kthread.c (42523B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* Kernel thread helper functions. 3 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 4 * Copyright (C) 2009 Red Hat, Inc. 5 * 6 * Creation is done via kthreadd, so that we get a clean environment 7 * even if we're invoked from userspace (think modprobe, hotplug cpu, 8 * etc.). 9 */ 10#include <uapi/linux/sched/types.h> 11#include <linux/mm.h> 12#include <linux/mmu_context.h> 13#include <linux/sched.h> 14#include <linux/sched/mm.h> 15#include <linux/sched/task.h> 16#include <linux/kthread.h> 17#include <linux/completion.h> 18#include <linux/err.h> 19#include <linux/cgroup.h> 20#include <linux/cpuset.h> 21#include <linux/unistd.h> 22#include <linux/file.h> 23#include <linux/export.h> 24#include <linux/mutex.h> 25#include <linux/slab.h> 26#include <linux/freezer.h> 27#include <linux/ptrace.h> 28#include <linux/uaccess.h> 29#include <linux/numa.h> 30#include <linux/sched/isolation.h> 31#include <trace/events/sched.h> 32 33 34static DEFINE_SPINLOCK(kthread_create_lock); 35static LIST_HEAD(kthread_create_list); 36struct task_struct *kthreadd_task; 37 38struct kthread_create_info 39{ 40 /* Information passed to kthread() from kthreadd. */ 41 int (*threadfn)(void *data); 42 void *data; 43 int node; 44 45 /* Result passed back to kthread_create() from kthreadd. */ 46 struct task_struct *result; 47 struct completion *done; 48 49 struct list_head list; 50}; 51 52struct kthread { 53 unsigned long flags; 54 unsigned int cpu; 55 int result; 56 int (*threadfn)(void *); 57 void *data; 58 struct completion parked; 59 struct completion exited; 60#ifdef CONFIG_BLK_CGROUP 61 struct cgroup_subsys_state *blkcg_css; 62#endif 63 /* To store the full name if task comm is truncated. */ 64 char *full_name; 65}; 66 67enum KTHREAD_BITS { 68 KTHREAD_IS_PER_CPU = 0, 69 KTHREAD_SHOULD_STOP, 70 KTHREAD_SHOULD_PARK, 71}; 72 73static inline struct kthread *to_kthread(struct task_struct *k) 74{ 75 WARN_ON(!(k->flags & PF_KTHREAD)); 76 return k->worker_private; 77} 78 79/* 80 * Variant of to_kthread() that doesn't assume @p is a kthread. 81 * 82 * Per construction; when: 83 * 84 * (p->flags & PF_KTHREAD) && p->worker_private 85 * 86 * the task is both a kthread and struct kthread is persistent. However 87 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and 88 * begin_new_exec()). 89 */ 90static inline struct kthread *__to_kthread(struct task_struct *p) 91{ 92 void *kthread = p->worker_private; 93 if (kthread && !(p->flags & PF_KTHREAD)) 94 kthread = NULL; 95 return kthread; 96} 97 98void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk) 99{ 100 struct kthread *kthread = to_kthread(tsk); 101 102 if (!kthread || !kthread->full_name) { 103 __get_task_comm(buf, buf_size, tsk); 104 return; 105 } 106 107 strscpy_pad(buf, kthread->full_name, buf_size); 108} 109 110bool set_kthread_struct(struct task_struct *p) 111{ 112 struct kthread *kthread; 113 114 if (WARN_ON_ONCE(to_kthread(p))) 115 return false; 116 117 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); 118 if (!kthread) 119 return false; 120 121 init_completion(&kthread->exited); 122 init_completion(&kthread->parked); 123 p->vfork_done = &kthread->exited; 124 125 p->worker_private = kthread; 126 return true; 127} 128 129void free_kthread_struct(struct task_struct *k) 130{ 131 struct kthread *kthread; 132 133 /* 134 * Can be NULL if kmalloc() in set_kthread_struct() failed. 135 */ 136 kthread = to_kthread(k); 137 if (!kthread) 138 return; 139 140#ifdef CONFIG_BLK_CGROUP 141 WARN_ON_ONCE(kthread->blkcg_css); 142#endif 143 k->worker_private = NULL; 144 kfree(kthread->full_name); 145 kfree(kthread); 146} 147 148/** 149 * kthread_should_stop - should this kthread return now? 150 * 151 * When someone calls kthread_stop() on your kthread, it will be woken 152 * and this will return true. You should then return, and your return 153 * value will be passed through to kthread_stop(). 154 */ 155bool kthread_should_stop(void) 156{ 157 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 158} 159EXPORT_SYMBOL(kthread_should_stop); 160 161bool __kthread_should_park(struct task_struct *k) 162{ 163 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); 164} 165EXPORT_SYMBOL_GPL(__kthread_should_park); 166 167/** 168 * kthread_should_park - should this kthread park now? 169 * 170 * When someone calls kthread_park() on your kthread, it will be woken 171 * and this will return true. You should then do the necessary 172 * cleanup and call kthread_parkme() 173 * 174 * Similar to kthread_should_stop(), but this keeps the thread alive 175 * and in a park position. kthread_unpark() "restarts" the thread and 176 * calls the thread function again. 177 */ 178bool kthread_should_park(void) 179{ 180 return __kthread_should_park(current); 181} 182EXPORT_SYMBOL_GPL(kthread_should_park); 183 184/** 185 * kthread_freezable_should_stop - should this freezable kthread return now? 186 * @was_frozen: optional out parameter, indicates whether %current was frozen 187 * 188 * kthread_should_stop() for freezable kthreads, which will enter 189 * refrigerator if necessary. This function is safe from kthread_stop() / 190 * freezer deadlock and freezable kthreads should use this function instead 191 * of calling try_to_freeze() directly. 192 */ 193bool kthread_freezable_should_stop(bool *was_frozen) 194{ 195 bool frozen = false; 196 197 might_sleep(); 198 199 if (unlikely(freezing(current))) 200 frozen = __refrigerator(true); 201 202 if (was_frozen) 203 *was_frozen = frozen; 204 205 return kthread_should_stop(); 206} 207EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 208 209/** 210 * kthread_func - return the function specified on kthread creation 211 * @task: kthread task in question 212 * 213 * Returns NULL if the task is not a kthread. 214 */ 215void *kthread_func(struct task_struct *task) 216{ 217 struct kthread *kthread = __to_kthread(task); 218 if (kthread) 219 return kthread->threadfn; 220 return NULL; 221} 222EXPORT_SYMBOL_GPL(kthread_func); 223 224/** 225 * kthread_data - return data value specified on kthread creation 226 * @task: kthread task in question 227 * 228 * Return the data value specified when kthread @task was created. 229 * The caller is responsible for ensuring the validity of @task when 230 * calling this function. 231 */ 232void *kthread_data(struct task_struct *task) 233{ 234 return to_kthread(task)->data; 235} 236EXPORT_SYMBOL_GPL(kthread_data); 237 238/** 239 * kthread_probe_data - speculative version of kthread_data() 240 * @task: possible kthread task in question 241 * 242 * @task could be a kthread task. Return the data value specified when it 243 * was created if accessible. If @task isn't a kthread task or its data is 244 * inaccessible for any reason, %NULL is returned. This function requires 245 * that @task itself is safe to dereference. 246 */ 247void *kthread_probe_data(struct task_struct *task) 248{ 249 struct kthread *kthread = __to_kthread(task); 250 void *data = NULL; 251 252 if (kthread) 253 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); 254 return data; 255} 256 257static void __kthread_parkme(struct kthread *self) 258{ 259 for (;;) { 260 /* 261 * TASK_PARKED is a special state; we must serialize against 262 * possible pending wakeups to avoid store-store collisions on 263 * task->state. 264 * 265 * Such a collision might possibly result in the task state 266 * changin from TASK_PARKED and us failing the 267 * wait_task_inactive() in kthread_park(). 268 */ 269 set_special_state(TASK_PARKED); 270 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) 271 break; 272 273 /* 274 * Thread is going to call schedule(), do not preempt it, 275 * or the caller of kthread_park() may spend more time in 276 * wait_task_inactive(). 277 */ 278 preempt_disable(); 279 complete(&self->parked); 280 schedule_preempt_disabled(); 281 preempt_enable(); 282 } 283 __set_current_state(TASK_RUNNING); 284} 285 286void kthread_parkme(void) 287{ 288 __kthread_parkme(to_kthread(current)); 289} 290EXPORT_SYMBOL_GPL(kthread_parkme); 291 292/** 293 * kthread_exit - Cause the current kthread return @result to kthread_stop(). 294 * @result: The integer value to return to kthread_stop(). 295 * 296 * While kthread_exit can be called directly, it exists so that 297 * functions which do some additional work in non-modular code such as 298 * module_put_and_kthread_exit can be implemented. 299 * 300 * Does not return. 301 */ 302void __noreturn kthread_exit(long result) 303{ 304 struct kthread *kthread = to_kthread(current); 305 kthread->result = result; 306 do_exit(0); 307} 308 309/** 310 * kthread_complete_and_exit - Exit the current kthread. 311 * @comp: Completion to complete 312 * @code: The integer value to return to kthread_stop(). 313 * 314 * If present complete @comp and the reuturn code to kthread_stop(). 315 * 316 * A kernel thread whose module may be removed after the completion of 317 * @comp can use this function exit safely. 318 * 319 * Does not return. 320 */ 321void __noreturn kthread_complete_and_exit(struct completion *comp, long code) 322{ 323 if (comp) 324 complete(comp); 325 326 kthread_exit(code); 327} 328EXPORT_SYMBOL(kthread_complete_and_exit); 329 330static int kthread(void *_create) 331{ 332 static const struct sched_param param = { .sched_priority = 0 }; 333 /* Copy data: it's on kthread's stack */ 334 struct kthread_create_info *create = _create; 335 int (*threadfn)(void *data) = create->threadfn; 336 void *data = create->data; 337 struct completion *done; 338 struct kthread *self; 339 int ret; 340 341 self = to_kthread(current); 342 343 /* Release the structure when caller killed by a fatal signal. */ 344 done = xchg(&create->done, NULL); 345 if (!done) { 346 kfree(create); 347 kthread_exit(-EINTR); 348 } 349 350 self->threadfn = threadfn; 351 self->data = data; 352 353 /* 354 * The new thread inherited kthreadd's priority and CPU mask. Reset 355 * back to default in case they have been changed. 356 */ 357 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); 358 set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD)); 359 360 /* OK, tell user we're spawned, wait for stop or wakeup */ 361 __set_current_state(TASK_UNINTERRUPTIBLE); 362 create->result = current; 363 /* 364 * Thread is going to call schedule(), do not preempt it, 365 * or the creator may spend more time in wait_task_inactive(). 366 */ 367 preempt_disable(); 368 complete(done); 369 schedule_preempt_disabled(); 370 preempt_enable(); 371 372 ret = -EINTR; 373 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { 374 cgroup_kthread_ready(); 375 __kthread_parkme(self); 376 ret = threadfn(data); 377 } 378 kthread_exit(ret); 379} 380 381/* called from kernel_clone() to get node information for about to be created task */ 382int tsk_fork_get_node(struct task_struct *tsk) 383{ 384#ifdef CONFIG_NUMA 385 if (tsk == kthreadd_task) 386 return tsk->pref_node_fork; 387#endif 388 return NUMA_NO_NODE; 389} 390 391static void create_kthread(struct kthread_create_info *create) 392{ 393 int pid; 394 395#ifdef CONFIG_NUMA 396 current->pref_node_fork = create->node; 397#endif 398 /* We want our own signal handler (we take no signals by default). */ 399 pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD); 400 if (pid < 0) { 401 /* Release the structure when caller killed by a fatal signal. */ 402 struct completion *done = xchg(&create->done, NULL); 403 404 if (!done) { 405 kfree(create); 406 return; 407 } 408 create->result = ERR_PTR(pid); 409 complete(done); 410 } 411} 412 413static __printf(4, 0) 414struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 415 void *data, int node, 416 const char namefmt[], 417 va_list args) 418{ 419 DECLARE_COMPLETION_ONSTACK(done); 420 struct task_struct *task; 421 struct kthread_create_info *create = kmalloc(sizeof(*create), 422 GFP_KERNEL); 423 424 if (!create) 425 return ERR_PTR(-ENOMEM); 426 create->threadfn = threadfn; 427 create->data = data; 428 create->node = node; 429 create->done = &done; 430 431 spin_lock(&kthread_create_lock); 432 list_add_tail(&create->list, &kthread_create_list); 433 spin_unlock(&kthread_create_lock); 434 435 wake_up_process(kthreadd_task); 436 /* 437 * Wait for completion in killable state, for I might be chosen by 438 * the OOM killer while kthreadd is trying to allocate memory for 439 * new kernel thread. 440 */ 441 if (unlikely(wait_for_completion_killable(&done))) { 442 /* 443 * If I was killed by a fatal signal before kthreadd (or new 444 * kernel thread) calls complete(), leave the cleanup of this 445 * structure to that thread. 446 */ 447 if (xchg(&create->done, NULL)) 448 return ERR_PTR(-EINTR); 449 /* 450 * kthreadd (or new kernel thread) will call complete() 451 * shortly. 452 */ 453 wait_for_completion(&done); 454 } 455 task = create->result; 456 if (!IS_ERR(task)) { 457 char name[TASK_COMM_LEN]; 458 va_list aq; 459 int len; 460 461 /* 462 * task is already visible to other tasks, so updating 463 * COMM must be protected. 464 */ 465 va_copy(aq, args); 466 len = vsnprintf(name, sizeof(name), namefmt, aq); 467 va_end(aq); 468 if (len >= TASK_COMM_LEN) { 469 struct kthread *kthread = to_kthread(task); 470 471 /* leave it truncated when out of memory. */ 472 kthread->full_name = kvasprintf(GFP_KERNEL, namefmt, args); 473 } 474 set_task_comm(task, name); 475 } 476 kfree(create); 477 return task; 478} 479 480/** 481 * kthread_create_on_node - create a kthread. 482 * @threadfn: the function to run until signal_pending(current). 483 * @data: data ptr for @threadfn. 484 * @node: task and thread structures for the thread are allocated on this node 485 * @namefmt: printf-style name for the thread. 486 * 487 * Description: This helper function creates and names a kernel 488 * thread. The thread will be stopped: use wake_up_process() to start 489 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 490 * is affine to all CPUs. 491 * 492 * If thread is going to be bound on a particular cpu, give its node 493 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 494 * When woken, the thread will run @threadfn() with @data as its 495 * argument. @threadfn() can either return directly if it is a 496 * standalone thread for which no one will call kthread_stop(), or 497 * return when 'kthread_should_stop()' is true (which means 498 * kthread_stop() has been called). The return value should be zero 499 * or a negative error number; it will be passed to kthread_stop(). 500 * 501 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 502 */ 503struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 504 void *data, int node, 505 const char namefmt[], 506 ...) 507{ 508 struct task_struct *task; 509 va_list args; 510 511 va_start(args, namefmt); 512 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 513 va_end(args); 514 515 return task; 516} 517EXPORT_SYMBOL(kthread_create_on_node); 518 519static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) 520{ 521 unsigned long flags; 522 523 if (!wait_task_inactive(p, state)) { 524 WARN_ON(1); 525 return; 526 } 527 528 /* It's safe because the task is inactive. */ 529 raw_spin_lock_irqsave(&p->pi_lock, flags); 530 do_set_cpus_allowed(p, mask); 531 p->flags |= PF_NO_SETAFFINITY; 532 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 533} 534 535static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) 536{ 537 __kthread_bind_mask(p, cpumask_of(cpu), state); 538} 539 540void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 541{ 542 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 543} 544 545/** 546 * kthread_bind - bind a just-created kthread to a cpu. 547 * @p: thread created by kthread_create(). 548 * @cpu: cpu (might not be online, must be possible) for @k to run on. 549 * 550 * Description: This function is equivalent to set_cpus_allowed(), 551 * except that @cpu doesn't need to be online, and the thread must be 552 * stopped (i.e., just returned from kthread_create()). 553 */ 554void kthread_bind(struct task_struct *p, unsigned int cpu) 555{ 556 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 557} 558EXPORT_SYMBOL(kthread_bind); 559 560/** 561 * kthread_create_on_cpu - Create a cpu bound kthread 562 * @threadfn: the function to run until signal_pending(current). 563 * @data: data ptr for @threadfn. 564 * @cpu: The cpu on which the thread should be bound, 565 * @namefmt: printf-style name for the thread. Format is restricted 566 * to "name.*%u". Code fills in cpu number. 567 * 568 * Description: This helper function creates and names a kernel thread 569 */ 570struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 571 void *data, unsigned int cpu, 572 const char *namefmt) 573{ 574 struct task_struct *p; 575 576 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 577 cpu); 578 if (IS_ERR(p)) 579 return p; 580 kthread_bind(p, cpu); 581 /* CPU hotplug need to bind once again when unparking the thread. */ 582 to_kthread(p)->cpu = cpu; 583 return p; 584} 585EXPORT_SYMBOL(kthread_create_on_cpu); 586 587void kthread_set_per_cpu(struct task_struct *k, int cpu) 588{ 589 struct kthread *kthread = to_kthread(k); 590 if (!kthread) 591 return; 592 593 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); 594 595 if (cpu < 0) { 596 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 597 return; 598 } 599 600 kthread->cpu = cpu; 601 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 602} 603 604bool kthread_is_per_cpu(struct task_struct *p) 605{ 606 struct kthread *kthread = __to_kthread(p); 607 if (!kthread) 608 return false; 609 610 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 611} 612 613/** 614 * kthread_unpark - unpark a thread created by kthread_create(). 615 * @k: thread created by kthread_create(). 616 * 617 * Sets kthread_should_park() for @k to return false, wakes it, and 618 * waits for it to return. If the thread is marked percpu then its 619 * bound to the cpu again. 620 */ 621void kthread_unpark(struct task_struct *k) 622{ 623 struct kthread *kthread = to_kthread(k); 624 625 /* 626 * Newly created kthread was parked when the CPU was offline. 627 * The binding was lost and we need to set it again. 628 */ 629 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 630 __kthread_bind(k, kthread->cpu, TASK_PARKED); 631 632 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 633 /* 634 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. 635 */ 636 wake_up_state(k, TASK_PARKED); 637} 638EXPORT_SYMBOL_GPL(kthread_unpark); 639 640/** 641 * kthread_park - park a thread created by kthread_create(). 642 * @k: thread created by kthread_create(). 643 * 644 * Sets kthread_should_park() for @k to return true, wakes it, and 645 * waits for it to return. This can also be called after kthread_create() 646 * instead of calling wake_up_process(): the thread will park without 647 * calling threadfn(). 648 * 649 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 650 * If called by the kthread itself just the park bit is set. 651 */ 652int kthread_park(struct task_struct *k) 653{ 654 struct kthread *kthread = to_kthread(k); 655 656 if (WARN_ON(k->flags & PF_EXITING)) 657 return -ENOSYS; 658 659 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) 660 return -EBUSY; 661 662 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 663 if (k != current) { 664 wake_up_process(k); 665 /* 666 * Wait for __kthread_parkme() to complete(), this means we 667 * _will_ have TASK_PARKED and are about to call schedule(). 668 */ 669 wait_for_completion(&kthread->parked); 670 /* 671 * Now wait for that schedule() to complete and the task to 672 * get scheduled out. 673 */ 674 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); 675 } 676 677 return 0; 678} 679EXPORT_SYMBOL_GPL(kthread_park); 680 681/** 682 * kthread_stop - stop a thread created by kthread_create(). 683 * @k: thread created by kthread_create(). 684 * 685 * Sets kthread_should_stop() for @k to return true, wakes it, and 686 * waits for it to exit. This can also be called after kthread_create() 687 * instead of calling wake_up_process(): the thread will exit without 688 * calling threadfn(). 689 * 690 * If threadfn() may call kthread_exit() itself, the caller must ensure 691 * task_struct can't go away. 692 * 693 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 694 * was never called. 695 */ 696int kthread_stop(struct task_struct *k) 697{ 698 struct kthread *kthread; 699 int ret; 700 701 trace_sched_kthread_stop(k); 702 703 get_task_struct(k); 704 kthread = to_kthread(k); 705 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 706 kthread_unpark(k); 707 wake_up_process(k); 708 wait_for_completion(&kthread->exited); 709 ret = kthread->result; 710 put_task_struct(k); 711 712 trace_sched_kthread_stop_ret(ret); 713 return ret; 714} 715EXPORT_SYMBOL(kthread_stop); 716 717int kthreadd(void *unused) 718{ 719 struct task_struct *tsk = current; 720 721 /* Setup a clean context for our children to inherit. */ 722 set_task_comm(tsk, "kthreadd"); 723 ignore_signals(tsk); 724 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD)); 725 set_mems_allowed(node_states[N_MEMORY]); 726 727 current->flags |= PF_NOFREEZE; 728 cgroup_init_kthreadd(); 729 730 for (;;) { 731 set_current_state(TASK_INTERRUPTIBLE); 732 if (list_empty(&kthread_create_list)) 733 schedule(); 734 __set_current_state(TASK_RUNNING); 735 736 spin_lock(&kthread_create_lock); 737 while (!list_empty(&kthread_create_list)) { 738 struct kthread_create_info *create; 739 740 create = list_entry(kthread_create_list.next, 741 struct kthread_create_info, list); 742 list_del_init(&create->list); 743 spin_unlock(&kthread_create_lock); 744 745 create_kthread(create); 746 747 spin_lock(&kthread_create_lock); 748 } 749 spin_unlock(&kthread_create_lock); 750 } 751 752 return 0; 753} 754 755void __kthread_init_worker(struct kthread_worker *worker, 756 const char *name, 757 struct lock_class_key *key) 758{ 759 memset(worker, 0, sizeof(struct kthread_worker)); 760 raw_spin_lock_init(&worker->lock); 761 lockdep_set_class_and_name(&worker->lock, key, name); 762 INIT_LIST_HEAD(&worker->work_list); 763 INIT_LIST_HEAD(&worker->delayed_work_list); 764} 765EXPORT_SYMBOL_GPL(__kthread_init_worker); 766 767/** 768 * kthread_worker_fn - kthread function to process kthread_worker 769 * @worker_ptr: pointer to initialized kthread_worker 770 * 771 * This function implements the main cycle of kthread worker. It processes 772 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 773 * is empty. 774 * 775 * The works are not allowed to keep any locks, disable preemption or interrupts 776 * when they finish. There is defined a safe point for freezing when one work 777 * finishes and before a new one is started. 778 * 779 * Also the works must not be handled by more than one worker at the same time, 780 * see also kthread_queue_work(). 781 */ 782int kthread_worker_fn(void *worker_ptr) 783{ 784 struct kthread_worker *worker = worker_ptr; 785 struct kthread_work *work; 786 787 /* 788 * FIXME: Update the check and remove the assignment when all kthread 789 * worker users are created using kthread_create_worker*() functions. 790 */ 791 WARN_ON(worker->task && worker->task != current); 792 worker->task = current; 793 794 if (worker->flags & KTW_FREEZABLE) 795 set_freezable(); 796 797repeat: 798 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 799 800 if (kthread_should_stop()) { 801 __set_current_state(TASK_RUNNING); 802 raw_spin_lock_irq(&worker->lock); 803 worker->task = NULL; 804 raw_spin_unlock_irq(&worker->lock); 805 return 0; 806 } 807 808 work = NULL; 809 raw_spin_lock_irq(&worker->lock); 810 if (!list_empty(&worker->work_list)) { 811 work = list_first_entry(&worker->work_list, 812 struct kthread_work, node); 813 list_del_init(&work->node); 814 } 815 worker->current_work = work; 816 raw_spin_unlock_irq(&worker->lock); 817 818 if (work) { 819 kthread_work_func_t func = work->func; 820 __set_current_state(TASK_RUNNING); 821 trace_sched_kthread_work_execute_start(work); 822 work->func(work); 823 /* 824 * Avoid dereferencing work after this point. The trace 825 * event only cares about the address. 826 */ 827 trace_sched_kthread_work_execute_end(work, func); 828 } else if (!freezing(current)) 829 schedule(); 830 831 try_to_freeze(); 832 cond_resched(); 833 goto repeat; 834} 835EXPORT_SYMBOL_GPL(kthread_worker_fn); 836 837static __printf(3, 0) struct kthread_worker * 838__kthread_create_worker(int cpu, unsigned int flags, 839 const char namefmt[], va_list args) 840{ 841 struct kthread_worker *worker; 842 struct task_struct *task; 843 int node = NUMA_NO_NODE; 844 845 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 846 if (!worker) 847 return ERR_PTR(-ENOMEM); 848 849 kthread_init_worker(worker); 850 851 if (cpu >= 0) 852 node = cpu_to_node(cpu); 853 854 task = __kthread_create_on_node(kthread_worker_fn, worker, 855 node, namefmt, args); 856 if (IS_ERR(task)) 857 goto fail_task; 858 859 if (cpu >= 0) 860 kthread_bind(task, cpu); 861 862 worker->flags = flags; 863 worker->task = task; 864 wake_up_process(task); 865 return worker; 866 867fail_task: 868 kfree(worker); 869 return ERR_CAST(task); 870} 871 872/** 873 * kthread_create_worker - create a kthread worker 874 * @flags: flags modifying the default behavior of the worker 875 * @namefmt: printf-style name for the kthread worker (task). 876 * 877 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 878 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 879 * when the caller was killed by a fatal signal. 880 */ 881struct kthread_worker * 882kthread_create_worker(unsigned int flags, const char namefmt[], ...) 883{ 884 struct kthread_worker *worker; 885 va_list args; 886 887 va_start(args, namefmt); 888 worker = __kthread_create_worker(-1, flags, namefmt, args); 889 va_end(args); 890 891 return worker; 892} 893EXPORT_SYMBOL(kthread_create_worker); 894 895/** 896 * kthread_create_worker_on_cpu - create a kthread worker and bind it 897 * to a given CPU and the associated NUMA node. 898 * @cpu: CPU number 899 * @flags: flags modifying the default behavior of the worker 900 * @namefmt: printf-style name for the kthread worker (task). 901 * 902 * Use a valid CPU number if you want to bind the kthread worker 903 * to the given CPU and the associated NUMA node. 904 * 905 * A good practice is to add the cpu number also into the worker name. 906 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 907 * 908 * CPU hotplug: 909 * The kthread worker API is simple and generic. It just provides a way 910 * to create, use, and destroy workers. 911 * 912 * It is up to the API user how to handle CPU hotplug. They have to decide 913 * how to handle pending work items, prevent queuing new ones, and 914 * restore the functionality when the CPU goes off and on. There are a 915 * few catches: 916 * 917 * - CPU affinity gets lost when it is scheduled on an offline CPU. 918 * 919 * - The worker might not exist when the CPU was off when the user 920 * created the workers. 921 * 922 * Good practice is to implement two CPU hotplug callbacks and to 923 * destroy/create the worker when the CPU goes down/up. 924 * 925 * Return: 926 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 927 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 928 * when the caller was killed by a fatal signal. 929 */ 930struct kthread_worker * 931kthread_create_worker_on_cpu(int cpu, unsigned int flags, 932 const char namefmt[], ...) 933{ 934 struct kthread_worker *worker; 935 va_list args; 936 937 va_start(args, namefmt); 938 worker = __kthread_create_worker(cpu, flags, namefmt, args); 939 va_end(args); 940 941 return worker; 942} 943EXPORT_SYMBOL(kthread_create_worker_on_cpu); 944 945/* 946 * Returns true when the work could not be queued at the moment. 947 * It happens when it is already pending in a worker list 948 * or when it is being cancelled. 949 */ 950static inline bool queuing_blocked(struct kthread_worker *worker, 951 struct kthread_work *work) 952{ 953 lockdep_assert_held(&worker->lock); 954 955 return !list_empty(&work->node) || work->canceling; 956} 957 958static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 959 struct kthread_work *work) 960{ 961 lockdep_assert_held(&worker->lock); 962 WARN_ON_ONCE(!list_empty(&work->node)); 963 /* Do not use a work with >1 worker, see kthread_queue_work() */ 964 WARN_ON_ONCE(work->worker && work->worker != worker); 965} 966 967/* insert @work before @pos in @worker */ 968static void kthread_insert_work(struct kthread_worker *worker, 969 struct kthread_work *work, 970 struct list_head *pos) 971{ 972 kthread_insert_work_sanity_check(worker, work); 973 974 trace_sched_kthread_work_queue_work(worker, work); 975 976 list_add_tail(&work->node, pos); 977 work->worker = worker; 978 if (!worker->current_work && likely(worker->task)) 979 wake_up_process(worker->task); 980} 981 982/** 983 * kthread_queue_work - queue a kthread_work 984 * @worker: target kthread_worker 985 * @work: kthread_work to queue 986 * 987 * Queue @work to work processor @task for async execution. @task 988 * must have been created with kthread_worker_create(). Returns %true 989 * if @work was successfully queued, %false if it was already pending. 990 * 991 * Reinitialize the work if it needs to be used by another worker. 992 * For example, when the worker was stopped and started again. 993 */ 994bool kthread_queue_work(struct kthread_worker *worker, 995 struct kthread_work *work) 996{ 997 bool ret = false; 998 unsigned long flags; 999 1000 raw_spin_lock_irqsave(&worker->lock, flags); 1001 if (!queuing_blocked(worker, work)) { 1002 kthread_insert_work(worker, work, &worker->work_list); 1003 ret = true; 1004 } 1005 raw_spin_unlock_irqrestore(&worker->lock, flags); 1006 return ret; 1007} 1008EXPORT_SYMBOL_GPL(kthread_queue_work); 1009 1010/** 1011 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 1012 * delayed work when the timer expires. 1013 * @t: pointer to the expired timer 1014 * 1015 * The format of the function is defined by struct timer_list. 1016 * It should have been called from irqsafe timer with irq already off. 1017 */ 1018void kthread_delayed_work_timer_fn(struct timer_list *t) 1019{ 1020 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer); 1021 struct kthread_work *work = &dwork->work; 1022 struct kthread_worker *worker = work->worker; 1023 unsigned long flags; 1024 1025 /* 1026 * This might happen when a pending work is reinitialized. 1027 * It means that it is used a wrong way. 1028 */ 1029 if (WARN_ON_ONCE(!worker)) 1030 return; 1031 1032 raw_spin_lock_irqsave(&worker->lock, flags); 1033 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1034 WARN_ON_ONCE(work->worker != worker); 1035 1036 /* Move the work from worker->delayed_work_list. */ 1037 WARN_ON_ONCE(list_empty(&work->node)); 1038 list_del_init(&work->node); 1039 if (!work->canceling) 1040 kthread_insert_work(worker, work, &worker->work_list); 1041 1042 raw_spin_unlock_irqrestore(&worker->lock, flags); 1043} 1044EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 1045 1046static void __kthread_queue_delayed_work(struct kthread_worker *worker, 1047 struct kthread_delayed_work *dwork, 1048 unsigned long delay) 1049{ 1050 struct timer_list *timer = &dwork->timer; 1051 struct kthread_work *work = &dwork->work; 1052 1053 WARN_ON_FUNCTION_MISMATCH(timer->function, 1054 kthread_delayed_work_timer_fn); 1055 1056 /* 1057 * If @delay is 0, queue @dwork->work immediately. This is for 1058 * both optimization and correctness. The earliest @timer can 1059 * expire is on the closest next tick and delayed_work users depend 1060 * on that there's no such delay when @delay is 0. 1061 */ 1062 if (!delay) { 1063 kthread_insert_work(worker, work, &worker->work_list); 1064 return; 1065 } 1066 1067 /* Be paranoid and try to detect possible races already now. */ 1068 kthread_insert_work_sanity_check(worker, work); 1069 1070 list_add(&work->node, &worker->delayed_work_list); 1071 work->worker = worker; 1072 timer->expires = jiffies + delay; 1073 add_timer(timer); 1074} 1075 1076/** 1077 * kthread_queue_delayed_work - queue the associated kthread work 1078 * after a delay. 1079 * @worker: target kthread_worker 1080 * @dwork: kthread_delayed_work to queue 1081 * @delay: number of jiffies to wait before queuing 1082 * 1083 * If the work has not been pending it starts a timer that will queue 1084 * the work after the given @delay. If @delay is zero, it queues the 1085 * work immediately. 1086 * 1087 * Return: %false if the @work has already been pending. It means that 1088 * either the timer was running or the work was queued. It returns %true 1089 * otherwise. 1090 */ 1091bool kthread_queue_delayed_work(struct kthread_worker *worker, 1092 struct kthread_delayed_work *dwork, 1093 unsigned long delay) 1094{ 1095 struct kthread_work *work = &dwork->work; 1096 unsigned long flags; 1097 bool ret = false; 1098 1099 raw_spin_lock_irqsave(&worker->lock, flags); 1100 1101 if (!queuing_blocked(worker, work)) { 1102 __kthread_queue_delayed_work(worker, dwork, delay); 1103 ret = true; 1104 } 1105 1106 raw_spin_unlock_irqrestore(&worker->lock, flags); 1107 return ret; 1108} 1109EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 1110 1111struct kthread_flush_work { 1112 struct kthread_work work; 1113 struct completion done; 1114}; 1115 1116static void kthread_flush_work_fn(struct kthread_work *work) 1117{ 1118 struct kthread_flush_work *fwork = 1119 container_of(work, struct kthread_flush_work, work); 1120 complete(&fwork->done); 1121} 1122 1123/** 1124 * kthread_flush_work - flush a kthread_work 1125 * @work: work to flush 1126 * 1127 * If @work is queued or executing, wait for it to finish execution. 1128 */ 1129void kthread_flush_work(struct kthread_work *work) 1130{ 1131 struct kthread_flush_work fwork = { 1132 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1133 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1134 }; 1135 struct kthread_worker *worker; 1136 bool noop = false; 1137 1138 worker = work->worker; 1139 if (!worker) 1140 return; 1141 1142 raw_spin_lock_irq(&worker->lock); 1143 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1144 WARN_ON_ONCE(work->worker != worker); 1145 1146 if (!list_empty(&work->node)) 1147 kthread_insert_work(worker, &fwork.work, work->node.next); 1148 else if (worker->current_work == work) 1149 kthread_insert_work(worker, &fwork.work, 1150 worker->work_list.next); 1151 else 1152 noop = true; 1153 1154 raw_spin_unlock_irq(&worker->lock); 1155 1156 if (!noop) 1157 wait_for_completion(&fwork.done); 1158} 1159EXPORT_SYMBOL_GPL(kthread_flush_work); 1160 1161/* 1162 * Make sure that the timer is neither set nor running and could 1163 * not manipulate the work list_head any longer. 1164 * 1165 * The function is called under worker->lock. The lock is temporary 1166 * released but the timer can't be set again in the meantime. 1167 */ 1168static void kthread_cancel_delayed_work_timer(struct kthread_work *work, 1169 unsigned long *flags) 1170{ 1171 struct kthread_delayed_work *dwork = 1172 container_of(work, struct kthread_delayed_work, work); 1173 struct kthread_worker *worker = work->worker; 1174 1175 /* 1176 * del_timer_sync() must be called to make sure that the timer 1177 * callback is not running. The lock must be temporary released 1178 * to avoid a deadlock with the callback. In the meantime, 1179 * any queuing is blocked by setting the canceling counter. 1180 */ 1181 work->canceling++; 1182 raw_spin_unlock_irqrestore(&worker->lock, *flags); 1183 del_timer_sync(&dwork->timer); 1184 raw_spin_lock_irqsave(&worker->lock, *flags); 1185 work->canceling--; 1186} 1187 1188/* 1189 * This function removes the work from the worker queue. 1190 * 1191 * It is called under worker->lock. The caller must make sure that 1192 * the timer used by delayed work is not running, e.g. by calling 1193 * kthread_cancel_delayed_work_timer(). 1194 * 1195 * The work might still be in use when this function finishes. See the 1196 * current_work proceed by the worker. 1197 * 1198 * Return: %true if @work was pending and successfully canceled, 1199 * %false if @work was not pending 1200 */ 1201static bool __kthread_cancel_work(struct kthread_work *work) 1202{ 1203 /* 1204 * Try to remove the work from a worker list. It might either 1205 * be from worker->work_list or from worker->delayed_work_list. 1206 */ 1207 if (!list_empty(&work->node)) { 1208 list_del_init(&work->node); 1209 return true; 1210 } 1211 1212 return false; 1213} 1214 1215/** 1216 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 1217 * @worker: kthread worker to use 1218 * @dwork: kthread delayed work to queue 1219 * @delay: number of jiffies to wait before queuing 1220 * 1221 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 1222 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 1223 * @work is guaranteed to be queued immediately. 1224 * 1225 * Return: %false if @dwork was idle and queued, %true otherwise. 1226 * 1227 * A special case is when the work is being canceled in parallel. 1228 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1229 * or yet another kthread_mod_delayed_work() call. We let the other command 1230 * win and return %true here. The return value can be used for reference 1231 * counting and the number of queued works stays the same. Anyway, the caller 1232 * is supposed to synchronize these operations a reasonable way. 1233 * 1234 * This function is safe to call from any context including IRQ handler. 1235 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1236 * for details. 1237 */ 1238bool kthread_mod_delayed_work(struct kthread_worker *worker, 1239 struct kthread_delayed_work *dwork, 1240 unsigned long delay) 1241{ 1242 struct kthread_work *work = &dwork->work; 1243 unsigned long flags; 1244 int ret; 1245 1246 raw_spin_lock_irqsave(&worker->lock, flags); 1247 1248 /* Do not bother with canceling when never queued. */ 1249 if (!work->worker) { 1250 ret = false; 1251 goto fast_queue; 1252 } 1253 1254 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1255 WARN_ON_ONCE(work->worker != worker); 1256 1257 /* 1258 * Temporary cancel the work but do not fight with another command 1259 * that is canceling the work as well. 1260 * 1261 * It is a bit tricky because of possible races with another 1262 * mod_delayed_work() and cancel_delayed_work() callers. 1263 * 1264 * The timer must be canceled first because worker->lock is released 1265 * when doing so. But the work can be removed from the queue (list) 1266 * only when it can be queued again so that the return value can 1267 * be used for reference counting. 1268 */ 1269 kthread_cancel_delayed_work_timer(work, &flags); 1270 if (work->canceling) { 1271 /* The number of works in the queue does not change. */ 1272 ret = true; 1273 goto out; 1274 } 1275 ret = __kthread_cancel_work(work); 1276 1277fast_queue: 1278 __kthread_queue_delayed_work(worker, dwork, delay); 1279out: 1280 raw_spin_unlock_irqrestore(&worker->lock, flags); 1281 return ret; 1282} 1283EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1284 1285static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1286{ 1287 struct kthread_worker *worker = work->worker; 1288 unsigned long flags; 1289 int ret = false; 1290 1291 if (!worker) 1292 goto out; 1293 1294 raw_spin_lock_irqsave(&worker->lock, flags); 1295 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1296 WARN_ON_ONCE(work->worker != worker); 1297 1298 if (is_dwork) 1299 kthread_cancel_delayed_work_timer(work, &flags); 1300 1301 ret = __kthread_cancel_work(work); 1302 1303 if (worker->current_work != work) 1304 goto out_fast; 1305 1306 /* 1307 * The work is in progress and we need to wait with the lock released. 1308 * In the meantime, block any queuing by setting the canceling counter. 1309 */ 1310 work->canceling++; 1311 raw_spin_unlock_irqrestore(&worker->lock, flags); 1312 kthread_flush_work(work); 1313 raw_spin_lock_irqsave(&worker->lock, flags); 1314 work->canceling--; 1315 1316out_fast: 1317 raw_spin_unlock_irqrestore(&worker->lock, flags); 1318out: 1319 return ret; 1320} 1321 1322/** 1323 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1324 * @work: the kthread work to cancel 1325 * 1326 * Cancel @work and wait for its execution to finish. This function 1327 * can be used even if the work re-queues itself. On return from this 1328 * function, @work is guaranteed to be not pending or executing on any CPU. 1329 * 1330 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1331 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1332 * 1333 * The caller must ensure that the worker on which @work was last 1334 * queued can't be destroyed before this function returns. 1335 * 1336 * Return: %true if @work was pending, %false otherwise. 1337 */ 1338bool kthread_cancel_work_sync(struct kthread_work *work) 1339{ 1340 return __kthread_cancel_work_sync(work, false); 1341} 1342EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1343 1344/** 1345 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1346 * wait for it to finish. 1347 * @dwork: the kthread delayed work to cancel 1348 * 1349 * This is kthread_cancel_work_sync() for delayed works. 1350 * 1351 * Return: %true if @dwork was pending, %false otherwise. 1352 */ 1353bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1354{ 1355 return __kthread_cancel_work_sync(&dwork->work, true); 1356} 1357EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1358 1359/** 1360 * kthread_flush_worker - flush all current works on a kthread_worker 1361 * @worker: worker to flush 1362 * 1363 * Wait until all currently executing or pending works on @worker are 1364 * finished. 1365 */ 1366void kthread_flush_worker(struct kthread_worker *worker) 1367{ 1368 struct kthread_flush_work fwork = { 1369 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1370 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1371 }; 1372 1373 kthread_queue_work(worker, &fwork.work); 1374 wait_for_completion(&fwork.done); 1375} 1376EXPORT_SYMBOL_GPL(kthread_flush_worker); 1377 1378/** 1379 * kthread_destroy_worker - destroy a kthread worker 1380 * @worker: worker to be destroyed 1381 * 1382 * Flush and destroy @worker. The simple flush is enough because the kthread 1383 * worker API is used only in trivial scenarios. There are no multi-step state 1384 * machines needed. 1385 */ 1386void kthread_destroy_worker(struct kthread_worker *worker) 1387{ 1388 struct task_struct *task; 1389 1390 task = worker->task; 1391 if (WARN_ON(!task)) 1392 return; 1393 1394 kthread_flush_worker(worker); 1395 kthread_stop(task); 1396 WARN_ON(!list_empty(&worker->work_list)); 1397 kfree(worker); 1398} 1399EXPORT_SYMBOL(kthread_destroy_worker); 1400 1401/** 1402 * kthread_use_mm - make the calling kthread operate on an address space 1403 * @mm: address space to operate on 1404 */ 1405void kthread_use_mm(struct mm_struct *mm) 1406{ 1407 struct mm_struct *active_mm; 1408 struct task_struct *tsk = current; 1409 1410 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1411 WARN_ON_ONCE(tsk->mm); 1412 1413 task_lock(tsk); 1414 /* Hold off tlb flush IPIs while switching mm's */ 1415 local_irq_disable(); 1416 active_mm = tsk->active_mm; 1417 if (active_mm != mm) { 1418 mmgrab(mm); 1419 tsk->active_mm = mm; 1420 } 1421 tsk->mm = mm; 1422 membarrier_update_current_mm(mm); 1423 switch_mm_irqs_off(active_mm, mm, tsk); 1424 local_irq_enable(); 1425 task_unlock(tsk); 1426#ifdef finish_arch_post_lock_switch 1427 finish_arch_post_lock_switch(); 1428#endif 1429 1430 /* 1431 * When a kthread starts operating on an address space, the loop 1432 * in membarrier_{private,global}_expedited() may not observe 1433 * that tsk->mm, and not issue an IPI. Membarrier requires a 1434 * memory barrier after storing to tsk->mm, before accessing 1435 * user-space memory. A full memory barrier for membarrier 1436 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by 1437 * mmdrop(), or explicitly with smp_mb(). 1438 */ 1439 if (active_mm != mm) 1440 mmdrop(active_mm); 1441 else 1442 smp_mb(); 1443} 1444EXPORT_SYMBOL_GPL(kthread_use_mm); 1445 1446/** 1447 * kthread_unuse_mm - reverse the effect of kthread_use_mm() 1448 * @mm: address space to operate on 1449 */ 1450void kthread_unuse_mm(struct mm_struct *mm) 1451{ 1452 struct task_struct *tsk = current; 1453 1454 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1455 WARN_ON_ONCE(!tsk->mm); 1456 1457 task_lock(tsk); 1458 /* 1459 * When a kthread stops operating on an address space, the loop 1460 * in membarrier_{private,global}_expedited() may not observe 1461 * that tsk->mm, and not issue an IPI. Membarrier requires a 1462 * memory barrier after accessing user-space memory, before 1463 * clearing tsk->mm. 1464 */ 1465 smp_mb__after_spinlock(); 1466 sync_mm_rss(mm); 1467 local_irq_disable(); 1468 tsk->mm = NULL; 1469 membarrier_update_current_mm(NULL); 1470 /* active_mm is still 'mm' */ 1471 enter_lazy_tlb(mm, tsk); 1472 local_irq_enable(); 1473 task_unlock(tsk); 1474} 1475EXPORT_SYMBOL_GPL(kthread_unuse_mm); 1476 1477#ifdef CONFIG_BLK_CGROUP 1478/** 1479 * kthread_associate_blkcg - associate blkcg to current kthread 1480 * @css: the cgroup info 1481 * 1482 * Current thread must be a kthread. The thread is running jobs on behalf of 1483 * other threads. In some cases, we expect the jobs attach cgroup info of 1484 * original threads instead of that of current thread. This function stores 1485 * original thread's cgroup info in current kthread context for later 1486 * retrieval. 1487 */ 1488void kthread_associate_blkcg(struct cgroup_subsys_state *css) 1489{ 1490 struct kthread *kthread; 1491 1492 if (!(current->flags & PF_KTHREAD)) 1493 return; 1494 kthread = to_kthread(current); 1495 if (!kthread) 1496 return; 1497 1498 if (kthread->blkcg_css) { 1499 css_put(kthread->blkcg_css); 1500 kthread->blkcg_css = NULL; 1501 } 1502 if (css) { 1503 css_get(css); 1504 kthread->blkcg_css = css; 1505 } 1506} 1507EXPORT_SYMBOL(kthread_associate_blkcg); 1508 1509/** 1510 * kthread_blkcg - get associated blkcg css of current kthread 1511 * 1512 * Current thread must be a kthread. 1513 */ 1514struct cgroup_subsys_state *kthread_blkcg(void) 1515{ 1516 struct kthread *kthread; 1517 1518 if (current->flags & PF_KTHREAD) { 1519 kthread = to_kthread(current); 1520 if (kthread) 1521 return kthread->blkcg_css; 1522 } 1523 return NULL; 1524} 1525#endif