cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

printk.c (103486B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/kernel/printk.c
      4 *
      5 *  Copyright (C) 1991, 1992  Linus Torvalds
      6 *
      7 * Modified to make sys_syslog() more flexible: added commands to
      8 * return the last 4k of kernel messages, regardless of whether
      9 * they've been read or not.  Added option to suppress kernel printk's
     10 * to the console.  Added hook for sending the console messages
     11 * elsewhere, in preparation for a serial line console (someday).
     12 * Ted Ts'o, 2/11/93.
     13 * Modified for sysctl support, 1/8/97, Chris Horn.
     14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
     15 *     manfred@colorfullife.com
     16 * Rewrote bits to get rid of console_lock
     17 *	01Mar01 Andrew Morton
     18 */
     19
     20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     21
     22#include <linux/kernel.h>
     23#include <linux/mm.h>
     24#include <linux/tty.h>
     25#include <linux/tty_driver.h>
     26#include <linux/console.h>
     27#include <linux/init.h>
     28#include <linux/jiffies.h>
     29#include <linux/nmi.h>
     30#include <linux/module.h>
     31#include <linux/moduleparam.h>
     32#include <linux/delay.h>
     33#include <linux/smp.h>
     34#include <linux/security.h>
     35#include <linux/memblock.h>
     36#include <linux/syscalls.h>
     37#include <linux/crash_core.h>
     38#include <linux/ratelimit.h>
     39#include <linux/kmsg_dump.h>
     40#include <linux/syslog.h>
     41#include <linux/cpu.h>
     42#include <linux/rculist.h>
     43#include <linux/poll.h>
     44#include <linux/irq_work.h>
     45#include <linux/ctype.h>
     46#include <linux/uio.h>
     47#include <linux/sched/clock.h>
     48#include <linux/sched/debug.h>
     49#include <linux/sched/task_stack.h>
     50
     51#include <linux/uaccess.h>
     52#include <asm/sections.h>
     53
     54#include <trace/events/initcall.h>
     55#define CREATE_TRACE_POINTS
     56#include <trace/events/printk.h>
     57
     58#include "printk_ringbuffer.h"
     59#include "console_cmdline.h"
     60#include "braille.h"
     61#include "internal.h"
     62
     63int console_printk[4] = {
     64	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
     65	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
     66	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
     67	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
     68};
     69EXPORT_SYMBOL_GPL(console_printk);
     70
     71atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
     72EXPORT_SYMBOL(ignore_console_lock_warning);
     73
     74/*
     75 * Low level drivers may need that to know if they can schedule in
     76 * their unblank() callback or not. So let's export it.
     77 */
     78int oops_in_progress;
     79EXPORT_SYMBOL(oops_in_progress);
     80
     81/*
     82 * console_sem protects the console_drivers list, and also
     83 * provides serialisation for access to the entire console
     84 * driver system.
     85 */
     86static DEFINE_SEMAPHORE(console_sem);
     87struct console *console_drivers;
     88EXPORT_SYMBOL_GPL(console_drivers);
     89
     90/*
     91 * System may need to suppress printk message under certain
     92 * circumstances, like after kernel panic happens.
     93 */
     94int __read_mostly suppress_printk;
     95
     96/*
     97 * During panic, heavy printk by other CPUs can delay the
     98 * panic and risk deadlock on console resources.
     99 */
    100static int __read_mostly suppress_panic_printk;
    101
    102#ifdef CONFIG_LOCKDEP
    103static struct lockdep_map console_lock_dep_map = {
    104	.name = "console_lock"
    105};
    106#endif
    107
    108enum devkmsg_log_bits {
    109	__DEVKMSG_LOG_BIT_ON = 0,
    110	__DEVKMSG_LOG_BIT_OFF,
    111	__DEVKMSG_LOG_BIT_LOCK,
    112};
    113
    114enum devkmsg_log_masks {
    115	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
    116	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
    117	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
    118};
    119
    120/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
    121#define DEVKMSG_LOG_MASK_DEFAULT	0
    122
    123static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
    124
    125static int __control_devkmsg(char *str)
    126{
    127	size_t len;
    128
    129	if (!str)
    130		return -EINVAL;
    131
    132	len = str_has_prefix(str, "on");
    133	if (len) {
    134		devkmsg_log = DEVKMSG_LOG_MASK_ON;
    135		return len;
    136	}
    137
    138	len = str_has_prefix(str, "off");
    139	if (len) {
    140		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
    141		return len;
    142	}
    143
    144	len = str_has_prefix(str, "ratelimit");
    145	if (len) {
    146		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
    147		return len;
    148	}
    149
    150	return -EINVAL;
    151}
    152
    153static int __init control_devkmsg(char *str)
    154{
    155	if (__control_devkmsg(str) < 0) {
    156		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
    157		return 1;
    158	}
    159
    160	/*
    161	 * Set sysctl string accordingly:
    162	 */
    163	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
    164		strcpy(devkmsg_log_str, "on");
    165	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
    166		strcpy(devkmsg_log_str, "off");
    167	/* else "ratelimit" which is set by default. */
    168
    169	/*
    170	 * Sysctl cannot change it anymore. The kernel command line setting of
    171	 * this parameter is to force the setting to be permanent throughout the
    172	 * runtime of the system. This is a precation measure against userspace
    173	 * trying to be a smarta** and attempting to change it up on us.
    174	 */
    175	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
    176
    177	return 1;
    178}
    179__setup("printk.devkmsg=", control_devkmsg);
    180
    181char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
    182#if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
    183int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
    184			      void *buffer, size_t *lenp, loff_t *ppos)
    185{
    186	char old_str[DEVKMSG_STR_MAX_SIZE];
    187	unsigned int old;
    188	int err;
    189
    190	if (write) {
    191		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
    192			return -EINVAL;
    193
    194		old = devkmsg_log;
    195		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
    196	}
    197
    198	err = proc_dostring(table, write, buffer, lenp, ppos);
    199	if (err)
    200		return err;
    201
    202	if (write) {
    203		err = __control_devkmsg(devkmsg_log_str);
    204
    205		/*
    206		 * Do not accept an unknown string OR a known string with
    207		 * trailing crap...
    208		 */
    209		if (err < 0 || (err + 1 != *lenp)) {
    210
    211			/* ... and restore old setting. */
    212			devkmsg_log = old;
    213			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
    214
    215			return -EINVAL;
    216		}
    217	}
    218
    219	return 0;
    220}
    221#endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
    222
    223/* Number of registered extended console drivers. */
    224static int nr_ext_console_drivers;
    225
    226/*
    227 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
    228 * macros instead of functions so that _RET_IP_ contains useful information.
    229 */
    230#define down_console_sem() do { \
    231	down(&console_sem);\
    232	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
    233} while (0)
    234
    235static int __down_trylock_console_sem(unsigned long ip)
    236{
    237	int lock_failed;
    238	unsigned long flags;
    239
    240	/*
    241	 * Here and in __up_console_sem() we need to be in safe mode,
    242	 * because spindump/WARN/etc from under console ->lock will
    243	 * deadlock in printk()->down_trylock_console_sem() otherwise.
    244	 */
    245	printk_safe_enter_irqsave(flags);
    246	lock_failed = down_trylock(&console_sem);
    247	printk_safe_exit_irqrestore(flags);
    248
    249	if (lock_failed)
    250		return 1;
    251	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
    252	return 0;
    253}
    254#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
    255
    256static void __up_console_sem(unsigned long ip)
    257{
    258	unsigned long flags;
    259
    260	mutex_release(&console_lock_dep_map, ip);
    261
    262	printk_safe_enter_irqsave(flags);
    263	up(&console_sem);
    264	printk_safe_exit_irqrestore(flags);
    265}
    266#define up_console_sem() __up_console_sem(_RET_IP_)
    267
    268static bool panic_in_progress(void)
    269{
    270	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
    271}
    272
    273/*
    274 * This is used for debugging the mess that is the VT code by
    275 * keeping track if we have the console semaphore held. It's
    276 * definitely not the perfect debug tool (we don't know if _WE_
    277 * hold it and are racing, but it helps tracking those weird code
    278 * paths in the console code where we end up in places I want
    279 * locked without the console semaphore held).
    280 */
    281static int console_locked, console_suspended;
    282
    283/*
    284 *	Array of consoles built from command line options (console=)
    285 */
    286
    287#define MAX_CMDLINECONSOLES 8
    288
    289static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
    290
    291static int preferred_console = -1;
    292int console_set_on_cmdline;
    293EXPORT_SYMBOL(console_set_on_cmdline);
    294
    295/* Flag: console code may call schedule() */
    296static int console_may_schedule;
    297
    298enum con_msg_format_flags {
    299	MSG_FORMAT_DEFAULT	= 0,
    300	MSG_FORMAT_SYSLOG	= (1 << 0),
    301};
    302
    303static int console_msg_format = MSG_FORMAT_DEFAULT;
    304
    305/*
    306 * The printk log buffer consists of a sequenced collection of records, each
    307 * containing variable length message text. Every record also contains its
    308 * own meta-data (@info).
    309 *
    310 * Every record meta-data carries the timestamp in microseconds, as well as
    311 * the standard userspace syslog level and syslog facility. The usual kernel
    312 * messages use LOG_KERN; userspace-injected messages always carry a matching
    313 * syslog facility, by default LOG_USER. The origin of every message can be
    314 * reliably determined that way.
    315 *
    316 * The human readable log message of a record is available in @text, the
    317 * length of the message text in @text_len. The stored message is not
    318 * terminated.
    319 *
    320 * Optionally, a record can carry a dictionary of properties (key/value
    321 * pairs), to provide userspace with a machine-readable message context.
    322 *
    323 * Examples for well-defined, commonly used property names are:
    324 *   DEVICE=b12:8               device identifier
    325 *                                b12:8         block dev_t
    326 *                                c127:3        char dev_t
    327 *                                n8            netdev ifindex
    328 *                                +sound:card0  subsystem:devname
    329 *   SUBSYSTEM=pci              driver-core subsystem name
    330 *
    331 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
    332 * and values are terminated by a '\0' character.
    333 *
    334 * Example of record values:
    335 *   record.text_buf                = "it's a line" (unterminated)
    336 *   record.info.seq                = 56
    337 *   record.info.ts_nsec            = 36863
    338 *   record.info.text_len           = 11
    339 *   record.info.facility           = 0 (LOG_KERN)
    340 *   record.info.flags              = 0
    341 *   record.info.level              = 3 (LOG_ERR)
    342 *   record.info.caller_id          = 299 (task 299)
    343 *   record.info.dev_info.subsystem = "pci" (terminated)
    344 *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
    345 *
    346 * The 'struct printk_info' buffer must never be directly exported to
    347 * userspace, it is a kernel-private implementation detail that might
    348 * need to be changed in the future, when the requirements change.
    349 *
    350 * /dev/kmsg exports the structured data in the following line format:
    351 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
    352 *
    353 * Users of the export format should ignore possible additional values
    354 * separated by ',', and find the message after the ';' character.
    355 *
    356 * The optional key/value pairs are attached as continuation lines starting
    357 * with a space character and terminated by a newline. All possible
    358 * non-prinatable characters are escaped in the "\xff" notation.
    359 */
    360
    361/* syslog_lock protects syslog_* variables and write access to clear_seq. */
    362static DEFINE_MUTEX(syslog_lock);
    363
    364#ifdef CONFIG_PRINTK
    365DECLARE_WAIT_QUEUE_HEAD(log_wait);
    366/* All 3 protected by @syslog_lock. */
    367/* the next printk record to read by syslog(READ) or /proc/kmsg */
    368static u64 syslog_seq;
    369static size_t syslog_partial;
    370static bool syslog_time;
    371
    372struct latched_seq {
    373	seqcount_latch_t	latch;
    374	u64			val[2];
    375};
    376
    377/*
    378 * The next printk record to read after the last 'clear' command. There are
    379 * two copies (updated with seqcount_latch) so that reads can locklessly
    380 * access a valid value. Writers are synchronized by @syslog_lock.
    381 */
    382static struct latched_seq clear_seq = {
    383	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
    384	.val[0]		= 0,
    385	.val[1]		= 0,
    386};
    387
    388#ifdef CONFIG_PRINTK_CALLER
    389#define PREFIX_MAX		48
    390#else
    391#define PREFIX_MAX		32
    392#endif
    393
    394/* the maximum size of a formatted record (i.e. with prefix added per line) */
    395#define CONSOLE_LOG_MAX		1024
    396
    397/* the maximum size for a dropped text message */
    398#define DROPPED_TEXT_MAX	64
    399
    400/* the maximum size allowed to be reserved for a record */
    401#define LOG_LINE_MAX		(CONSOLE_LOG_MAX - PREFIX_MAX)
    402
    403#define LOG_LEVEL(v)		((v) & 0x07)
    404#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
    405
    406/* record buffer */
    407#define LOG_ALIGN __alignof__(unsigned long)
    408#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
    409#define LOG_BUF_LEN_MAX (u32)(1 << 31)
    410static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
    411static char *log_buf = __log_buf;
    412static u32 log_buf_len = __LOG_BUF_LEN;
    413
    414/*
    415 * Define the average message size. This only affects the number of
    416 * descriptors that will be available. Underestimating is better than
    417 * overestimating (too many available descriptors is better than not enough).
    418 */
    419#define PRB_AVGBITS 5	/* 32 character average length */
    420
    421#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
    422#error CONFIG_LOG_BUF_SHIFT value too small.
    423#endif
    424_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
    425		 PRB_AVGBITS, &__log_buf[0]);
    426
    427static struct printk_ringbuffer printk_rb_dynamic;
    428
    429static struct printk_ringbuffer *prb = &printk_rb_static;
    430
    431/*
    432 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
    433 * per_cpu_areas are initialised. This variable is set to true when
    434 * it's safe to access per-CPU data.
    435 */
    436static bool __printk_percpu_data_ready __read_mostly;
    437
    438bool printk_percpu_data_ready(void)
    439{
    440	return __printk_percpu_data_ready;
    441}
    442
    443/* Must be called under syslog_lock. */
    444static void latched_seq_write(struct latched_seq *ls, u64 val)
    445{
    446	raw_write_seqcount_latch(&ls->latch);
    447	ls->val[0] = val;
    448	raw_write_seqcount_latch(&ls->latch);
    449	ls->val[1] = val;
    450}
    451
    452/* Can be called from any context. */
    453static u64 latched_seq_read_nolock(struct latched_seq *ls)
    454{
    455	unsigned int seq;
    456	unsigned int idx;
    457	u64 val;
    458
    459	do {
    460		seq = raw_read_seqcount_latch(&ls->latch);
    461		idx = seq & 0x1;
    462		val = ls->val[idx];
    463	} while (read_seqcount_latch_retry(&ls->latch, seq));
    464
    465	return val;
    466}
    467
    468/* Return log buffer address */
    469char *log_buf_addr_get(void)
    470{
    471	return log_buf;
    472}
    473
    474/* Return log buffer size */
    475u32 log_buf_len_get(void)
    476{
    477	return log_buf_len;
    478}
    479
    480/*
    481 * Define how much of the log buffer we could take at maximum. The value
    482 * must be greater than two. Note that only half of the buffer is available
    483 * when the index points to the middle.
    484 */
    485#define MAX_LOG_TAKE_PART 4
    486static const char trunc_msg[] = "<truncated>";
    487
    488static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
    489{
    490	/*
    491	 * The message should not take the whole buffer. Otherwise, it might
    492	 * get removed too soon.
    493	 */
    494	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
    495
    496	if (*text_len > max_text_len)
    497		*text_len = max_text_len;
    498
    499	/* enable the warning message (if there is room) */
    500	*trunc_msg_len = strlen(trunc_msg);
    501	if (*text_len >= *trunc_msg_len)
    502		*text_len -= *trunc_msg_len;
    503	else
    504		*trunc_msg_len = 0;
    505}
    506
    507int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
    508
    509static int syslog_action_restricted(int type)
    510{
    511	if (dmesg_restrict)
    512		return 1;
    513	/*
    514	 * Unless restricted, we allow "read all" and "get buffer size"
    515	 * for everybody.
    516	 */
    517	return type != SYSLOG_ACTION_READ_ALL &&
    518	       type != SYSLOG_ACTION_SIZE_BUFFER;
    519}
    520
    521static int check_syslog_permissions(int type, int source)
    522{
    523	/*
    524	 * If this is from /proc/kmsg and we've already opened it, then we've
    525	 * already done the capabilities checks at open time.
    526	 */
    527	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
    528		goto ok;
    529
    530	if (syslog_action_restricted(type)) {
    531		if (capable(CAP_SYSLOG))
    532			goto ok;
    533		/*
    534		 * For historical reasons, accept CAP_SYS_ADMIN too, with
    535		 * a warning.
    536		 */
    537		if (capable(CAP_SYS_ADMIN)) {
    538			pr_warn_once("%s (%d): Attempt to access syslog with "
    539				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
    540				     "(deprecated).\n",
    541				 current->comm, task_pid_nr(current));
    542			goto ok;
    543		}
    544		return -EPERM;
    545	}
    546ok:
    547	return security_syslog(type);
    548}
    549
    550static void append_char(char **pp, char *e, char c)
    551{
    552	if (*pp < e)
    553		*(*pp)++ = c;
    554}
    555
    556static ssize_t info_print_ext_header(char *buf, size_t size,
    557				     struct printk_info *info)
    558{
    559	u64 ts_usec = info->ts_nsec;
    560	char caller[20];
    561#ifdef CONFIG_PRINTK_CALLER
    562	u32 id = info->caller_id;
    563
    564	snprintf(caller, sizeof(caller), ",caller=%c%u",
    565		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
    566#else
    567	caller[0] = '\0';
    568#endif
    569
    570	do_div(ts_usec, 1000);
    571
    572	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
    573			 (info->facility << 3) | info->level, info->seq,
    574			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
    575}
    576
    577static ssize_t msg_add_ext_text(char *buf, size_t size,
    578				const char *text, size_t text_len,
    579				unsigned char endc)
    580{
    581	char *p = buf, *e = buf + size;
    582	size_t i;
    583
    584	/* escape non-printable characters */
    585	for (i = 0; i < text_len; i++) {
    586		unsigned char c = text[i];
    587
    588		if (c < ' ' || c >= 127 || c == '\\')
    589			p += scnprintf(p, e - p, "\\x%02x", c);
    590		else
    591			append_char(&p, e, c);
    592	}
    593	append_char(&p, e, endc);
    594
    595	return p - buf;
    596}
    597
    598static ssize_t msg_add_dict_text(char *buf, size_t size,
    599				 const char *key, const char *val)
    600{
    601	size_t val_len = strlen(val);
    602	ssize_t len;
    603
    604	if (!val_len)
    605		return 0;
    606
    607	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
    608	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
    609	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
    610
    611	return len;
    612}
    613
    614static ssize_t msg_print_ext_body(char *buf, size_t size,
    615				  char *text, size_t text_len,
    616				  struct dev_printk_info *dev_info)
    617{
    618	ssize_t len;
    619
    620	len = msg_add_ext_text(buf, size, text, text_len, '\n');
    621
    622	if (!dev_info)
    623		goto out;
    624
    625	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
    626				 dev_info->subsystem);
    627	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
    628				 dev_info->device);
    629out:
    630	return len;
    631}
    632
    633/* /dev/kmsg - userspace message inject/listen interface */
    634struct devkmsg_user {
    635	atomic64_t seq;
    636	struct ratelimit_state rs;
    637	struct mutex lock;
    638	char buf[CONSOLE_EXT_LOG_MAX];
    639
    640	struct printk_info info;
    641	char text_buf[CONSOLE_EXT_LOG_MAX];
    642	struct printk_record record;
    643};
    644
    645static __printf(3, 4) __cold
    646int devkmsg_emit(int facility, int level, const char *fmt, ...)
    647{
    648	va_list args;
    649	int r;
    650
    651	va_start(args, fmt);
    652	r = vprintk_emit(facility, level, NULL, fmt, args);
    653	va_end(args);
    654
    655	return r;
    656}
    657
    658static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
    659{
    660	char *buf, *line;
    661	int level = default_message_loglevel;
    662	int facility = 1;	/* LOG_USER */
    663	struct file *file = iocb->ki_filp;
    664	struct devkmsg_user *user = file->private_data;
    665	size_t len = iov_iter_count(from);
    666	ssize_t ret = len;
    667
    668	if (!user || len > LOG_LINE_MAX)
    669		return -EINVAL;
    670
    671	/* Ignore when user logging is disabled. */
    672	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
    673		return len;
    674
    675	/* Ratelimit when not explicitly enabled. */
    676	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
    677		if (!___ratelimit(&user->rs, current->comm))
    678			return ret;
    679	}
    680
    681	buf = kmalloc(len+1, GFP_KERNEL);
    682	if (buf == NULL)
    683		return -ENOMEM;
    684
    685	buf[len] = '\0';
    686	if (!copy_from_iter_full(buf, len, from)) {
    687		kfree(buf);
    688		return -EFAULT;
    689	}
    690
    691	/*
    692	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
    693	 * the decimal value represents 32bit, the lower 3 bit are the log
    694	 * level, the rest are the log facility.
    695	 *
    696	 * If no prefix or no userspace facility is specified, we
    697	 * enforce LOG_USER, to be able to reliably distinguish
    698	 * kernel-generated messages from userspace-injected ones.
    699	 */
    700	line = buf;
    701	if (line[0] == '<') {
    702		char *endp = NULL;
    703		unsigned int u;
    704
    705		u = simple_strtoul(line + 1, &endp, 10);
    706		if (endp && endp[0] == '>') {
    707			level = LOG_LEVEL(u);
    708			if (LOG_FACILITY(u) != 0)
    709				facility = LOG_FACILITY(u);
    710			endp++;
    711			line = endp;
    712		}
    713	}
    714
    715	devkmsg_emit(facility, level, "%s", line);
    716	kfree(buf);
    717	return ret;
    718}
    719
    720static ssize_t devkmsg_read(struct file *file, char __user *buf,
    721			    size_t count, loff_t *ppos)
    722{
    723	struct devkmsg_user *user = file->private_data;
    724	struct printk_record *r = &user->record;
    725	size_t len;
    726	ssize_t ret;
    727
    728	if (!user)
    729		return -EBADF;
    730
    731	ret = mutex_lock_interruptible(&user->lock);
    732	if (ret)
    733		return ret;
    734
    735	if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
    736		if (file->f_flags & O_NONBLOCK) {
    737			ret = -EAGAIN;
    738			goto out;
    739		}
    740
    741		/*
    742		 * Guarantee this task is visible on the waitqueue before
    743		 * checking the wake condition.
    744		 *
    745		 * The full memory barrier within set_current_state() of
    746		 * prepare_to_wait_event() pairs with the full memory barrier
    747		 * within wq_has_sleeper().
    748		 *
    749		 * This pairs with __wake_up_klogd:A.
    750		 */
    751		ret = wait_event_interruptible(log_wait,
    752				prb_read_valid(prb,
    753					atomic64_read(&user->seq), r)); /* LMM(devkmsg_read:A) */
    754		if (ret)
    755			goto out;
    756	}
    757
    758	if (r->info->seq != atomic64_read(&user->seq)) {
    759		/* our last seen message is gone, return error and reset */
    760		atomic64_set(&user->seq, r->info->seq);
    761		ret = -EPIPE;
    762		goto out;
    763	}
    764
    765	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
    766	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
    767				  &r->text_buf[0], r->info->text_len,
    768				  &r->info->dev_info);
    769
    770	atomic64_set(&user->seq, r->info->seq + 1);
    771
    772	if (len > count) {
    773		ret = -EINVAL;
    774		goto out;
    775	}
    776
    777	if (copy_to_user(buf, user->buf, len)) {
    778		ret = -EFAULT;
    779		goto out;
    780	}
    781	ret = len;
    782out:
    783	mutex_unlock(&user->lock);
    784	return ret;
    785}
    786
    787/*
    788 * Be careful when modifying this function!!!
    789 *
    790 * Only few operations are supported because the device works only with the
    791 * entire variable length messages (records). Non-standard values are
    792 * returned in the other cases and has been this way for quite some time.
    793 * User space applications might depend on this behavior.
    794 */
    795static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
    796{
    797	struct devkmsg_user *user = file->private_data;
    798	loff_t ret = 0;
    799
    800	if (!user)
    801		return -EBADF;
    802	if (offset)
    803		return -ESPIPE;
    804
    805	switch (whence) {
    806	case SEEK_SET:
    807		/* the first record */
    808		atomic64_set(&user->seq, prb_first_valid_seq(prb));
    809		break;
    810	case SEEK_DATA:
    811		/*
    812		 * The first record after the last SYSLOG_ACTION_CLEAR,
    813		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
    814		 * changes no global state, and does not clear anything.
    815		 */
    816		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
    817		break;
    818	case SEEK_END:
    819		/* after the last record */
    820		atomic64_set(&user->seq, prb_next_seq(prb));
    821		break;
    822	default:
    823		ret = -EINVAL;
    824	}
    825	return ret;
    826}
    827
    828static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
    829{
    830	struct devkmsg_user *user = file->private_data;
    831	struct printk_info info;
    832	__poll_t ret = 0;
    833
    834	if (!user)
    835		return EPOLLERR|EPOLLNVAL;
    836
    837	poll_wait(file, &log_wait, wait);
    838
    839	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
    840		/* return error when data has vanished underneath us */
    841		if (info.seq != atomic64_read(&user->seq))
    842			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
    843		else
    844			ret = EPOLLIN|EPOLLRDNORM;
    845	}
    846
    847	return ret;
    848}
    849
    850static int devkmsg_open(struct inode *inode, struct file *file)
    851{
    852	struct devkmsg_user *user;
    853	int err;
    854
    855	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
    856		return -EPERM;
    857
    858	/* write-only does not need any file context */
    859	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
    860		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
    861					       SYSLOG_FROM_READER);
    862		if (err)
    863			return err;
    864	}
    865
    866	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
    867	if (!user)
    868		return -ENOMEM;
    869
    870	ratelimit_default_init(&user->rs);
    871	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
    872
    873	mutex_init(&user->lock);
    874
    875	prb_rec_init_rd(&user->record, &user->info,
    876			&user->text_buf[0], sizeof(user->text_buf));
    877
    878	atomic64_set(&user->seq, prb_first_valid_seq(prb));
    879
    880	file->private_data = user;
    881	return 0;
    882}
    883
    884static int devkmsg_release(struct inode *inode, struct file *file)
    885{
    886	struct devkmsg_user *user = file->private_data;
    887
    888	if (!user)
    889		return 0;
    890
    891	ratelimit_state_exit(&user->rs);
    892
    893	mutex_destroy(&user->lock);
    894	kvfree(user);
    895	return 0;
    896}
    897
    898const struct file_operations kmsg_fops = {
    899	.open = devkmsg_open,
    900	.read = devkmsg_read,
    901	.write_iter = devkmsg_write,
    902	.llseek = devkmsg_llseek,
    903	.poll = devkmsg_poll,
    904	.release = devkmsg_release,
    905};
    906
    907#ifdef CONFIG_CRASH_CORE
    908/*
    909 * This appends the listed symbols to /proc/vmcore
    910 *
    911 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
    912 * obtain access to symbols that are otherwise very difficult to locate.  These
    913 * symbols are specifically used so that utilities can access and extract the
    914 * dmesg log from a vmcore file after a crash.
    915 */
    916void log_buf_vmcoreinfo_setup(void)
    917{
    918	struct dev_printk_info *dev_info = NULL;
    919
    920	VMCOREINFO_SYMBOL(prb);
    921	VMCOREINFO_SYMBOL(printk_rb_static);
    922	VMCOREINFO_SYMBOL(clear_seq);
    923
    924	/*
    925	 * Export struct size and field offsets. User space tools can
    926	 * parse it and detect any changes to structure down the line.
    927	 */
    928
    929	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
    930	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
    931	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
    932	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
    933
    934	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
    935	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
    936	VMCOREINFO_OFFSET(prb_desc_ring, descs);
    937	VMCOREINFO_OFFSET(prb_desc_ring, infos);
    938	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
    939	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
    940
    941	VMCOREINFO_STRUCT_SIZE(prb_desc);
    942	VMCOREINFO_OFFSET(prb_desc, state_var);
    943	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
    944
    945	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
    946	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
    947	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
    948
    949	VMCOREINFO_STRUCT_SIZE(printk_info);
    950	VMCOREINFO_OFFSET(printk_info, seq);
    951	VMCOREINFO_OFFSET(printk_info, ts_nsec);
    952	VMCOREINFO_OFFSET(printk_info, text_len);
    953	VMCOREINFO_OFFSET(printk_info, caller_id);
    954	VMCOREINFO_OFFSET(printk_info, dev_info);
    955
    956	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
    957	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
    958	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
    959	VMCOREINFO_OFFSET(dev_printk_info, device);
    960	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
    961
    962	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
    963	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
    964	VMCOREINFO_OFFSET(prb_data_ring, data);
    965	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
    966	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
    967
    968	VMCOREINFO_SIZE(atomic_long_t);
    969	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
    970
    971	VMCOREINFO_STRUCT_SIZE(latched_seq);
    972	VMCOREINFO_OFFSET(latched_seq, val);
    973}
    974#endif
    975
    976/* requested log_buf_len from kernel cmdline */
    977static unsigned long __initdata new_log_buf_len;
    978
    979/* we practice scaling the ring buffer by powers of 2 */
    980static void __init log_buf_len_update(u64 size)
    981{
    982	if (size > (u64)LOG_BUF_LEN_MAX) {
    983		size = (u64)LOG_BUF_LEN_MAX;
    984		pr_err("log_buf over 2G is not supported.\n");
    985	}
    986
    987	if (size)
    988		size = roundup_pow_of_two(size);
    989	if (size > log_buf_len)
    990		new_log_buf_len = (unsigned long)size;
    991}
    992
    993/* save requested log_buf_len since it's too early to process it */
    994static int __init log_buf_len_setup(char *str)
    995{
    996	u64 size;
    997
    998	if (!str)
    999		return -EINVAL;
   1000
   1001	size = memparse(str, &str);
   1002
   1003	log_buf_len_update(size);
   1004
   1005	return 0;
   1006}
   1007early_param("log_buf_len", log_buf_len_setup);
   1008
   1009#ifdef CONFIG_SMP
   1010#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
   1011
   1012static void __init log_buf_add_cpu(void)
   1013{
   1014	unsigned int cpu_extra;
   1015
   1016	/*
   1017	 * archs should set up cpu_possible_bits properly with
   1018	 * set_cpu_possible() after setup_arch() but just in
   1019	 * case lets ensure this is valid.
   1020	 */
   1021	if (num_possible_cpus() == 1)
   1022		return;
   1023
   1024	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
   1025
   1026	/* by default this will only continue through for large > 64 CPUs */
   1027	if (cpu_extra <= __LOG_BUF_LEN / 2)
   1028		return;
   1029
   1030	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
   1031		__LOG_CPU_MAX_BUF_LEN);
   1032	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
   1033		cpu_extra);
   1034	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
   1035
   1036	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
   1037}
   1038#else /* !CONFIG_SMP */
   1039static inline void log_buf_add_cpu(void) {}
   1040#endif /* CONFIG_SMP */
   1041
   1042static void __init set_percpu_data_ready(void)
   1043{
   1044	__printk_percpu_data_ready = true;
   1045}
   1046
   1047static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
   1048				     struct printk_record *r)
   1049{
   1050	struct prb_reserved_entry e;
   1051	struct printk_record dest_r;
   1052
   1053	prb_rec_init_wr(&dest_r, r->info->text_len);
   1054
   1055	if (!prb_reserve(&e, rb, &dest_r))
   1056		return 0;
   1057
   1058	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
   1059	dest_r.info->text_len = r->info->text_len;
   1060	dest_r.info->facility = r->info->facility;
   1061	dest_r.info->level = r->info->level;
   1062	dest_r.info->flags = r->info->flags;
   1063	dest_r.info->ts_nsec = r->info->ts_nsec;
   1064	dest_r.info->caller_id = r->info->caller_id;
   1065	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
   1066
   1067	prb_final_commit(&e);
   1068
   1069	return prb_record_text_space(&e);
   1070}
   1071
   1072static char setup_text_buf[LOG_LINE_MAX] __initdata;
   1073
   1074void __init setup_log_buf(int early)
   1075{
   1076	struct printk_info *new_infos;
   1077	unsigned int new_descs_count;
   1078	struct prb_desc *new_descs;
   1079	struct printk_info info;
   1080	struct printk_record r;
   1081	unsigned int text_size;
   1082	size_t new_descs_size;
   1083	size_t new_infos_size;
   1084	unsigned long flags;
   1085	char *new_log_buf;
   1086	unsigned int free;
   1087	u64 seq;
   1088
   1089	/*
   1090	 * Some archs call setup_log_buf() multiple times - first is very
   1091	 * early, e.g. from setup_arch(), and second - when percpu_areas
   1092	 * are initialised.
   1093	 */
   1094	if (!early)
   1095		set_percpu_data_ready();
   1096
   1097	if (log_buf != __log_buf)
   1098		return;
   1099
   1100	if (!early && !new_log_buf_len)
   1101		log_buf_add_cpu();
   1102
   1103	if (!new_log_buf_len)
   1104		return;
   1105
   1106	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
   1107	if (new_descs_count == 0) {
   1108		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
   1109		return;
   1110	}
   1111
   1112	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
   1113	if (unlikely(!new_log_buf)) {
   1114		pr_err("log_buf_len: %lu text bytes not available\n",
   1115		       new_log_buf_len);
   1116		return;
   1117	}
   1118
   1119	new_descs_size = new_descs_count * sizeof(struct prb_desc);
   1120	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
   1121	if (unlikely(!new_descs)) {
   1122		pr_err("log_buf_len: %zu desc bytes not available\n",
   1123		       new_descs_size);
   1124		goto err_free_log_buf;
   1125	}
   1126
   1127	new_infos_size = new_descs_count * sizeof(struct printk_info);
   1128	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
   1129	if (unlikely(!new_infos)) {
   1130		pr_err("log_buf_len: %zu info bytes not available\n",
   1131		       new_infos_size);
   1132		goto err_free_descs;
   1133	}
   1134
   1135	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
   1136
   1137	prb_init(&printk_rb_dynamic,
   1138		 new_log_buf, ilog2(new_log_buf_len),
   1139		 new_descs, ilog2(new_descs_count),
   1140		 new_infos);
   1141
   1142	local_irq_save(flags);
   1143
   1144	log_buf_len = new_log_buf_len;
   1145	log_buf = new_log_buf;
   1146	new_log_buf_len = 0;
   1147
   1148	free = __LOG_BUF_LEN;
   1149	prb_for_each_record(0, &printk_rb_static, seq, &r) {
   1150		text_size = add_to_rb(&printk_rb_dynamic, &r);
   1151		if (text_size > free)
   1152			free = 0;
   1153		else
   1154			free -= text_size;
   1155	}
   1156
   1157	prb = &printk_rb_dynamic;
   1158
   1159	local_irq_restore(flags);
   1160
   1161	/*
   1162	 * Copy any remaining messages that might have appeared from
   1163	 * NMI context after copying but before switching to the
   1164	 * dynamic buffer.
   1165	 */
   1166	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
   1167		text_size = add_to_rb(&printk_rb_dynamic, &r);
   1168		if (text_size > free)
   1169			free = 0;
   1170		else
   1171			free -= text_size;
   1172	}
   1173
   1174	if (seq != prb_next_seq(&printk_rb_static)) {
   1175		pr_err("dropped %llu messages\n",
   1176		       prb_next_seq(&printk_rb_static) - seq);
   1177	}
   1178
   1179	pr_info("log_buf_len: %u bytes\n", log_buf_len);
   1180	pr_info("early log buf free: %u(%u%%)\n",
   1181		free, (free * 100) / __LOG_BUF_LEN);
   1182	return;
   1183
   1184err_free_descs:
   1185	memblock_free(new_descs, new_descs_size);
   1186err_free_log_buf:
   1187	memblock_free(new_log_buf, new_log_buf_len);
   1188}
   1189
   1190static bool __read_mostly ignore_loglevel;
   1191
   1192static int __init ignore_loglevel_setup(char *str)
   1193{
   1194	ignore_loglevel = true;
   1195	pr_info("debug: ignoring loglevel setting.\n");
   1196
   1197	return 0;
   1198}
   1199
   1200early_param("ignore_loglevel", ignore_loglevel_setup);
   1201module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
   1202MODULE_PARM_DESC(ignore_loglevel,
   1203		 "ignore loglevel setting (prints all kernel messages to the console)");
   1204
   1205static bool suppress_message_printing(int level)
   1206{
   1207	return (level >= console_loglevel && !ignore_loglevel);
   1208}
   1209
   1210#ifdef CONFIG_BOOT_PRINTK_DELAY
   1211
   1212static int boot_delay; /* msecs delay after each printk during bootup */
   1213static unsigned long long loops_per_msec;	/* based on boot_delay */
   1214
   1215static int __init boot_delay_setup(char *str)
   1216{
   1217	unsigned long lpj;
   1218
   1219	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
   1220	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
   1221
   1222	get_option(&str, &boot_delay);
   1223	if (boot_delay > 10 * 1000)
   1224		boot_delay = 0;
   1225
   1226	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
   1227		"HZ: %d, loops_per_msec: %llu\n",
   1228		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
   1229	return 0;
   1230}
   1231early_param("boot_delay", boot_delay_setup);
   1232
   1233static void boot_delay_msec(int level)
   1234{
   1235	unsigned long long k;
   1236	unsigned long timeout;
   1237
   1238	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
   1239		|| suppress_message_printing(level)) {
   1240		return;
   1241	}
   1242
   1243	k = (unsigned long long)loops_per_msec * boot_delay;
   1244
   1245	timeout = jiffies + msecs_to_jiffies(boot_delay);
   1246	while (k) {
   1247		k--;
   1248		cpu_relax();
   1249		/*
   1250		 * use (volatile) jiffies to prevent
   1251		 * compiler reduction; loop termination via jiffies
   1252		 * is secondary and may or may not happen.
   1253		 */
   1254		if (time_after(jiffies, timeout))
   1255			break;
   1256		touch_nmi_watchdog();
   1257	}
   1258}
   1259#else
   1260static inline void boot_delay_msec(int level)
   1261{
   1262}
   1263#endif
   1264
   1265static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
   1266module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
   1267
   1268static size_t print_syslog(unsigned int level, char *buf)
   1269{
   1270	return sprintf(buf, "<%u>", level);
   1271}
   1272
   1273static size_t print_time(u64 ts, char *buf)
   1274{
   1275	unsigned long rem_nsec = do_div(ts, 1000000000);
   1276
   1277	return sprintf(buf, "[%5lu.%06lu]",
   1278		       (unsigned long)ts, rem_nsec / 1000);
   1279}
   1280
   1281#ifdef CONFIG_PRINTK_CALLER
   1282static size_t print_caller(u32 id, char *buf)
   1283{
   1284	char caller[12];
   1285
   1286	snprintf(caller, sizeof(caller), "%c%u",
   1287		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
   1288	return sprintf(buf, "[%6s]", caller);
   1289}
   1290#else
   1291#define print_caller(id, buf) 0
   1292#endif
   1293
   1294static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
   1295				bool time, char *buf)
   1296{
   1297	size_t len = 0;
   1298
   1299	if (syslog)
   1300		len = print_syslog((info->facility << 3) | info->level, buf);
   1301
   1302	if (time)
   1303		len += print_time(info->ts_nsec, buf + len);
   1304
   1305	len += print_caller(info->caller_id, buf + len);
   1306
   1307	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
   1308		buf[len++] = ' ';
   1309		buf[len] = '\0';
   1310	}
   1311
   1312	return len;
   1313}
   1314
   1315/*
   1316 * Prepare the record for printing. The text is shifted within the given
   1317 * buffer to avoid a need for another one. The following operations are
   1318 * done:
   1319 *
   1320 *   - Add prefix for each line.
   1321 *   - Drop truncated lines that no longer fit into the buffer.
   1322 *   - Add the trailing newline that has been removed in vprintk_store().
   1323 *   - Add a string terminator.
   1324 *
   1325 * Since the produced string is always terminated, the maximum possible
   1326 * return value is @r->text_buf_size - 1;
   1327 *
   1328 * Return: The length of the updated/prepared text, including the added
   1329 * prefixes and the newline. The terminator is not counted. The dropped
   1330 * line(s) are not counted.
   1331 */
   1332static size_t record_print_text(struct printk_record *r, bool syslog,
   1333				bool time)
   1334{
   1335	size_t text_len = r->info->text_len;
   1336	size_t buf_size = r->text_buf_size;
   1337	char *text = r->text_buf;
   1338	char prefix[PREFIX_MAX];
   1339	bool truncated = false;
   1340	size_t prefix_len;
   1341	size_t line_len;
   1342	size_t len = 0;
   1343	char *next;
   1344
   1345	/*
   1346	 * If the message was truncated because the buffer was not large
   1347	 * enough, treat the available text as if it were the full text.
   1348	 */
   1349	if (text_len > buf_size)
   1350		text_len = buf_size;
   1351
   1352	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
   1353
   1354	/*
   1355	 * @text_len: bytes of unprocessed text
   1356	 * @line_len: bytes of current line _without_ newline
   1357	 * @text:     pointer to beginning of current line
   1358	 * @len:      number of bytes prepared in r->text_buf
   1359	 */
   1360	for (;;) {
   1361		next = memchr(text, '\n', text_len);
   1362		if (next) {
   1363			line_len = next - text;
   1364		} else {
   1365			/* Drop truncated line(s). */
   1366			if (truncated)
   1367				break;
   1368			line_len = text_len;
   1369		}
   1370
   1371		/*
   1372		 * Truncate the text if there is not enough space to add the
   1373		 * prefix and a trailing newline and a terminator.
   1374		 */
   1375		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
   1376			/* Drop even the current line if no space. */
   1377			if (len + prefix_len + line_len + 1 + 1 > buf_size)
   1378				break;
   1379
   1380			text_len = buf_size - len - prefix_len - 1 - 1;
   1381			truncated = true;
   1382		}
   1383
   1384		memmove(text + prefix_len, text, text_len);
   1385		memcpy(text, prefix, prefix_len);
   1386
   1387		/*
   1388		 * Increment the prepared length to include the text and
   1389		 * prefix that were just moved+copied. Also increment for the
   1390		 * newline at the end of this line. If this is the last line,
   1391		 * there is no newline, but it will be added immediately below.
   1392		 */
   1393		len += prefix_len + line_len + 1;
   1394		if (text_len == line_len) {
   1395			/*
   1396			 * This is the last line. Add the trailing newline
   1397			 * removed in vprintk_store().
   1398			 */
   1399			text[prefix_len + line_len] = '\n';
   1400			break;
   1401		}
   1402
   1403		/*
   1404		 * Advance beyond the added prefix and the related line with
   1405		 * its newline.
   1406		 */
   1407		text += prefix_len + line_len + 1;
   1408
   1409		/*
   1410		 * The remaining text has only decreased by the line with its
   1411		 * newline.
   1412		 *
   1413		 * Note that @text_len can become zero. It happens when @text
   1414		 * ended with a newline (either due to truncation or the
   1415		 * original string ending with "\n\n"). The loop is correctly
   1416		 * repeated and (if not truncated) an empty line with a prefix
   1417		 * will be prepared.
   1418		 */
   1419		text_len -= line_len + 1;
   1420	}
   1421
   1422	/*
   1423	 * If a buffer was provided, it will be terminated. Space for the
   1424	 * string terminator is guaranteed to be available. The terminator is
   1425	 * not counted in the return value.
   1426	 */
   1427	if (buf_size > 0)
   1428		r->text_buf[len] = 0;
   1429
   1430	return len;
   1431}
   1432
   1433static size_t get_record_print_text_size(struct printk_info *info,
   1434					 unsigned int line_count,
   1435					 bool syslog, bool time)
   1436{
   1437	char prefix[PREFIX_MAX];
   1438	size_t prefix_len;
   1439
   1440	prefix_len = info_print_prefix(info, syslog, time, prefix);
   1441
   1442	/*
   1443	 * Each line will be preceded with a prefix. The intermediate
   1444	 * newlines are already within the text, but a final trailing
   1445	 * newline will be added.
   1446	 */
   1447	return ((prefix_len * line_count) + info->text_len + 1);
   1448}
   1449
   1450/*
   1451 * Beginning with @start_seq, find the first record where it and all following
   1452 * records up to (but not including) @max_seq fit into @size.
   1453 *
   1454 * @max_seq is simply an upper bound and does not need to exist. If the caller
   1455 * does not require an upper bound, -1 can be used for @max_seq.
   1456 */
   1457static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
   1458				  bool syslog, bool time)
   1459{
   1460	struct printk_info info;
   1461	unsigned int line_count;
   1462	size_t len = 0;
   1463	u64 seq;
   1464
   1465	/* Determine the size of the records up to @max_seq. */
   1466	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
   1467		if (info.seq >= max_seq)
   1468			break;
   1469		len += get_record_print_text_size(&info, line_count, syslog, time);
   1470	}
   1471
   1472	/*
   1473	 * Adjust the upper bound for the next loop to avoid subtracting
   1474	 * lengths that were never added.
   1475	 */
   1476	if (seq < max_seq)
   1477		max_seq = seq;
   1478
   1479	/*
   1480	 * Move first record forward until length fits into the buffer. Ignore
   1481	 * newest messages that were not counted in the above cycle. Messages
   1482	 * might appear and get lost in the meantime. This is a best effort
   1483	 * that prevents an infinite loop that could occur with a retry.
   1484	 */
   1485	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
   1486		if (len <= size || info.seq >= max_seq)
   1487			break;
   1488		len -= get_record_print_text_size(&info, line_count, syslog, time);
   1489	}
   1490
   1491	return seq;
   1492}
   1493
   1494/* The caller is responsible for making sure @size is greater than 0. */
   1495static int syslog_print(char __user *buf, int size)
   1496{
   1497	struct printk_info info;
   1498	struct printk_record r;
   1499	char *text;
   1500	int len = 0;
   1501	u64 seq;
   1502
   1503	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
   1504	if (!text)
   1505		return -ENOMEM;
   1506
   1507	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
   1508
   1509	mutex_lock(&syslog_lock);
   1510
   1511	/*
   1512	 * Wait for the @syslog_seq record to be available. @syslog_seq may
   1513	 * change while waiting.
   1514	 */
   1515	do {
   1516		seq = syslog_seq;
   1517
   1518		mutex_unlock(&syslog_lock);
   1519		/*
   1520		 * Guarantee this task is visible on the waitqueue before
   1521		 * checking the wake condition.
   1522		 *
   1523		 * The full memory barrier within set_current_state() of
   1524		 * prepare_to_wait_event() pairs with the full memory barrier
   1525		 * within wq_has_sleeper().
   1526		 *
   1527		 * This pairs with __wake_up_klogd:A.
   1528		 */
   1529		len = wait_event_interruptible(log_wait,
   1530				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
   1531		mutex_lock(&syslog_lock);
   1532
   1533		if (len)
   1534			goto out;
   1535	} while (syslog_seq != seq);
   1536
   1537	/*
   1538	 * Copy records that fit into the buffer. The above cycle makes sure
   1539	 * that the first record is always available.
   1540	 */
   1541	do {
   1542		size_t n;
   1543		size_t skip;
   1544		int err;
   1545
   1546		if (!prb_read_valid(prb, syslog_seq, &r))
   1547			break;
   1548
   1549		if (r.info->seq != syslog_seq) {
   1550			/* message is gone, move to next valid one */
   1551			syslog_seq = r.info->seq;
   1552			syslog_partial = 0;
   1553		}
   1554
   1555		/*
   1556		 * To keep reading/counting partial line consistent,
   1557		 * use printk_time value as of the beginning of a line.
   1558		 */
   1559		if (!syslog_partial)
   1560			syslog_time = printk_time;
   1561
   1562		skip = syslog_partial;
   1563		n = record_print_text(&r, true, syslog_time);
   1564		if (n - syslog_partial <= size) {
   1565			/* message fits into buffer, move forward */
   1566			syslog_seq = r.info->seq + 1;
   1567			n -= syslog_partial;
   1568			syslog_partial = 0;
   1569		} else if (!len){
   1570			/* partial read(), remember position */
   1571			n = size;
   1572			syslog_partial += n;
   1573		} else
   1574			n = 0;
   1575
   1576		if (!n)
   1577			break;
   1578
   1579		mutex_unlock(&syslog_lock);
   1580		err = copy_to_user(buf, text + skip, n);
   1581		mutex_lock(&syslog_lock);
   1582
   1583		if (err) {
   1584			if (!len)
   1585				len = -EFAULT;
   1586			break;
   1587		}
   1588
   1589		len += n;
   1590		size -= n;
   1591		buf += n;
   1592	} while (size);
   1593out:
   1594	mutex_unlock(&syslog_lock);
   1595	kfree(text);
   1596	return len;
   1597}
   1598
   1599static int syslog_print_all(char __user *buf, int size, bool clear)
   1600{
   1601	struct printk_info info;
   1602	struct printk_record r;
   1603	char *text;
   1604	int len = 0;
   1605	u64 seq;
   1606	bool time;
   1607
   1608	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
   1609	if (!text)
   1610		return -ENOMEM;
   1611
   1612	time = printk_time;
   1613	/*
   1614	 * Find first record that fits, including all following records,
   1615	 * into the user-provided buffer for this dump.
   1616	 */
   1617	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
   1618				     size, true, time);
   1619
   1620	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
   1621
   1622	len = 0;
   1623	prb_for_each_record(seq, prb, seq, &r) {
   1624		int textlen;
   1625
   1626		textlen = record_print_text(&r, true, time);
   1627
   1628		if (len + textlen > size) {
   1629			seq--;
   1630			break;
   1631		}
   1632
   1633		if (copy_to_user(buf + len, text, textlen))
   1634			len = -EFAULT;
   1635		else
   1636			len += textlen;
   1637
   1638		if (len < 0)
   1639			break;
   1640	}
   1641
   1642	if (clear) {
   1643		mutex_lock(&syslog_lock);
   1644		latched_seq_write(&clear_seq, seq);
   1645		mutex_unlock(&syslog_lock);
   1646	}
   1647
   1648	kfree(text);
   1649	return len;
   1650}
   1651
   1652static void syslog_clear(void)
   1653{
   1654	mutex_lock(&syslog_lock);
   1655	latched_seq_write(&clear_seq, prb_next_seq(prb));
   1656	mutex_unlock(&syslog_lock);
   1657}
   1658
   1659int do_syslog(int type, char __user *buf, int len, int source)
   1660{
   1661	struct printk_info info;
   1662	bool clear = false;
   1663	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
   1664	int error;
   1665
   1666	error = check_syslog_permissions(type, source);
   1667	if (error)
   1668		return error;
   1669
   1670	switch (type) {
   1671	case SYSLOG_ACTION_CLOSE:	/* Close log */
   1672		break;
   1673	case SYSLOG_ACTION_OPEN:	/* Open log */
   1674		break;
   1675	case SYSLOG_ACTION_READ:	/* Read from log */
   1676		if (!buf || len < 0)
   1677			return -EINVAL;
   1678		if (!len)
   1679			return 0;
   1680		if (!access_ok(buf, len))
   1681			return -EFAULT;
   1682		error = syslog_print(buf, len);
   1683		break;
   1684	/* Read/clear last kernel messages */
   1685	case SYSLOG_ACTION_READ_CLEAR:
   1686		clear = true;
   1687		fallthrough;
   1688	/* Read last kernel messages */
   1689	case SYSLOG_ACTION_READ_ALL:
   1690		if (!buf || len < 0)
   1691			return -EINVAL;
   1692		if (!len)
   1693			return 0;
   1694		if (!access_ok(buf, len))
   1695			return -EFAULT;
   1696		error = syslog_print_all(buf, len, clear);
   1697		break;
   1698	/* Clear ring buffer */
   1699	case SYSLOG_ACTION_CLEAR:
   1700		syslog_clear();
   1701		break;
   1702	/* Disable logging to console */
   1703	case SYSLOG_ACTION_CONSOLE_OFF:
   1704		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
   1705			saved_console_loglevel = console_loglevel;
   1706		console_loglevel = minimum_console_loglevel;
   1707		break;
   1708	/* Enable logging to console */
   1709	case SYSLOG_ACTION_CONSOLE_ON:
   1710		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
   1711			console_loglevel = saved_console_loglevel;
   1712			saved_console_loglevel = LOGLEVEL_DEFAULT;
   1713		}
   1714		break;
   1715	/* Set level of messages printed to console */
   1716	case SYSLOG_ACTION_CONSOLE_LEVEL:
   1717		if (len < 1 || len > 8)
   1718			return -EINVAL;
   1719		if (len < minimum_console_loglevel)
   1720			len = minimum_console_loglevel;
   1721		console_loglevel = len;
   1722		/* Implicitly re-enable logging to console */
   1723		saved_console_loglevel = LOGLEVEL_DEFAULT;
   1724		break;
   1725	/* Number of chars in the log buffer */
   1726	case SYSLOG_ACTION_SIZE_UNREAD:
   1727		mutex_lock(&syslog_lock);
   1728		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
   1729			/* No unread messages. */
   1730			mutex_unlock(&syslog_lock);
   1731			return 0;
   1732		}
   1733		if (info.seq != syslog_seq) {
   1734			/* messages are gone, move to first one */
   1735			syslog_seq = info.seq;
   1736			syslog_partial = 0;
   1737		}
   1738		if (source == SYSLOG_FROM_PROC) {
   1739			/*
   1740			 * Short-cut for poll(/"proc/kmsg") which simply checks
   1741			 * for pending data, not the size; return the count of
   1742			 * records, not the length.
   1743			 */
   1744			error = prb_next_seq(prb) - syslog_seq;
   1745		} else {
   1746			bool time = syslog_partial ? syslog_time : printk_time;
   1747			unsigned int line_count;
   1748			u64 seq;
   1749
   1750			prb_for_each_info(syslog_seq, prb, seq, &info,
   1751					  &line_count) {
   1752				error += get_record_print_text_size(&info, line_count,
   1753								    true, time);
   1754				time = printk_time;
   1755			}
   1756			error -= syslog_partial;
   1757		}
   1758		mutex_unlock(&syslog_lock);
   1759		break;
   1760	/* Size of the log buffer */
   1761	case SYSLOG_ACTION_SIZE_BUFFER:
   1762		error = log_buf_len;
   1763		break;
   1764	default:
   1765		error = -EINVAL;
   1766		break;
   1767	}
   1768
   1769	return error;
   1770}
   1771
   1772SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
   1773{
   1774	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
   1775}
   1776
   1777/*
   1778 * Special console_lock variants that help to reduce the risk of soft-lockups.
   1779 * They allow to pass console_lock to another printk() call using a busy wait.
   1780 */
   1781
   1782#ifdef CONFIG_LOCKDEP
   1783static struct lockdep_map console_owner_dep_map = {
   1784	.name = "console_owner"
   1785};
   1786#endif
   1787
   1788static DEFINE_RAW_SPINLOCK(console_owner_lock);
   1789static struct task_struct *console_owner;
   1790static bool console_waiter;
   1791
   1792/**
   1793 * console_lock_spinning_enable - mark beginning of code where another
   1794 *	thread might safely busy wait
   1795 *
   1796 * This basically converts console_lock into a spinlock. This marks
   1797 * the section where the console_lock owner can not sleep, because
   1798 * there may be a waiter spinning (like a spinlock). Also it must be
   1799 * ready to hand over the lock at the end of the section.
   1800 */
   1801static void console_lock_spinning_enable(void)
   1802{
   1803	raw_spin_lock(&console_owner_lock);
   1804	console_owner = current;
   1805	raw_spin_unlock(&console_owner_lock);
   1806
   1807	/* The waiter may spin on us after setting console_owner */
   1808	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
   1809}
   1810
   1811/**
   1812 * console_lock_spinning_disable_and_check - mark end of code where another
   1813 *	thread was able to busy wait and check if there is a waiter
   1814 *
   1815 * This is called at the end of the section where spinning is allowed.
   1816 * It has two functions. First, it is a signal that it is no longer
   1817 * safe to start busy waiting for the lock. Second, it checks if
   1818 * there is a busy waiter and passes the lock rights to her.
   1819 *
   1820 * Important: Callers lose the lock if there was a busy waiter.
   1821 *	They must not touch items synchronized by console_lock
   1822 *	in this case.
   1823 *
   1824 * Return: 1 if the lock rights were passed, 0 otherwise.
   1825 */
   1826static int console_lock_spinning_disable_and_check(void)
   1827{
   1828	int waiter;
   1829
   1830	raw_spin_lock(&console_owner_lock);
   1831	waiter = READ_ONCE(console_waiter);
   1832	console_owner = NULL;
   1833	raw_spin_unlock(&console_owner_lock);
   1834
   1835	if (!waiter) {
   1836		spin_release(&console_owner_dep_map, _THIS_IP_);
   1837		return 0;
   1838	}
   1839
   1840	/* The waiter is now free to continue */
   1841	WRITE_ONCE(console_waiter, false);
   1842
   1843	spin_release(&console_owner_dep_map, _THIS_IP_);
   1844
   1845	/*
   1846	 * Hand off console_lock to waiter. The waiter will perform
   1847	 * the up(). After this, the waiter is the console_lock owner.
   1848	 */
   1849	mutex_release(&console_lock_dep_map, _THIS_IP_);
   1850	return 1;
   1851}
   1852
   1853/**
   1854 * console_trylock_spinning - try to get console_lock by busy waiting
   1855 *
   1856 * This allows to busy wait for the console_lock when the current
   1857 * owner is running in specially marked sections. It means that
   1858 * the current owner is running and cannot reschedule until it
   1859 * is ready to lose the lock.
   1860 *
   1861 * Return: 1 if we got the lock, 0 othrewise
   1862 */
   1863static int console_trylock_spinning(void)
   1864{
   1865	struct task_struct *owner = NULL;
   1866	bool waiter;
   1867	bool spin = false;
   1868	unsigned long flags;
   1869
   1870	if (console_trylock())
   1871		return 1;
   1872
   1873	/*
   1874	 * It's unsafe to spin once a panic has begun. If we are the
   1875	 * panic CPU, we may have already halted the owner of the
   1876	 * console_sem. If we are not the panic CPU, then we should
   1877	 * avoid taking console_sem, so the panic CPU has a better
   1878	 * chance of cleanly acquiring it later.
   1879	 */
   1880	if (panic_in_progress())
   1881		return 0;
   1882
   1883	printk_safe_enter_irqsave(flags);
   1884
   1885	raw_spin_lock(&console_owner_lock);
   1886	owner = READ_ONCE(console_owner);
   1887	waiter = READ_ONCE(console_waiter);
   1888	if (!waiter && owner && owner != current) {
   1889		WRITE_ONCE(console_waiter, true);
   1890		spin = true;
   1891	}
   1892	raw_spin_unlock(&console_owner_lock);
   1893
   1894	/*
   1895	 * If there is an active printk() writing to the
   1896	 * consoles, instead of having it write our data too,
   1897	 * see if we can offload that load from the active
   1898	 * printer, and do some printing ourselves.
   1899	 * Go into a spin only if there isn't already a waiter
   1900	 * spinning, and there is an active printer, and
   1901	 * that active printer isn't us (recursive printk?).
   1902	 */
   1903	if (!spin) {
   1904		printk_safe_exit_irqrestore(flags);
   1905		return 0;
   1906	}
   1907
   1908	/* We spin waiting for the owner to release us */
   1909	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
   1910	/* Owner will clear console_waiter on hand off */
   1911	while (READ_ONCE(console_waiter))
   1912		cpu_relax();
   1913	spin_release(&console_owner_dep_map, _THIS_IP_);
   1914
   1915	printk_safe_exit_irqrestore(flags);
   1916	/*
   1917	 * The owner passed the console lock to us.
   1918	 * Since we did not spin on console lock, annotate
   1919	 * this as a trylock. Otherwise lockdep will
   1920	 * complain.
   1921	 */
   1922	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
   1923
   1924	return 1;
   1925}
   1926
   1927/*
   1928 * Call the specified console driver, asking it to write out the specified
   1929 * text and length. If @dropped_text is non-NULL and any records have been
   1930 * dropped, a dropped message will be written out first.
   1931 */
   1932static void call_console_driver(struct console *con, const char *text, size_t len,
   1933				char *dropped_text)
   1934{
   1935	size_t dropped_len;
   1936
   1937	if (con->dropped && dropped_text) {
   1938		dropped_len = snprintf(dropped_text, DROPPED_TEXT_MAX,
   1939				       "** %lu printk messages dropped **\n",
   1940				       con->dropped);
   1941		con->dropped = 0;
   1942		con->write(con, dropped_text, dropped_len);
   1943	}
   1944
   1945	con->write(con, text, len);
   1946}
   1947
   1948/*
   1949 * Recursion is tracked separately on each CPU. If NMIs are supported, an
   1950 * additional NMI context per CPU is also separately tracked. Until per-CPU
   1951 * is available, a separate "early tracking" is performed.
   1952 */
   1953static DEFINE_PER_CPU(u8, printk_count);
   1954static u8 printk_count_early;
   1955#ifdef CONFIG_HAVE_NMI
   1956static DEFINE_PER_CPU(u8, printk_count_nmi);
   1957static u8 printk_count_nmi_early;
   1958#endif
   1959
   1960/*
   1961 * Recursion is limited to keep the output sane. printk() should not require
   1962 * more than 1 level of recursion (allowing, for example, printk() to trigger
   1963 * a WARN), but a higher value is used in case some printk-internal errors
   1964 * exist, such as the ringbuffer validation checks failing.
   1965 */
   1966#define PRINTK_MAX_RECURSION 3
   1967
   1968/*
   1969 * Return a pointer to the dedicated counter for the CPU+context of the
   1970 * caller.
   1971 */
   1972static u8 *__printk_recursion_counter(void)
   1973{
   1974#ifdef CONFIG_HAVE_NMI
   1975	if (in_nmi()) {
   1976		if (printk_percpu_data_ready())
   1977			return this_cpu_ptr(&printk_count_nmi);
   1978		return &printk_count_nmi_early;
   1979	}
   1980#endif
   1981	if (printk_percpu_data_ready())
   1982		return this_cpu_ptr(&printk_count);
   1983	return &printk_count_early;
   1984}
   1985
   1986/*
   1987 * Enter recursion tracking. Interrupts are disabled to simplify tracking.
   1988 * The caller must check the boolean return value to see if the recursion is
   1989 * allowed. On failure, interrupts are not disabled.
   1990 *
   1991 * @recursion_ptr must be a variable of type (u8 *) and is the same variable
   1992 * that is passed to printk_exit_irqrestore().
   1993 */
   1994#define printk_enter_irqsave(recursion_ptr, flags)	\
   1995({							\
   1996	bool success = true;				\
   1997							\
   1998	typecheck(u8 *, recursion_ptr);			\
   1999	local_irq_save(flags);				\
   2000	(recursion_ptr) = __printk_recursion_counter();	\
   2001	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
   2002		local_irq_restore(flags);		\
   2003		success = false;			\
   2004	} else {					\
   2005		(*(recursion_ptr))++;			\
   2006	}						\
   2007	success;					\
   2008})
   2009
   2010/* Exit recursion tracking, restoring interrupts. */
   2011#define printk_exit_irqrestore(recursion_ptr, flags)	\
   2012	do {						\
   2013		typecheck(u8 *, recursion_ptr);		\
   2014		(*(recursion_ptr))--;			\
   2015		local_irq_restore(flags);		\
   2016	} while (0)
   2017
   2018int printk_delay_msec __read_mostly;
   2019
   2020static inline void printk_delay(int level)
   2021{
   2022	boot_delay_msec(level);
   2023
   2024	if (unlikely(printk_delay_msec)) {
   2025		int m = printk_delay_msec;
   2026
   2027		while (m--) {
   2028			mdelay(1);
   2029			touch_nmi_watchdog();
   2030		}
   2031	}
   2032}
   2033
   2034static inline u32 printk_caller_id(void)
   2035{
   2036	return in_task() ? task_pid_nr(current) :
   2037		0x80000000 + smp_processor_id();
   2038}
   2039
   2040/**
   2041 * printk_parse_prefix - Parse level and control flags.
   2042 *
   2043 * @text:     The terminated text message.
   2044 * @level:    A pointer to the current level value, will be updated.
   2045 * @flags:    A pointer to the current printk_info flags, will be updated.
   2046 *
   2047 * @level may be NULL if the caller is not interested in the parsed value.
   2048 * Otherwise the variable pointed to by @level must be set to
   2049 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
   2050 *
   2051 * @flags may be NULL if the caller is not interested in the parsed value.
   2052 * Otherwise the variable pointed to by @flags will be OR'd with the parsed
   2053 * value.
   2054 *
   2055 * Return: The length of the parsed level and control flags.
   2056 */
   2057u16 printk_parse_prefix(const char *text, int *level,
   2058			enum printk_info_flags *flags)
   2059{
   2060	u16 prefix_len = 0;
   2061	int kern_level;
   2062
   2063	while (*text) {
   2064		kern_level = printk_get_level(text);
   2065		if (!kern_level)
   2066			break;
   2067
   2068		switch (kern_level) {
   2069		case '0' ... '7':
   2070			if (level && *level == LOGLEVEL_DEFAULT)
   2071				*level = kern_level - '0';
   2072			break;
   2073		case 'c':	/* KERN_CONT */
   2074			if (flags)
   2075				*flags |= LOG_CONT;
   2076		}
   2077
   2078		prefix_len += 2;
   2079		text += 2;
   2080	}
   2081
   2082	return prefix_len;
   2083}
   2084
   2085__printf(5, 0)
   2086static u16 printk_sprint(char *text, u16 size, int facility,
   2087			 enum printk_info_flags *flags, const char *fmt,
   2088			 va_list args)
   2089{
   2090	u16 text_len;
   2091
   2092	text_len = vscnprintf(text, size, fmt, args);
   2093
   2094	/* Mark and strip a trailing newline. */
   2095	if (text_len && text[text_len - 1] == '\n') {
   2096		text_len--;
   2097		*flags |= LOG_NEWLINE;
   2098	}
   2099
   2100	/* Strip log level and control flags. */
   2101	if (facility == 0) {
   2102		u16 prefix_len;
   2103
   2104		prefix_len = printk_parse_prefix(text, NULL, NULL);
   2105		if (prefix_len) {
   2106			text_len -= prefix_len;
   2107			memmove(text, text + prefix_len, text_len);
   2108		}
   2109	}
   2110
   2111	trace_console_rcuidle(text, text_len);
   2112
   2113	return text_len;
   2114}
   2115
   2116__printf(4, 0)
   2117int vprintk_store(int facility, int level,
   2118		  const struct dev_printk_info *dev_info,
   2119		  const char *fmt, va_list args)
   2120{
   2121	struct prb_reserved_entry e;
   2122	enum printk_info_flags flags = 0;
   2123	struct printk_record r;
   2124	unsigned long irqflags;
   2125	u16 trunc_msg_len = 0;
   2126	char prefix_buf[8];
   2127	u8 *recursion_ptr;
   2128	u16 reserve_size;
   2129	va_list args2;
   2130	u32 caller_id;
   2131	u16 text_len;
   2132	int ret = 0;
   2133	u64 ts_nsec;
   2134
   2135	if (!printk_enter_irqsave(recursion_ptr, irqflags))
   2136		return 0;
   2137
   2138	/*
   2139	 * Since the duration of printk() can vary depending on the message
   2140	 * and state of the ringbuffer, grab the timestamp now so that it is
   2141	 * close to the call of printk(). This provides a more deterministic
   2142	 * timestamp with respect to the caller.
   2143	 */
   2144	ts_nsec = local_clock();
   2145
   2146	caller_id = printk_caller_id();
   2147
   2148	/*
   2149	 * The sprintf needs to come first since the syslog prefix might be
   2150	 * passed in as a parameter. An extra byte must be reserved so that
   2151	 * later the vscnprintf() into the reserved buffer has room for the
   2152	 * terminating '\0', which is not counted by vsnprintf().
   2153	 */
   2154	va_copy(args2, args);
   2155	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
   2156	va_end(args2);
   2157
   2158	if (reserve_size > LOG_LINE_MAX)
   2159		reserve_size = LOG_LINE_MAX;
   2160
   2161	/* Extract log level or control flags. */
   2162	if (facility == 0)
   2163		printk_parse_prefix(&prefix_buf[0], &level, &flags);
   2164
   2165	if (level == LOGLEVEL_DEFAULT)
   2166		level = default_message_loglevel;
   2167
   2168	if (dev_info)
   2169		flags |= LOG_NEWLINE;
   2170
   2171	if (flags & LOG_CONT) {
   2172		prb_rec_init_wr(&r, reserve_size);
   2173		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
   2174			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
   2175						 facility, &flags, fmt, args);
   2176			r.info->text_len += text_len;
   2177
   2178			if (flags & LOG_NEWLINE) {
   2179				r.info->flags |= LOG_NEWLINE;
   2180				prb_final_commit(&e);
   2181			} else {
   2182				prb_commit(&e);
   2183			}
   2184
   2185			ret = text_len;
   2186			goto out;
   2187		}
   2188	}
   2189
   2190	/*
   2191	 * Explicitly initialize the record before every prb_reserve() call.
   2192	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
   2193	 * structure when they fail.
   2194	 */
   2195	prb_rec_init_wr(&r, reserve_size);
   2196	if (!prb_reserve(&e, prb, &r)) {
   2197		/* truncate the message if it is too long for empty buffer */
   2198		truncate_msg(&reserve_size, &trunc_msg_len);
   2199
   2200		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
   2201		if (!prb_reserve(&e, prb, &r))
   2202			goto out;
   2203	}
   2204
   2205	/* fill message */
   2206	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
   2207	if (trunc_msg_len)
   2208		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
   2209	r.info->text_len = text_len + trunc_msg_len;
   2210	r.info->facility = facility;
   2211	r.info->level = level & 7;
   2212	r.info->flags = flags & 0x1f;
   2213	r.info->ts_nsec = ts_nsec;
   2214	r.info->caller_id = caller_id;
   2215	if (dev_info)
   2216		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
   2217
   2218	/* A message without a trailing newline can be continued. */
   2219	if (!(flags & LOG_NEWLINE))
   2220		prb_commit(&e);
   2221	else
   2222		prb_final_commit(&e);
   2223
   2224	ret = text_len + trunc_msg_len;
   2225out:
   2226	printk_exit_irqrestore(recursion_ptr, irqflags);
   2227	return ret;
   2228}
   2229
   2230asmlinkage int vprintk_emit(int facility, int level,
   2231			    const struct dev_printk_info *dev_info,
   2232			    const char *fmt, va_list args)
   2233{
   2234	int printed_len;
   2235	bool in_sched = false;
   2236
   2237	/* Suppress unimportant messages after panic happens */
   2238	if (unlikely(suppress_printk))
   2239		return 0;
   2240
   2241	if (unlikely(suppress_panic_printk) &&
   2242	    atomic_read(&panic_cpu) != raw_smp_processor_id())
   2243		return 0;
   2244
   2245	if (level == LOGLEVEL_SCHED) {
   2246		level = LOGLEVEL_DEFAULT;
   2247		in_sched = true;
   2248	}
   2249
   2250	printk_delay(level);
   2251
   2252	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
   2253
   2254	/* If called from the scheduler, we can not call up(). */
   2255	if (!in_sched) {
   2256		/*
   2257		 * The caller may be holding system-critical or
   2258		 * timing-sensitive locks. Disable preemption during
   2259		 * printing of all remaining records to all consoles so that
   2260		 * this context can return as soon as possible. Hopefully
   2261		 * another printk() caller will take over the printing.
   2262		 */
   2263		preempt_disable();
   2264		/*
   2265		 * Try to acquire and then immediately release the console
   2266		 * semaphore. The release will print out buffers. With the
   2267		 * spinning variant, this context tries to take over the
   2268		 * printing from another printing context.
   2269		 */
   2270		if (console_trylock_spinning())
   2271			console_unlock();
   2272		preempt_enable();
   2273	}
   2274
   2275	wake_up_klogd();
   2276	return printed_len;
   2277}
   2278EXPORT_SYMBOL(vprintk_emit);
   2279
   2280int vprintk_default(const char *fmt, va_list args)
   2281{
   2282	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
   2283}
   2284EXPORT_SYMBOL_GPL(vprintk_default);
   2285
   2286asmlinkage __visible int _printk(const char *fmt, ...)
   2287{
   2288	va_list args;
   2289	int r;
   2290
   2291	va_start(args, fmt);
   2292	r = vprintk(fmt, args);
   2293	va_end(args);
   2294
   2295	return r;
   2296}
   2297EXPORT_SYMBOL(_printk);
   2298
   2299static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
   2300
   2301#else /* CONFIG_PRINTK */
   2302
   2303#define CONSOLE_LOG_MAX		0
   2304#define DROPPED_TEXT_MAX	0
   2305#define printk_time		false
   2306
   2307#define prb_read_valid(rb, seq, r)	false
   2308#define prb_first_valid_seq(rb)		0
   2309#define prb_next_seq(rb)		0
   2310
   2311static u64 syslog_seq;
   2312
   2313static size_t record_print_text(const struct printk_record *r,
   2314				bool syslog, bool time)
   2315{
   2316	return 0;
   2317}
   2318static ssize_t info_print_ext_header(char *buf, size_t size,
   2319				     struct printk_info *info)
   2320{
   2321	return 0;
   2322}
   2323static ssize_t msg_print_ext_body(char *buf, size_t size,
   2324				  char *text, size_t text_len,
   2325				  struct dev_printk_info *dev_info) { return 0; }
   2326static void console_lock_spinning_enable(void) { }
   2327static int console_lock_spinning_disable_and_check(void) { return 0; }
   2328static void call_console_driver(struct console *con, const char *text, size_t len,
   2329				char *dropped_text)
   2330{
   2331}
   2332static bool suppress_message_printing(int level) { return false; }
   2333static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
   2334
   2335#endif /* CONFIG_PRINTK */
   2336
   2337#ifdef CONFIG_EARLY_PRINTK
   2338struct console *early_console;
   2339
   2340asmlinkage __visible void early_printk(const char *fmt, ...)
   2341{
   2342	va_list ap;
   2343	char buf[512];
   2344	int n;
   2345
   2346	if (!early_console)
   2347		return;
   2348
   2349	va_start(ap, fmt);
   2350	n = vscnprintf(buf, sizeof(buf), fmt, ap);
   2351	va_end(ap);
   2352
   2353	early_console->write(early_console, buf, n);
   2354}
   2355#endif
   2356
   2357static void set_user_specified(struct console_cmdline *c, bool user_specified)
   2358{
   2359	if (!user_specified)
   2360		return;
   2361
   2362	/*
   2363	 * @c console was defined by the user on the command line.
   2364	 * Do not clear when added twice also by SPCR or the device tree.
   2365	 */
   2366	c->user_specified = true;
   2367	/* At least one console defined by the user on the command line. */
   2368	console_set_on_cmdline = 1;
   2369}
   2370
   2371static int __add_preferred_console(char *name, int idx, char *options,
   2372				   char *brl_options, bool user_specified)
   2373{
   2374	struct console_cmdline *c;
   2375	int i;
   2376
   2377	/*
   2378	 *	See if this tty is not yet registered, and
   2379	 *	if we have a slot free.
   2380	 */
   2381	for (i = 0, c = console_cmdline;
   2382	     i < MAX_CMDLINECONSOLES && c->name[0];
   2383	     i++, c++) {
   2384		if (strcmp(c->name, name) == 0 && c->index == idx) {
   2385			if (!brl_options)
   2386				preferred_console = i;
   2387			set_user_specified(c, user_specified);
   2388			return 0;
   2389		}
   2390	}
   2391	if (i == MAX_CMDLINECONSOLES)
   2392		return -E2BIG;
   2393	if (!brl_options)
   2394		preferred_console = i;
   2395	strlcpy(c->name, name, sizeof(c->name));
   2396	c->options = options;
   2397	set_user_specified(c, user_specified);
   2398	braille_set_options(c, brl_options);
   2399
   2400	c->index = idx;
   2401	return 0;
   2402}
   2403
   2404static int __init console_msg_format_setup(char *str)
   2405{
   2406	if (!strcmp(str, "syslog"))
   2407		console_msg_format = MSG_FORMAT_SYSLOG;
   2408	if (!strcmp(str, "default"))
   2409		console_msg_format = MSG_FORMAT_DEFAULT;
   2410	return 1;
   2411}
   2412__setup("console_msg_format=", console_msg_format_setup);
   2413
   2414/*
   2415 * Set up a console.  Called via do_early_param() in init/main.c
   2416 * for each "console=" parameter in the boot command line.
   2417 */
   2418static int __init console_setup(char *str)
   2419{
   2420	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
   2421	char *s, *options, *brl_options = NULL;
   2422	int idx;
   2423
   2424	/*
   2425	 * console="" or console=null have been suggested as a way to
   2426	 * disable console output. Use ttynull that has been created
   2427	 * for exactly this purpose.
   2428	 */
   2429	if (str[0] == 0 || strcmp(str, "null") == 0) {
   2430		__add_preferred_console("ttynull", 0, NULL, NULL, true);
   2431		return 1;
   2432	}
   2433
   2434	if (_braille_console_setup(&str, &brl_options))
   2435		return 1;
   2436
   2437	/*
   2438	 * Decode str into name, index, options.
   2439	 */
   2440	if (str[0] >= '0' && str[0] <= '9') {
   2441		strcpy(buf, "ttyS");
   2442		strncpy(buf + 4, str, sizeof(buf) - 5);
   2443	} else {
   2444		strncpy(buf, str, sizeof(buf) - 1);
   2445	}
   2446	buf[sizeof(buf) - 1] = 0;
   2447	options = strchr(str, ',');
   2448	if (options)
   2449		*(options++) = 0;
   2450#ifdef __sparc__
   2451	if (!strcmp(str, "ttya"))
   2452		strcpy(buf, "ttyS0");
   2453	if (!strcmp(str, "ttyb"))
   2454		strcpy(buf, "ttyS1");
   2455#endif
   2456	for (s = buf; *s; s++)
   2457		if (isdigit(*s) || *s == ',')
   2458			break;
   2459	idx = simple_strtoul(s, NULL, 10);
   2460	*s = 0;
   2461
   2462	__add_preferred_console(buf, idx, options, brl_options, true);
   2463	return 1;
   2464}
   2465__setup("console=", console_setup);
   2466
   2467/**
   2468 * add_preferred_console - add a device to the list of preferred consoles.
   2469 * @name: device name
   2470 * @idx: device index
   2471 * @options: options for this console
   2472 *
   2473 * The last preferred console added will be used for kernel messages
   2474 * and stdin/out/err for init.  Normally this is used by console_setup
   2475 * above to handle user-supplied console arguments; however it can also
   2476 * be used by arch-specific code either to override the user or more
   2477 * commonly to provide a default console (ie from PROM variables) when
   2478 * the user has not supplied one.
   2479 */
   2480int add_preferred_console(char *name, int idx, char *options)
   2481{
   2482	return __add_preferred_console(name, idx, options, NULL, false);
   2483}
   2484
   2485bool console_suspend_enabled = true;
   2486EXPORT_SYMBOL(console_suspend_enabled);
   2487
   2488static int __init console_suspend_disable(char *str)
   2489{
   2490	console_suspend_enabled = false;
   2491	return 1;
   2492}
   2493__setup("no_console_suspend", console_suspend_disable);
   2494module_param_named(console_suspend, console_suspend_enabled,
   2495		bool, S_IRUGO | S_IWUSR);
   2496MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
   2497	" and hibernate operations");
   2498
   2499static bool printk_console_no_auto_verbose;
   2500
   2501void console_verbose(void)
   2502{
   2503	if (console_loglevel && !printk_console_no_auto_verbose)
   2504		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
   2505}
   2506EXPORT_SYMBOL_GPL(console_verbose);
   2507
   2508module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
   2509MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
   2510
   2511/**
   2512 * suspend_console - suspend the console subsystem
   2513 *
   2514 * This disables printk() while we go into suspend states
   2515 */
   2516void suspend_console(void)
   2517{
   2518	if (!console_suspend_enabled)
   2519		return;
   2520	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
   2521	pr_flush(1000, true);
   2522	console_lock();
   2523	console_suspended = 1;
   2524	up_console_sem();
   2525}
   2526
   2527void resume_console(void)
   2528{
   2529	if (!console_suspend_enabled)
   2530		return;
   2531	down_console_sem();
   2532	console_suspended = 0;
   2533	console_unlock();
   2534	pr_flush(1000, true);
   2535}
   2536
   2537/**
   2538 * console_cpu_notify - print deferred console messages after CPU hotplug
   2539 * @cpu: unused
   2540 *
   2541 * If printk() is called from a CPU that is not online yet, the messages
   2542 * will be printed on the console only if there are CON_ANYTIME consoles.
   2543 * This function is called when a new CPU comes online (or fails to come
   2544 * up) or goes offline.
   2545 */
   2546static int console_cpu_notify(unsigned int cpu)
   2547{
   2548	if (!cpuhp_tasks_frozen) {
   2549		/* If trylock fails, someone else is doing the printing */
   2550		if (console_trylock())
   2551			console_unlock();
   2552	}
   2553	return 0;
   2554}
   2555
   2556/**
   2557 * console_lock - lock the console system for exclusive use.
   2558 *
   2559 * Acquires a lock which guarantees that the caller has
   2560 * exclusive access to the console system and the console_drivers list.
   2561 *
   2562 * Can sleep, returns nothing.
   2563 */
   2564void console_lock(void)
   2565{
   2566	might_sleep();
   2567
   2568	down_console_sem();
   2569	if (console_suspended)
   2570		return;
   2571	console_locked = 1;
   2572	console_may_schedule = 1;
   2573}
   2574EXPORT_SYMBOL(console_lock);
   2575
   2576/**
   2577 * console_trylock - try to lock the console system for exclusive use.
   2578 *
   2579 * Try to acquire a lock which guarantees that the caller has exclusive
   2580 * access to the console system and the console_drivers list.
   2581 *
   2582 * returns 1 on success, and 0 on failure to acquire the lock.
   2583 */
   2584int console_trylock(void)
   2585{
   2586	if (down_trylock_console_sem())
   2587		return 0;
   2588	if (console_suspended) {
   2589		up_console_sem();
   2590		return 0;
   2591	}
   2592	console_locked = 1;
   2593	console_may_schedule = 0;
   2594	return 1;
   2595}
   2596EXPORT_SYMBOL(console_trylock);
   2597
   2598int is_console_locked(void)
   2599{
   2600	return console_locked;
   2601}
   2602EXPORT_SYMBOL(is_console_locked);
   2603
   2604/*
   2605 * Return true when this CPU should unlock console_sem without pushing all
   2606 * messages to the console. This reduces the chance that the console is
   2607 * locked when the panic CPU tries to use it.
   2608 */
   2609static bool abandon_console_lock_in_panic(void)
   2610{
   2611	if (!panic_in_progress())
   2612		return false;
   2613
   2614	/*
   2615	 * We can use raw_smp_processor_id() here because it is impossible for
   2616	 * the task to be migrated to the panic_cpu, or away from it. If
   2617	 * panic_cpu has already been set, and we're not currently executing on
   2618	 * that CPU, then we never will be.
   2619	 */
   2620	return atomic_read(&panic_cpu) != raw_smp_processor_id();
   2621}
   2622
   2623/*
   2624 * Check if the given console is currently capable and allowed to print
   2625 * records.
   2626 *
   2627 * Requires the console_lock.
   2628 */
   2629static inline bool console_is_usable(struct console *con)
   2630{
   2631	if (!(con->flags & CON_ENABLED))
   2632		return false;
   2633
   2634	if (!con->write)
   2635		return false;
   2636
   2637	/*
   2638	 * Console drivers may assume that per-cpu resources have been
   2639	 * allocated. So unless they're explicitly marked as being able to
   2640	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
   2641	 */
   2642	if (!cpu_online(raw_smp_processor_id()) &&
   2643	    !(con->flags & CON_ANYTIME))
   2644		return false;
   2645
   2646	return true;
   2647}
   2648
   2649static void __console_unlock(void)
   2650{
   2651	console_locked = 0;
   2652	up_console_sem();
   2653}
   2654
   2655/*
   2656 * Print one record for the given console. The record printed is whatever
   2657 * record is the next available record for the given console.
   2658 *
   2659 * @text is a buffer of size CONSOLE_LOG_MAX.
   2660 *
   2661 * If extended messages should be printed, @ext_text is a buffer of size
   2662 * CONSOLE_EXT_LOG_MAX. Otherwise @ext_text must be NULL.
   2663 *
   2664 * If dropped messages should be printed, @dropped_text is a buffer of size
   2665 * DROPPED_TEXT_MAX. Otherwise @dropped_text must be NULL.
   2666 *
   2667 * @handover will be set to true if a printk waiter has taken over the
   2668 * console_lock, in which case the caller is no longer holding the
   2669 * console_lock. Otherwise it is set to false.
   2670 *
   2671 * Returns false if the given console has no next record to print, otherwise
   2672 * true.
   2673 *
   2674 * Requires the console_lock.
   2675 */
   2676static bool console_emit_next_record(struct console *con, char *text, char *ext_text,
   2677				     char *dropped_text, bool *handover)
   2678{
   2679	static int panic_console_dropped;
   2680	struct printk_info info;
   2681	struct printk_record r;
   2682	unsigned long flags;
   2683	char *write_text;
   2684	size_t len;
   2685
   2686	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
   2687
   2688	*handover = false;
   2689
   2690	if (!prb_read_valid(prb, con->seq, &r))
   2691		return false;
   2692
   2693	if (con->seq != r.info->seq) {
   2694		con->dropped += r.info->seq - con->seq;
   2695		con->seq = r.info->seq;
   2696		if (panic_in_progress() && panic_console_dropped++ > 10) {
   2697			suppress_panic_printk = 1;
   2698			pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
   2699		}
   2700	}
   2701
   2702	/* Skip record that has level above the console loglevel. */
   2703	if (suppress_message_printing(r.info->level)) {
   2704		con->seq++;
   2705		goto skip;
   2706	}
   2707
   2708	if (ext_text) {
   2709		write_text = ext_text;
   2710		len = info_print_ext_header(ext_text, CONSOLE_EXT_LOG_MAX, r.info);
   2711		len += msg_print_ext_body(ext_text + len, CONSOLE_EXT_LOG_MAX - len,
   2712					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
   2713	} else {
   2714		write_text = text;
   2715		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
   2716	}
   2717
   2718	/*
   2719	 * While actively printing out messages, if another printk()
   2720	 * were to occur on another CPU, it may wait for this one to
   2721	 * finish. This task can not be preempted if there is a
   2722	 * waiter waiting to take over.
   2723	 *
   2724	 * Interrupts are disabled because the hand over to a waiter
   2725	 * must not be interrupted until the hand over is completed
   2726	 * (@console_waiter is cleared).
   2727	 */
   2728	printk_safe_enter_irqsave(flags);
   2729	console_lock_spinning_enable();
   2730
   2731	stop_critical_timings();	/* don't trace print latency */
   2732	call_console_driver(con, write_text, len, dropped_text);
   2733	start_critical_timings();
   2734
   2735	con->seq++;
   2736
   2737	*handover = console_lock_spinning_disable_and_check();
   2738	printk_safe_exit_irqrestore(flags);
   2739skip:
   2740	return true;
   2741}
   2742
   2743/*
   2744 * Print out all remaining records to all consoles.
   2745 *
   2746 * @do_cond_resched is set by the caller. It can be true only in schedulable
   2747 * context.
   2748 *
   2749 * @next_seq is set to the sequence number after the last available record.
   2750 * The value is valid only when this function returns true. It means that all
   2751 * usable consoles are completely flushed.
   2752 *
   2753 * @handover will be set to true if a printk waiter has taken over the
   2754 * console_lock, in which case the caller is no longer holding the
   2755 * console_lock. Otherwise it is set to false.
   2756 *
   2757 * Returns true when there was at least one usable console and all messages
   2758 * were flushed to all usable consoles. A returned false informs the caller
   2759 * that everything was not flushed (either there were no usable consoles or
   2760 * another context has taken over printing or it is a panic situation and this
   2761 * is not the panic CPU). Regardless the reason, the caller should assume it
   2762 * is not useful to immediately try again.
   2763 *
   2764 * Requires the console_lock.
   2765 */
   2766static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
   2767{
   2768	static char dropped_text[DROPPED_TEXT_MAX];
   2769	static char ext_text[CONSOLE_EXT_LOG_MAX];
   2770	static char text[CONSOLE_LOG_MAX];
   2771	bool any_usable = false;
   2772	struct console *con;
   2773	bool any_progress;
   2774
   2775	*next_seq = 0;
   2776	*handover = false;
   2777
   2778	do {
   2779		any_progress = false;
   2780
   2781		for_each_console(con) {
   2782			bool progress;
   2783
   2784			if (!console_is_usable(con))
   2785				continue;
   2786			any_usable = true;
   2787
   2788			if (con->flags & CON_EXTENDED) {
   2789				/* Extended consoles do not print "dropped messages". */
   2790				progress = console_emit_next_record(con, &text[0],
   2791								    &ext_text[0], NULL,
   2792								    handover);
   2793			} else {
   2794				progress = console_emit_next_record(con, &text[0],
   2795								    NULL, &dropped_text[0],
   2796								    handover);
   2797			}
   2798			if (*handover)
   2799				return false;
   2800
   2801			/* Track the next of the highest seq flushed. */
   2802			if (con->seq > *next_seq)
   2803				*next_seq = con->seq;
   2804
   2805			if (!progress)
   2806				continue;
   2807			any_progress = true;
   2808
   2809			/* Allow panic_cpu to take over the consoles safely. */
   2810			if (abandon_console_lock_in_panic())
   2811				return false;
   2812
   2813			if (do_cond_resched)
   2814				cond_resched();
   2815		}
   2816	} while (any_progress);
   2817
   2818	return any_usable;
   2819}
   2820
   2821/**
   2822 * console_unlock - unlock the console system
   2823 *
   2824 * Releases the console_lock which the caller holds on the console system
   2825 * and the console driver list.
   2826 *
   2827 * While the console_lock was held, console output may have been buffered
   2828 * by printk().  If this is the case, console_unlock(); emits
   2829 * the output prior to releasing the lock.
   2830 *
   2831 * console_unlock(); may be called from any context.
   2832 */
   2833void console_unlock(void)
   2834{
   2835	bool do_cond_resched;
   2836	bool handover;
   2837	bool flushed;
   2838	u64 next_seq;
   2839
   2840	if (console_suspended) {
   2841		up_console_sem();
   2842		return;
   2843	}
   2844
   2845	/*
   2846	 * Console drivers are called with interrupts disabled, so
   2847	 * @console_may_schedule should be cleared before; however, we may
   2848	 * end up dumping a lot of lines, for example, if called from
   2849	 * console registration path, and should invoke cond_resched()
   2850	 * between lines if allowable.  Not doing so can cause a very long
   2851	 * scheduling stall on a slow console leading to RCU stall and
   2852	 * softlockup warnings which exacerbate the issue with more
   2853	 * messages practically incapacitating the system. Therefore, create
   2854	 * a local to use for the printing loop.
   2855	 */
   2856	do_cond_resched = console_may_schedule;
   2857
   2858	do {
   2859		console_may_schedule = 0;
   2860
   2861		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
   2862		if (!handover)
   2863			__console_unlock();
   2864
   2865		/*
   2866		 * Abort if there was a failure to flush all messages to all
   2867		 * usable consoles. Either it is not possible to flush (in
   2868		 * which case it would be an infinite loop of retrying) or
   2869		 * another context has taken over printing.
   2870		 */
   2871		if (!flushed)
   2872			break;
   2873
   2874		/*
   2875		 * Some context may have added new records after
   2876		 * console_flush_all() but before unlocking the console.
   2877		 * Re-check if there is a new record to flush. If the trylock
   2878		 * fails, another context is already handling the printing.
   2879		 */
   2880	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
   2881}
   2882EXPORT_SYMBOL(console_unlock);
   2883
   2884/**
   2885 * console_conditional_schedule - yield the CPU if required
   2886 *
   2887 * If the console code is currently allowed to sleep, and
   2888 * if this CPU should yield the CPU to another task, do
   2889 * so here.
   2890 *
   2891 * Must be called within console_lock();.
   2892 */
   2893void __sched console_conditional_schedule(void)
   2894{
   2895	if (console_may_schedule)
   2896		cond_resched();
   2897}
   2898EXPORT_SYMBOL(console_conditional_schedule);
   2899
   2900void console_unblank(void)
   2901{
   2902	struct console *c;
   2903
   2904	/*
   2905	 * console_unblank can no longer be called in interrupt context unless
   2906	 * oops_in_progress is set to 1..
   2907	 */
   2908	if (oops_in_progress) {
   2909		if (down_trylock_console_sem() != 0)
   2910			return;
   2911	} else
   2912		console_lock();
   2913
   2914	console_locked = 1;
   2915	console_may_schedule = 0;
   2916	for_each_console(c)
   2917		if ((c->flags & CON_ENABLED) && c->unblank)
   2918			c->unblank();
   2919	console_unlock();
   2920
   2921	if (!oops_in_progress)
   2922		pr_flush(1000, true);
   2923}
   2924
   2925/**
   2926 * console_flush_on_panic - flush console content on panic
   2927 * @mode: flush all messages in buffer or just the pending ones
   2928 *
   2929 * Immediately output all pending messages no matter what.
   2930 */
   2931void console_flush_on_panic(enum con_flush_mode mode)
   2932{
   2933	/*
   2934	 * If someone else is holding the console lock, trylock will fail
   2935	 * and may_schedule may be set.  Ignore and proceed to unlock so
   2936	 * that messages are flushed out.  As this can be called from any
   2937	 * context and we don't want to get preempted while flushing,
   2938	 * ensure may_schedule is cleared.
   2939	 */
   2940	console_trylock();
   2941	console_may_schedule = 0;
   2942
   2943	if (mode == CONSOLE_REPLAY_ALL) {
   2944		struct console *c;
   2945		u64 seq;
   2946
   2947		seq = prb_first_valid_seq(prb);
   2948		for_each_console(c)
   2949			c->seq = seq;
   2950	}
   2951	console_unlock();
   2952}
   2953
   2954/*
   2955 * Return the console tty driver structure and its associated index
   2956 */
   2957struct tty_driver *console_device(int *index)
   2958{
   2959	struct console *c;
   2960	struct tty_driver *driver = NULL;
   2961
   2962	console_lock();
   2963	for_each_console(c) {
   2964		if (!c->device)
   2965			continue;
   2966		driver = c->device(c, index);
   2967		if (driver)
   2968			break;
   2969	}
   2970	console_unlock();
   2971	return driver;
   2972}
   2973
   2974/*
   2975 * Prevent further output on the passed console device so that (for example)
   2976 * serial drivers can disable console output before suspending a port, and can
   2977 * re-enable output afterwards.
   2978 */
   2979void console_stop(struct console *console)
   2980{
   2981	__pr_flush(console, 1000, true);
   2982	console_lock();
   2983	console->flags &= ~CON_ENABLED;
   2984	console_unlock();
   2985}
   2986EXPORT_SYMBOL(console_stop);
   2987
   2988void console_start(struct console *console)
   2989{
   2990	console_lock();
   2991	console->flags |= CON_ENABLED;
   2992	console_unlock();
   2993	__pr_flush(console, 1000, true);
   2994}
   2995EXPORT_SYMBOL(console_start);
   2996
   2997static int __read_mostly keep_bootcon;
   2998
   2999static int __init keep_bootcon_setup(char *str)
   3000{
   3001	keep_bootcon = 1;
   3002	pr_info("debug: skip boot console de-registration.\n");
   3003
   3004	return 0;
   3005}
   3006
   3007early_param("keep_bootcon", keep_bootcon_setup);
   3008
   3009/*
   3010 * This is called by register_console() to try to match
   3011 * the newly registered console with any of the ones selected
   3012 * by either the command line or add_preferred_console() and
   3013 * setup/enable it.
   3014 *
   3015 * Care need to be taken with consoles that are statically
   3016 * enabled such as netconsole
   3017 */
   3018static int try_enable_preferred_console(struct console *newcon,
   3019					bool user_specified)
   3020{
   3021	struct console_cmdline *c;
   3022	int i, err;
   3023
   3024	for (i = 0, c = console_cmdline;
   3025	     i < MAX_CMDLINECONSOLES && c->name[0];
   3026	     i++, c++) {
   3027		if (c->user_specified != user_specified)
   3028			continue;
   3029		if (!newcon->match ||
   3030		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
   3031			/* default matching */
   3032			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
   3033			if (strcmp(c->name, newcon->name) != 0)
   3034				continue;
   3035			if (newcon->index >= 0 &&
   3036			    newcon->index != c->index)
   3037				continue;
   3038			if (newcon->index < 0)
   3039				newcon->index = c->index;
   3040
   3041			if (_braille_register_console(newcon, c))
   3042				return 0;
   3043
   3044			if (newcon->setup &&
   3045			    (err = newcon->setup(newcon, c->options)) != 0)
   3046				return err;
   3047		}
   3048		newcon->flags |= CON_ENABLED;
   3049		if (i == preferred_console)
   3050			newcon->flags |= CON_CONSDEV;
   3051		return 0;
   3052	}
   3053
   3054	/*
   3055	 * Some consoles, such as pstore and netconsole, can be enabled even
   3056	 * without matching. Accept the pre-enabled consoles only when match()
   3057	 * and setup() had a chance to be called.
   3058	 */
   3059	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
   3060		return 0;
   3061
   3062	return -ENOENT;
   3063}
   3064
   3065/* Try to enable the console unconditionally */
   3066static void try_enable_default_console(struct console *newcon)
   3067{
   3068	if (newcon->index < 0)
   3069		newcon->index = 0;
   3070
   3071	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
   3072		return;
   3073
   3074	newcon->flags |= CON_ENABLED;
   3075
   3076	if (newcon->device)
   3077		newcon->flags |= CON_CONSDEV;
   3078}
   3079
   3080#define con_printk(lvl, con, fmt, ...)			\
   3081	printk(lvl pr_fmt("%sconsole [%s%d] " fmt),	\
   3082	       (con->flags & CON_BOOT) ? "boot" : "",	\
   3083	       con->name, con->index, ##__VA_ARGS__)
   3084
   3085/*
   3086 * The console driver calls this routine during kernel initialization
   3087 * to register the console printing procedure with printk() and to
   3088 * print any messages that were printed by the kernel before the
   3089 * console driver was initialized.
   3090 *
   3091 * This can happen pretty early during the boot process (because of
   3092 * early_printk) - sometimes before setup_arch() completes - be careful
   3093 * of what kernel features are used - they may not be initialised yet.
   3094 *
   3095 * There are two types of consoles - bootconsoles (early_printk) and
   3096 * "real" consoles (everything which is not a bootconsole) which are
   3097 * handled differently.
   3098 *  - Any number of bootconsoles can be registered at any time.
   3099 *  - As soon as a "real" console is registered, all bootconsoles
   3100 *    will be unregistered automatically.
   3101 *  - Once a "real" console is registered, any attempt to register a
   3102 *    bootconsoles will be rejected
   3103 */
   3104void register_console(struct console *newcon)
   3105{
   3106	struct console *con;
   3107	bool bootcon_enabled = false;
   3108	bool realcon_enabled = false;
   3109	int err;
   3110
   3111	for_each_console(con) {
   3112		if (WARN(con == newcon, "console '%s%d' already registered\n",
   3113					 con->name, con->index))
   3114			return;
   3115	}
   3116
   3117	for_each_console(con) {
   3118		if (con->flags & CON_BOOT)
   3119			bootcon_enabled = true;
   3120		else
   3121			realcon_enabled = true;
   3122	}
   3123
   3124	/* Do not register boot consoles when there already is a real one. */
   3125	if (newcon->flags & CON_BOOT && realcon_enabled) {
   3126		pr_info("Too late to register bootconsole %s%d\n",
   3127			newcon->name, newcon->index);
   3128		return;
   3129	}
   3130
   3131	/*
   3132	 * See if we want to enable this console driver by default.
   3133	 *
   3134	 * Nope when a console is preferred by the command line, device
   3135	 * tree, or SPCR.
   3136	 *
   3137	 * The first real console with tty binding (driver) wins. More
   3138	 * consoles might get enabled before the right one is found.
   3139	 *
   3140	 * Note that a console with tty binding will have CON_CONSDEV
   3141	 * flag set and will be first in the list.
   3142	 */
   3143	if (preferred_console < 0) {
   3144		if (!console_drivers || !console_drivers->device ||
   3145		    console_drivers->flags & CON_BOOT) {
   3146			try_enable_default_console(newcon);
   3147		}
   3148	}
   3149
   3150	/* See if this console matches one we selected on the command line */
   3151	err = try_enable_preferred_console(newcon, true);
   3152
   3153	/* If not, try to match against the platform default(s) */
   3154	if (err == -ENOENT)
   3155		err = try_enable_preferred_console(newcon, false);
   3156
   3157	/* printk() messages are not printed to the Braille console. */
   3158	if (err || newcon->flags & CON_BRL)
   3159		return;
   3160
   3161	/*
   3162	 * If we have a bootconsole, and are switching to a real console,
   3163	 * don't print everything out again, since when the boot console, and
   3164	 * the real console are the same physical device, it's annoying to
   3165	 * see the beginning boot messages twice
   3166	 */
   3167	if (bootcon_enabled &&
   3168	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
   3169		newcon->flags &= ~CON_PRINTBUFFER;
   3170	}
   3171
   3172	/*
   3173	 *	Put this console in the list - keep the
   3174	 *	preferred driver at the head of the list.
   3175	 */
   3176	console_lock();
   3177	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
   3178		newcon->next = console_drivers;
   3179		console_drivers = newcon;
   3180		if (newcon->next)
   3181			newcon->next->flags &= ~CON_CONSDEV;
   3182		/* Ensure this flag is always set for the head of the list */
   3183		newcon->flags |= CON_CONSDEV;
   3184	} else {
   3185		newcon->next = console_drivers->next;
   3186		console_drivers->next = newcon;
   3187	}
   3188
   3189	if (newcon->flags & CON_EXTENDED)
   3190		nr_ext_console_drivers++;
   3191
   3192	newcon->dropped = 0;
   3193	if (newcon->flags & CON_PRINTBUFFER) {
   3194		/* Get a consistent copy of @syslog_seq. */
   3195		mutex_lock(&syslog_lock);
   3196		newcon->seq = syslog_seq;
   3197		mutex_unlock(&syslog_lock);
   3198	} else {
   3199		/* Begin with next message. */
   3200		newcon->seq = prb_next_seq(prb);
   3201	}
   3202	console_unlock();
   3203	console_sysfs_notify();
   3204
   3205	/*
   3206	 * By unregistering the bootconsoles after we enable the real console
   3207	 * we get the "console xxx enabled" message on all the consoles -
   3208	 * boot consoles, real consoles, etc - this is to ensure that end
   3209	 * users know there might be something in the kernel's log buffer that
   3210	 * went to the bootconsole (that they do not see on the real console)
   3211	 */
   3212	con_printk(KERN_INFO, newcon, "enabled\n");
   3213	if (bootcon_enabled &&
   3214	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
   3215	    !keep_bootcon) {
   3216		/* We need to iterate through all boot consoles, to make
   3217		 * sure we print everything out, before we unregister them.
   3218		 */
   3219		for_each_console(con)
   3220			if (con->flags & CON_BOOT)
   3221				unregister_console(con);
   3222	}
   3223}
   3224EXPORT_SYMBOL(register_console);
   3225
   3226int unregister_console(struct console *console)
   3227{
   3228	struct console *con;
   3229	int res;
   3230
   3231	con_printk(KERN_INFO, console, "disabled\n");
   3232
   3233	res = _braille_unregister_console(console);
   3234	if (res < 0)
   3235		return res;
   3236	if (res > 0)
   3237		return 0;
   3238
   3239	res = -ENODEV;
   3240	console_lock();
   3241	if (console_drivers == console) {
   3242		console_drivers=console->next;
   3243		res = 0;
   3244	} else {
   3245		for_each_console(con) {
   3246			if (con->next == console) {
   3247				con->next = console->next;
   3248				res = 0;
   3249				break;
   3250			}
   3251		}
   3252	}
   3253
   3254	if (res)
   3255		goto out_disable_unlock;
   3256
   3257	if (console->flags & CON_EXTENDED)
   3258		nr_ext_console_drivers--;
   3259
   3260	/*
   3261	 * If this isn't the last console and it has CON_CONSDEV set, we
   3262	 * need to set it on the next preferred console.
   3263	 */
   3264	if (console_drivers != NULL && console->flags & CON_CONSDEV)
   3265		console_drivers->flags |= CON_CONSDEV;
   3266
   3267	console->flags &= ~CON_ENABLED;
   3268	console_unlock();
   3269	console_sysfs_notify();
   3270
   3271	if (console->exit)
   3272		res = console->exit(console);
   3273
   3274	return res;
   3275
   3276out_disable_unlock:
   3277	console->flags &= ~CON_ENABLED;
   3278	console_unlock();
   3279
   3280	return res;
   3281}
   3282EXPORT_SYMBOL(unregister_console);
   3283
   3284/*
   3285 * Initialize the console device. This is called *early*, so
   3286 * we can't necessarily depend on lots of kernel help here.
   3287 * Just do some early initializations, and do the complex setup
   3288 * later.
   3289 */
   3290void __init console_init(void)
   3291{
   3292	int ret;
   3293	initcall_t call;
   3294	initcall_entry_t *ce;
   3295
   3296	/* Setup the default TTY line discipline. */
   3297	n_tty_init();
   3298
   3299	/*
   3300	 * set up the console device so that later boot sequences can
   3301	 * inform about problems etc..
   3302	 */
   3303	ce = __con_initcall_start;
   3304	trace_initcall_level("console");
   3305	while (ce < __con_initcall_end) {
   3306		call = initcall_from_entry(ce);
   3307		trace_initcall_start(call);
   3308		ret = call();
   3309		trace_initcall_finish(call, ret);
   3310		ce++;
   3311	}
   3312}
   3313
   3314/*
   3315 * Some boot consoles access data that is in the init section and which will
   3316 * be discarded after the initcalls have been run. To make sure that no code
   3317 * will access this data, unregister the boot consoles in a late initcall.
   3318 *
   3319 * If for some reason, such as deferred probe or the driver being a loadable
   3320 * module, the real console hasn't registered yet at this point, there will
   3321 * be a brief interval in which no messages are logged to the console, which
   3322 * makes it difficult to diagnose problems that occur during this time.
   3323 *
   3324 * To mitigate this problem somewhat, only unregister consoles whose memory
   3325 * intersects with the init section. Note that all other boot consoles will
   3326 * get unregistered when the real preferred console is registered.
   3327 */
   3328static int __init printk_late_init(void)
   3329{
   3330	struct console *con;
   3331	int ret;
   3332
   3333	for_each_console(con) {
   3334		if (!(con->flags & CON_BOOT))
   3335			continue;
   3336
   3337		/* Check addresses that might be used for enabled consoles. */
   3338		if (init_section_intersects(con, sizeof(*con)) ||
   3339		    init_section_contains(con->write, 0) ||
   3340		    init_section_contains(con->read, 0) ||
   3341		    init_section_contains(con->device, 0) ||
   3342		    init_section_contains(con->unblank, 0) ||
   3343		    init_section_contains(con->data, 0)) {
   3344			/*
   3345			 * Please, consider moving the reported consoles out
   3346			 * of the init section.
   3347			 */
   3348			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
   3349				con->name, con->index);
   3350			unregister_console(con);
   3351		}
   3352	}
   3353	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
   3354					console_cpu_notify);
   3355	WARN_ON(ret < 0);
   3356	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
   3357					console_cpu_notify, NULL);
   3358	WARN_ON(ret < 0);
   3359	printk_sysctl_init();
   3360	return 0;
   3361}
   3362late_initcall(printk_late_init);
   3363
   3364#if defined CONFIG_PRINTK
   3365/* If @con is specified, only wait for that console. Otherwise wait for all. */
   3366static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
   3367{
   3368	int remaining = timeout_ms;
   3369	struct console *c;
   3370	u64 last_diff = 0;
   3371	u64 printk_seq;
   3372	u64 diff;
   3373	u64 seq;
   3374
   3375	might_sleep();
   3376
   3377	seq = prb_next_seq(prb);
   3378
   3379	for (;;) {
   3380		diff = 0;
   3381
   3382		console_lock();
   3383		for_each_console(c) {
   3384			if (con && con != c)
   3385				continue;
   3386			if (!console_is_usable(c))
   3387				continue;
   3388			printk_seq = c->seq;
   3389			if (printk_seq < seq)
   3390				diff += seq - printk_seq;
   3391		}
   3392		console_unlock();
   3393
   3394		if (diff != last_diff && reset_on_progress)
   3395			remaining = timeout_ms;
   3396
   3397		if (diff == 0 || remaining == 0)
   3398			break;
   3399
   3400		if (remaining < 0) {
   3401			/* no timeout limit */
   3402			msleep(100);
   3403		} else if (remaining < 100) {
   3404			msleep(remaining);
   3405			remaining = 0;
   3406		} else {
   3407			msleep(100);
   3408			remaining -= 100;
   3409		}
   3410
   3411		last_diff = diff;
   3412	}
   3413
   3414	return (diff == 0);
   3415}
   3416
   3417/**
   3418 * pr_flush() - Wait for printing threads to catch up.
   3419 *
   3420 * @timeout_ms:        The maximum time (in ms) to wait.
   3421 * @reset_on_progress: Reset the timeout if forward progress is seen.
   3422 *
   3423 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
   3424 * represents infinite waiting.
   3425 *
   3426 * If @reset_on_progress is true, the timeout will be reset whenever any
   3427 * printer has been seen to make some forward progress.
   3428 *
   3429 * Context: Process context. May sleep while acquiring console lock.
   3430 * Return: true if all enabled printers are caught up.
   3431 */
   3432bool pr_flush(int timeout_ms, bool reset_on_progress)
   3433{
   3434	return __pr_flush(NULL, timeout_ms, reset_on_progress);
   3435}
   3436EXPORT_SYMBOL(pr_flush);
   3437
   3438/*
   3439 * Delayed printk version, for scheduler-internal messages:
   3440 */
   3441#define PRINTK_PENDING_WAKEUP	0x01
   3442#define PRINTK_PENDING_OUTPUT	0x02
   3443
   3444static DEFINE_PER_CPU(int, printk_pending);
   3445
   3446static void wake_up_klogd_work_func(struct irq_work *irq_work)
   3447{
   3448	int pending = this_cpu_xchg(printk_pending, 0);
   3449
   3450	if (pending & PRINTK_PENDING_OUTPUT) {
   3451		/* If trylock fails, someone else is doing the printing */
   3452		if (console_trylock())
   3453			console_unlock();
   3454	}
   3455
   3456	if (pending & PRINTK_PENDING_WAKEUP)
   3457		wake_up_interruptible(&log_wait);
   3458}
   3459
   3460static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
   3461	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
   3462
   3463static void __wake_up_klogd(int val)
   3464{
   3465	if (!printk_percpu_data_ready())
   3466		return;
   3467
   3468	preempt_disable();
   3469	/*
   3470	 * Guarantee any new records can be seen by tasks preparing to wait
   3471	 * before this context checks if the wait queue is empty.
   3472	 *
   3473	 * The full memory barrier within wq_has_sleeper() pairs with the full
   3474	 * memory barrier within set_current_state() of
   3475	 * prepare_to_wait_event(), which is called after ___wait_event() adds
   3476	 * the waiter but before it has checked the wait condition.
   3477	 *
   3478	 * This pairs with devkmsg_read:A and syslog_print:A.
   3479	 */
   3480	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
   3481	    (val & PRINTK_PENDING_OUTPUT)) {
   3482		this_cpu_or(printk_pending, val);
   3483		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
   3484	}
   3485	preempt_enable();
   3486}
   3487
   3488void wake_up_klogd(void)
   3489{
   3490	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
   3491}
   3492
   3493void defer_console_output(void)
   3494{
   3495	/*
   3496	 * New messages may have been added directly to the ringbuffer
   3497	 * using vprintk_store(), so wake any waiters as well.
   3498	 */
   3499	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
   3500}
   3501
   3502void printk_trigger_flush(void)
   3503{
   3504	defer_console_output();
   3505}
   3506
   3507int vprintk_deferred(const char *fmt, va_list args)
   3508{
   3509	int r;
   3510
   3511	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
   3512	defer_console_output();
   3513
   3514	return r;
   3515}
   3516
   3517int _printk_deferred(const char *fmt, ...)
   3518{
   3519	va_list args;
   3520	int r;
   3521
   3522	va_start(args, fmt);
   3523	r = vprintk_deferred(fmt, args);
   3524	va_end(args);
   3525
   3526	return r;
   3527}
   3528
   3529/*
   3530 * printk rate limiting, lifted from the networking subsystem.
   3531 *
   3532 * This enforces a rate limit: not more than 10 kernel messages
   3533 * every 5s to make a denial-of-service attack impossible.
   3534 */
   3535DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
   3536
   3537int __printk_ratelimit(const char *func)
   3538{
   3539	return ___ratelimit(&printk_ratelimit_state, func);
   3540}
   3541EXPORT_SYMBOL(__printk_ratelimit);
   3542
   3543/**
   3544 * printk_timed_ratelimit - caller-controlled printk ratelimiting
   3545 * @caller_jiffies: pointer to caller's state
   3546 * @interval_msecs: minimum interval between prints
   3547 *
   3548 * printk_timed_ratelimit() returns true if more than @interval_msecs
   3549 * milliseconds have elapsed since the last time printk_timed_ratelimit()
   3550 * returned true.
   3551 */
   3552bool printk_timed_ratelimit(unsigned long *caller_jiffies,
   3553			unsigned int interval_msecs)
   3554{
   3555	unsigned long elapsed = jiffies - *caller_jiffies;
   3556
   3557	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
   3558		return false;
   3559
   3560	*caller_jiffies = jiffies;
   3561	return true;
   3562}
   3563EXPORT_SYMBOL(printk_timed_ratelimit);
   3564
   3565static DEFINE_SPINLOCK(dump_list_lock);
   3566static LIST_HEAD(dump_list);
   3567
   3568/**
   3569 * kmsg_dump_register - register a kernel log dumper.
   3570 * @dumper: pointer to the kmsg_dumper structure
   3571 *
   3572 * Adds a kernel log dumper to the system. The dump callback in the
   3573 * structure will be called when the kernel oopses or panics and must be
   3574 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
   3575 */
   3576int kmsg_dump_register(struct kmsg_dumper *dumper)
   3577{
   3578	unsigned long flags;
   3579	int err = -EBUSY;
   3580
   3581	/* The dump callback needs to be set */
   3582	if (!dumper->dump)
   3583		return -EINVAL;
   3584
   3585	spin_lock_irqsave(&dump_list_lock, flags);
   3586	/* Don't allow registering multiple times */
   3587	if (!dumper->registered) {
   3588		dumper->registered = 1;
   3589		list_add_tail_rcu(&dumper->list, &dump_list);
   3590		err = 0;
   3591	}
   3592	spin_unlock_irqrestore(&dump_list_lock, flags);
   3593
   3594	return err;
   3595}
   3596EXPORT_SYMBOL_GPL(kmsg_dump_register);
   3597
   3598/**
   3599 * kmsg_dump_unregister - unregister a kmsg dumper.
   3600 * @dumper: pointer to the kmsg_dumper structure
   3601 *
   3602 * Removes a dump device from the system. Returns zero on success and
   3603 * %-EINVAL otherwise.
   3604 */
   3605int kmsg_dump_unregister(struct kmsg_dumper *dumper)
   3606{
   3607	unsigned long flags;
   3608	int err = -EINVAL;
   3609
   3610	spin_lock_irqsave(&dump_list_lock, flags);
   3611	if (dumper->registered) {
   3612		dumper->registered = 0;
   3613		list_del_rcu(&dumper->list);
   3614		err = 0;
   3615	}
   3616	spin_unlock_irqrestore(&dump_list_lock, flags);
   3617	synchronize_rcu();
   3618
   3619	return err;
   3620}
   3621EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
   3622
   3623static bool always_kmsg_dump;
   3624module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
   3625
   3626const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
   3627{
   3628	switch (reason) {
   3629	case KMSG_DUMP_PANIC:
   3630		return "Panic";
   3631	case KMSG_DUMP_OOPS:
   3632		return "Oops";
   3633	case KMSG_DUMP_EMERG:
   3634		return "Emergency";
   3635	case KMSG_DUMP_SHUTDOWN:
   3636		return "Shutdown";
   3637	default:
   3638		return "Unknown";
   3639	}
   3640}
   3641EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
   3642
   3643/**
   3644 * kmsg_dump - dump kernel log to kernel message dumpers.
   3645 * @reason: the reason (oops, panic etc) for dumping
   3646 *
   3647 * Call each of the registered dumper's dump() callback, which can
   3648 * retrieve the kmsg records with kmsg_dump_get_line() or
   3649 * kmsg_dump_get_buffer().
   3650 */
   3651void kmsg_dump(enum kmsg_dump_reason reason)
   3652{
   3653	struct kmsg_dumper *dumper;
   3654
   3655	rcu_read_lock();
   3656	list_for_each_entry_rcu(dumper, &dump_list, list) {
   3657		enum kmsg_dump_reason max_reason = dumper->max_reason;
   3658
   3659		/*
   3660		 * If client has not provided a specific max_reason, default
   3661		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
   3662		 */
   3663		if (max_reason == KMSG_DUMP_UNDEF) {
   3664			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
   3665							KMSG_DUMP_OOPS;
   3666		}
   3667		if (reason > max_reason)
   3668			continue;
   3669
   3670		/* invoke dumper which will iterate over records */
   3671		dumper->dump(dumper, reason);
   3672	}
   3673	rcu_read_unlock();
   3674}
   3675
   3676/**
   3677 * kmsg_dump_get_line - retrieve one kmsg log line
   3678 * @iter: kmsg dump iterator
   3679 * @syslog: include the "<4>" prefixes
   3680 * @line: buffer to copy the line to
   3681 * @size: maximum size of the buffer
   3682 * @len: length of line placed into buffer
   3683 *
   3684 * Start at the beginning of the kmsg buffer, with the oldest kmsg
   3685 * record, and copy one record into the provided buffer.
   3686 *
   3687 * Consecutive calls will return the next available record moving
   3688 * towards the end of the buffer with the youngest messages.
   3689 *
   3690 * A return value of FALSE indicates that there are no more records to
   3691 * read.
   3692 */
   3693bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
   3694			char *line, size_t size, size_t *len)
   3695{
   3696	u64 min_seq = latched_seq_read_nolock(&clear_seq);
   3697	struct printk_info info;
   3698	unsigned int line_count;
   3699	struct printk_record r;
   3700	size_t l = 0;
   3701	bool ret = false;
   3702
   3703	if (iter->cur_seq < min_seq)
   3704		iter->cur_seq = min_seq;
   3705
   3706	prb_rec_init_rd(&r, &info, line, size);
   3707
   3708	/* Read text or count text lines? */
   3709	if (line) {
   3710		if (!prb_read_valid(prb, iter->cur_seq, &r))
   3711			goto out;
   3712		l = record_print_text(&r, syslog, printk_time);
   3713	} else {
   3714		if (!prb_read_valid_info(prb, iter->cur_seq,
   3715					 &info, &line_count)) {
   3716			goto out;
   3717		}
   3718		l = get_record_print_text_size(&info, line_count, syslog,
   3719					       printk_time);
   3720
   3721	}
   3722
   3723	iter->cur_seq = r.info->seq + 1;
   3724	ret = true;
   3725out:
   3726	if (len)
   3727		*len = l;
   3728	return ret;
   3729}
   3730EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
   3731
   3732/**
   3733 * kmsg_dump_get_buffer - copy kmsg log lines
   3734 * @iter: kmsg dump iterator
   3735 * @syslog: include the "<4>" prefixes
   3736 * @buf: buffer to copy the line to
   3737 * @size: maximum size of the buffer
   3738 * @len_out: length of line placed into buffer
   3739 *
   3740 * Start at the end of the kmsg buffer and fill the provided buffer
   3741 * with as many of the *youngest* kmsg records that fit into it.
   3742 * If the buffer is large enough, all available kmsg records will be
   3743 * copied with a single call.
   3744 *
   3745 * Consecutive calls will fill the buffer with the next block of
   3746 * available older records, not including the earlier retrieved ones.
   3747 *
   3748 * A return value of FALSE indicates that there are no more records to
   3749 * read.
   3750 */
   3751bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
   3752			  char *buf, size_t size, size_t *len_out)
   3753{
   3754	u64 min_seq = latched_seq_read_nolock(&clear_seq);
   3755	struct printk_info info;
   3756	struct printk_record r;
   3757	u64 seq;
   3758	u64 next_seq;
   3759	size_t len = 0;
   3760	bool ret = false;
   3761	bool time = printk_time;
   3762
   3763	if (!buf || !size)
   3764		goto out;
   3765
   3766	if (iter->cur_seq < min_seq)
   3767		iter->cur_seq = min_seq;
   3768
   3769	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
   3770		if (info.seq != iter->cur_seq) {
   3771			/* messages are gone, move to first available one */
   3772			iter->cur_seq = info.seq;
   3773		}
   3774	}
   3775
   3776	/* last entry */
   3777	if (iter->cur_seq >= iter->next_seq)
   3778		goto out;
   3779
   3780	/*
   3781	 * Find first record that fits, including all following records,
   3782	 * into the user-provided buffer for this dump. Pass in size-1
   3783	 * because this function (by way of record_print_text()) will
   3784	 * not write more than size-1 bytes of text into @buf.
   3785	 */
   3786	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
   3787				     size - 1, syslog, time);
   3788
   3789	/*
   3790	 * Next kmsg_dump_get_buffer() invocation will dump block of
   3791	 * older records stored right before this one.
   3792	 */
   3793	next_seq = seq;
   3794
   3795	prb_rec_init_rd(&r, &info, buf, size);
   3796
   3797	len = 0;
   3798	prb_for_each_record(seq, prb, seq, &r) {
   3799		if (r.info->seq >= iter->next_seq)
   3800			break;
   3801
   3802		len += record_print_text(&r, syslog, time);
   3803
   3804		/* Adjust record to store to remaining buffer space. */
   3805		prb_rec_init_rd(&r, &info, buf + len, size - len);
   3806	}
   3807
   3808	iter->next_seq = next_seq;
   3809	ret = true;
   3810out:
   3811	if (len_out)
   3812		*len_out = len;
   3813	return ret;
   3814}
   3815EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
   3816
   3817/**
   3818 * kmsg_dump_rewind - reset the iterator
   3819 * @iter: kmsg dump iterator
   3820 *
   3821 * Reset the dumper's iterator so that kmsg_dump_get_line() and
   3822 * kmsg_dump_get_buffer() can be called again and used multiple
   3823 * times within the same dumper.dump() callback.
   3824 */
   3825void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
   3826{
   3827	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
   3828	iter->next_seq = prb_next_seq(prb);
   3829}
   3830EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
   3831
   3832#endif
   3833
   3834#ifdef CONFIG_SMP
   3835static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
   3836static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
   3837
   3838/**
   3839 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
   3840 *                            spinning lock is not owned by any CPU.
   3841 *
   3842 * Context: Any context.
   3843 */
   3844void __printk_cpu_sync_wait(void)
   3845{
   3846	do {
   3847		cpu_relax();
   3848	} while (atomic_read(&printk_cpu_sync_owner) != -1);
   3849}
   3850EXPORT_SYMBOL(__printk_cpu_sync_wait);
   3851
   3852/**
   3853 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
   3854 *                               spinning lock.
   3855 *
   3856 * If no processor has the lock, the calling processor takes the lock and
   3857 * becomes the owner. If the calling processor is already the owner of the
   3858 * lock, this function succeeds immediately.
   3859 *
   3860 * Context: Any context. Expects interrupts to be disabled.
   3861 * Return: 1 on success, otherwise 0.
   3862 */
   3863int __printk_cpu_sync_try_get(void)
   3864{
   3865	int cpu;
   3866	int old;
   3867
   3868	cpu = smp_processor_id();
   3869
   3870	/*
   3871	 * Guarantee loads and stores from this CPU when it is the lock owner
   3872	 * are _not_ visible to the previous lock owner. This pairs with
   3873	 * __printk_cpu_sync_put:B.
   3874	 *
   3875	 * Memory barrier involvement:
   3876	 *
   3877	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
   3878	 * then __printk_cpu_sync_put:A can never read from
   3879	 * __printk_cpu_sync_try_get:B.
   3880	 *
   3881	 * Relies on:
   3882	 *
   3883	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
   3884	 * of the previous CPU
   3885	 *    matching
   3886	 * ACQUIRE from __printk_cpu_sync_try_get:A to
   3887	 * __printk_cpu_sync_try_get:B of this CPU
   3888	 */
   3889	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
   3890				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
   3891	if (old == -1) {
   3892		/*
   3893		 * This CPU is now the owner and begins loading/storing
   3894		 * data: LMM(__printk_cpu_sync_try_get:B)
   3895		 */
   3896		return 1;
   3897
   3898	} else if (old == cpu) {
   3899		/* This CPU is already the owner. */
   3900		atomic_inc(&printk_cpu_sync_nested);
   3901		return 1;
   3902	}
   3903
   3904	return 0;
   3905}
   3906EXPORT_SYMBOL(__printk_cpu_sync_try_get);
   3907
   3908/**
   3909 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
   3910 *
   3911 * The calling processor must be the owner of the lock.
   3912 *
   3913 * Context: Any context. Expects interrupts to be disabled.
   3914 */
   3915void __printk_cpu_sync_put(void)
   3916{
   3917	if (atomic_read(&printk_cpu_sync_nested)) {
   3918		atomic_dec(&printk_cpu_sync_nested);
   3919		return;
   3920	}
   3921
   3922	/*
   3923	 * This CPU is finished loading/storing data:
   3924	 * LMM(__printk_cpu_sync_put:A)
   3925	 */
   3926
   3927	/*
   3928	 * Guarantee loads and stores from this CPU when it was the
   3929	 * lock owner are visible to the next lock owner. This pairs
   3930	 * with __printk_cpu_sync_try_get:A.
   3931	 *
   3932	 * Memory barrier involvement:
   3933	 *
   3934	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
   3935	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
   3936	 *
   3937	 * Relies on:
   3938	 *
   3939	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
   3940	 * of this CPU
   3941	 *    matching
   3942	 * ACQUIRE from __printk_cpu_sync_try_get:A to
   3943	 * __printk_cpu_sync_try_get:B of the next CPU
   3944	 */
   3945	atomic_set_release(&printk_cpu_sync_owner,
   3946			   -1); /* LMM(__printk_cpu_sync_put:B) */
   3947}
   3948EXPORT_SYMBOL(__printk_cpu_sync_put);
   3949#endif /* CONFIG_SMP */