cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kexec.c (7577B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * kexec.c - kexec_load system call
      4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
      5 */
      6
      7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      8
      9#include <linux/capability.h>
     10#include <linux/mm.h>
     11#include <linux/file.h>
     12#include <linux/security.h>
     13#include <linux/kexec.h>
     14#include <linux/mutex.h>
     15#include <linux/list.h>
     16#include <linux/syscalls.h>
     17#include <linux/vmalloc.h>
     18#include <linux/slab.h>
     19
     20#include "kexec_internal.h"
     21
     22static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
     23			     unsigned long nr_segments,
     24			     struct kexec_segment *segments,
     25			     unsigned long flags)
     26{
     27	int ret;
     28	struct kimage *image;
     29	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
     30
     31	if (kexec_on_panic) {
     32		/* Verify we have a valid entry point */
     33		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
     34		    (entry > phys_to_boot_phys(crashk_res.end)))
     35			return -EADDRNOTAVAIL;
     36	}
     37
     38	/* Allocate and initialize a controlling structure */
     39	image = do_kimage_alloc_init();
     40	if (!image)
     41		return -ENOMEM;
     42
     43	image->start = entry;
     44	image->nr_segments = nr_segments;
     45	memcpy(image->segment, segments, nr_segments * sizeof(*segments));
     46
     47	if (kexec_on_panic) {
     48		/* Enable special crash kernel control page alloc policy. */
     49		image->control_page = crashk_res.start;
     50		image->type = KEXEC_TYPE_CRASH;
     51	}
     52
     53	ret = sanity_check_segment_list(image);
     54	if (ret)
     55		goto out_free_image;
     56
     57	/*
     58	 * Find a location for the control code buffer, and add it
     59	 * the vector of segments so that it's pages will also be
     60	 * counted as destination pages.
     61	 */
     62	ret = -ENOMEM;
     63	image->control_code_page = kimage_alloc_control_pages(image,
     64					   get_order(KEXEC_CONTROL_PAGE_SIZE));
     65	if (!image->control_code_page) {
     66		pr_err("Could not allocate control_code_buffer\n");
     67		goto out_free_image;
     68	}
     69
     70	if (!kexec_on_panic) {
     71		image->swap_page = kimage_alloc_control_pages(image, 0);
     72		if (!image->swap_page) {
     73			pr_err("Could not allocate swap buffer\n");
     74			goto out_free_control_pages;
     75		}
     76	}
     77
     78	*rimage = image;
     79	return 0;
     80out_free_control_pages:
     81	kimage_free_page_list(&image->control_pages);
     82out_free_image:
     83	kfree(image);
     84	return ret;
     85}
     86
     87static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
     88		struct kexec_segment *segments, unsigned long flags)
     89{
     90	struct kimage **dest_image, *image;
     91	unsigned long i;
     92	int ret;
     93
     94	/*
     95	 * Because we write directly to the reserved memory region when loading
     96	 * crash kernels we need a mutex here to prevent multiple crash kernels
     97	 * from attempting to load simultaneously, and to prevent a crash kernel
     98	 * from loading over the top of a in use crash kernel.
     99	 *
    100	 * KISS: always take the mutex.
    101	 */
    102	if (!mutex_trylock(&kexec_mutex))
    103		return -EBUSY;
    104
    105	if (flags & KEXEC_ON_CRASH) {
    106		dest_image = &kexec_crash_image;
    107		if (kexec_crash_image)
    108			arch_kexec_unprotect_crashkres();
    109	} else {
    110		dest_image = &kexec_image;
    111	}
    112
    113	if (nr_segments == 0) {
    114		/* Uninstall image */
    115		kimage_free(xchg(dest_image, NULL));
    116		ret = 0;
    117		goto out_unlock;
    118	}
    119	if (flags & KEXEC_ON_CRASH) {
    120		/*
    121		 * Loading another kernel to switch to if this one
    122		 * crashes.  Free any current crash dump kernel before
    123		 * we corrupt it.
    124		 */
    125		kimage_free(xchg(&kexec_crash_image, NULL));
    126	}
    127
    128	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
    129	if (ret)
    130		goto out_unlock;
    131
    132	if (flags & KEXEC_PRESERVE_CONTEXT)
    133		image->preserve_context = 1;
    134
    135	ret = machine_kexec_prepare(image);
    136	if (ret)
    137		goto out;
    138
    139	/*
    140	 * Some architecture(like S390) may touch the crash memory before
    141	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
    142	 */
    143	ret = kimage_crash_copy_vmcoreinfo(image);
    144	if (ret)
    145		goto out;
    146
    147	for (i = 0; i < nr_segments; i++) {
    148		ret = kimage_load_segment(image, &image->segment[i]);
    149		if (ret)
    150			goto out;
    151	}
    152
    153	kimage_terminate(image);
    154
    155	ret = machine_kexec_post_load(image);
    156	if (ret)
    157		goto out;
    158
    159	/* Install the new kernel and uninstall the old */
    160	image = xchg(dest_image, image);
    161
    162out:
    163	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
    164		arch_kexec_protect_crashkres();
    165
    166	kimage_free(image);
    167out_unlock:
    168	mutex_unlock(&kexec_mutex);
    169	return ret;
    170}
    171
    172/*
    173 * Exec Kernel system call: for obvious reasons only root may call it.
    174 *
    175 * This call breaks up into three pieces.
    176 * - A generic part which loads the new kernel from the current
    177 *   address space, and very carefully places the data in the
    178 *   allocated pages.
    179 *
    180 * - A generic part that interacts with the kernel and tells all of
    181 *   the devices to shut down.  Preventing on-going dmas, and placing
    182 *   the devices in a consistent state so a later kernel can
    183 *   reinitialize them.
    184 *
    185 * - A machine specific part that includes the syscall number
    186 *   and then copies the image to it's final destination.  And
    187 *   jumps into the image at entry.
    188 *
    189 * kexec does not sync, or unmount filesystems so if you need
    190 * that to happen you need to do that yourself.
    191 */
    192
    193static inline int kexec_load_check(unsigned long nr_segments,
    194				   unsigned long flags)
    195{
    196	int result;
    197
    198	/* We only trust the superuser with rebooting the system. */
    199	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
    200		return -EPERM;
    201
    202	/* Permit LSMs and IMA to fail the kexec */
    203	result = security_kernel_load_data(LOADING_KEXEC_IMAGE, false);
    204	if (result < 0)
    205		return result;
    206
    207	/*
    208	 * kexec can be used to circumvent module loading restrictions, so
    209	 * prevent loading in that case
    210	 */
    211	result = security_locked_down(LOCKDOWN_KEXEC);
    212	if (result)
    213		return result;
    214
    215	/*
    216	 * Verify we have a legal set of flags
    217	 * This leaves us room for future extensions.
    218	 */
    219	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
    220		return -EINVAL;
    221
    222	/* Put an artificial cap on the number
    223	 * of segments passed to kexec_load.
    224	 */
    225	if (nr_segments > KEXEC_SEGMENT_MAX)
    226		return -EINVAL;
    227
    228	return 0;
    229}
    230
    231SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
    232		struct kexec_segment __user *, segments, unsigned long, flags)
    233{
    234	struct kexec_segment *ksegments;
    235	unsigned long result;
    236
    237	result = kexec_load_check(nr_segments, flags);
    238	if (result)
    239		return result;
    240
    241	/* Verify we are on the appropriate architecture */
    242	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
    243		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
    244		return -EINVAL;
    245
    246	ksegments = memdup_user(segments, nr_segments * sizeof(ksegments[0]));
    247	if (IS_ERR(ksegments))
    248		return PTR_ERR(ksegments);
    249
    250	result = do_kexec_load(entry, nr_segments, ksegments, flags);
    251	kfree(ksegments);
    252
    253	return result;
    254}
    255
    256#ifdef CONFIG_COMPAT
    257COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
    258		       compat_ulong_t, nr_segments,
    259		       struct compat_kexec_segment __user *, segments,
    260		       compat_ulong_t, flags)
    261{
    262	struct compat_kexec_segment in;
    263	struct kexec_segment *ksegments;
    264	unsigned long i, result;
    265
    266	result = kexec_load_check(nr_segments, flags);
    267	if (result)
    268		return result;
    269
    270	/* Don't allow clients that don't understand the native
    271	 * architecture to do anything.
    272	 */
    273	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
    274		return -EINVAL;
    275
    276	ksegments = kmalloc_array(nr_segments, sizeof(ksegments[0]),
    277			GFP_KERNEL);
    278	if (!ksegments)
    279		return -ENOMEM;
    280
    281	for (i = 0; i < nr_segments; i++) {
    282		result = copy_from_user(&in, &segments[i], sizeof(in));
    283		if (result)
    284			goto fail;
    285
    286		ksegments[i].buf   = compat_ptr(in.buf);
    287		ksegments[i].bufsz = in.bufsz;
    288		ksegments[i].mem   = in.mem;
    289		ksegments[i].memsz = in.memsz;
    290	}
    291
    292	result = do_kexec_load(entry, nr_segments, ksegments, flags);
    293
    294fail:
    295	kfree(ksegments);
    296	return result;
    297}
    298#endif