cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kexec_core.c (32431B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * kexec.c - kexec system call core code.
      4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
      5 */
      6
      7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      8
      9#include <linux/capability.h>
     10#include <linux/mm.h>
     11#include <linux/file.h>
     12#include <linux/slab.h>
     13#include <linux/fs.h>
     14#include <linux/kexec.h>
     15#include <linux/mutex.h>
     16#include <linux/list.h>
     17#include <linux/highmem.h>
     18#include <linux/syscalls.h>
     19#include <linux/reboot.h>
     20#include <linux/ioport.h>
     21#include <linux/hardirq.h>
     22#include <linux/elf.h>
     23#include <linux/elfcore.h>
     24#include <linux/utsname.h>
     25#include <linux/numa.h>
     26#include <linux/suspend.h>
     27#include <linux/device.h>
     28#include <linux/freezer.h>
     29#include <linux/panic_notifier.h>
     30#include <linux/pm.h>
     31#include <linux/cpu.h>
     32#include <linux/uaccess.h>
     33#include <linux/io.h>
     34#include <linux/console.h>
     35#include <linux/vmalloc.h>
     36#include <linux/swap.h>
     37#include <linux/syscore_ops.h>
     38#include <linux/compiler.h>
     39#include <linux/hugetlb.h>
     40#include <linux/objtool.h>
     41#include <linux/kmsg_dump.h>
     42
     43#include <asm/page.h>
     44#include <asm/sections.h>
     45
     46#include <crypto/hash.h>
     47#include "kexec_internal.h"
     48
     49DEFINE_MUTEX(kexec_mutex);
     50
     51/* Per cpu memory for storing cpu states in case of system crash. */
     52note_buf_t __percpu *crash_notes;
     53
     54/* Flag to indicate we are going to kexec a new kernel */
     55bool kexec_in_progress = false;
     56
     57
     58/* Location of the reserved area for the crash kernel */
     59struct resource crashk_res = {
     60	.name  = "Crash kernel",
     61	.start = 0,
     62	.end   = 0,
     63	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
     64	.desc  = IORES_DESC_CRASH_KERNEL
     65};
     66struct resource crashk_low_res = {
     67	.name  = "Crash kernel",
     68	.start = 0,
     69	.end   = 0,
     70	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
     71	.desc  = IORES_DESC_CRASH_KERNEL
     72};
     73
     74int kexec_should_crash(struct task_struct *p)
     75{
     76	/*
     77	 * If crash_kexec_post_notifiers is enabled, don't run
     78	 * crash_kexec() here yet, which must be run after panic
     79	 * notifiers in panic().
     80	 */
     81	if (crash_kexec_post_notifiers)
     82		return 0;
     83	/*
     84	 * There are 4 panic() calls in make_task_dead() path, each of which
     85	 * corresponds to each of these 4 conditions.
     86	 */
     87	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
     88		return 1;
     89	return 0;
     90}
     91
     92int kexec_crash_loaded(void)
     93{
     94	return !!kexec_crash_image;
     95}
     96EXPORT_SYMBOL_GPL(kexec_crash_loaded);
     97
     98/*
     99 * When kexec transitions to the new kernel there is a one-to-one
    100 * mapping between physical and virtual addresses.  On processors
    101 * where you can disable the MMU this is trivial, and easy.  For
    102 * others it is still a simple predictable page table to setup.
    103 *
    104 * In that environment kexec copies the new kernel to its final
    105 * resting place.  This means I can only support memory whose
    106 * physical address can fit in an unsigned long.  In particular
    107 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
    108 * If the assembly stub has more restrictive requirements
    109 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
    110 * defined more restrictively in <asm/kexec.h>.
    111 *
    112 * The code for the transition from the current kernel to the
    113 * new kernel is placed in the control_code_buffer, whose size
    114 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
    115 * page of memory is necessary, but some architectures require more.
    116 * Because this memory must be identity mapped in the transition from
    117 * virtual to physical addresses it must live in the range
    118 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
    119 * modifiable.
    120 *
    121 * The assembly stub in the control code buffer is passed a linked list
    122 * of descriptor pages detailing the source pages of the new kernel,
    123 * and the destination addresses of those source pages.  As this data
    124 * structure is not used in the context of the current OS, it must
    125 * be self-contained.
    126 *
    127 * The code has been made to work with highmem pages and will use a
    128 * destination page in its final resting place (if it happens
    129 * to allocate it).  The end product of this is that most of the
    130 * physical address space, and most of RAM can be used.
    131 *
    132 * Future directions include:
    133 *  - allocating a page table with the control code buffer identity
    134 *    mapped, to simplify machine_kexec and make kexec_on_panic more
    135 *    reliable.
    136 */
    137
    138/*
    139 * KIMAGE_NO_DEST is an impossible destination address..., for
    140 * allocating pages whose destination address we do not care about.
    141 */
    142#define KIMAGE_NO_DEST (-1UL)
    143#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
    144
    145static struct page *kimage_alloc_page(struct kimage *image,
    146				       gfp_t gfp_mask,
    147				       unsigned long dest);
    148
    149int sanity_check_segment_list(struct kimage *image)
    150{
    151	int i;
    152	unsigned long nr_segments = image->nr_segments;
    153	unsigned long total_pages = 0;
    154	unsigned long nr_pages = totalram_pages();
    155
    156	/*
    157	 * Verify we have good destination addresses.  The caller is
    158	 * responsible for making certain we don't attempt to load
    159	 * the new image into invalid or reserved areas of RAM.  This
    160	 * just verifies it is an address we can use.
    161	 *
    162	 * Since the kernel does everything in page size chunks ensure
    163	 * the destination addresses are page aligned.  Too many
    164	 * special cases crop of when we don't do this.  The most
    165	 * insidious is getting overlapping destination addresses
    166	 * simply because addresses are changed to page size
    167	 * granularity.
    168	 */
    169	for (i = 0; i < nr_segments; i++) {
    170		unsigned long mstart, mend;
    171
    172		mstart = image->segment[i].mem;
    173		mend   = mstart + image->segment[i].memsz;
    174		if (mstart > mend)
    175			return -EADDRNOTAVAIL;
    176		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
    177			return -EADDRNOTAVAIL;
    178		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
    179			return -EADDRNOTAVAIL;
    180	}
    181
    182	/* Verify our destination addresses do not overlap.
    183	 * If we alloed overlapping destination addresses
    184	 * through very weird things can happen with no
    185	 * easy explanation as one segment stops on another.
    186	 */
    187	for (i = 0; i < nr_segments; i++) {
    188		unsigned long mstart, mend;
    189		unsigned long j;
    190
    191		mstart = image->segment[i].mem;
    192		mend   = mstart + image->segment[i].memsz;
    193		for (j = 0; j < i; j++) {
    194			unsigned long pstart, pend;
    195
    196			pstart = image->segment[j].mem;
    197			pend   = pstart + image->segment[j].memsz;
    198			/* Do the segments overlap ? */
    199			if ((mend > pstart) && (mstart < pend))
    200				return -EINVAL;
    201		}
    202	}
    203
    204	/* Ensure our buffer sizes are strictly less than
    205	 * our memory sizes.  This should always be the case,
    206	 * and it is easier to check up front than to be surprised
    207	 * later on.
    208	 */
    209	for (i = 0; i < nr_segments; i++) {
    210		if (image->segment[i].bufsz > image->segment[i].memsz)
    211			return -EINVAL;
    212	}
    213
    214	/*
    215	 * Verify that no more than half of memory will be consumed. If the
    216	 * request from userspace is too large, a large amount of time will be
    217	 * wasted allocating pages, which can cause a soft lockup.
    218	 */
    219	for (i = 0; i < nr_segments; i++) {
    220		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
    221			return -EINVAL;
    222
    223		total_pages += PAGE_COUNT(image->segment[i].memsz);
    224	}
    225
    226	if (total_pages > nr_pages / 2)
    227		return -EINVAL;
    228
    229	/*
    230	 * Verify we have good destination addresses.  Normally
    231	 * the caller is responsible for making certain we don't
    232	 * attempt to load the new image into invalid or reserved
    233	 * areas of RAM.  But crash kernels are preloaded into a
    234	 * reserved area of ram.  We must ensure the addresses
    235	 * are in the reserved area otherwise preloading the
    236	 * kernel could corrupt things.
    237	 */
    238
    239	if (image->type == KEXEC_TYPE_CRASH) {
    240		for (i = 0; i < nr_segments; i++) {
    241			unsigned long mstart, mend;
    242
    243			mstart = image->segment[i].mem;
    244			mend = mstart + image->segment[i].memsz - 1;
    245			/* Ensure we are within the crash kernel limits */
    246			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
    247			    (mend > phys_to_boot_phys(crashk_res.end)))
    248				return -EADDRNOTAVAIL;
    249		}
    250	}
    251
    252	return 0;
    253}
    254
    255struct kimage *do_kimage_alloc_init(void)
    256{
    257	struct kimage *image;
    258
    259	/* Allocate a controlling structure */
    260	image = kzalloc(sizeof(*image), GFP_KERNEL);
    261	if (!image)
    262		return NULL;
    263
    264	image->head = 0;
    265	image->entry = &image->head;
    266	image->last_entry = &image->head;
    267	image->control_page = ~0; /* By default this does not apply */
    268	image->type = KEXEC_TYPE_DEFAULT;
    269
    270	/* Initialize the list of control pages */
    271	INIT_LIST_HEAD(&image->control_pages);
    272
    273	/* Initialize the list of destination pages */
    274	INIT_LIST_HEAD(&image->dest_pages);
    275
    276	/* Initialize the list of unusable pages */
    277	INIT_LIST_HEAD(&image->unusable_pages);
    278
    279	return image;
    280}
    281
    282int kimage_is_destination_range(struct kimage *image,
    283					unsigned long start,
    284					unsigned long end)
    285{
    286	unsigned long i;
    287
    288	for (i = 0; i < image->nr_segments; i++) {
    289		unsigned long mstart, mend;
    290
    291		mstart = image->segment[i].mem;
    292		mend = mstart + image->segment[i].memsz;
    293		if ((end > mstart) && (start < mend))
    294			return 1;
    295	}
    296
    297	return 0;
    298}
    299
    300static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
    301{
    302	struct page *pages;
    303
    304	if (fatal_signal_pending(current))
    305		return NULL;
    306	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
    307	if (pages) {
    308		unsigned int count, i;
    309
    310		pages->mapping = NULL;
    311		set_page_private(pages, order);
    312		count = 1 << order;
    313		for (i = 0; i < count; i++)
    314			SetPageReserved(pages + i);
    315
    316		arch_kexec_post_alloc_pages(page_address(pages), count,
    317					    gfp_mask);
    318
    319		if (gfp_mask & __GFP_ZERO)
    320			for (i = 0; i < count; i++)
    321				clear_highpage(pages + i);
    322	}
    323
    324	return pages;
    325}
    326
    327static void kimage_free_pages(struct page *page)
    328{
    329	unsigned int order, count, i;
    330
    331	order = page_private(page);
    332	count = 1 << order;
    333
    334	arch_kexec_pre_free_pages(page_address(page), count);
    335
    336	for (i = 0; i < count; i++)
    337		ClearPageReserved(page + i);
    338	__free_pages(page, order);
    339}
    340
    341void kimage_free_page_list(struct list_head *list)
    342{
    343	struct page *page, *next;
    344
    345	list_for_each_entry_safe(page, next, list, lru) {
    346		list_del(&page->lru);
    347		kimage_free_pages(page);
    348	}
    349}
    350
    351static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
    352							unsigned int order)
    353{
    354	/* Control pages are special, they are the intermediaries
    355	 * that are needed while we copy the rest of the pages
    356	 * to their final resting place.  As such they must
    357	 * not conflict with either the destination addresses
    358	 * or memory the kernel is already using.
    359	 *
    360	 * The only case where we really need more than one of
    361	 * these are for architectures where we cannot disable
    362	 * the MMU and must instead generate an identity mapped
    363	 * page table for all of the memory.
    364	 *
    365	 * At worst this runs in O(N) of the image size.
    366	 */
    367	struct list_head extra_pages;
    368	struct page *pages;
    369	unsigned int count;
    370
    371	count = 1 << order;
    372	INIT_LIST_HEAD(&extra_pages);
    373
    374	/* Loop while I can allocate a page and the page allocated
    375	 * is a destination page.
    376	 */
    377	do {
    378		unsigned long pfn, epfn, addr, eaddr;
    379
    380		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
    381		if (!pages)
    382			break;
    383		pfn   = page_to_boot_pfn(pages);
    384		epfn  = pfn + count;
    385		addr  = pfn << PAGE_SHIFT;
    386		eaddr = epfn << PAGE_SHIFT;
    387		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
    388			      kimage_is_destination_range(image, addr, eaddr)) {
    389			list_add(&pages->lru, &extra_pages);
    390			pages = NULL;
    391		}
    392	} while (!pages);
    393
    394	if (pages) {
    395		/* Remember the allocated page... */
    396		list_add(&pages->lru, &image->control_pages);
    397
    398		/* Because the page is already in it's destination
    399		 * location we will never allocate another page at
    400		 * that address.  Therefore kimage_alloc_pages
    401		 * will not return it (again) and we don't need
    402		 * to give it an entry in image->segment[].
    403		 */
    404	}
    405	/* Deal with the destination pages I have inadvertently allocated.
    406	 *
    407	 * Ideally I would convert multi-page allocations into single
    408	 * page allocations, and add everything to image->dest_pages.
    409	 *
    410	 * For now it is simpler to just free the pages.
    411	 */
    412	kimage_free_page_list(&extra_pages);
    413
    414	return pages;
    415}
    416
    417static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
    418						      unsigned int order)
    419{
    420	/* Control pages are special, they are the intermediaries
    421	 * that are needed while we copy the rest of the pages
    422	 * to their final resting place.  As such they must
    423	 * not conflict with either the destination addresses
    424	 * or memory the kernel is already using.
    425	 *
    426	 * Control pages are also the only pags we must allocate
    427	 * when loading a crash kernel.  All of the other pages
    428	 * are specified by the segments and we just memcpy
    429	 * into them directly.
    430	 *
    431	 * The only case where we really need more than one of
    432	 * these are for architectures where we cannot disable
    433	 * the MMU and must instead generate an identity mapped
    434	 * page table for all of the memory.
    435	 *
    436	 * Given the low demand this implements a very simple
    437	 * allocator that finds the first hole of the appropriate
    438	 * size in the reserved memory region, and allocates all
    439	 * of the memory up to and including the hole.
    440	 */
    441	unsigned long hole_start, hole_end, size;
    442	struct page *pages;
    443
    444	pages = NULL;
    445	size = (1 << order) << PAGE_SHIFT;
    446	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
    447	hole_end   = hole_start + size - 1;
    448	while (hole_end <= crashk_res.end) {
    449		unsigned long i;
    450
    451		cond_resched();
    452
    453		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
    454			break;
    455		/* See if I overlap any of the segments */
    456		for (i = 0; i < image->nr_segments; i++) {
    457			unsigned long mstart, mend;
    458
    459			mstart = image->segment[i].mem;
    460			mend   = mstart + image->segment[i].memsz - 1;
    461			if ((hole_end >= mstart) && (hole_start <= mend)) {
    462				/* Advance the hole to the end of the segment */
    463				hole_start = (mend + (size - 1)) & ~(size - 1);
    464				hole_end   = hole_start + size - 1;
    465				break;
    466			}
    467		}
    468		/* If I don't overlap any segments I have found my hole! */
    469		if (i == image->nr_segments) {
    470			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
    471			image->control_page = hole_end;
    472			break;
    473		}
    474	}
    475
    476	/* Ensure that these pages are decrypted if SME is enabled. */
    477	if (pages)
    478		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
    479
    480	return pages;
    481}
    482
    483
    484struct page *kimage_alloc_control_pages(struct kimage *image,
    485					 unsigned int order)
    486{
    487	struct page *pages = NULL;
    488
    489	switch (image->type) {
    490	case KEXEC_TYPE_DEFAULT:
    491		pages = kimage_alloc_normal_control_pages(image, order);
    492		break;
    493	case KEXEC_TYPE_CRASH:
    494		pages = kimage_alloc_crash_control_pages(image, order);
    495		break;
    496	}
    497
    498	return pages;
    499}
    500
    501int kimage_crash_copy_vmcoreinfo(struct kimage *image)
    502{
    503	struct page *vmcoreinfo_page;
    504	void *safecopy;
    505
    506	if (image->type != KEXEC_TYPE_CRASH)
    507		return 0;
    508
    509	/*
    510	 * For kdump, allocate one vmcoreinfo safe copy from the
    511	 * crash memory. as we have arch_kexec_protect_crashkres()
    512	 * after kexec syscall, we naturally protect it from write
    513	 * (even read) access under kernel direct mapping. But on
    514	 * the other hand, we still need to operate it when crash
    515	 * happens to generate vmcoreinfo note, hereby we rely on
    516	 * vmap for this purpose.
    517	 */
    518	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
    519	if (!vmcoreinfo_page) {
    520		pr_warn("Could not allocate vmcoreinfo buffer\n");
    521		return -ENOMEM;
    522	}
    523	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
    524	if (!safecopy) {
    525		pr_warn("Could not vmap vmcoreinfo buffer\n");
    526		return -ENOMEM;
    527	}
    528
    529	image->vmcoreinfo_data_copy = safecopy;
    530	crash_update_vmcoreinfo_safecopy(safecopy);
    531
    532	return 0;
    533}
    534
    535static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
    536{
    537	if (*image->entry != 0)
    538		image->entry++;
    539
    540	if (image->entry == image->last_entry) {
    541		kimage_entry_t *ind_page;
    542		struct page *page;
    543
    544		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
    545		if (!page)
    546			return -ENOMEM;
    547
    548		ind_page = page_address(page);
    549		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
    550		image->entry = ind_page;
    551		image->last_entry = ind_page +
    552				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
    553	}
    554	*image->entry = entry;
    555	image->entry++;
    556	*image->entry = 0;
    557
    558	return 0;
    559}
    560
    561static int kimage_set_destination(struct kimage *image,
    562				   unsigned long destination)
    563{
    564	int result;
    565
    566	destination &= PAGE_MASK;
    567	result = kimage_add_entry(image, destination | IND_DESTINATION);
    568
    569	return result;
    570}
    571
    572
    573static int kimage_add_page(struct kimage *image, unsigned long page)
    574{
    575	int result;
    576
    577	page &= PAGE_MASK;
    578	result = kimage_add_entry(image, page | IND_SOURCE);
    579
    580	return result;
    581}
    582
    583
    584static void kimage_free_extra_pages(struct kimage *image)
    585{
    586	/* Walk through and free any extra destination pages I may have */
    587	kimage_free_page_list(&image->dest_pages);
    588
    589	/* Walk through and free any unusable pages I have cached */
    590	kimage_free_page_list(&image->unusable_pages);
    591
    592}
    593
    594int __weak machine_kexec_post_load(struct kimage *image)
    595{
    596	return 0;
    597}
    598
    599void kimage_terminate(struct kimage *image)
    600{
    601	if (*image->entry != 0)
    602		image->entry++;
    603
    604	*image->entry = IND_DONE;
    605}
    606
    607#define for_each_kimage_entry(image, ptr, entry) \
    608	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
    609		ptr = (entry & IND_INDIRECTION) ? \
    610			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
    611
    612static void kimage_free_entry(kimage_entry_t entry)
    613{
    614	struct page *page;
    615
    616	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
    617	kimage_free_pages(page);
    618}
    619
    620void kimage_free(struct kimage *image)
    621{
    622	kimage_entry_t *ptr, entry;
    623	kimage_entry_t ind = 0;
    624
    625	if (!image)
    626		return;
    627
    628	if (image->vmcoreinfo_data_copy) {
    629		crash_update_vmcoreinfo_safecopy(NULL);
    630		vunmap(image->vmcoreinfo_data_copy);
    631	}
    632
    633	kimage_free_extra_pages(image);
    634	for_each_kimage_entry(image, ptr, entry) {
    635		if (entry & IND_INDIRECTION) {
    636			/* Free the previous indirection page */
    637			if (ind & IND_INDIRECTION)
    638				kimage_free_entry(ind);
    639			/* Save this indirection page until we are
    640			 * done with it.
    641			 */
    642			ind = entry;
    643		} else if (entry & IND_SOURCE)
    644			kimage_free_entry(entry);
    645	}
    646	/* Free the final indirection page */
    647	if (ind & IND_INDIRECTION)
    648		kimage_free_entry(ind);
    649
    650	/* Handle any machine specific cleanup */
    651	machine_kexec_cleanup(image);
    652
    653	/* Free the kexec control pages... */
    654	kimage_free_page_list(&image->control_pages);
    655
    656	/*
    657	 * Free up any temporary buffers allocated. This might hit if
    658	 * error occurred much later after buffer allocation.
    659	 */
    660	if (image->file_mode)
    661		kimage_file_post_load_cleanup(image);
    662
    663	kfree(image);
    664}
    665
    666static kimage_entry_t *kimage_dst_used(struct kimage *image,
    667					unsigned long page)
    668{
    669	kimage_entry_t *ptr, entry;
    670	unsigned long destination = 0;
    671
    672	for_each_kimage_entry(image, ptr, entry) {
    673		if (entry & IND_DESTINATION)
    674			destination = entry & PAGE_MASK;
    675		else if (entry & IND_SOURCE) {
    676			if (page == destination)
    677				return ptr;
    678			destination += PAGE_SIZE;
    679		}
    680	}
    681
    682	return NULL;
    683}
    684
    685static struct page *kimage_alloc_page(struct kimage *image,
    686					gfp_t gfp_mask,
    687					unsigned long destination)
    688{
    689	/*
    690	 * Here we implement safeguards to ensure that a source page
    691	 * is not copied to its destination page before the data on
    692	 * the destination page is no longer useful.
    693	 *
    694	 * To do this we maintain the invariant that a source page is
    695	 * either its own destination page, or it is not a
    696	 * destination page at all.
    697	 *
    698	 * That is slightly stronger than required, but the proof
    699	 * that no problems will not occur is trivial, and the
    700	 * implementation is simply to verify.
    701	 *
    702	 * When allocating all pages normally this algorithm will run
    703	 * in O(N) time, but in the worst case it will run in O(N^2)
    704	 * time.   If the runtime is a problem the data structures can
    705	 * be fixed.
    706	 */
    707	struct page *page;
    708	unsigned long addr;
    709
    710	/*
    711	 * Walk through the list of destination pages, and see if I
    712	 * have a match.
    713	 */
    714	list_for_each_entry(page, &image->dest_pages, lru) {
    715		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
    716		if (addr == destination) {
    717			list_del(&page->lru);
    718			return page;
    719		}
    720	}
    721	page = NULL;
    722	while (1) {
    723		kimage_entry_t *old;
    724
    725		/* Allocate a page, if we run out of memory give up */
    726		page = kimage_alloc_pages(gfp_mask, 0);
    727		if (!page)
    728			return NULL;
    729		/* If the page cannot be used file it away */
    730		if (page_to_boot_pfn(page) >
    731				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
    732			list_add(&page->lru, &image->unusable_pages);
    733			continue;
    734		}
    735		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
    736
    737		/* If it is the destination page we want use it */
    738		if (addr == destination)
    739			break;
    740
    741		/* If the page is not a destination page use it */
    742		if (!kimage_is_destination_range(image, addr,
    743						  addr + PAGE_SIZE))
    744			break;
    745
    746		/*
    747		 * I know that the page is someones destination page.
    748		 * See if there is already a source page for this
    749		 * destination page.  And if so swap the source pages.
    750		 */
    751		old = kimage_dst_used(image, addr);
    752		if (old) {
    753			/* If so move it */
    754			unsigned long old_addr;
    755			struct page *old_page;
    756
    757			old_addr = *old & PAGE_MASK;
    758			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
    759			copy_highpage(page, old_page);
    760			*old = addr | (*old & ~PAGE_MASK);
    761
    762			/* The old page I have found cannot be a
    763			 * destination page, so return it if it's
    764			 * gfp_flags honor the ones passed in.
    765			 */
    766			if (!(gfp_mask & __GFP_HIGHMEM) &&
    767			    PageHighMem(old_page)) {
    768				kimage_free_pages(old_page);
    769				continue;
    770			}
    771			page = old_page;
    772			break;
    773		}
    774		/* Place the page on the destination list, to be used later */
    775		list_add(&page->lru, &image->dest_pages);
    776	}
    777
    778	return page;
    779}
    780
    781static int kimage_load_normal_segment(struct kimage *image,
    782					 struct kexec_segment *segment)
    783{
    784	unsigned long maddr;
    785	size_t ubytes, mbytes;
    786	int result;
    787	unsigned char __user *buf = NULL;
    788	unsigned char *kbuf = NULL;
    789
    790	if (image->file_mode)
    791		kbuf = segment->kbuf;
    792	else
    793		buf = segment->buf;
    794	ubytes = segment->bufsz;
    795	mbytes = segment->memsz;
    796	maddr = segment->mem;
    797
    798	result = kimage_set_destination(image, maddr);
    799	if (result < 0)
    800		goto out;
    801
    802	while (mbytes) {
    803		struct page *page;
    804		char *ptr;
    805		size_t uchunk, mchunk;
    806
    807		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
    808		if (!page) {
    809			result  = -ENOMEM;
    810			goto out;
    811		}
    812		result = kimage_add_page(image, page_to_boot_pfn(page)
    813								<< PAGE_SHIFT);
    814		if (result < 0)
    815			goto out;
    816
    817		ptr = kmap(page);
    818		/* Start with a clear page */
    819		clear_page(ptr);
    820		ptr += maddr & ~PAGE_MASK;
    821		mchunk = min_t(size_t, mbytes,
    822				PAGE_SIZE - (maddr & ~PAGE_MASK));
    823		uchunk = min(ubytes, mchunk);
    824
    825		/* For file based kexec, source pages are in kernel memory */
    826		if (image->file_mode)
    827			memcpy(ptr, kbuf, uchunk);
    828		else
    829			result = copy_from_user(ptr, buf, uchunk);
    830		kunmap(page);
    831		if (result) {
    832			result = -EFAULT;
    833			goto out;
    834		}
    835		ubytes -= uchunk;
    836		maddr  += mchunk;
    837		if (image->file_mode)
    838			kbuf += mchunk;
    839		else
    840			buf += mchunk;
    841		mbytes -= mchunk;
    842
    843		cond_resched();
    844	}
    845out:
    846	return result;
    847}
    848
    849static int kimage_load_crash_segment(struct kimage *image,
    850					struct kexec_segment *segment)
    851{
    852	/* For crash dumps kernels we simply copy the data from
    853	 * user space to it's destination.
    854	 * We do things a page at a time for the sake of kmap.
    855	 */
    856	unsigned long maddr;
    857	size_t ubytes, mbytes;
    858	int result;
    859	unsigned char __user *buf = NULL;
    860	unsigned char *kbuf = NULL;
    861
    862	result = 0;
    863	if (image->file_mode)
    864		kbuf = segment->kbuf;
    865	else
    866		buf = segment->buf;
    867	ubytes = segment->bufsz;
    868	mbytes = segment->memsz;
    869	maddr = segment->mem;
    870	while (mbytes) {
    871		struct page *page;
    872		char *ptr;
    873		size_t uchunk, mchunk;
    874
    875		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
    876		if (!page) {
    877			result  = -ENOMEM;
    878			goto out;
    879		}
    880		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
    881		ptr = kmap(page);
    882		ptr += maddr & ~PAGE_MASK;
    883		mchunk = min_t(size_t, mbytes,
    884				PAGE_SIZE - (maddr & ~PAGE_MASK));
    885		uchunk = min(ubytes, mchunk);
    886		if (mchunk > uchunk) {
    887			/* Zero the trailing part of the page */
    888			memset(ptr + uchunk, 0, mchunk - uchunk);
    889		}
    890
    891		/* For file based kexec, source pages are in kernel memory */
    892		if (image->file_mode)
    893			memcpy(ptr, kbuf, uchunk);
    894		else
    895			result = copy_from_user(ptr, buf, uchunk);
    896		kexec_flush_icache_page(page);
    897		kunmap(page);
    898		arch_kexec_pre_free_pages(page_address(page), 1);
    899		if (result) {
    900			result = -EFAULT;
    901			goto out;
    902		}
    903		ubytes -= uchunk;
    904		maddr  += mchunk;
    905		if (image->file_mode)
    906			kbuf += mchunk;
    907		else
    908			buf += mchunk;
    909		mbytes -= mchunk;
    910
    911		cond_resched();
    912	}
    913out:
    914	return result;
    915}
    916
    917int kimage_load_segment(struct kimage *image,
    918				struct kexec_segment *segment)
    919{
    920	int result = -ENOMEM;
    921
    922	switch (image->type) {
    923	case KEXEC_TYPE_DEFAULT:
    924		result = kimage_load_normal_segment(image, segment);
    925		break;
    926	case KEXEC_TYPE_CRASH:
    927		result = kimage_load_crash_segment(image, segment);
    928		break;
    929	}
    930
    931	return result;
    932}
    933
    934struct kimage *kexec_image;
    935struct kimage *kexec_crash_image;
    936int kexec_load_disabled;
    937#ifdef CONFIG_SYSCTL
    938static struct ctl_table kexec_core_sysctls[] = {
    939	{
    940		.procname	= "kexec_load_disabled",
    941		.data		= &kexec_load_disabled,
    942		.maxlen		= sizeof(int),
    943		.mode		= 0644,
    944		/* only handle a transition from default "0" to "1" */
    945		.proc_handler	= proc_dointvec_minmax,
    946		.extra1		= SYSCTL_ONE,
    947		.extra2		= SYSCTL_ONE,
    948	},
    949	{ }
    950};
    951
    952static int __init kexec_core_sysctl_init(void)
    953{
    954	register_sysctl_init("kernel", kexec_core_sysctls);
    955	return 0;
    956}
    957late_initcall(kexec_core_sysctl_init);
    958#endif
    959
    960/*
    961 * No panic_cpu check version of crash_kexec().  This function is called
    962 * only when panic_cpu holds the current CPU number; this is the only CPU
    963 * which processes crash_kexec routines.
    964 */
    965void __noclone __crash_kexec(struct pt_regs *regs)
    966{
    967	/* Take the kexec_mutex here to prevent sys_kexec_load
    968	 * running on one cpu from replacing the crash kernel
    969	 * we are using after a panic on a different cpu.
    970	 *
    971	 * If the crash kernel was not located in a fixed area
    972	 * of memory the xchg(&kexec_crash_image) would be
    973	 * sufficient.  But since I reuse the memory...
    974	 */
    975	if (mutex_trylock(&kexec_mutex)) {
    976		if (kexec_crash_image) {
    977			struct pt_regs fixed_regs;
    978
    979			crash_setup_regs(&fixed_regs, regs);
    980			crash_save_vmcoreinfo();
    981			machine_crash_shutdown(&fixed_regs);
    982			machine_kexec(kexec_crash_image);
    983		}
    984		mutex_unlock(&kexec_mutex);
    985	}
    986}
    987STACK_FRAME_NON_STANDARD(__crash_kexec);
    988
    989void crash_kexec(struct pt_regs *regs)
    990{
    991	int old_cpu, this_cpu;
    992
    993	/*
    994	 * Only one CPU is allowed to execute the crash_kexec() code as with
    995	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
    996	 * may stop each other.  To exclude them, we use panic_cpu here too.
    997	 */
    998	this_cpu = raw_smp_processor_id();
    999	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
   1000	if (old_cpu == PANIC_CPU_INVALID) {
   1001		/* This is the 1st CPU which comes here, so go ahead. */
   1002		__crash_kexec(regs);
   1003
   1004		/*
   1005		 * Reset panic_cpu to allow another panic()/crash_kexec()
   1006		 * call.
   1007		 */
   1008		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
   1009	}
   1010}
   1011
   1012size_t crash_get_memory_size(void)
   1013{
   1014	size_t size = 0;
   1015
   1016	mutex_lock(&kexec_mutex);
   1017	if (crashk_res.end != crashk_res.start)
   1018		size = resource_size(&crashk_res);
   1019	mutex_unlock(&kexec_mutex);
   1020	return size;
   1021}
   1022
   1023void __weak crash_free_reserved_phys_range(unsigned long begin,
   1024					   unsigned long end)
   1025{
   1026	unsigned long addr;
   1027
   1028	for (addr = begin; addr < end; addr += PAGE_SIZE)
   1029		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
   1030}
   1031
   1032int crash_shrink_memory(unsigned long new_size)
   1033{
   1034	int ret = 0;
   1035	unsigned long start, end;
   1036	unsigned long old_size;
   1037	struct resource *ram_res;
   1038
   1039	mutex_lock(&kexec_mutex);
   1040
   1041	if (kexec_crash_image) {
   1042		ret = -ENOENT;
   1043		goto unlock;
   1044	}
   1045	start = crashk_res.start;
   1046	end = crashk_res.end;
   1047	old_size = (end == 0) ? 0 : end - start + 1;
   1048	if (new_size >= old_size) {
   1049		ret = (new_size == old_size) ? 0 : -EINVAL;
   1050		goto unlock;
   1051	}
   1052
   1053	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
   1054	if (!ram_res) {
   1055		ret = -ENOMEM;
   1056		goto unlock;
   1057	}
   1058
   1059	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
   1060	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
   1061
   1062	crash_free_reserved_phys_range(end, crashk_res.end);
   1063
   1064	if ((start == end) && (crashk_res.parent != NULL))
   1065		release_resource(&crashk_res);
   1066
   1067	ram_res->start = end;
   1068	ram_res->end = crashk_res.end;
   1069	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
   1070	ram_res->name = "System RAM";
   1071
   1072	crashk_res.end = end - 1;
   1073
   1074	insert_resource(&iomem_resource, ram_res);
   1075
   1076unlock:
   1077	mutex_unlock(&kexec_mutex);
   1078	return ret;
   1079}
   1080
   1081void crash_save_cpu(struct pt_regs *regs, int cpu)
   1082{
   1083	struct elf_prstatus prstatus;
   1084	u32 *buf;
   1085
   1086	if ((cpu < 0) || (cpu >= nr_cpu_ids))
   1087		return;
   1088
   1089	/* Using ELF notes here is opportunistic.
   1090	 * I need a well defined structure format
   1091	 * for the data I pass, and I need tags
   1092	 * on the data to indicate what information I have
   1093	 * squirrelled away.  ELF notes happen to provide
   1094	 * all of that, so there is no need to invent something new.
   1095	 */
   1096	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
   1097	if (!buf)
   1098		return;
   1099	memset(&prstatus, 0, sizeof(prstatus));
   1100	prstatus.common.pr_pid = current->pid;
   1101	elf_core_copy_regs(&prstatus.pr_reg, regs);
   1102	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
   1103			      &prstatus, sizeof(prstatus));
   1104	final_note(buf);
   1105}
   1106
   1107static int __init crash_notes_memory_init(void)
   1108{
   1109	/* Allocate memory for saving cpu registers. */
   1110	size_t size, align;
   1111
   1112	/*
   1113	 * crash_notes could be allocated across 2 vmalloc pages when percpu
   1114	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
   1115	 * pages are also on 2 continuous physical pages. In this case the
   1116	 * 2nd part of crash_notes in 2nd page could be lost since only the
   1117	 * starting address and size of crash_notes are exported through sysfs.
   1118	 * Here round up the size of crash_notes to the nearest power of two
   1119	 * and pass it to __alloc_percpu as align value. This can make sure
   1120	 * crash_notes is allocated inside one physical page.
   1121	 */
   1122	size = sizeof(note_buf_t);
   1123	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
   1124
   1125	/*
   1126	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
   1127	 * definitely will be in 2 pages with that.
   1128	 */
   1129	BUILD_BUG_ON(size > PAGE_SIZE);
   1130
   1131	crash_notes = __alloc_percpu(size, align);
   1132	if (!crash_notes) {
   1133		pr_warn("Memory allocation for saving cpu register states failed\n");
   1134		return -ENOMEM;
   1135	}
   1136	return 0;
   1137}
   1138subsys_initcall(crash_notes_memory_init);
   1139
   1140
   1141/*
   1142 * Move into place and start executing a preloaded standalone
   1143 * executable.  If nothing was preloaded return an error.
   1144 */
   1145int kernel_kexec(void)
   1146{
   1147	int error = 0;
   1148
   1149	if (!mutex_trylock(&kexec_mutex))
   1150		return -EBUSY;
   1151	if (!kexec_image) {
   1152		error = -EINVAL;
   1153		goto Unlock;
   1154	}
   1155
   1156#ifdef CONFIG_KEXEC_JUMP
   1157	if (kexec_image->preserve_context) {
   1158		pm_prepare_console();
   1159		error = freeze_processes();
   1160		if (error) {
   1161			error = -EBUSY;
   1162			goto Restore_console;
   1163		}
   1164		suspend_console();
   1165		error = dpm_suspend_start(PMSG_FREEZE);
   1166		if (error)
   1167			goto Resume_console;
   1168		/* At this point, dpm_suspend_start() has been called,
   1169		 * but *not* dpm_suspend_end(). We *must* call
   1170		 * dpm_suspend_end() now.  Otherwise, drivers for
   1171		 * some devices (e.g. interrupt controllers) become
   1172		 * desynchronized with the actual state of the
   1173		 * hardware at resume time, and evil weirdness ensues.
   1174		 */
   1175		error = dpm_suspend_end(PMSG_FREEZE);
   1176		if (error)
   1177			goto Resume_devices;
   1178		error = suspend_disable_secondary_cpus();
   1179		if (error)
   1180			goto Enable_cpus;
   1181		local_irq_disable();
   1182		error = syscore_suspend();
   1183		if (error)
   1184			goto Enable_irqs;
   1185	} else
   1186#endif
   1187	{
   1188		kexec_in_progress = true;
   1189		kernel_restart_prepare("kexec reboot");
   1190		migrate_to_reboot_cpu();
   1191
   1192		/*
   1193		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
   1194		 * no further code needs to use CPU hotplug (which is true in
   1195		 * the reboot case). However, the kexec path depends on using
   1196		 * CPU hotplug again; so re-enable it here.
   1197		 */
   1198		cpu_hotplug_enable();
   1199		pr_notice("Starting new kernel\n");
   1200		machine_shutdown();
   1201	}
   1202
   1203	kmsg_dump(KMSG_DUMP_SHUTDOWN);
   1204	machine_kexec(kexec_image);
   1205
   1206#ifdef CONFIG_KEXEC_JUMP
   1207	if (kexec_image->preserve_context) {
   1208		syscore_resume();
   1209 Enable_irqs:
   1210		local_irq_enable();
   1211 Enable_cpus:
   1212		suspend_enable_secondary_cpus();
   1213		dpm_resume_start(PMSG_RESTORE);
   1214 Resume_devices:
   1215		dpm_resume_end(PMSG_RESTORE);
   1216 Resume_console:
   1217		resume_console();
   1218		thaw_processes();
   1219 Restore_console:
   1220		pm_restore_console();
   1221	}
   1222#endif
   1223
   1224 Unlock:
   1225	mutex_unlock(&kexec_mutex);
   1226	return error;
   1227}
   1228
   1229/*
   1230 * Protection mechanism for crashkernel reserved memory after
   1231 * the kdump kernel is loaded.
   1232 *
   1233 * Provide an empty default implementation here -- architecture
   1234 * code may override this
   1235 */
   1236void __weak arch_kexec_protect_crashkres(void)
   1237{}
   1238
   1239void __weak arch_kexec_unprotect_crashkres(void)
   1240{}