up within the thread group.
   2001	 */
   2002	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
   2003		return ERR_PTR(-EINVAL);
   2004
   2005	/*
   2006	 * Shared signal handlers imply shared VM. By way of the above,
   2007	 * thread groups also imply shared VM. Blocking this case allows
   2008	 * for various simplifications in other code.
   2009	 */
   2010	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
   2011		return ERR_PTR(-EINVAL);
   2012
   2013	/*
   2014	 * Siblings of global init remain as zombies on exit since they are
   2015	 * not reaped by their parent (swapper). To solve this and to avoid
   2016	 * multi-rooted process trees, prevent global and container-inits
   2017	 * from creating siblings.
   2018	 */
   2019	if ((clone_flags & CLONE_PARENT) &&
   2020				current->signal->flags & SIGNAL_UNKILLABLE)
   2021		return ERR_PTR(-EINVAL);
   2022
   2023	/*
   2024	 * If the new process will be in a different pid or user namespace
   2025	 * do not allow it to share a thread group with the forking task.
   2026	 */
   2027	if (clone_flags & CLONE_THREAD) {
   2028		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
   2029		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
   2030			return ERR_PTR(-EINVAL);
   2031	}
   2032
   2033	/*
   2034	 * If the new process will be in a different time namespace
   2035	 * do not allow it to share VM or a thread group with the forking task.
   2036	 */
   2037	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
   2038		if (nsp->time_ns != nsp->time_ns_for_children)
   2039			return ERR_PTR(-EINVAL);
   2040	}
   2041
   2042	if (clone_flags & CLONE_PIDFD) {
   2043		/*
   2044		 * - CLONE_DETACHED is blocked so that we can potentially
   2045		 *   reuse it later for CLONE_PIDFD.
   2046		 * - CLONE_THREAD is blocked until someone really needs it.
   2047		 */
   2048		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
   2049			return ERR_PTR(-EINVAL);
   2050	}
   2051
   2052	/*
   2053	 * Force any signals received before this point to be delivered
   2054	 * before the fork happens.  Collect up signals sent to multiple
   2055	 * processes that happen during the fork and delay them so that
   2056	 * they appear to happen after the fork.
   2057	 */
   2058	sigemptyset(&delayed.signal);
   2059	INIT_HLIST_NODE(&delayed.node);
   2060
   2061	spin_lock_irq(&current->sighand->siglock);
   2062	if (!(clone_flags & CLONE_THREAD))
   2063		hlist_add_head(&delayed.node, &current->signal->multiprocess);
   2064	recalc_sigpending();
   2065	spin_unlock_irq(&current->sighand->siglock);
   2066	retval = -ERESTARTNOINTR;
   2067	if (task_sigpending(current))
   2068		goto fork_out;
   2069
   2070	retval = -ENOMEM;
   2071	p = dup_task_struct(current, node);
   2072	if (!p)
   2073		goto fork_out;
   2074	p->flags &= ~PF_KTHREAD;
   2075	if (args->kthread)
   2076		p->flags |= PF_KTHREAD;
   2077	if (args->io_thread) {
   2078		/*
   2079		 * Mark us an IO worker, and block any signal that isn't
   2080		 * fatal or STOP
   2081		 */
   2082		p->flags |= PF_IO_WORKER;
   2083		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
   2084	}
   2085
   2086	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
   2087	/*
   2088	 * Clear TID on mm_release()?
   2089	 */
   2090	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
   2091
   2092	ftrace_graph_init_task(p);
   2093
   2094	rt_mutex_init_task(p);
   2095
   2096	lockdep_assert_irqs_enabled();
   2097#ifdef CONFIG_PROVE_LOCKING
   2098	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
   2099#endif
   2100	retval = copy_creds(p, clone_flags);
   2101	if (retval < 0)
   2102		goto bad_fork_free;
   2103
   2104	retval = -EAGAIN;
   2105	if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
   2106		if (p->real_cred->user != INIT_USER &&
   2107		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
   2108			goto bad_fork_cleanup_count;
   2109	}
   2110	current->flags &= ~PF_NPROC_EXCEEDED;
   2111
   2112	/*
   2113	 * If multiple threads are within copy_process(), then this check
   2114	 * triggers too late. This doesn't hurt, the check is only there
   2115	 * to stop root fork bombs.
   2116	 */
   2117	retval = -EAGAIN;
   2118	if (data_race(nr_threads >= max_threads))
   2119		goto bad_fork_cleanup_count;
   2120
   2121	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
   2122	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
   2123	p->flags |= PF_FORKNOEXEC;
   2124	INIT_LIST_HEAD(&p->children);
   2125	INIT_LIST_HEAD(&p->sibling);
   2126	rcu_copy_process(p);
   2127	p->vfork_done = NULL;
   2128	spin_lock_init(&p->alloc_lock);
   2129
   2130	init_sigpending(&p->pending);
   2131
   2132	p->utime = p->stime = p->gtime = 0;
   2133#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
   2134	p->utimescaled = p->stimescaled = 0;
   2135#endif
   2136	prev_cputime_init(&p->prev_cputime);
   2137
   2138#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
   2139	seqcount_init(&p->vtime.seqcount);
   2140	p->vtime.starttime = 0;
   2141	p->vtime.state = VTIME_INACTIVE;
   2142#endif
   2143
   2144#ifdef CONFIG_IO_URING
   2145	p->io_uring = NULL;
   2146#endif
   2147
   2148#if defined(SPLIT_RSS_COUNTING)
   2149	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
   2150#endif
   2151
   2152	p->default_timer_slack_ns = current->timer_slack_ns;
   2153
   2154#ifdef CONFIG_PSI
   2155	p->psi_flags = 0;
   2156#endif
   2157
   2158	task_io_accounting_init(&p->ioac);
   2159	acct_clear_integrals(p);
   2160
   2161	posix_cputimers_init(&p->posix_cputimers);
   2162
   2163	p->io_context = NULL;
   2164	audit_set_context(p, NULL);
   2165	cgroup_fork(p);
   2166	if (args->kthread) {
   2167		if (!set_kthread_struct(p))
   2168			goto bad_fork_cleanup_delayacct;
   2169	}
   2170#ifdef CONFIG_NUMA
   2171	p->mempolicy = mpol_dup(p->mempolicy);
   2172	if (IS_ERR(p->mempolicy)) {
   2173		retval = PTR_ERR(p->mempolicy);
   2174		p->mempolicy = NULL;
   2175		goto bad_fork_cleanup_delayacct;
   2176	}
   2177#endif
   2178#ifdef CONFIG_CPUSETS
   2179	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
   2180	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
   2181	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
   2182#endif
   2183#ifdef CONFIG_TRACE_IRQFLAGS
   2184	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
   2185	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
   2186	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
   2187	p->softirqs_enabled		= 1;
   2188	p->softirq_context		= 0;
   2189#endif
   2190
   2191	p->pagefault_disabled = 0;
   2192
   2193#ifdef CONFIG_LOCKDEP
   2194	lockdep_init_task(p);
   2195#endif
   2196
   2197#ifdef CONFIG_DEBUG_MUTEXES
   2198	p->blocked_on = NULL; /* not blocked yet */
   2199#endif
   2200#ifdef CONFIG_BCACHE
   2201	p->sequential_io	= 0;
   2202	p->sequential_io_avg	= 0;
   2203#endif
   2204#ifdef CONFIG_BPF_SYSCALL
   2205	RCU_INIT_POINTER(p->bpf_storage, NULL);
   2206	p->bpf_ctx = NULL;
   2207#endif
   2208
   2209	/* Perform scheduler related setup. Assign this task to a CPU. */
   2210	retval = sched_fork(clone_flags, p);
   2211	if (retval)
   2212		goto bad_fork_cleanup_policy;
   2213
   2214	retval = perf_event_init_task(p, clone_flags);
   2215	if (retval)
   2216		goto bad_fork_cleanup_policy;
   2217	retval = audit_alloc(p);
   2218	if (retval)
   2219		goto bad_fork_cleanup_perf;
   2220	/* copy all the process information */
   2221	shm_init_task(p);
   2222	retval = security_task_alloc(p, clone_flags);
   2223	if (retval)
   2224		goto bad_fork_cleanup_audit;
   2225	retval = copy_semundo(clone_flags, p);
   2226	if (retval)
   2227		goto bad_fork_cleanup_security;
   2228	retval = copy_files(clone_flags, p);
   2229	if (retval)
   2230		goto bad_fork_cleanup_semundo;
   2231	retval = copy_fs(clone_flags, p);
   2232	if (retval)
   2233		goto bad_fork_cleanup_files;
   2234	retval = copy_sighand(clone_flags, p);
   2235	if (retval)
   2236		goto bad_fork_cleanup_fs;
   2237	retval = copy_signal(clone_flags, p);
   2238	if (retval)
   2239		goto bad_fork_cleanup_sighand;
   2240	retval = copy_mm(clone_flags, p);
   2241	if (retval)
   2242		goto bad_fork_cleanup_signal;
   2243	retval = copy_namespaces(clone_flags, p);
   2244	if (retval)
   2245		goto bad_fork_cleanup_mm;
   2246	retval = copy_io(clone_flags, p);
   2247	if (retval)
   2248		goto bad_fork_cleanup_namespaces;
   2249	retval = copy_thread(p, args);
   2250	if (retval)
   2251		goto bad_fork_cleanup_io;
   2252
   2253	stackleak_task_init(p);
   2254
   2255	if (pid != &init_struct_pid) {
   2256		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
   2257				args->set_tid_size);
   2258		if (IS_ERR(pid)) {
   2259			retval = PTR_ERR(pid);
   2260			goto bad_fork_cleanup_thread;
   2261		}
   2262	}
   2263
   2264	/*
   2265	 * This has to happen after we've potentially unshared the file
   2266	 * descriptor table (so that the pidfd doesn't leak into the child
   2267	 * if the fd table isn't shared).
   2268	 */
   2269	if (clone_flags & CLONE_PIDFD) {
   2270		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
   2271		if (retval < 0)
   2272			goto bad_fork_free_pid;
   2273
   2274		pidfd = retval;
   2275
   2276		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
   2277					      O_RDWR | O_CLOEXEC);
   2278		if (IS_ERR(pidfile)) {
   2279			put_unused_fd(pidfd);
   2280			retval = PTR_ERR(pidfile);
   2281			goto bad_fork_free_pid;
   2282		}
   2283		get_pid(pid);	/* held by pidfile now */
   2284
   2285		retval = put_user(pidfd, args->pidfd);
   2286		if (retval)
   2287			goto bad_fork_put_pidfd;
   2288	}
   2289
   2290#ifdef CONFIG_BLOCK
   2291	p->plug = NULL;
   2292#endif
   2293	futex_init_task(p);
   2294
   2295	/*
   2296	 * sigaltstack should be cleared when sharing the same VM
   2297	 */
   2298	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
   2299		sas_ss_reset(p);
   2300
   2301	/*
   2302	 * Syscall tracing and stepping should be turned off in the
   2303	 * child regardless of CLONE_PTRACE.
   2304	 */
   2305	user_disable_single_step(p);
   2306	clear_task_syscall_work(p, SYSCALL_TRACE);
   2307#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
   2308	clear_task_syscall_work(p, SYSCALL_EMU);
   2309#endif
   2310	clear_tsk_latency_tracing(p);
   2311
   2312	/* ok, now we should be set up.. */
   2313	p->pid = pid_nr(pid);
   2314	if (clone_flags & CLONE_THREAD) {
   2315		p->group_leader = current->group_leader;
   2316		p->tgid = current->tgid;
   2317	} else {
   2318		p->group_leader = p;
   2319		p->tgid = p->pid;
   2320	}
   2321
   2322	p->nr_dirtied = 0;
   2323	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
   2324	p->dirty_paused_when = 0;
   2325
   2326	p->pdeath_signal = 0;
   2327	INIT_LIST_HEAD(&p->thread_group);
   2328	p->task_works = NULL;
   2329	clear_posix_cputimers_work(p);
   2330
   2331#ifdef CONFIG_KRETPROBES
   2332	p->kretprobe_instances.first = NULL;
   2333#endif
   2334#ifdef CONFIG_RETHOOK
   2335	p->rethooks.first = NULL;
   2336#endif
   2337
   2338	/*
   2339	 * Ensure that the cgroup subsystem policies allow the new process to be
   2340	 * forked. It should be noted that the new process's css_set can be changed
   2341	 * between here and cgroup_post_fork() if an organisation operation is in
   2342	 * progress.
   2343	 */
   2344	retval = cgroup_can_fork(p, args);
   2345	if (retval)
   2346		goto bad_fork_put_pidfd;
   2347
   2348	/*
   2349	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
   2350	 * the new task on the correct runqueue. All this *before* the task
   2351	 * becomes visible.
   2352	 *
   2353	 * This isn't part of ->can_fork() because while the re-cloning is
   2354	 * cgroup specific, it unconditionally needs to place the task on a
   2355	 * runqueue.
   2356	 */
   2357	sched_cgroup_fork(p, args);
   2358
   2359	/*
   2360	 * From this point on we must avoid any synchronous user-space
   2361	 * communication until we take the tasklist-lock. In particular, we do
   2362	 * not want user-space to be able to predict the process start-time by
   2363	 * stalling fork(2) after we recorded the start_time but before it is
   2364	 * visible to the system.
   2365	 */
   2366
   2367	p->start_time = ktime_get_ns();
   2368	p->start_boottime = ktime_get_boottime_ns();
   2369
   2370	/*
   2371	 * Make it visible to the rest of the system, but dont wake it up yet.
   2372	 * Need tasklist lock for parent etc handling!
   2373	 */
   2374	write_lock_irq(&tasklist_lock);
   2375
   2376	/* CLONE_PARENT re-uses the old parent */
   2377	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
   2378		p->real_parent = current->real_parent;
   2379		p->parent_exec_id = current->parent_exec_id;
   2380		if (clone_flags & CLONE_THREAD)
   2381			p->exit_signal = -1;
   2382		else
   2383			p->exit_signal = current->group_leader->exit_signal;
   2384	} else {
   2385		p->real_parent = current;
   2386		p->parent_exec_id = current->self_exec_id;
   2387		p->exit_signal = args->exit_signal;
   2388	}
   2389
   2390	klp_copy_process(p);
   2391
   2392	sched_core_fork(p);
   2393
   2394	spin_lock(&current->sighand->siglock);
   2395
   2396	/*
   2397	 * Copy seccomp details explicitly here, in case they were changed
   2398	 * before holding sighand lock.
   2399	 */
   2400	copy_seccomp(p);
   2401
   2402	rseq_fork(p, clone_flags);
   2403
   2404	/* Don't start children in a dying pid namespace */
   2405	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
   2406		retval = -ENOMEM;
   2407		goto bad_fork_cancel_cgroup;
   2408	}
   2409
   2410	/* Let kill terminate clone/fork in the middle */
   2411	if (fatal_signal_pending(current)) {
   2412		retval = -EINTR;
   2413		goto bad_fork_cancel_cgroup;
   2414	}
   2415
   2416	init_task_pid_links(p);
   2417	if (likely(p->pid)) {
   2418		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
   2419
   2420		init_task_pid(p, PIDTYPE_PID, pid);
   2421		if (thread_group_leader(p)) {
   2422			init_task_pid(p, PIDTYPE_TGID, pid);
   2423			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
   2424			init_task_pid(p, PIDTYPE_SID, task_session(current));
   2425
   2426			if (is_child_reaper(pid)) {
   2427				ns_of_pid(pid)->child_reaper = p;
   2428				p->signal->flags |= SIGNAL_UNKILLABLE;
   2429			}
   2430			p->signal->shared_pending.signal = delayed.signal;
   2431			p->signal->tty = tty_kref_get(current->signal->tty);
   2432			/*
   2433			 * Inherit has_child_subreaper flag under the same
   2434			 * tasklist_lock with adding child to the process tree
   2435			 * for propagate_has_child_subreaper optimization.
   2436			 */
   2437			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
   2438							 p->real_parent->signal->is_child_subreaper;
   2439			list_add_tail(&p->sibling, &p->real_parent->children);
   2440			list_add_tail_rcu(&p->tasks, &init_task.tasks);
   2441			attach_pid(p, PIDTYPE_TGID);
   2442			attach_pid(p, PIDTYPE_PGID);
   2443			attach_pid(p, PIDTYPE_SID);
   2444			__this_cpu_inc(process_counts);
   2445		} else {
   2446			current->signal->nr_threads++;
   2447			atomic_inc(&current->signal->live);
   2448			refcount_inc(&current->signal->sigcnt);
   2449			task_join_group_stop(p);
   2450			list_add_tail_rcu(&p->thread_group,
   2451					  &p->group_leader->thread_group);
   2452			list_add_tail_rcu(&p->thread_node,
   2453					  &p->signal->thread_head);
   2454		}
   2455		attach_pid(p, PIDTYPE_PID);
   2456		nr_threads++;
   2457	}
   2458	total_forks++;
   2459	hlist_del_init(&delayed.node);
   2460	spin_unlock(&current->sighand->siglock);
   2461	syscall_tracepoint_update(p);
   2462	write_unlock_irq(&tasklist_lock);
   2463
   2464	if (pidfile)
   2465		fd_install(pidfd, pidfile);
   2466
   2467	proc_fork_connector(p);
   2468	sched_post_fork(p);
   2469	cgroup_post_fork(p, args);
   2470	perf_event_fork(p);
   2471
   2472	trace_task_newtask(p, clone_flags);
   2473	uprobe_copy_process(p, clone_flags);
   2474
   2475	copy_oom_score_adj(clone_flags, p);
   2476
   2477	return p;
   2478
   2479bad_fork_cancel_cgroup:
   2480	sched_core_free(p);
   2481	spin_unlock(&current->sighand->siglock);
   2482	write_unlock_irq(&tasklist_lock);
   2483	cgroup_cancel_fork(p, args);
   2484bad_fork_put_pidfd:
   2485	if (clone_flags & CLONE_PIDFD) {
   2486		fput(pidfile);
   2487		put_unused_fd(pidfd);
   2488	}
   2489bad_fork_free_pid:
   2490	if (pid != &init_struct_pid)
   2491		free_pid(pid);
   2492bad_fork_cleanup_thread:
   2493	exit_thread(p);
   2494bad_fork_cleanup_io:
   2495	if (p->io_context)
   2496		exit_io_context(p);
   2497bad_fork_cleanup_namespaces:
   2498	exit_task_namespaces(p);
   2499bad_fork_cleanup_mm:
   2500	if (p->mm) {
   2501		mm_clear_owner(p->mm, p);
   2502		mmput(p->mm);
   2503	}
   2504bad_fork_cleanup_signal:
   2505	if (!(clone_flags & CLONE_THREAD))
   2506		free_signal_struct(p->signal);
   2507bad_fork_cleanup_sighand:
   2508	__cleanup_sighand(p->sighand);
   2509bad_fork_cleanup_fs:
   2510	exit_fs(p); /* blocking */
   2511bad_fork_cleanup_files:
   2512	exit_files(p); /* blocking */
   2513bad_fork_cleanup_semundo:
   2514	exit_sem(p);
   2515bad_fork_cleanup_security:
   2516	security_task_free(p);
   2517bad_fork_cleanup_audit:
   2518	audit_free(p);
   2519bad_fork_cleanup_perf:
   2520	perf_event_free_task(p);
   2521bad_fork_cleanup_policy:
   2522	lockdep_free_task(p);
   2523#ifdef CONFIG_NUMA
   2524	mpol_put(p->mempolicy);
   2525#endif
   2526bad_fork_cleanup_delayacct:
   2527	delayacct_tsk_free(p);
   2528bad_fork_cleanup_count:
   2529	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
   2530	exit_creds(p);
   2531bad_fork_free:
   2532	WRITE_ONCE(p->__state, TASK_DEAD);
   2533	exit_task_stack_account(p);
   2534	put_task_stack(p);
   2535	delayed_free_task(p);
   2536fork_out:
   2537	spin_lock_irq(&current->sighand->siglock);
   2538	hlist_del_init(&delayed.node);
   2539	spin_unlock_irq(&current->sighand->siglock);
   2540	return ERR_PTR(retval);
   2541}
   2542
   2543static inline void init_idle_pids(struct task_struct *idle)
   2544{
   2545	enum pid_type type;
   2546
   2547	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
   2548		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
   2549		init_task_pid(idle, type, &init_struct_pid);
   2550	}
   2551}
   2552
   2553static int idle_dummy(void *dummy)
   2554{
   2555	/* This function is never called */
   2556	return 0;
   2557}
   2558
   2559struct task_struct * __init fork_idle(int cpu)
   2560{
   2561	struct task_struct *task;
   2562	struct kernel_clone_args args = {
   2563		.flags		= CLONE_VM,
   2564		.fn		= &idle_dummy,
   2565		.fn_arg		= NULL,
   2566		.kthread	= 1,
   2567		.idle		= 1,
   2568	};
   2569
   2570	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
   2571	if (!IS_ERR(task)) {
   2572		init_idle_pids(task);
   2573		init_idle(task, cpu);
   2574	}
   2575
   2576	return task;
   2577}
   2578
   2579struct mm_struct *copy_init_mm(void)
   2580{
   2581	return dup_mm(NULL, &init_mm);
   2582}
   2583
   2584/*
   2585 * This is like kernel_clone(), but shaved down and tailored to just
   2586 * creating io_uring workers. It returns a created task, or an error pointer.
   2587 * The returned task is inactive, and the caller must fire it up through
   2588 * wake_up_new_task(p). All signals are blocked in the created task.
   2589 */
   2590struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
   2591{
   2592	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
   2593				CLONE_IO;
   2594	struct kernel_clone_args args = {
   2595		.flags		= ((lower_32_bits(flags) | CLONE_VM |
   2596				    CLONE_UNTRACED) & ~CSIGNAL),
   2597		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
   2598		.fn		= fn,
   2599		.fn_arg		= arg,
   2600		.io_thread	= 1,
   2601	};
   2602
   2603	return copy_process(NULL, 0, node, &args);
   2604}
   2605
   2606/*
   2607 *  Ok, this is the main fork-routine.
   2608 *
   2609 * It copies the process, and if successful kick-starts
   2610 * it and waits for it to finish using the VM if required.
   2611 *
   2612 * args->exit_signal is expected to be checked for sanity by the caller.
   2613 */
   2614pid_t kernel_clone(struct kernel_clone_args *args)
   2615{
   2616	u64 clone_flags = args->flags;
   2617	struct completion vfork;
   2618	struct pid *pid;
   2619	struct task_struct *p;
   2620	int trace = 0;
   2621	pid_t nr;
   2622
   2623	/*
   2624	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
   2625	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
   2626	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
   2627	 * field in struct clone_args and it still doesn't make sense to have
   2628	 * them both point at the same memory location. Performing this check
   2629	 * here has the advantage that we don't need to have a separate helper
   2630	 * to check for legacy clone().
   2631	 */
   2632	if ((args->flags & CLONE_PIDFD) &&
   2633	    (args->flags & CLONE_PARENT_SETTID) &&
   2634	    (args->pidfd == args->parent_tid))
   2635		return -EINVAL;
   2636
   2637	/*
   2638	 * Determine whether and which event to report to ptracer.  When
   2639	 * called from kernel_thread or CLONE_UNTRACED is explicitly
   2640	 * requested, no event is reported; otherwise, report if the event
   2641	 * for the type of forking is enabled.
   2642	 */
   2643	if (!(clone_flags & CLONE_UNTRACED)) {
   2644		if (clone_flags & CLONE_VFORK)
   2645			trace = PTRACE_EVENT_VFORK;
   2646		else if (args->exit_signal != SIGCHLD)
   2647			trace = PTRACE_EVENT_CLONE;
   2648		else
   2649			trace = PTRACE_EVENT_FORK;
   2650
   2651		if (likely(!ptrace_event_enabled(current, trace)))
   2652			trace = 0;
   2653	}
   2654
   2655	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
   2656	add_latent_entropy();
   2657
   2658	if (IS_ERR(p))
   2659		return PTR_ERR(p);
   2660
   2661	/*
   2662	 * Do this prior waking up the new thread - the thread pointer
   2663	 * might get invalid after that point, if the thread exits quickly.
   2664	 */
   2665	trace_sched_process_fork(current, p);
   2666
   2667	pid = get_task_pid(p, PIDTYPE_PID);
   2668	nr = pid_vnr(pid);
   2669
   2670	if (clone_flags & CLONE_PARENT_SETTID)
   2671		put_user(nr, args->parent_tid);
   2672
   2673	if (clone_flags & CLONE_VFORK) {
   2674		p->vfork_done = &vfork;
   2675		init_completion(&vfork);
   2676		get_task_struct(p);
   2677	}
   2678
   2679	wake_up_new_task(p);
   2680
   2681	/* forking complete and child started to run, tell ptracer */
   2682	if (unlikely(trace))
   2683		ptrace_event_pid(trace, pid);
   2684
   2685	if (clone_flags & CLONE_VFORK) {
   2686		if (!wait_for_vfork_done(p, &vfork))
   2687			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
   2688	}
   2689
   2690	put_pid(pid);
   2691	return nr;
   2692}
   2693
   2694/*
   2695 * Create a kernel thread.
   2696 */
   2697pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
   2698{
   2699	struct kernel_clone_args args = {
   2700		.flags		= ((lower_32_bits(flags) | CLONE_VM |
   2701				    CLONE_UNTRACED) & ~CSIGNAL),
   2702		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
   2703		.fn		= fn,
   2704		.fn_arg		= arg,
   2705		.kthread	= 1,
   2706	};
   2707
   2708	return kernel_clone(&args);
   2709}
   2710
   2711/*
   2712 * Create a user mode thread.
   2713 */
   2714pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
   2715{
   2716	struct kernel_clone_args args = {
   2717		.flags		= ((lower_32_bits(flags) | CLONE_VM |
   2718				    CLONE_UNTRACED) & ~CSIGNAL),
   2719		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
   2720		.fn		= fn,
   2721		.fn_arg		= arg,
   2722	};
   2723
   2724	return kernel_clone(&args);
   2725}
   2726
   2727#ifdef __ARCH_WANT_SYS_FORK
   2728SYSCALL_DEFINE0(fork)
   2729{
   2730#ifdef CONFIG_MMU
   2731	struct kernel_clone_args args = {
   2732		.exit_signal = SIGCHLD,
   2733	};
   2734
   2735	return kernel_clone(&args);
   2736#else
   2737	/* can not support in nommu mode */
   2738	return -EINVAL;
   2739#endif
   2740}
   2741#endif
   2742
   2743#ifdef __ARCH_WANT_SYS_VFORK
   2744SYSCALL_DEFINE0(vfork)
   2745{
   2746	struct kernel_clone_args args = {
   2747		.flags		= CLONE_VFORK | CLONE_VM,
   2748		.exit_signal	= SIGCHLD,
   2749	};
   2750
   2751	return kernel_clone(&args);
   2752}
   2753#endif
   2754
   2755#ifdef __ARCH_WANT_SYS_CLONE
   2756#ifdef CONFIG_CLONE_BACKWARDS
   2757SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
   2758		 int __user *, parent_tidptr,
   2759		 unsigned long, tls,
   2760		 int __user *, child_tidptr)
   2761#elif defined(CONFIG_CLONE_BACKWARDS2)
   2762SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
   2763		 int __user *, parent_tidptr,
   2764		 int __user *, child_tidptr,
   2765		 unsigned long, tls)
   2766#elif defined(CONFIG_CLONE_BACKWARDS3)
   2767SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
   2768		int, stack_size,
   2769		int __user *, parent_tidptr,
   2770		int __user *, child_tidptr,
   2771		unsigned long, tls)
   2772#else
   2773SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
   2774		 int __user *, parent_tidptr,
   2775		 int __user *, child_tidptr,
   2776		 unsigned long, tls)
   2777#endif
   2778{
   2779	struct kernel_clone_args args = {
   2780		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
   2781		.pidfd		= parent_tidptr,
   2782		.child_tid	= child_tidptr,
   2783		.parent_tid	= parent_tidptr,
   2784		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
   2785		.stack		= newsp,
   2786		.tls		= tls,
   2787	};
   2788
   2789	return kernel_clone(&args);
   2790}
   2791#endif
   2792
   2793#ifdef __ARCH_WANT_SYS_CLONE3
   2794
   2795noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
   2796					      struct clone_args __user *uargs,
   2797					      size_t usize)
   2798{
   2799	int err;
   2800	struct clone_args args;
   2801	pid_t *kset_tid = kargs->set_tid;
   2802
   2803	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
   2804		     CLONE_ARGS_SIZE_VER0);
   2805	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
   2806		     CLONE_ARGS_SIZE_VER1);
   2807	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
   2808		     CLONE_ARGS_SIZE_VER2);
   2809	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
   2810
   2811	if (unlikely(usize > PAGE_SIZE))
   2812		return -E2BIG;
   2813	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
   2814		return -EINVAL;
   2815
   2816	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
   2817	if (err)
   2818		return err;
   2819
   2820	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
   2821		return -EINVAL;
   2822
   2823	if (unlikely(!args.set_tid && args.set_tid_size > 0))
   2824		return -EINVAL;
   2825
   2826	if (unlikely(args.set_tid && args.set_tid_size == 0))
   2827		return -EINVAL;
   2828
   2829	/*
   2830	 * Verify that higher 32bits of exit_signal are unset and that
   2831	 * it is a valid signal
   2832	 */
   2833	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
   2834		     !valid_signal(args.exit_signal)))
   2835		return -EINVAL;
   2836
   2837	if ((args.flags & CLONE_INTO_CGROUP) &&
   2838	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
   2839		return -EINVAL;
   2840
   2841	*kargs = (struct kernel_clone_args){
   2842		.flags		= args.flags,
   2843		.pidfd		= u64_to_user_ptr(args.pidfd),
   2844		.child_tid	= u64_to_user_ptr(args.child_tid),
   2845		.parent_tid	= u64_to_user_ptr(args.parent_tid),
   2846		.exit_signal	= args.exit_signal,
   2847		.stack		= args.stack,
   2848		.stack_size	= args.stack_size,
   2849		.tls		= args.tls,
   2850		.set_tid_size	= args.set_tid_size,
   2851		.cgroup		= args.cgroup,
   2852	};
   2853
   2854	if (args.set_tid &&
   2855		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
   2856			(kargs->set_tid_size * sizeof(pid_t))))
   2857		return -EFAULT;
   2858
   2859	kargs->set_tid = kset_tid;
   2860
   2861	return 0;
   2862}
   2863
   2864/**
   2865 * clone3_stack_valid - check and prepare stack
   2866 * @kargs: kernel clone args
   2867 *
   2868 * Verify that the stack arguments userspace gave us are sane.
   2869 * In addition, set the stack direction for userspace since it's easy for us to
   2870 * determine.
   2871 */
   2872static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
   2873{
   2874	if (kargs->stack == 0) {
   2875		if (kargs->stack_size > 0)
   2876			return false;
   2877	} else {
   2878		if (kargs->stack_size == 0)
   2879			return false;
   2880
   2881		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
   2882			return false;
   2883
   2884#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
   2885		kargs->stack += kargs->stack_size;
   2886#endif
   2887	}
   2888
   2889	return true;
   2890}
   2891
   2892static bool clone3_args_valid(struct kernel_clone_args *kargs)
   2893{
   2894	/* Verify that no unknown flags are passed along. */
   2895	if (kargs->flags &
   2896	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
   2897		return false;
   2898
   2899	/*
   2900	 * - make the CLONE_DETACHED bit reusable for clone3
   2901	 * - make the CSIGNAL bits reusable for clone3
   2902	 */
   2903	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
   2904		return false;
   2905
   2906	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
   2907	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
   2908		return false;
   2909
   2910	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
   2911	    kargs->exit_signal)
   2912		return false;
   2913
   2914	if (!clone3_stack_valid(kargs))
   2915		return false;
   2916
   2917	return true;
   2918}
   2919
   2920/**
   2921 * clone3 - create a new process with specific properties
   2922 * @uargs: argument structure
   2923 * @size:  size of @uargs
   2924 *
   2925 * clone3() is the extensible successor to clone()/clone2().
   2926 * It takes a struct as argument that is versioned by its size.
   2927 *
   2928 * Return: On success, a positive PID for the child process.
   2929 *         On error, a negative errno number.
   2930 */
   2931SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
   2932{
   2933	int err;
   2934
   2935	struct kernel_clone_args kargs;
   2936	pid_t set_tid[MAX_PID_NS_LEVEL];
   2937
   2938	kargs.set_tid = set_tid;
   2939
   2940	err = copy_clone_args_from_user(&kargs, uargs, size);
   2941	if (err)
   2942		return err;
   2943
   2944	if (!clone3_args_valid(&kargs))
   2945		return -EINVAL;
   2946
   2947	return kernel_clone(&kargs);
   2948}
   2949#endif
   2950
   2951void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
   2952{
   2953	struct task_struct *leader, *parent, *child;
   2954	int res;
   2955
   2956	read_lock(&tasklist_lock);
   2957	leader = top = top->group_leader;
   2958down:
   2959	for_each_thread(leader, parent) {
   2960		list_for_each_entry(child, &parent->children, sibling) {
   2961			res = visitor(child, data);
   2962			if (res) {
   2963				if (res < 0)
   2964					goto out;
   2965				leader = child;
   2966				goto down;
   2967			}
   2968up:
   2969			;
   2970		}
   2971	}
   2972
   2973	if (leader != top) {
   2974		child = leader;
   2975		parent = child->real_parent;
   2976		leader = parent->group_leader;
   2977		goto up;
   2978	}
   2979out:
   2980	read_unlock(&tasklist_lock);
   2981}
   2982
   2983#ifndef ARCH_MIN_MMSTRUCT_ALIGN
   2984#define ARCH_MIN_MMSTRUCT_ALIGN 0
   2985#endif
   2986
   2987static void sighand_ctor(void *data)
   2988{
   2989	struct sighand_struct *sighand = data;
   2990
   2991	spin_lock_init(&sighand->siglock);
   2992	init_waitqueue_head(&sighand->signalfd_wqh);
   2993}
   2994
   2995void __init proc_caches_init(void)
   2996{
   2997	unsigned int mm_size;
   2998
   2999	sighand_cachep = kmem_cache_create("sighand_cache",
   3000			sizeof(struct sighand_struct), 0,
   3001			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
   3002			SLAB_ACCOUNT, sighand_ctor);
   3003	signal_cachep = kmem_cache_create("signal_cache",
   3004			sizeof(struct signal_struct), 0,
   3005			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
   3006			NULL);
   3007	files_cachep = kmem_cache_create("files_cache",
   3008			sizeof(struct files_struct), 0,
   3009			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
   3010			NULL);
   3011	fs_cachep = kmem_cache_create("fs_cache",
   3012			sizeof(struct fs_struct), 0,
   3013			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
   3014			NULL);
   3015
   3016	/*
   3017	 * The mm_cpumask is located at the end of mm_struct, and is
   3018	 * dynamically sized based on the maximum CPU number this system
   3019	 * can have, taking hotplug into account (nr_cpu_ids).
   3020	 */
   3021	mm_size = sizeof(struct mm_struct) + cpumask_size();
   3022
   3023	mm_cachep = kmem_cache_create_usercopy("mm_struct",
   3024			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
   3025			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
   3026			offsetof(struct mm_struct, saved_auxv),
   3027			sizeof_field(struct mm_struct, saved_auxv),
   3028			NULL);
   3029	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
   3030	mmap_init();
   3031	nsproxy_cache_init();
   3032}
   3033
   3034/*
   3035 * Check constraints on flags passed to the unshare system call.
   3036 */
   3037static int check_unshare_flags(unsigned long unshare_flags)
   3038{
   3039	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
   3040				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
   3041				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
   3042				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
   3043				CLONE_NEWTIME))
   3044		return -EINVAL;
   3045	/*
   3046	 * Not implemented, but pretend it works if there is nothing
   3047	 * to unshare.  Note that unsharing the address space or the
   3048	 * signal handlers also need to unshare the signal queues (aka
   3049	 * CLONE_THREAD).
   3050	 */
   3051	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
   3052		if (!thread_group_empty(current))
   3053			return -EINVAL;
   3054	}
   3055	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
   3056		if (refcount_read(&current->sighand->count) > 1)
   3057			return -EINVAL;
   3058	}
   3059	if (unshare_flags & CLONE_VM) {
   3060		if (!current_is_single_threaded())
   3061			return -EINVAL;
   3062	}
   3063
   3064	return 0;
   3065}
   3066
   3067/*
   3068 * Unshare the filesystem structure if it is being shared
   3069 */
   3070static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
   3071{
   3072	struct fs_struct *fs = current->fs;
   3073
   3074	if (!(unshare_flags & CLONE_FS) || !fs)
   3075		return 0;
   3076
   3077	/* don't need lock here; in the worst case we'll do useless copy */
   3078	if (fs->users == 1)
   3079		return 0;
   3080
   3081	*new_fsp = copy_fs_struct(fs);
   3082	if (!*new_fsp)
   3083		return -ENOMEM;
   3084
   3085	return 0;
   3086}
   3087
   3088/*
   3089 * Unshare file descriptor table if it is being shared
   3090 */
   3091int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
   3092	       struct files_struct **new_fdp)
   3093{
   3094	struct files_struct *fd = current->files;
   3095	int error = 0;
   3096
   3097	if ((unshare_flags & CLONE_FILES) &&
   3098	    (fd && atomic_read(&fd->count) > 1)) {
   3099		*new_fdp = dup_fd(fd, max_fds, &error);
   3100		if (!*new_fdp)
   3101			return error;
   3102	}
   3103
   3104	return 0;
   3105}
   3106
   3107/*
   3108 * unshare allows a process to 'unshare' part of the process
   3109 * context which was originally shared using clone.  copy_*
   3110 * functions used by kernel_clone() cannot be used here directly
   3111 * because they modify an inactive task_struct that is being
   3112 * constructed. Here we are modifying the current, active,
   3113 * task_struct.
   3114 */
   3115int ksys_unshare(unsigned long unshare_flags)
   3116{
   3117	struct fs_struct *fs, *new_fs = NULL;
   3118	struct files_struct *new_fd = NULL;
   3119	struct cred *new_cred = NULL;
   3120	struct nsproxy *new_nsproxy = NULL;
   3121	int do_sysvsem = 0;
   3122	int err;
   3123
   3124	/*
   3125	 * If unsharing a user namespace must also unshare the thread group
   3126	 * and unshare the filesystem root and working directories.
   3127	 */
   3128	if (unshare_flags & CLONE_NEWUSER)
   3129		unshare_flags |= CLONE_THREAD | CLONE_FS;
   3130	/*
   3131	 * If unsharing vm, must also unshare signal handlers.
   3132	 */
   3133	if (unshare_flags & CLONE_VM)
   3134		unshare_flags |= CLONE_SIGHAND;
   3135	/*
   3136	 * If unsharing a signal handlers, must also unshare the signal queues.
   3137	 */
   3138	if (unshare_flags & CLONE_SIGHAND)
   3139		unshare_flags |= CLONE_THREAD;
   3140	/*
   3141	 * If unsharing namespace, must also unshare filesystem information.
   3142	 */
   3143	if (unshare_flags & CLONE_NEWNS)
   3144		unshare_flags |= CLONE_FS;
   3145
   3146	err = check_unshare_flags(unshare_flags);
   3147	if (err)
   3148		goto bad_unshare_out;
   3149	/*
   3150	 * CLONE_NEWIPC must also detach from the undolist: after switching
   3151	 * to a new ipc namespace, the semaphore arrays from the old
   3152	 * namespace are unreachable.
   3153	 */
   3154	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
   3155		do_sysvsem = 1;
   3156	err = unshare_fs(unshare_flags, &new_fs);
   3157	if (err)
   3158		goto bad_unshare_out;
   3159	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
   3160	if (err)
   3161		goto bad_unshare_cleanup_fs;
   3162	err = unshare_userns(unshare_flags, &new_cred);
   3163	if (err)
   3164		goto bad_unshare_cleanup_fd;
   3165	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
   3166					 new_cred, new_fs);
   3167	if (err)
   3168		goto bad_unshare_cleanup_cred;
   3169
   3170	if (new_cred) {
   3171		err = set_cred_ucounts(new_cred);
   3172		if (err)
   3173			goto bad_unshare_cleanup_cred;
   3174	}
   3175
   3176	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
   3177		if (do_sysvsem) {
   3178			/*
   3179			 * CLONE_SYSVSEM is equivalent to sys_exit().
   3180			 */
   3181			exit_sem(current);
   3182		}
   3183		if (unshare_flags & CLONE_NEWIPC) {
   3184			/* Orphan segments in old ns (see sem above). */
   3185			exit_shm(current);
   3186			shm_init_task(current);
   3187		}
   3188
   3189		if (new_nsproxy)
   3190			switch_task_namespaces(current, new_nsproxy);
   3191
   3192		task_lock(current);
   3193
   3194		if (new_fs) {
   3195			fs = current->fs;
   3196			spin_lock(&fs->lock);
   3197			current->fs = new_fs;
   3198			if (--fs->users)
   3199				new_fs = NULL;
   3200			else
   3201				new_fs = fs;
   3202			spin_unlock(&fs->lock);
   3203		}
   3204
   3205		if (new_fd)
   3206			swap(current->files, new_fd);
   3207
   3208		task_unlock(current);
   3209
   3210		if (new_cred) {
   3211			/* Install the new user namespace */
   3212			commit_creds(new_cred);
   3213			new_cred = NULL;
   3214		}
   3215	}
   3216
   3217	perf_event_namespaces(current);
   3218
   3219bad_unshare_cleanup_cred:
   3220	if (new_cred)
   3221		put_cred(new_cred);
   3222bad_unshare_cleanup_fd:
   3223	if (new_fd)
   3224		put_files_struct(new_fd);
   3225
   3226bad_unshare_cleanup_fs:
   3227	if (new_fs)
   3228		free_fs_struct(new_fs);
   3229
   3230bad_unshare_out:
   3231	return err;
   3232}
   3233
   3234SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
   3235{
   3236	return ksys_unshare(unshare_flags);
   3237}
   3238
   3239/*
   3240 *	Helper to unshare the files of the current task.
   3241 *	We don't want to expose copy_files internals to
   3242 *	the exec layer of the kernel.
   3243 */
   3244
   3245int unshare_files(void)
   3246{
   3247	struct task_struct *task = current;
   3248	struct files_struct *old, *copy = NULL;
   3249	int error;
   3250
   3251	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
   3252	if (error || !copy)
   3253		return error;
   3254
   3255	old = task->files;
   3256	task_lock(task);
   3257	task->files = copy;
   3258	task_unlock(task);
   3259	put_files_struct(old);
   3260	return 0;
   3261}
   3262
   3263int sysctl_max_threads(struct ctl_table *table, int write,
   3264		       void *buffer, size_t *lenp, loff_t *ppos)
   3265{
   3266	struct ctl_table t;
   3267	int ret;
   3268	int threads = max_threads;
   3269	int min = 1;
   3270	int max = MAX_THREADS;
   3271
   3272	t = *table;
   3273	t.data = &threads;
   3274	t.extra1 = &min;
   3275	t.extra2 = &max;
   3276
   3277	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
   3278	if (ret || !write)
   3279		return ret;
   3280
   3281	max_threads = threads;
   3282
   3283	return 0;
   3284}