cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

waitwake.c (19807B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2
      3#include <linux/sched/task.h>
      4#include <linux/sched/signal.h>
      5#include <linux/freezer.h>
      6
      7#include "futex.h"
      8
      9/*
     10 * READ this before attempting to hack on futexes!
     11 *
     12 * Basic futex operation and ordering guarantees
     13 * =============================================
     14 *
     15 * The waiter reads the futex value in user space and calls
     16 * futex_wait(). This function computes the hash bucket and acquires
     17 * the hash bucket lock. After that it reads the futex user space value
     18 * again and verifies that the data has not changed. If it has not changed
     19 * it enqueues itself into the hash bucket, releases the hash bucket lock
     20 * and schedules.
     21 *
     22 * The waker side modifies the user space value of the futex and calls
     23 * futex_wake(). This function computes the hash bucket and acquires the
     24 * hash bucket lock. Then it looks for waiters on that futex in the hash
     25 * bucket and wakes them.
     26 *
     27 * In futex wake up scenarios where no tasks are blocked on a futex, taking
     28 * the hb spinlock can be avoided and simply return. In order for this
     29 * optimization to work, ordering guarantees must exist so that the waiter
     30 * being added to the list is acknowledged when the list is concurrently being
     31 * checked by the waker, avoiding scenarios like the following:
     32 *
     33 * CPU 0                               CPU 1
     34 * val = *futex;
     35 * sys_futex(WAIT, futex, val);
     36 *   futex_wait(futex, val);
     37 *   uval = *futex;
     38 *                                     *futex = newval;
     39 *                                     sys_futex(WAKE, futex);
     40 *                                       futex_wake(futex);
     41 *                                       if (queue_empty())
     42 *                                         return;
     43 *   if (uval == val)
     44 *      lock(hash_bucket(futex));
     45 *      queue();
     46 *     unlock(hash_bucket(futex));
     47 *     schedule();
     48 *
     49 * This would cause the waiter on CPU 0 to wait forever because it
     50 * missed the transition of the user space value from val to newval
     51 * and the waker did not find the waiter in the hash bucket queue.
     52 *
     53 * The correct serialization ensures that a waiter either observes
     54 * the changed user space value before blocking or is woken by a
     55 * concurrent waker:
     56 *
     57 * CPU 0                                 CPU 1
     58 * val = *futex;
     59 * sys_futex(WAIT, futex, val);
     60 *   futex_wait(futex, val);
     61 *
     62 *   waiters++; (a)
     63 *   smp_mb(); (A) <-- paired with -.
     64 *                                  |
     65 *   lock(hash_bucket(futex));      |
     66 *                                  |
     67 *   uval = *futex;                 |
     68 *                                  |        *futex = newval;
     69 *                                  |        sys_futex(WAKE, futex);
     70 *                                  |          futex_wake(futex);
     71 *                                  |
     72 *                                  `--------> smp_mb(); (B)
     73 *   if (uval == val)
     74 *     queue();
     75 *     unlock(hash_bucket(futex));
     76 *     schedule();                         if (waiters)
     77 *                                           lock(hash_bucket(futex));
     78 *   else                                    wake_waiters(futex);
     79 *     waiters--; (b)                        unlock(hash_bucket(futex));
     80 *
     81 * Where (A) orders the waiters increment and the futex value read through
     82 * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
     83 * to futex and the waiters read (see futex_hb_waiters_pending()).
     84 *
     85 * This yields the following case (where X:=waiters, Y:=futex):
     86 *
     87 *	X = Y = 0
     88 *
     89 *	w[X]=1		w[Y]=1
     90 *	MB		MB
     91 *	r[Y]=y		r[X]=x
     92 *
     93 * Which guarantees that x==0 && y==0 is impossible; which translates back into
     94 * the guarantee that we cannot both miss the futex variable change and the
     95 * enqueue.
     96 *
     97 * Note that a new waiter is accounted for in (a) even when it is possible that
     98 * the wait call can return error, in which case we backtrack from it in (b).
     99 * Refer to the comment in futex_q_lock().
    100 *
    101 * Similarly, in order to account for waiters being requeued on another
    102 * address we always increment the waiters for the destination bucket before
    103 * acquiring the lock. It then decrements them again  after releasing it -
    104 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
    105 * will do the additional required waiter count housekeeping. This is done for
    106 * double_lock_hb() and double_unlock_hb(), respectively.
    107 */
    108
    109/*
    110 * The hash bucket lock must be held when this is called.
    111 * Afterwards, the futex_q must not be accessed. Callers
    112 * must ensure to later call wake_up_q() for the actual
    113 * wakeups to occur.
    114 */
    115void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
    116{
    117	struct task_struct *p = q->task;
    118
    119	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
    120		return;
    121
    122	get_task_struct(p);
    123	__futex_unqueue(q);
    124	/*
    125	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
    126	 * is written, without taking any locks. This is possible in the event
    127	 * of a spurious wakeup, for example. A memory barrier is required here
    128	 * to prevent the following store to lock_ptr from getting ahead of the
    129	 * plist_del in __futex_unqueue().
    130	 */
    131	smp_store_release(&q->lock_ptr, NULL);
    132
    133	/*
    134	 * Queue the task for later wakeup for after we've released
    135	 * the hb->lock.
    136	 */
    137	wake_q_add_safe(wake_q, p);
    138}
    139
    140/*
    141 * Wake up waiters matching bitset queued on this futex (uaddr).
    142 */
    143int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
    144{
    145	struct futex_hash_bucket *hb;
    146	struct futex_q *this, *next;
    147	union futex_key key = FUTEX_KEY_INIT;
    148	int ret;
    149	DEFINE_WAKE_Q(wake_q);
    150
    151	if (!bitset)
    152		return -EINVAL;
    153
    154	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
    155	if (unlikely(ret != 0))
    156		return ret;
    157
    158	hb = futex_hash(&key);
    159
    160	/* Make sure we really have tasks to wakeup */
    161	if (!futex_hb_waiters_pending(hb))
    162		return ret;
    163
    164	spin_lock(&hb->lock);
    165
    166	plist_for_each_entry_safe(this, next, &hb->chain, list) {
    167		if (futex_match (&this->key, &key)) {
    168			if (this->pi_state || this->rt_waiter) {
    169				ret = -EINVAL;
    170				break;
    171			}
    172
    173			/* Check if one of the bits is set in both bitsets */
    174			if (!(this->bitset & bitset))
    175				continue;
    176
    177			futex_wake_mark(&wake_q, this);
    178			if (++ret >= nr_wake)
    179				break;
    180		}
    181	}
    182
    183	spin_unlock(&hb->lock);
    184	wake_up_q(&wake_q);
    185	return ret;
    186}
    187
    188static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
    189{
    190	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
    191	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
    192	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
    193	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
    194	int oldval, ret;
    195
    196	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
    197		if (oparg < 0 || oparg > 31) {
    198			char comm[sizeof(current->comm)];
    199			/*
    200			 * kill this print and return -EINVAL when userspace
    201			 * is sane again
    202			 */
    203			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
    204					get_task_comm(comm, current), oparg);
    205			oparg &= 31;
    206		}
    207		oparg = 1 << oparg;
    208	}
    209
    210	pagefault_disable();
    211	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
    212	pagefault_enable();
    213	if (ret)
    214		return ret;
    215
    216	switch (cmp) {
    217	case FUTEX_OP_CMP_EQ:
    218		return oldval == cmparg;
    219	case FUTEX_OP_CMP_NE:
    220		return oldval != cmparg;
    221	case FUTEX_OP_CMP_LT:
    222		return oldval < cmparg;
    223	case FUTEX_OP_CMP_GE:
    224		return oldval >= cmparg;
    225	case FUTEX_OP_CMP_LE:
    226		return oldval <= cmparg;
    227	case FUTEX_OP_CMP_GT:
    228		return oldval > cmparg;
    229	default:
    230		return -ENOSYS;
    231	}
    232}
    233
    234/*
    235 * Wake up all waiters hashed on the physical page that is mapped
    236 * to this virtual address:
    237 */
    238int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
    239		  int nr_wake, int nr_wake2, int op)
    240{
    241	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
    242	struct futex_hash_bucket *hb1, *hb2;
    243	struct futex_q *this, *next;
    244	int ret, op_ret;
    245	DEFINE_WAKE_Q(wake_q);
    246
    247retry:
    248	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
    249	if (unlikely(ret != 0))
    250		return ret;
    251	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
    252	if (unlikely(ret != 0))
    253		return ret;
    254
    255	hb1 = futex_hash(&key1);
    256	hb2 = futex_hash(&key2);
    257
    258retry_private:
    259	double_lock_hb(hb1, hb2);
    260	op_ret = futex_atomic_op_inuser(op, uaddr2);
    261	if (unlikely(op_ret < 0)) {
    262		double_unlock_hb(hb1, hb2);
    263
    264		if (!IS_ENABLED(CONFIG_MMU) ||
    265		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
    266			/*
    267			 * we don't get EFAULT from MMU faults if we don't have
    268			 * an MMU, but we might get them from range checking
    269			 */
    270			ret = op_ret;
    271			return ret;
    272		}
    273
    274		if (op_ret == -EFAULT) {
    275			ret = fault_in_user_writeable(uaddr2);
    276			if (ret)
    277				return ret;
    278		}
    279
    280		cond_resched();
    281		if (!(flags & FLAGS_SHARED))
    282			goto retry_private;
    283		goto retry;
    284	}
    285
    286	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
    287		if (futex_match (&this->key, &key1)) {
    288			if (this->pi_state || this->rt_waiter) {
    289				ret = -EINVAL;
    290				goto out_unlock;
    291			}
    292			futex_wake_mark(&wake_q, this);
    293			if (++ret >= nr_wake)
    294				break;
    295		}
    296	}
    297
    298	if (op_ret > 0) {
    299		op_ret = 0;
    300		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
    301			if (futex_match (&this->key, &key2)) {
    302				if (this->pi_state || this->rt_waiter) {
    303					ret = -EINVAL;
    304					goto out_unlock;
    305				}
    306				futex_wake_mark(&wake_q, this);
    307				if (++op_ret >= nr_wake2)
    308					break;
    309			}
    310		}
    311		ret += op_ret;
    312	}
    313
    314out_unlock:
    315	double_unlock_hb(hb1, hb2);
    316	wake_up_q(&wake_q);
    317	return ret;
    318}
    319
    320static long futex_wait_restart(struct restart_block *restart);
    321
    322/**
    323 * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
    324 * @hb:		the futex hash bucket, must be locked by the caller
    325 * @q:		the futex_q to queue up on
    326 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
    327 */
    328void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
    329			    struct hrtimer_sleeper *timeout)
    330{
    331	/*
    332	 * The task state is guaranteed to be set before another task can
    333	 * wake it. set_current_state() is implemented using smp_store_mb() and
    334	 * futex_queue() calls spin_unlock() upon completion, both serializing
    335	 * access to the hash list and forcing another memory barrier.
    336	 */
    337	set_current_state(TASK_INTERRUPTIBLE);
    338	futex_queue(q, hb);
    339
    340	/* Arm the timer */
    341	if (timeout)
    342		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
    343
    344	/*
    345	 * If we have been removed from the hash list, then another task
    346	 * has tried to wake us, and we can skip the call to schedule().
    347	 */
    348	if (likely(!plist_node_empty(&q->list))) {
    349		/*
    350		 * If the timer has already expired, current will already be
    351		 * flagged for rescheduling. Only call schedule if there
    352		 * is no timeout, or if it has yet to expire.
    353		 */
    354		if (!timeout || timeout->task)
    355			freezable_schedule();
    356	}
    357	__set_current_state(TASK_RUNNING);
    358}
    359
    360/**
    361 * unqueue_multiple - Remove various futexes from their hash bucket
    362 * @v:	   The list of futexes to unqueue
    363 * @count: Number of futexes in the list
    364 *
    365 * Helper to unqueue a list of futexes. This can't fail.
    366 *
    367 * Return:
    368 *  - >=0 - Index of the last futex that was awoken;
    369 *  - -1  - No futex was awoken
    370 */
    371static int unqueue_multiple(struct futex_vector *v, int count)
    372{
    373	int ret = -1, i;
    374
    375	for (i = 0; i < count; i++) {
    376		if (!futex_unqueue(&v[i].q))
    377			ret = i;
    378	}
    379
    380	return ret;
    381}
    382
    383/**
    384 * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
    385 * @vs:		The futex list to wait on
    386 * @count:	The size of the list
    387 * @woken:	Index of the last woken futex, if any. Used to notify the
    388 *		caller that it can return this index to userspace (return parameter)
    389 *
    390 * Prepare multiple futexes in a single step and enqueue them. This may fail if
    391 * the futex list is invalid or if any futex was already awoken. On success the
    392 * task is ready to interruptible sleep.
    393 *
    394 * Return:
    395 *  -  1 - One of the futexes was woken by another thread
    396 *  -  0 - Success
    397 *  - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
    398 */
    399static int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
    400{
    401	struct futex_hash_bucket *hb;
    402	bool retry = false;
    403	int ret, i;
    404	u32 uval;
    405
    406	/*
    407	 * Enqueuing multiple futexes is tricky, because we need to enqueue
    408	 * each futex on the list before dealing with the next one to avoid
    409	 * deadlocking on the hash bucket. But, before enqueuing, we need to
    410	 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
    411	 * lose any wake events, which cannot be done before the get_futex_key
    412	 * of the next key, because it calls get_user_pages, which can sleep.
    413	 * Thus, we fetch the list of futexes keys in two steps, by first
    414	 * pinning all the memory keys in the futex key, and only then we read
    415	 * each key and queue the corresponding futex.
    416	 *
    417	 * Private futexes doesn't need to recalculate hash in retry, so skip
    418	 * get_futex_key() when retrying.
    419	 */
    420retry:
    421	for (i = 0; i < count; i++) {
    422		if ((vs[i].w.flags & FUTEX_PRIVATE_FLAG) && retry)
    423			continue;
    424
    425		ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
    426				    !(vs[i].w.flags & FUTEX_PRIVATE_FLAG),
    427				    &vs[i].q.key, FUTEX_READ);
    428
    429		if (unlikely(ret))
    430			return ret;
    431	}
    432
    433	set_current_state(TASK_INTERRUPTIBLE);
    434
    435	for (i = 0; i < count; i++) {
    436		u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
    437		struct futex_q *q = &vs[i].q;
    438		u32 val = (u32)vs[i].w.val;
    439
    440		hb = futex_q_lock(q);
    441		ret = futex_get_value_locked(&uval, uaddr);
    442
    443		if (!ret && uval == val) {
    444			/*
    445			 * The bucket lock can't be held while dealing with the
    446			 * next futex. Queue each futex at this moment so hb can
    447			 * be unlocked.
    448			 */
    449			futex_queue(q, hb);
    450			continue;
    451		}
    452
    453		futex_q_unlock(hb);
    454		__set_current_state(TASK_RUNNING);
    455
    456		/*
    457		 * Even if something went wrong, if we find out that a futex
    458		 * was woken, we don't return error and return this index to
    459		 * userspace
    460		 */
    461		*woken = unqueue_multiple(vs, i);
    462		if (*woken >= 0)
    463			return 1;
    464
    465		if (ret) {
    466			/*
    467			 * If we need to handle a page fault, we need to do so
    468			 * without any lock and any enqueued futex (otherwise
    469			 * we could lose some wakeup). So we do it here, after
    470			 * undoing all the work done so far. In success, we
    471			 * retry all the work.
    472			 */
    473			if (get_user(uval, uaddr))
    474				return -EFAULT;
    475
    476			retry = true;
    477			goto retry;
    478		}
    479
    480		if (uval != val)
    481			return -EWOULDBLOCK;
    482	}
    483
    484	return 0;
    485}
    486
    487/**
    488 * futex_sleep_multiple - Check sleeping conditions and sleep
    489 * @vs:    List of futexes to wait for
    490 * @count: Length of vs
    491 * @to:    Timeout
    492 *
    493 * Sleep if and only if the timeout hasn't expired and no futex on the list has
    494 * been woken up.
    495 */
    496static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
    497				 struct hrtimer_sleeper *to)
    498{
    499	if (to && !to->task)
    500		return;
    501
    502	for (; count; count--, vs++) {
    503		if (!READ_ONCE(vs->q.lock_ptr))
    504			return;
    505	}
    506
    507	freezable_schedule();
    508}
    509
    510/**
    511 * futex_wait_multiple - Prepare to wait on and enqueue several futexes
    512 * @vs:		The list of futexes to wait on
    513 * @count:	The number of objects
    514 * @to:		Timeout before giving up and returning to userspace
    515 *
    516 * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
    517 * sleeps on a group of futexes and returns on the first futex that is
    518 * wake, or after the timeout has elapsed.
    519 *
    520 * Return:
    521 *  - >=0 - Hint to the futex that was awoken
    522 *  - <0  - On error
    523 */
    524int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
    525			struct hrtimer_sleeper *to)
    526{
    527	int ret, hint = 0;
    528
    529	if (to)
    530		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
    531
    532	while (1) {
    533		ret = futex_wait_multiple_setup(vs, count, &hint);
    534		if (ret) {
    535			if (ret > 0) {
    536				/* A futex was woken during setup */
    537				ret = hint;
    538			}
    539			return ret;
    540		}
    541
    542		futex_sleep_multiple(vs, count, to);
    543
    544		__set_current_state(TASK_RUNNING);
    545
    546		ret = unqueue_multiple(vs, count);
    547		if (ret >= 0)
    548			return ret;
    549
    550		if (to && !to->task)
    551			return -ETIMEDOUT;
    552		else if (signal_pending(current))
    553			return -ERESTARTSYS;
    554		/*
    555		 * The final case is a spurious wakeup, for
    556		 * which just retry.
    557		 */
    558	}
    559}
    560
    561/**
    562 * futex_wait_setup() - Prepare to wait on a futex
    563 * @uaddr:	the futex userspace address
    564 * @val:	the expected value
    565 * @flags:	futex flags (FLAGS_SHARED, etc.)
    566 * @q:		the associated futex_q
    567 * @hb:		storage for hash_bucket pointer to be returned to caller
    568 *
    569 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
    570 * compare it with the expected value.  Handle atomic faults internally.
    571 * Return with the hb lock held on success, and unlocked on failure.
    572 *
    573 * Return:
    574 *  -  0 - uaddr contains val and hb has been locked;
    575 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
    576 */
    577int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
    578		     struct futex_q *q, struct futex_hash_bucket **hb)
    579{
    580	u32 uval;
    581	int ret;
    582
    583	/*
    584	 * Access the page AFTER the hash-bucket is locked.
    585	 * Order is important:
    586	 *
    587	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
    588	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
    589	 *
    590	 * The basic logical guarantee of a futex is that it blocks ONLY
    591	 * if cond(var) is known to be true at the time of blocking, for
    592	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
    593	 * would open a race condition where we could block indefinitely with
    594	 * cond(var) false, which would violate the guarantee.
    595	 *
    596	 * On the other hand, we insert q and release the hash-bucket only
    597	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
    598	 * absorb a wakeup if *uaddr does not match the desired values
    599	 * while the syscall executes.
    600	 */
    601retry:
    602	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
    603	if (unlikely(ret != 0))
    604		return ret;
    605
    606retry_private:
    607	*hb = futex_q_lock(q);
    608
    609	ret = futex_get_value_locked(&uval, uaddr);
    610
    611	if (ret) {
    612		futex_q_unlock(*hb);
    613
    614		ret = get_user(uval, uaddr);
    615		if (ret)
    616			return ret;
    617
    618		if (!(flags & FLAGS_SHARED))
    619			goto retry_private;
    620
    621		goto retry;
    622	}
    623
    624	if (uval != val) {
    625		futex_q_unlock(*hb);
    626		ret = -EWOULDBLOCK;
    627	}
    628
    629	return ret;
    630}
    631
    632int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
    633{
    634	struct hrtimer_sleeper timeout, *to;
    635	struct restart_block *restart;
    636	struct futex_hash_bucket *hb;
    637	struct futex_q q = futex_q_init;
    638	int ret;
    639
    640	if (!bitset)
    641		return -EINVAL;
    642	q.bitset = bitset;
    643
    644	to = futex_setup_timer(abs_time, &timeout, flags,
    645			       current->timer_slack_ns);
    646retry:
    647	/*
    648	 * Prepare to wait on uaddr. On success, it holds hb->lock and q
    649	 * is initialized.
    650	 */
    651	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
    652	if (ret)
    653		goto out;
    654
    655	/* futex_queue and wait for wakeup, timeout, or a signal. */
    656	futex_wait_queue(hb, &q, to);
    657
    658	/* If we were woken (and unqueued), we succeeded, whatever. */
    659	ret = 0;
    660	if (!futex_unqueue(&q))
    661		goto out;
    662	ret = -ETIMEDOUT;
    663	if (to && !to->task)
    664		goto out;
    665
    666	/*
    667	 * We expect signal_pending(current), but we might be the
    668	 * victim of a spurious wakeup as well.
    669	 */
    670	if (!signal_pending(current))
    671		goto retry;
    672
    673	ret = -ERESTARTSYS;
    674	if (!abs_time)
    675		goto out;
    676
    677	restart = &current->restart_block;
    678	restart->futex.uaddr = uaddr;
    679	restart->futex.val = val;
    680	restart->futex.time = *abs_time;
    681	restart->futex.bitset = bitset;
    682	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
    683
    684	ret = set_restart_fn(restart, futex_wait_restart);
    685
    686out:
    687	if (to) {
    688		hrtimer_cancel(&to->timer);
    689		destroy_hrtimer_on_stack(&to->timer);
    690	}
    691	return ret;
    692}
    693
    694static long futex_wait_restart(struct restart_block *restart)
    695{
    696	u32 __user *uaddr = restart->futex.uaddr;
    697	ktime_t t, *tp = NULL;
    698
    699	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
    700		t = restart->futex.time;
    701		tp = &t;
    702	}
    703	restart->fn = do_no_restart_syscall;
    704
    705	return (long)futex_wait(uaddr, restart->futex.flags,
    706				restart->futex.val, tp, restart->futex.bitset);
    707}
    708