rtmutex_api.c (16687B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * rtmutex API 4 */ 5#include <linux/spinlock.h> 6#include <linux/export.h> 7 8#define RT_MUTEX_BUILD_MUTEX 9#include "rtmutex.c" 10 11/* 12 * Max number of times we'll walk the boosting chain: 13 */ 14int max_lock_depth = 1024; 15 16/* 17 * Debug aware fast / slowpath lock,trylock,unlock 18 * 19 * The atomic acquire/release ops are compiled away, when either the 20 * architecture does not support cmpxchg or when debugging is enabled. 21 */ 22static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock, 23 unsigned int state, 24 struct lockdep_map *nest_lock, 25 unsigned int subclass) 26{ 27 int ret; 28 29 might_sleep(); 30 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, _RET_IP_); 31 ret = __rt_mutex_lock(&lock->rtmutex, state); 32 if (ret) 33 mutex_release(&lock->dep_map, _RET_IP_); 34 return ret; 35} 36 37void rt_mutex_base_init(struct rt_mutex_base *rtb) 38{ 39 __rt_mutex_base_init(rtb); 40} 41EXPORT_SYMBOL(rt_mutex_base_init); 42 43#ifdef CONFIG_DEBUG_LOCK_ALLOC 44/** 45 * rt_mutex_lock_nested - lock a rt_mutex 46 * 47 * @lock: the rt_mutex to be locked 48 * @subclass: the lockdep subclass 49 */ 50void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass) 51{ 52 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, subclass); 53} 54EXPORT_SYMBOL_GPL(rt_mutex_lock_nested); 55 56void __sched _rt_mutex_lock_nest_lock(struct rt_mutex *lock, struct lockdep_map *nest_lock) 57{ 58 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, nest_lock, 0); 59} 60EXPORT_SYMBOL_GPL(_rt_mutex_lock_nest_lock); 61 62#else /* !CONFIG_DEBUG_LOCK_ALLOC */ 63 64/** 65 * rt_mutex_lock - lock a rt_mutex 66 * 67 * @lock: the rt_mutex to be locked 68 */ 69void __sched rt_mutex_lock(struct rt_mutex *lock) 70{ 71 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, 0); 72} 73EXPORT_SYMBOL_GPL(rt_mutex_lock); 74#endif 75 76/** 77 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 78 * 79 * @lock: the rt_mutex to be locked 80 * 81 * Returns: 82 * 0 on success 83 * -EINTR when interrupted by a signal 84 */ 85int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) 86{ 87 return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, NULL, 0); 88} 89EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 90 91/** 92 * rt_mutex_lock_killable - lock a rt_mutex killable 93 * 94 * @lock: the rt_mutex to be locked 95 * 96 * Returns: 97 * 0 on success 98 * -EINTR when interrupted by a signal 99 */ 100int __sched rt_mutex_lock_killable(struct rt_mutex *lock) 101{ 102 return __rt_mutex_lock_common(lock, TASK_KILLABLE, NULL, 0); 103} 104EXPORT_SYMBOL_GPL(rt_mutex_lock_killable); 105 106/** 107 * rt_mutex_trylock - try to lock a rt_mutex 108 * 109 * @lock: the rt_mutex to be locked 110 * 111 * This function can only be called in thread context. It's safe to call it 112 * from atomic regions, but not from hard or soft interrupt context. 113 * 114 * Returns: 115 * 1 on success 116 * 0 on contention 117 */ 118int __sched rt_mutex_trylock(struct rt_mutex *lock) 119{ 120 int ret; 121 122 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task())) 123 return 0; 124 125 ret = __rt_mutex_trylock(&lock->rtmutex); 126 if (ret) 127 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 128 129 return ret; 130} 131EXPORT_SYMBOL_GPL(rt_mutex_trylock); 132 133/** 134 * rt_mutex_unlock - unlock a rt_mutex 135 * 136 * @lock: the rt_mutex to be unlocked 137 */ 138void __sched rt_mutex_unlock(struct rt_mutex *lock) 139{ 140 mutex_release(&lock->dep_map, _RET_IP_); 141 __rt_mutex_unlock(&lock->rtmutex); 142} 143EXPORT_SYMBOL_GPL(rt_mutex_unlock); 144 145/* 146 * Futex variants, must not use fastpath. 147 */ 148int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock) 149{ 150 return rt_mutex_slowtrylock(lock); 151} 152 153int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock) 154{ 155 return __rt_mutex_slowtrylock(lock); 156} 157 158/** 159 * __rt_mutex_futex_unlock - Futex variant, that since futex variants 160 * do not use the fast-path, can be simple and will not need to retry. 161 * 162 * @lock: The rt_mutex to be unlocked 163 * @wqh: The wake queue head from which to get the next lock waiter 164 */ 165bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock, 166 struct rt_wake_q_head *wqh) 167{ 168 lockdep_assert_held(&lock->wait_lock); 169 170 debug_rt_mutex_unlock(lock); 171 172 if (!rt_mutex_has_waiters(lock)) { 173 lock->owner = NULL; 174 return false; /* done */ 175 } 176 177 /* 178 * We've already deboosted, mark_wakeup_next_waiter() will 179 * retain preempt_disabled when we drop the wait_lock, to 180 * avoid inversion prior to the wakeup. preempt_disable() 181 * therein pairs with rt_mutex_postunlock(). 182 */ 183 mark_wakeup_next_waiter(wqh, lock); 184 185 return true; /* call postunlock() */ 186} 187 188void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock) 189{ 190 DEFINE_RT_WAKE_Q(wqh); 191 unsigned long flags; 192 bool postunlock; 193 194 raw_spin_lock_irqsave(&lock->wait_lock, flags); 195 postunlock = __rt_mutex_futex_unlock(lock, &wqh); 196 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 197 198 if (postunlock) 199 rt_mutex_postunlock(&wqh); 200} 201 202/** 203 * __rt_mutex_init - initialize the rt_mutex 204 * 205 * @lock: The rt_mutex to be initialized 206 * @name: The lock name used for debugging 207 * @key: The lock class key used for debugging 208 * 209 * Initialize the rt_mutex to unlocked state. 210 * 211 * Initializing of a locked rt_mutex is not allowed 212 */ 213void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name, 214 struct lock_class_key *key) 215{ 216 debug_check_no_locks_freed((void *)lock, sizeof(*lock)); 217 __rt_mutex_base_init(&lock->rtmutex); 218 lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP); 219} 220EXPORT_SYMBOL_GPL(__rt_mutex_init); 221 222/** 223 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 224 * proxy owner 225 * 226 * @lock: the rt_mutex to be locked 227 * @proxy_owner:the task to set as owner 228 * 229 * No locking. Caller has to do serializing itself 230 * 231 * Special API call for PI-futex support. This initializes the rtmutex and 232 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not 233 * possible at this point because the pi_state which contains the rtmutex 234 * is not yet visible to other tasks. 235 */ 236void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock, 237 struct task_struct *proxy_owner) 238{ 239 static struct lock_class_key pi_futex_key; 240 241 __rt_mutex_base_init(lock); 242 /* 243 * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping' 244 * and rtmutex based. That causes a lockdep false positive, because 245 * some of the futex functions invoke spin_unlock(&hb->lock) with 246 * the wait_lock of the rtmutex associated to the pi_futex held. 247 * spin_unlock() in turn takes wait_lock of the rtmutex on which 248 * the spinlock is based, which makes lockdep notice a lock 249 * recursion. Give the futex/rtmutex wait_lock a separate key. 250 */ 251 lockdep_set_class(&lock->wait_lock, &pi_futex_key); 252 rt_mutex_set_owner(lock, proxy_owner); 253} 254 255/** 256 * rt_mutex_proxy_unlock - release a lock on behalf of owner 257 * 258 * @lock: the rt_mutex to be locked 259 * 260 * No locking. Caller has to do serializing itself 261 * 262 * Special API call for PI-futex support. This just cleans up the rtmutex 263 * (debugging) state. Concurrent operations on this rt_mutex are not 264 * possible because it belongs to the pi_state which is about to be freed 265 * and it is not longer visible to other tasks. 266 */ 267void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock) 268{ 269 debug_rt_mutex_proxy_unlock(lock); 270 rt_mutex_set_owner(lock, NULL); 271} 272 273/** 274 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task 275 * @lock: the rt_mutex to take 276 * @waiter: the pre-initialized rt_mutex_waiter 277 * @task: the task to prepare 278 * 279 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 280 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 281 * 282 * NOTE: does _NOT_ remove the @waiter on failure; must either call 283 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this. 284 * 285 * Returns: 286 * 0 - task blocked on lock 287 * 1 - acquired the lock for task, caller should wake it up 288 * <0 - error 289 * 290 * Special API call for PI-futex support. 291 */ 292int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock, 293 struct rt_mutex_waiter *waiter, 294 struct task_struct *task) 295{ 296 int ret; 297 298 lockdep_assert_held(&lock->wait_lock); 299 300 if (try_to_take_rt_mutex(lock, task, NULL)) 301 return 1; 302 303 /* We enforce deadlock detection for futexes */ 304 ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL, 305 RT_MUTEX_FULL_CHAINWALK); 306 307 if (ret && !rt_mutex_owner(lock)) { 308 /* 309 * Reset the return value. We might have 310 * returned with -EDEADLK and the owner 311 * released the lock while we were walking the 312 * pi chain. Let the waiter sort it out. 313 */ 314 ret = 0; 315 } 316 317 return ret; 318} 319 320/** 321 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 322 * @lock: the rt_mutex to take 323 * @waiter: the pre-initialized rt_mutex_waiter 324 * @task: the task to prepare 325 * 326 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 327 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 328 * 329 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter 330 * on failure. 331 * 332 * Returns: 333 * 0 - task blocked on lock 334 * 1 - acquired the lock for task, caller should wake it up 335 * <0 - error 336 * 337 * Special API call for PI-futex support. 338 */ 339int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock, 340 struct rt_mutex_waiter *waiter, 341 struct task_struct *task) 342{ 343 int ret; 344 345 raw_spin_lock_irq(&lock->wait_lock); 346 ret = __rt_mutex_start_proxy_lock(lock, waiter, task); 347 if (unlikely(ret)) 348 remove_waiter(lock, waiter); 349 raw_spin_unlock_irq(&lock->wait_lock); 350 351 return ret; 352} 353 354/** 355 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition 356 * @lock: the rt_mutex we were woken on 357 * @to: the timeout, null if none. hrtimer should already have 358 * been started. 359 * @waiter: the pre-initialized rt_mutex_waiter 360 * 361 * Wait for the lock acquisition started on our behalf by 362 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call 363 * rt_mutex_cleanup_proxy_lock(). 364 * 365 * Returns: 366 * 0 - success 367 * <0 - error, one of -EINTR, -ETIMEDOUT 368 * 369 * Special API call for PI-futex support 370 */ 371int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock, 372 struct hrtimer_sleeper *to, 373 struct rt_mutex_waiter *waiter) 374{ 375 int ret; 376 377 raw_spin_lock_irq(&lock->wait_lock); 378 /* sleep on the mutex */ 379 set_current_state(TASK_INTERRUPTIBLE); 380 ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter); 381 /* 382 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 383 * have to fix that up. 384 */ 385 fixup_rt_mutex_waiters(lock); 386 raw_spin_unlock_irq(&lock->wait_lock); 387 388 return ret; 389} 390 391/** 392 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition 393 * @lock: the rt_mutex we were woken on 394 * @waiter: the pre-initialized rt_mutex_waiter 395 * 396 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or 397 * rt_mutex_wait_proxy_lock(). 398 * 399 * Unless we acquired the lock; we're still enqueued on the wait-list and can 400 * in fact still be granted ownership until we're removed. Therefore we can 401 * find we are in fact the owner and must disregard the 402 * rt_mutex_wait_proxy_lock() failure. 403 * 404 * Returns: 405 * true - did the cleanup, we done. 406 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned, 407 * caller should disregards its return value. 408 * 409 * Special API call for PI-futex support 410 */ 411bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock, 412 struct rt_mutex_waiter *waiter) 413{ 414 bool cleanup = false; 415 416 raw_spin_lock_irq(&lock->wait_lock); 417 /* 418 * Do an unconditional try-lock, this deals with the lock stealing 419 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter() 420 * sets a NULL owner. 421 * 422 * We're not interested in the return value, because the subsequent 423 * test on rt_mutex_owner() will infer that. If the trylock succeeded, 424 * we will own the lock and it will have removed the waiter. If we 425 * failed the trylock, we're still not owner and we need to remove 426 * ourselves. 427 */ 428 try_to_take_rt_mutex(lock, current, waiter); 429 /* 430 * Unless we're the owner; we're still enqueued on the wait_list. 431 * So check if we became owner, if not, take us off the wait_list. 432 */ 433 if (rt_mutex_owner(lock) != current) { 434 remove_waiter(lock, waiter); 435 cleanup = true; 436 } 437 /* 438 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 439 * have to fix that up. 440 */ 441 fixup_rt_mutex_waiters(lock); 442 443 raw_spin_unlock_irq(&lock->wait_lock); 444 445 return cleanup; 446} 447 448/* 449 * Recheck the pi chain, in case we got a priority setting 450 * 451 * Called from sched_setscheduler 452 */ 453void __sched rt_mutex_adjust_pi(struct task_struct *task) 454{ 455 struct rt_mutex_waiter *waiter; 456 struct rt_mutex_base *next_lock; 457 unsigned long flags; 458 459 raw_spin_lock_irqsave(&task->pi_lock, flags); 460 461 waiter = task->pi_blocked_on; 462 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { 463 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 464 return; 465 } 466 next_lock = waiter->lock; 467 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 468 469 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 470 get_task_struct(task); 471 472 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, 473 next_lock, NULL, task); 474} 475 476/* 477 * Performs the wakeup of the top-waiter and re-enables preemption. 478 */ 479void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh) 480{ 481 rt_mutex_wake_up_q(wqh); 482} 483 484#ifdef CONFIG_DEBUG_RT_MUTEXES 485void rt_mutex_debug_task_free(struct task_struct *task) 486{ 487 DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root)); 488 DEBUG_LOCKS_WARN_ON(task->pi_blocked_on); 489} 490#endif 491 492#ifdef CONFIG_PREEMPT_RT 493/* Mutexes */ 494void __mutex_rt_init(struct mutex *mutex, const char *name, 495 struct lock_class_key *key) 496{ 497 debug_check_no_locks_freed((void *)mutex, sizeof(*mutex)); 498 lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP); 499} 500EXPORT_SYMBOL(__mutex_rt_init); 501 502static __always_inline int __mutex_lock_common(struct mutex *lock, 503 unsigned int state, 504 unsigned int subclass, 505 struct lockdep_map *nest_lock, 506 unsigned long ip) 507{ 508 int ret; 509 510 might_sleep(); 511 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 512 ret = __rt_mutex_lock(&lock->rtmutex, state); 513 if (ret) 514 mutex_release(&lock->dep_map, ip); 515 else 516 lock_acquired(&lock->dep_map, ip); 517 return ret; 518} 519 520#ifdef CONFIG_DEBUG_LOCK_ALLOC 521void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass) 522{ 523 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 524} 525EXPORT_SYMBOL_GPL(mutex_lock_nested); 526 527void __sched _mutex_lock_nest_lock(struct mutex *lock, 528 struct lockdep_map *nest_lock) 529{ 530 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_); 531} 532EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 533 534int __sched mutex_lock_interruptible_nested(struct mutex *lock, 535 unsigned int subclass) 536{ 537 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 538} 539EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 540 541int __sched mutex_lock_killable_nested(struct mutex *lock, 542 unsigned int subclass) 543{ 544 return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 545} 546EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 547 548void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 549{ 550 int token; 551 552 might_sleep(); 553 554 token = io_schedule_prepare(); 555 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 556 io_schedule_finish(token); 557} 558EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 559 560#else /* CONFIG_DEBUG_LOCK_ALLOC */ 561 562void __sched mutex_lock(struct mutex *lock) 563{ 564 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 565} 566EXPORT_SYMBOL(mutex_lock); 567 568int __sched mutex_lock_interruptible(struct mutex *lock) 569{ 570 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 571} 572EXPORT_SYMBOL(mutex_lock_interruptible); 573 574int __sched mutex_lock_killable(struct mutex *lock) 575{ 576 return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 577} 578EXPORT_SYMBOL(mutex_lock_killable); 579 580void __sched mutex_lock_io(struct mutex *lock) 581{ 582 int token = io_schedule_prepare(); 583 584 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 585 io_schedule_finish(token); 586} 587EXPORT_SYMBOL(mutex_lock_io); 588#endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 589 590int __sched mutex_trylock(struct mutex *lock) 591{ 592 int ret; 593 594 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task())) 595 return 0; 596 597 ret = __rt_mutex_trylock(&lock->rtmutex); 598 if (ret) 599 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 600 601 return ret; 602} 603EXPORT_SYMBOL(mutex_trylock); 604 605void __sched mutex_unlock(struct mutex *lock) 606{ 607 mutex_release(&lock->dep_map, _RET_IP_); 608 __rt_mutex_unlock(&lock->rtmutex); 609} 610EXPORT_SYMBOL(mutex_unlock); 611 612#endif /* CONFIG_PREEMPT_RT */