cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rtmutex_api.c (16687B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * rtmutex API
      4 */
      5#include <linux/spinlock.h>
      6#include <linux/export.h>
      7
      8#define RT_MUTEX_BUILD_MUTEX
      9#include "rtmutex.c"
     10
     11/*
     12 * Max number of times we'll walk the boosting chain:
     13 */
     14int max_lock_depth = 1024;
     15
     16/*
     17 * Debug aware fast / slowpath lock,trylock,unlock
     18 *
     19 * The atomic acquire/release ops are compiled away, when either the
     20 * architecture does not support cmpxchg or when debugging is enabled.
     21 */
     22static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
     23						  unsigned int state,
     24						  struct lockdep_map *nest_lock,
     25						  unsigned int subclass)
     26{
     27	int ret;
     28
     29	might_sleep();
     30	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, _RET_IP_);
     31	ret = __rt_mutex_lock(&lock->rtmutex, state);
     32	if (ret)
     33		mutex_release(&lock->dep_map, _RET_IP_);
     34	return ret;
     35}
     36
     37void rt_mutex_base_init(struct rt_mutex_base *rtb)
     38{
     39	__rt_mutex_base_init(rtb);
     40}
     41EXPORT_SYMBOL(rt_mutex_base_init);
     42
     43#ifdef CONFIG_DEBUG_LOCK_ALLOC
     44/**
     45 * rt_mutex_lock_nested - lock a rt_mutex
     46 *
     47 * @lock: the rt_mutex to be locked
     48 * @subclass: the lockdep subclass
     49 */
     50void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
     51{
     52	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, subclass);
     53}
     54EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
     55
     56void __sched _rt_mutex_lock_nest_lock(struct rt_mutex *lock, struct lockdep_map *nest_lock)
     57{
     58	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, nest_lock, 0);
     59}
     60EXPORT_SYMBOL_GPL(_rt_mutex_lock_nest_lock);
     61
     62#else /* !CONFIG_DEBUG_LOCK_ALLOC */
     63
     64/**
     65 * rt_mutex_lock - lock a rt_mutex
     66 *
     67 * @lock: the rt_mutex to be locked
     68 */
     69void __sched rt_mutex_lock(struct rt_mutex *lock)
     70{
     71	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, 0);
     72}
     73EXPORT_SYMBOL_GPL(rt_mutex_lock);
     74#endif
     75
     76/**
     77 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
     78 *
     79 * @lock:		the rt_mutex to be locked
     80 *
     81 * Returns:
     82 *  0		on success
     83 * -EINTR	when interrupted by a signal
     84 */
     85int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
     86{
     87	return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, NULL, 0);
     88}
     89EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
     90
     91/**
     92 * rt_mutex_lock_killable - lock a rt_mutex killable
     93 *
     94 * @lock:		the rt_mutex to be locked
     95 *
     96 * Returns:
     97 *  0		on success
     98 * -EINTR	when interrupted by a signal
     99 */
    100int __sched rt_mutex_lock_killable(struct rt_mutex *lock)
    101{
    102	return __rt_mutex_lock_common(lock, TASK_KILLABLE, NULL, 0);
    103}
    104EXPORT_SYMBOL_GPL(rt_mutex_lock_killable);
    105
    106/**
    107 * rt_mutex_trylock - try to lock a rt_mutex
    108 *
    109 * @lock:	the rt_mutex to be locked
    110 *
    111 * This function can only be called in thread context. It's safe to call it
    112 * from atomic regions, but not from hard or soft interrupt context.
    113 *
    114 * Returns:
    115 *  1 on success
    116 *  0 on contention
    117 */
    118int __sched rt_mutex_trylock(struct rt_mutex *lock)
    119{
    120	int ret;
    121
    122	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
    123		return 0;
    124
    125	ret = __rt_mutex_trylock(&lock->rtmutex);
    126	if (ret)
    127		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
    128
    129	return ret;
    130}
    131EXPORT_SYMBOL_GPL(rt_mutex_trylock);
    132
    133/**
    134 * rt_mutex_unlock - unlock a rt_mutex
    135 *
    136 * @lock: the rt_mutex to be unlocked
    137 */
    138void __sched rt_mutex_unlock(struct rt_mutex *lock)
    139{
    140	mutex_release(&lock->dep_map, _RET_IP_);
    141	__rt_mutex_unlock(&lock->rtmutex);
    142}
    143EXPORT_SYMBOL_GPL(rt_mutex_unlock);
    144
    145/*
    146 * Futex variants, must not use fastpath.
    147 */
    148int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
    149{
    150	return rt_mutex_slowtrylock(lock);
    151}
    152
    153int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
    154{
    155	return __rt_mutex_slowtrylock(lock);
    156}
    157
    158/**
    159 * __rt_mutex_futex_unlock - Futex variant, that since futex variants
    160 * do not use the fast-path, can be simple and will not need to retry.
    161 *
    162 * @lock:	The rt_mutex to be unlocked
    163 * @wqh:	The wake queue head from which to get the next lock waiter
    164 */
    165bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
    166				     struct rt_wake_q_head *wqh)
    167{
    168	lockdep_assert_held(&lock->wait_lock);
    169
    170	debug_rt_mutex_unlock(lock);
    171
    172	if (!rt_mutex_has_waiters(lock)) {
    173		lock->owner = NULL;
    174		return false; /* done */
    175	}
    176
    177	/*
    178	 * We've already deboosted, mark_wakeup_next_waiter() will
    179	 * retain preempt_disabled when we drop the wait_lock, to
    180	 * avoid inversion prior to the wakeup.  preempt_disable()
    181	 * therein pairs with rt_mutex_postunlock().
    182	 */
    183	mark_wakeup_next_waiter(wqh, lock);
    184
    185	return true; /* call postunlock() */
    186}
    187
    188void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
    189{
    190	DEFINE_RT_WAKE_Q(wqh);
    191	unsigned long flags;
    192	bool postunlock;
    193
    194	raw_spin_lock_irqsave(&lock->wait_lock, flags);
    195	postunlock = __rt_mutex_futex_unlock(lock, &wqh);
    196	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
    197
    198	if (postunlock)
    199		rt_mutex_postunlock(&wqh);
    200}
    201
    202/**
    203 * __rt_mutex_init - initialize the rt_mutex
    204 *
    205 * @lock:	The rt_mutex to be initialized
    206 * @name:	The lock name used for debugging
    207 * @key:	The lock class key used for debugging
    208 *
    209 * Initialize the rt_mutex to unlocked state.
    210 *
    211 * Initializing of a locked rt_mutex is not allowed
    212 */
    213void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
    214			     struct lock_class_key *key)
    215{
    216	debug_check_no_locks_freed((void *)lock, sizeof(*lock));
    217	__rt_mutex_base_init(&lock->rtmutex);
    218	lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
    219}
    220EXPORT_SYMBOL_GPL(__rt_mutex_init);
    221
    222/**
    223 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
    224 *				proxy owner
    225 *
    226 * @lock:	the rt_mutex to be locked
    227 * @proxy_owner:the task to set as owner
    228 *
    229 * No locking. Caller has to do serializing itself
    230 *
    231 * Special API call for PI-futex support. This initializes the rtmutex and
    232 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
    233 * possible at this point because the pi_state which contains the rtmutex
    234 * is not yet visible to other tasks.
    235 */
    236void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
    237					struct task_struct *proxy_owner)
    238{
    239	static struct lock_class_key pi_futex_key;
    240
    241	__rt_mutex_base_init(lock);
    242	/*
    243	 * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping'
    244	 * and rtmutex based. That causes a lockdep false positive, because
    245	 * some of the futex functions invoke spin_unlock(&hb->lock) with
    246	 * the wait_lock of the rtmutex associated to the pi_futex held.
    247	 * spin_unlock() in turn takes wait_lock of the rtmutex on which
    248	 * the spinlock is based, which makes lockdep notice a lock
    249	 * recursion. Give the futex/rtmutex wait_lock a separate key.
    250	 */
    251	lockdep_set_class(&lock->wait_lock, &pi_futex_key);
    252	rt_mutex_set_owner(lock, proxy_owner);
    253}
    254
    255/**
    256 * rt_mutex_proxy_unlock - release a lock on behalf of owner
    257 *
    258 * @lock:	the rt_mutex to be locked
    259 *
    260 * No locking. Caller has to do serializing itself
    261 *
    262 * Special API call for PI-futex support. This just cleans up the rtmutex
    263 * (debugging) state. Concurrent operations on this rt_mutex are not
    264 * possible because it belongs to the pi_state which is about to be freed
    265 * and it is not longer visible to other tasks.
    266 */
    267void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
    268{
    269	debug_rt_mutex_proxy_unlock(lock);
    270	rt_mutex_set_owner(lock, NULL);
    271}
    272
    273/**
    274 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
    275 * @lock:		the rt_mutex to take
    276 * @waiter:		the pre-initialized rt_mutex_waiter
    277 * @task:		the task to prepare
    278 *
    279 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
    280 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
    281 *
    282 * NOTE: does _NOT_ remove the @waiter on failure; must either call
    283 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
    284 *
    285 * Returns:
    286 *  0 - task blocked on lock
    287 *  1 - acquired the lock for task, caller should wake it up
    288 * <0 - error
    289 *
    290 * Special API call for PI-futex support.
    291 */
    292int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
    293					struct rt_mutex_waiter *waiter,
    294					struct task_struct *task)
    295{
    296	int ret;
    297
    298	lockdep_assert_held(&lock->wait_lock);
    299
    300	if (try_to_take_rt_mutex(lock, task, NULL))
    301		return 1;
    302
    303	/* We enforce deadlock detection for futexes */
    304	ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
    305				      RT_MUTEX_FULL_CHAINWALK);
    306
    307	if (ret && !rt_mutex_owner(lock)) {
    308		/*
    309		 * Reset the return value. We might have
    310		 * returned with -EDEADLK and the owner
    311		 * released the lock while we were walking the
    312		 * pi chain.  Let the waiter sort it out.
    313		 */
    314		ret = 0;
    315	}
    316
    317	return ret;
    318}
    319
    320/**
    321 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
    322 * @lock:		the rt_mutex to take
    323 * @waiter:		the pre-initialized rt_mutex_waiter
    324 * @task:		the task to prepare
    325 *
    326 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
    327 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
    328 *
    329 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
    330 * on failure.
    331 *
    332 * Returns:
    333 *  0 - task blocked on lock
    334 *  1 - acquired the lock for task, caller should wake it up
    335 * <0 - error
    336 *
    337 * Special API call for PI-futex support.
    338 */
    339int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
    340				      struct rt_mutex_waiter *waiter,
    341				      struct task_struct *task)
    342{
    343	int ret;
    344
    345	raw_spin_lock_irq(&lock->wait_lock);
    346	ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
    347	if (unlikely(ret))
    348		remove_waiter(lock, waiter);
    349	raw_spin_unlock_irq(&lock->wait_lock);
    350
    351	return ret;
    352}
    353
    354/**
    355 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
    356 * @lock:		the rt_mutex we were woken on
    357 * @to:			the timeout, null if none. hrtimer should already have
    358 *			been started.
    359 * @waiter:		the pre-initialized rt_mutex_waiter
    360 *
    361 * Wait for the lock acquisition started on our behalf by
    362 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
    363 * rt_mutex_cleanup_proxy_lock().
    364 *
    365 * Returns:
    366 *  0 - success
    367 * <0 - error, one of -EINTR, -ETIMEDOUT
    368 *
    369 * Special API call for PI-futex support
    370 */
    371int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
    372				     struct hrtimer_sleeper *to,
    373				     struct rt_mutex_waiter *waiter)
    374{
    375	int ret;
    376
    377	raw_spin_lock_irq(&lock->wait_lock);
    378	/* sleep on the mutex */
    379	set_current_state(TASK_INTERRUPTIBLE);
    380	ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter);
    381	/*
    382	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
    383	 * have to fix that up.
    384	 */
    385	fixup_rt_mutex_waiters(lock);
    386	raw_spin_unlock_irq(&lock->wait_lock);
    387
    388	return ret;
    389}
    390
    391/**
    392 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
    393 * @lock:		the rt_mutex we were woken on
    394 * @waiter:		the pre-initialized rt_mutex_waiter
    395 *
    396 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
    397 * rt_mutex_wait_proxy_lock().
    398 *
    399 * Unless we acquired the lock; we're still enqueued on the wait-list and can
    400 * in fact still be granted ownership until we're removed. Therefore we can
    401 * find we are in fact the owner and must disregard the
    402 * rt_mutex_wait_proxy_lock() failure.
    403 *
    404 * Returns:
    405 *  true  - did the cleanup, we done.
    406 *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
    407 *          caller should disregards its return value.
    408 *
    409 * Special API call for PI-futex support
    410 */
    411bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
    412					 struct rt_mutex_waiter *waiter)
    413{
    414	bool cleanup = false;
    415
    416	raw_spin_lock_irq(&lock->wait_lock);
    417	/*
    418	 * Do an unconditional try-lock, this deals with the lock stealing
    419	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
    420	 * sets a NULL owner.
    421	 *
    422	 * We're not interested in the return value, because the subsequent
    423	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
    424	 * we will own the lock and it will have removed the waiter. If we
    425	 * failed the trylock, we're still not owner and we need to remove
    426	 * ourselves.
    427	 */
    428	try_to_take_rt_mutex(lock, current, waiter);
    429	/*
    430	 * Unless we're the owner; we're still enqueued on the wait_list.
    431	 * So check if we became owner, if not, take us off the wait_list.
    432	 */
    433	if (rt_mutex_owner(lock) != current) {
    434		remove_waiter(lock, waiter);
    435		cleanup = true;
    436	}
    437	/*
    438	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
    439	 * have to fix that up.
    440	 */
    441	fixup_rt_mutex_waiters(lock);
    442
    443	raw_spin_unlock_irq(&lock->wait_lock);
    444
    445	return cleanup;
    446}
    447
    448/*
    449 * Recheck the pi chain, in case we got a priority setting
    450 *
    451 * Called from sched_setscheduler
    452 */
    453void __sched rt_mutex_adjust_pi(struct task_struct *task)
    454{
    455	struct rt_mutex_waiter *waiter;
    456	struct rt_mutex_base *next_lock;
    457	unsigned long flags;
    458
    459	raw_spin_lock_irqsave(&task->pi_lock, flags);
    460
    461	waiter = task->pi_blocked_on;
    462	if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
    463		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
    464		return;
    465	}
    466	next_lock = waiter->lock;
    467	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
    468
    469	/* gets dropped in rt_mutex_adjust_prio_chain()! */
    470	get_task_struct(task);
    471
    472	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
    473				   next_lock, NULL, task);
    474}
    475
    476/*
    477 * Performs the wakeup of the top-waiter and re-enables preemption.
    478 */
    479void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
    480{
    481	rt_mutex_wake_up_q(wqh);
    482}
    483
    484#ifdef CONFIG_DEBUG_RT_MUTEXES
    485void rt_mutex_debug_task_free(struct task_struct *task)
    486{
    487	DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
    488	DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
    489}
    490#endif
    491
    492#ifdef CONFIG_PREEMPT_RT
    493/* Mutexes */
    494void __mutex_rt_init(struct mutex *mutex, const char *name,
    495		     struct lock_class_key *key)
    496{
    497	debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
    498	lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP);
    499}
    500EXPORT_SYMBOL(__mutex_rt_init);
    501
    502static __always_inline int __mutex_lock_common(struct mutex *lock,
    503					       unsigned int state,
    504					       unsigned int subclass,
    505					       struct lockdep_map *nest_lock,
    506					       unsigned long ip)
    507{
    508	int ret;
    509
    510	might_sleep();
    511	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
    512	ret = __rt_mutex_lock(&lock->rtmutex, state);
    513	if (ret)
    514		mutex_release(&lock->dep_map, ip);
    515	else
    516		lock_acquired(&lock->dep_map, ip);
    517	return ret;
    518}
    519
    520#ifdef CONFIG_DEBUG_LOCK_ALLOC
    521void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass)
    522{
    523	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
    524}
    525EXPORT_SYMBOL_GPL(mutex_lock_nested);
    526
    527void __sched _mutex_lock_nest_lock(struct mutex *lock,
    528				   struct lockdep_map *nest_lock)
    529{
    530	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_);
    531}
    532EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
    533
    534int __sched mutex_lock_interruptible_nested(struct mutex *lock,
    535					    unsigned int subclass)
    536{
    537	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
    538}
    539EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
    540
    541int __sched mutex_lock_killable_nested(struct mutex *lock,
    542					    unsigned int subclass)
    543{
    544	return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
    545}
    546EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
    547
    548void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
    549{
    550	int token;
    551
    552	might_sleep();
    553
    554	token = io_schedule_prepare();
    555	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
    556	io_schedule_finish(token);
    557}
    558EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
    559
    560#else /* CONFIG_DEBUG_LOCK_ALLOC */
    561
    562void __sched mutex_lock(struct mutex *lock)
    563{
    564	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
    565}
    566EXPORT_SYMBOL(mutex_lock);
    567
    568int __sched mutex_lock_interruptible(struct mutex *lock)
    569{
    570	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
    571}
    572EXPORT_SYMBOL(mutex_lock_interruptible);
    573
    574int __sched mutex_lock_killable(struct mutex *lock)
    575{
    576	return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
    577}
    578EXPORT_SYMBOL(mutex_lock_killable);
    579
    580void __sched mutex_lock_io(struct mutex *lock)
    581{
    582	int token = io_schedule_prepare();
    583
    584	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
    585	io_schedule_finish(token);
    586}
    587EXPORT_SYMBOL(mutex_lock_io);
    588#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
    589
    590int __sched mutex_trylock(struct mutex *lock)
    591{
    592	int ret;
    593
    594	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
    595		return 0;
    596
    597	ret = __rt_mutex_trylock(&lock->rtmutex);
    598	if (ret)
    599		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
    600
    601	return ret;
    602}
    603EXPORT_SYMBOL(mutex_trylock);
    604
    605void __sched mutex_unlock(struct mutex *lock)
    606{
    607	mutex_release(&lock->dep_map, _RET_IP_);
    608	__rt_mutex_unlock(&lock->rtmutex);
    609}
    610EXPORT_SYMBOL(mutex_unlock);
    611
    612#endif /* CONFIG_PREEMPT_RT */