rcu_segcblist.c (20497B)
1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * RCU segmented callback lists, function definitions 4 * 5 * Copyright IBM Corporation, 2017 6 * 7 * Authors: Paul E. McKenney <paulmck@linux.ibm.com> 8 */ 9 10#include <linux/cpu.h> 11#include <linux/interrupt.h> 12#include <linux/kernel.h> 13#include <linux/types.h> 14 15#include "rcu_segcblist.h" 16 17/* Initialize simple callback list. */ 18void rcu_cblist_init(struct rcu_cblist *rclp) 19{ 20 rclp->head = NULL; 21 rclp->tail = &rclp->head; 22 rclp->len = 0; 23} 24 25/* 26 * Enqueue an rcu_head structure onto the specified callback list. 27 */ 28void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp) 29{ 30 *rclp->tail = rhp; 31 rclp->tail = &rhp->next; 32 WRITE_ONCE(rclp->len, rclp->len + 1); 33} 34 35/* 36 * Flush the second rcu_cblist structure onto the first one, obliterating 37 * any contents of the first. If rhp is non-NULL, enqueue it as the sole 38 * element of the second rcu_cblist structure, but ensuring that the second 39 * rcu_cblist structure, if initially non-empty, always appears non-empty 40 * throughout the process. If rdp is NULL, the second rcu_cblist structure 41 * is instead initialized to empty. 42 */ 43void rcu_cblist_flush_enqueue(struct rcu_cblist *drclp, 44 struct rcu_cblist *srclp, 45 struct rcu_head *rhp) 46{ 47 drclp->head = srclp->head; 48 if (drclp->head) 49 drclp->tail = srclp->tail; 50 else 51 drclp->tail = &drclp->head; 52 drclp->len = srclp->len; 53 if (!rhp) { 54 rcu_cblist_init(srclp); 55 } else { 56 rhp->next = NULL; 57 srclp->head = rhp; 58 srclp->tail = &rhp->next; 59 WRITE_ONCE(srclp->len, 1); 60 } 61} 62 63/* 64 * Dequeue the oldest rcu_head structure from the specified callback 65 * list. 66 */ 67struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp) 68{ 69 struct rcu_head *rhp; 70 71 rhp = rclp->head; 72 if (!rhp) 73 return NULL; 74 rclp->len--; 75 rclp->head = rhp->next; 76 if (!rclp->head) 77 rclp->tail = &rclp->head; 78 return rhp; 79} 80 81/* Set the length of an rcu_segcblist structure. */ 82static void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v) 83{ 84#ifdef CONFIG_RCU_NOCB_CPU 85 atomic_long_set(&rsclp->len, v); 86#else 87 WRITE_ONCE(rsclp->len, v); 88#endif 89} 90 91/* Get the length of a segment of the rcu_segcblist structure. */ 92static long rcu_segcblist_get_seglen(struct rcu_segcblist *rsclp, int seg) 93{ 94 return READ_ONCE(rsclp->seglen[seg]); 95} 96 97/* Return number of callbacks in segmented callback list by summing seglen. */ 98long rcu_segcblist_n_segment_cbs(struct rcu_segcblist *rsclp) 99{ 100 long len = 0; 101 int i; 102 103 for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++) 104 len += rcu_segcblist_get_seglen(rsclp, i); 105 106 return len; 107} 108 109/* Set the length of a segment of the rcu_segcblist structure. */ 110static void rcu_segcblist_set_seglen(struct rcu_segcblist *rsclp, int seg, long v) 111{ 112 WRITE_ONCE(rsclp->seglen[seg], v); 113} 114 115/* Increase the numeric length of a segment by a specified amount. */ 116static void rcu_segcblist_add_seglen(struct rcu_segcblist *rsclp, int seg, long v) 117{ 118 WRITE_ONCE(rsclp->seglen[seg], rsclp->seglen[seg] + v); 119} 120 121/* Move from's segment length to to's segment. */ 122static void rcu_segcblist_move_seglen(struct rcu_segcblist *rsclp, int from, int to) 123{ 124 long len; 125 126 if (from == to) 127 return; 128 129 len = rcu_segcblist_get_seglen(rsclp, from); 130 if (!len) 131 return; 132 133 rcu_segcblist_add_seglen(rsclp, to, len); 134 rcu_segcblist_set_seglen(rsclp, from, 0); 135} 136 137/* Increment segment's length. */ 138static void rcu_segcblist_inc_seglen(struct rcu_segcblist *rsclp, int seg) 139{ 140 rcu_segcblist_add_seglen(rsclp, seg, 1); 141} 142 143/* 144 * Increase the numeric length of an rcu_segcblist structure by the 145 * specified amount, which can be negative. This can cause the ->len 146 * field to disagree with the actual number of callbacks on the structure. 147 * This increase is fully ordered with respect to the callers accesses 148 * both before and after. 149 * 150 * So why on earth is a memory barrier required both before and after 151 * the update to the ->len field??? 152 * 153 * The reason is that rcu_barrier() locklessly samples each CPU's ->len 154 * field, and if a given CPU's field is zero, avoids IPIing that CPU. 155 * This can of course race with both queuing and invoking of callbacks. 156 * Failing to correctly handle either of these races could result in 157 * rcu_barrier() failing to IPI a CPU that actually had callbacks queued 158 * which rcu_barrier() was obligated to wait on. And if rcu_barrier() 159 * failed to wait on such a callback, unloading certain kernel modules 160 * would result in calls to functions whose code was no longer present in 161 * the kernel, for but one example. 162 * 163 * Therefore, ->len transitions from 1->0 and 0->1 have to be carefully 164 * ordered with respect with both list modifications and the rcu_barrier(). 165 * 166 * The queuing case is CASE 1 and the invoking case is CASE 2. 167 * 168 * CASE 1: Suppose that CPU 0 has no callbacks queued, but invokes 169 * call_rcu() just as CPU 1 invokes rcu_barrier(). CPU 0's ->len field 170 * will transition from 0->1, which is one of the transitions that must 171 * be handled carefully. Without the full memory barriers after the ->len 172 * update and at the beginning of rcu_barrier(), the following could happen: 173 * 174 * CPU 0 CPU 1 175 * 176 * call_rcu(). 177 * rcu_barrier() sees ->len as 0. 178 * set ->len = 1. 179 * rcu_barrier() does nothing. 180 * module is unloaded. 181 * callback invokes unloaded function! 182 * 183 * With the full barriers, any case where rcu_barrier() sees ->len as 0 will 184 * have unambiguously preceded the return from the racing call_rcu(), which 185 * means that this call_rcu() invocation is OK to not wait on. After all, 186 * you are supposed to make sure that any problematic call_rcu() invocations 187 * happen before the rcu_barrier(). 188 * 189 * 190 * CASE 2: Suppose that CPU 0 is invoking its last callback just as 191 * CPU 1 invokes rcu_barrier(). CPU 0's ->len field will transition from 192 * 1->0, which is one of the transitions that must be handled carefully. 193 * Without the full memory barriers before the ->len update and at the 194 * end of rcu_barrier(), the following could happen: 195 * 196 * CPU 0 CPU 1 197 * 198 * start invoking last callback 199 * set ->len = 0 (reordered) 200 * rcu_barrier() sees ->len as 0 201 * rcu_barrier() does nothing. 202 * module is unloaded 203 * callback executing after unloaded! 204 * 205 * With the full barriers, any case where rcu_barrier() sees ->len as 0 206 * will be fully ordered after the completion of the callback function, 207 * so that the module unloading operation is completely safe. 208 * 209 */ 210void rcu_segcblist_add_len(struct rcu_segcblist *rsclp, long v) 211{ 212#ifdef CONFIG_RCU_NOCB_CPU 213 smp_mb__before_atomic(); // Read header comment above. 214 atomic_long_add(v, &rsclp->len); 215 smp_mb__after_atomic(); // Read header comment above. 216#else 217 smp_mb(); // Read header comment above. 218 WRITE_ONCE(rsclp->len, rsclp->len + v); 219 smp_mb(); // Read header comment above. 220#endif 221} 222 223/* 224 * Increase the numeric length of an rcu_segcblist structure by one. 225 * This can cause the ->len field to disagree with the actual number of 226 * callbacks on the structure. This increase is fully ordered with respect 227 * to the callers accesses both before and after. 228 */ 229void rcu_segcblist_inc_len(struct rcu_segcblist *rsclp) 230{ 231 rcu_segcblist_add_len(rsclp, 1); 232} 233 234/* 235 * Initialize an rcu_segcblist structure. 236 */ 237void rcu_segcblist_init(struct rcu_segcblist *rsclp) 238{ 239 int i; 240 241 BUILD_BUG_ON(RCU_NEXT_TAIL + 1 != ARRAY_SIZE(rsclp->gp_seq)); 242 BUILD_BUG_ON(ARRAY_SIZE(rsclp->tails) != ARRAY_SIZE(rsclp->gp_seq)); 243 rsclp->head = NULL; 244 for (i = 0; i < RCU_CBLIST_NSEGS; i++) { 245 rsclp->tails[i] = &rsclp->head; 246 rcu_segcblist_set_seglen(rsclp, i, 0); 247 } 248 rcu_segcblist_set_len(rsclp, 0); 249 rcu_segcblist_set_flags(rsclp, SEGCBLIST_ENABLED); 250} 251 252/* 253 * Disable the specified rcu_segcblist structure, so that callbacks can 254 * no longer be posted to it. This structure must be empty. 255 */ 256void rcu_segcblist_disable(struct rcu_segcblist *rsclp) 257{ 258 WARN_ON_ONCE(!rcu_segcblist_empty(rsclp)); 259 WARN_ON_ONCE(rcu_segcblist_n_cbs(rsclp)); 260 rcu_segcblist_clear_flags(rsclp, SEGCBLIST_ENABLED); 261} 262 263/* 264 * Mark the specified rcu_segcblist structure as offloaded (or not) 265 */ 266void rcu_segcblist_offload(struct rcu_segcblist *rsclp, bool offload) 267{ 268 if (offload) 269 rcu_segcblist_set_flags(rsclp, SEGCBLIST_LOCKING | SEGCBLIST_OFFLOADED); 270 else 271 rcu_segcblist_clear_flags(rsclp, SEGCBLIST_OFFLOADED); 272} 273 274/* 275 * Does the specified rcu_segcblist structure contain callbacks that 276 * are ready to be invoked? 277 */ 278bool rcu_segcblist_ready_cbs(struct rcu_segcblist *rsclp) 279{ 280 return rcu_segcblist_is_enabled(rsclp) && 281 &rsclp->head != READ_ONCE(rsclp->tails[RCU_DONE_TAIL]); 282} 283 284/* 285 * Does the specified rcu_segcblist structure contain callbacks that 286 * are still pending, that is, not yet ready to be invoked? 287 */ 288bool rcu_segcblist_pend_cbs(struct rcu_segcblist *rsclp) 289{ 290 return rcu_segcblist_is_enabled(rsclp) && 291 !rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL); 292} 293 294/* 295 * Return a pointer to the first callback in the specified rcu_segcblist 296 * structure. This is useful for diagnostics. 297 */ 298struct rcu_head *rcu_segcblist_first_cb(struct rcu_segcblist *rsclp) 299{ 300 if (rcu_segcblist_is_enabled(rsclp)) 301 return rsclp->head; 302 return NULL; 303} 304 305/* 306 * Return a pointer to the first pending callback in the specified 307 * rcu_segcblist structure. This is useful just after posting a given 308 * callback -- if that callback is the first pending callback, then 309 * you cannot rely on someone else having already started up the required 310 * grace period. 311 */ 312struct rcu_head *rcu_segcblist_first_pend_cb(struct rcu_segcblist *rsclp) 313{ 314 if (rcu_segcblist_is_enabled(rsclp)) 315 return *rsclp->tails[RCU_DONE_TAIL]; 316 return NULL; 317} 318 319/* 320 * Return false if there are no CBs awaiting grace periods, otherwise, 321 * return true and store the nearest waited-upon grace period into *lp. 322 */ 323bool rcu_segcblist_nextgp(struct rcu_segcblist *rsclp, unsigned long *lp) 324{ 325 if (!rcu_segcblist_pend_cbs(rsclp)) 326 return false; 327 *lp = rsclp->gp_seq[RCU_WAIT_TAIL]; 328 return true; 329} 330 331/* 332 * Enqueue the specified callback onto the specified rcu_segcblist 333 * structure, updating accounting as needed. Note that the ->len 334 * field may be accessed locklessly, hence the WRITE_ONCE(). 335 * The ->len field is used by rcu_barrier() and friends to determine 336 * if it must post a callback on this structure, and it is OK 337 * for rcu_barrier() to sometimes post callbacks needlessly, but 338 * absolutely not OK for it to ever miss posting a callback. 339 */ 340void rcu_segcblist_enqueue(struct rcu_segcblist *rsclp, 341 struct rcu_head *rhp) 342{ 343 rcu_segcblist_inc_len(rsclp); 344 rcu_segcblist_inc_seglen(rsclp, RCU_NEXT_TAIL); 345 rhp->next = NULL; 346 WRITE_ONCE(*rsclp->tails[RCU_NEXT_TAIL], rhp); 347 WRITE_ONCE(rsclp->tails[RCU_NEXT_TAIL], &rhp->next); 348} 349 350/* 351 * Entrain the specified callback onto the specified rcu_segcblist at 352 * the end of the last non-empty segment. If the entire rcu_segcblist 353 * is empty, make no change, but return false. 354 * 355 * This is intended for use by rcu_barrier()-like primitives, -not- 356 * for normal grace-period use. IMPORTANT: The callback you enqueue 357 * will wait for all prior callbacks, NOT necessarily for a grace 358 * period. You have been warned. 359 */ 360bool rcu_segcblist_entrain(struct rcu_segcblist *rsclp, 361 struct rcu_head *rhp) 362{ 363 int i; 364 365 if (rcu_segcblist_n_cbs(rsclp) == 0) 366 return false; 367 rcu_segcblist_inc_len(rsclp); 368 smp_mb(); /* Ensure counts are updated before callback is entrained. */ 369 rhp->next = NULL; 370 for (i = RCU_NEXT_TAIL; i > RCU_DONE_TAIL; i--) 371 if (rsclp->tails[i] != rsclp->tails[i - 1]) 372 break; 373 rcu_segcblist_inc_seglen(rsclp, i); 374 WRITE_ONCE(*rsclp->tails[i], rhp); 375 for (; i <= RCU_NEXT_TAIL; i++) 376 WRITE_ONCE(rsclp->tails[i], &rhp->next); 377 return true; 378} 379 380/* 381 * Extract only those callbacks ready to be invoked from the specified 382 * rcu_segcblist structure and place them in the specified rcu_cblist 383 * structure. 384 */ 385void rcu_segcblist_extract_done_cbs(struct rcu_segcblist *rsclp, 386 struct rcu_cblist *rclp) 387{ 388 int i; 389 390 if (!rcu_segcblist_ready_cbs(rsclp)) 391 return; /* Nothing to do. */ 392 rclp->len = rcu_segcblist_get_seglen(rsclp, RCU_DONE_TAIL); 393 *rclp->tail = rsclp->head; 394 WRITE_ONCE(rsclp->head, *rsclp->tails[RCU_DONE_TAIL]); 395 WRITE_ONCE(*rsclp->tails[RCU_DONE_TAIL], NULL); 396 rclp->tail = rsclp->tails[RCU_DONE_TAIL]; 397 for (i = RCU_CBLIST_NSEGS - 1; i >= RCU_DONE_TAIL; i--) 398 if (rsclp->tails[i] == rsclp->tails[RCU_DONE_TAIL]) 399 WRITE_ONCE(rsclp->tails[i], &rsclp->head); 400 rcu_segcblist_set_seglen(rsclp, RCU_DONE_TAIL, 0); 401} 402 403/* 404 * Extract only those callbacks still pending (not yet ready to be 405 * invoked) from the specified rcu_segcblist structure and place them in 406 * the specified rcu_cblist structure. Note that this loses information 407 * about any callbacks that might have been partway done waiting for 408 * their grace period. Too bad! They will have to start over. 409 */ 410void rcu_segcblist_extract_pend_cbs(struct rcu_segcblist *rsclp, 411 struct rcu_cblist *rclp) 412{ 413 int i; 414 415 if (!rcu_segcblist_pend_cbs(rsclp)) 416 return; /* Nothing to do. */ 417 rclp->len = 0; 418 *rclp->tail = *rsclp->tails[RCU_DONE_TAIL]; 419 rclp->tail = rsclp->tails[RCU_NEXT_TAIL]; 420 WRITE_ONCE(*rsclp->tails[RCU_DONE_TAIL], NULL); 421 for (i = RCU_DONE_TAIL + 1; i < RCU_CBLIST_NSEGS; i++) { 422 rclp->len += rcu_segcblist_get_seglen(rsclp, i); 423 WRITE_ONCE(rsclp->tails[i], rsclp->tails[RCU_DONE_TAIL]); 424 rcu_segcblist_set_seglen(rsclp, i, 0); 425 } 426} 427 428/* 429 * Insert counts from the specified rcu_cblist structure in the 430 * specified rcu_segcblist structure. 431 */ 432void rcu_segcblist_insert_count(struct rcu_segcblist *rsclp, 433 struct rcu_cblist *rclp) 434{ 435 rcu_segcblist_add_len(rsclp, rclp->len); 436} 437 438/* 439 * Move callbacks from the specified rcu_cblist to the beginning of the 440 * done-callbacks segment of the specified rcu_segcblist. 441 */ 442void rcu_segcblist_insert_done_cbs(struct rcu_segcblist *rsclp, 443 struct rcu_cblist *rclp) 444{ 445 int i; 446 447 if (!rclp->head) 448 return; /* No callbacks to move. */ 449 rcu_segcblist_add_seglen(rsclp, RCU_DONE_TAIL, rclp->len); 450 *rclp->tail = rsclp->head; 451 WRITE_ONCE(rsclp->head, rclp->head); 452 for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++) 453 if (&rsclp->head == rsclp->tails[i]) 454 WRITE_ONCE(rsclp->tails[i], rclp->tail); 455 else 456 break; 457 rclp->head = NULL; 458 rclp->tail = &rclp->head; 459} 460 461/* 462 * Move callbacks from the specified rcu_cblist to the end of the 463 * new-callbacks segment of the specified rcu_segcblist. 464 */ 465void rcu_segcblist_insert_pend_cbs(struct rcu_segcblist *rsclp, 466 struct rcu_cblist *rclp) 467{ 468 if (!rclp->head) 469 return; /* Nothing to do. */ 470 471 rcu_segcblist_add_seglen(rsclp, RCU_NEXT_TAIL, rclp->len); 472 WRITE_ONCE(*rsclp->tails[RCU_NEXT_TAIL], rclp->head); 473 WRITE_ONCE(rsclp->tails[RCU_NEXT_TAIL], rclp->tail); 474} 475 476/* 477 * Advance the callbacks in the specified rcu_segcblist structure based 478 * on the current value passed in for the grace-period counter. 479 */ 480void rcu_segcblist_advance(struct rcu_segcblist *rsclp, unsigned long seq) 481{ 482 int i, j; 483 484 WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp)); 485 if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)) 486 return; 487 488 /* 489 * Find all callbacks whose ->gp_seq numbers indicate that they 490 * are ready to invoke, and put them into the RCU_DONE_TAIL segment. 491 */ 492 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 493 if (ULONG_CMP_LT(seq, rsclp->gp_seq[i])) 494 break; 495 WRITE_ONCE(rsclp->tails[RCU_DONE_TAIL], rsclp->tails[i]); 496 rcu_segcblist_move_seglen(rsclp, i, RCU_DONE_TAIL); 497 } 498 499 /* If no callbacks moved, nothing more need be done. */ 500 if (i == RCU_WAIT_TAIL) 501 return; 502 503 /* Clean up tail pointers that might have been misordered above. */ 504 for (j = RCU_WAIT_TAIL; j < i; j++) 505 WRITE_ONCE(rsclp->tails[j], rsclp->tails[RCU_DONE_TAIL]); 506 507 /* 508 * Callbacks moved, so there might be an empty RCU_WAIT_TAIL 509 * and a non-empty RCU_NEXT_READY_TAIL. If so, copy the 510 * RCU_NEXT_READY_TAIL segment to fill the RCU_WAIT_TAIL gap 511 * created by the now-ready-to-invoke segments. 512 */ 513 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 514 if (rsclp->tails[j] == rsclp->tails[RCU_NEXT_TAIL]) 515 break; /* No more callbacks. */ 516 WRITE_ONCE(rsclp->tails[j], rsclp->tails[i]); 517 rcu_segcblist_move_seglen(rsclp, i, j); 518 rsclp->gp_seq[j] = rsclp->gp_seq[i]; 519 } 520} 521 522/* 523 * "Accelerate" callbacks based on more-accurate grace-period information. 524 * The reason for this is that RCU does not synchronize the beginnings and 525 * ends of grace periods, and that callbacks are posted locally. This in 526 * turn means that the callbacks must be labelled conservatively early 527 * on, as getting exact information would degrade both performance and 528 * scalability. When more accurate grace-period information becomes 529 * available, previously posted callbacks can be "accelerated", marking 530 * them to complete at the end of the earlier grace period. 531 * 532 * This function operates on an rcu_segcblist structure, and also the 533 * grace-period sequence number seq at which new callbacks would become 534 * ready to invoke. Returns true if there are callbacks that won't be 535 * ready to invoke until seq, false otherwise. 536 */ 537bool rcu_segcblist_accelerate(struct rcu_segcblist *rsclp, unsigned long seq) 538{ 539 int i, j; 540 541 WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp)); 542 if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)) 543 return false; 544 545 /* 546 * Find the segment preceding the oldest segment of callbacks 547 * whose ->gp_seq[] completion is at or after that passed in via 548 * "seq", skipping any empty segments. This oldest segment, along 549 * with any later segments, can be merged in with any newly arrived 550 * callbacks in the RCU_NEXT_TAIL segment, and assigned "seq" 551 * as their ->gp_seq[] grace-period completion sequence number. 552 */ 553 for (i = RCU_NEXT_READY_TAIL; i > RCU_DONE_TAIL; i--) 554 if (rsclp->tails[i] != rsclp->tails[i - 1] && 555 ULONG_CMP_LT(rsclp->gp_seq[i], seq)) 556 break; 557 558 /* 559 * If all the segments contain callbacks that correspond to 560 * earlier grace-period sequence numbers than "seq", leave. 561 * Assuming that the rcu_segcblist structure has enough 562 * segments in its arrays, this can only happen if some of 563 * the non-done segments contain callbacks that really are 564 * ready to invoke. This situation will get straightened 565 * out by the next call to rcu_segcblist_advance(). 566 * 567 * Also advance to the oldest segment of callbacks whose 568 * ->gp_seq[] completion is at or after that passed in via "seq", 569 * skipping any empty segments. 570 * 571 * Note that segment "i" (and any lower-numbered segments 572 * containing older callbacks) will be unaffected, and their 573 * grace-period numbers remain unchanged. For example, if i == 574 * WAIT_TAIL, then neither WAIT_TAIL nor DONE_TAIL will be touched. 575 * Instead, the CBs in NEXT_TAIL will be merged with those in 576 * NEXT_READY_TAIL and the grace-period number of NEXT_READY_TAIL 577 * would be updated. NEXT_TAIL would then be empty. 578 */ 579 if (rcu_segcblist_restempty(rsclp, i) || ++i >= RCU_NEXT_TAIL) 580 return false; 581 582 /* Accounting: everything below i is about to get merged into i. */ 583 for (j = i + 1; j <= RCU_NEXT_TAIL; j++) 584 rcu_segcblist_move_seglen(rsclp, j, i); 585 586 /* 587 * Merge all later callbacks, including newly arrived callbacks, 588 * into the segment located by the for-loop above. Assign "seq" 589 * as the ->gp_seq[] value in order to correctly handle the case 590 * where there were no pending callbacks in the rcu_segcblist 591 * structure other than in the RCU_NEXT_TAIL segment. 592 */ 593 for (; i < RCU_NEXT_TAIL; i++) { 594 WRITE_ONCE(rsclp->tails[i], rsclp->tails[RCU_NEXT_TAIL]); 595 rsclp->gp_seq[i] = seq; 596 } 597 return true; 598} 599 600/* 601 * Merge the source rcu_segcblist structure into the destination 602 * rcu_segcblist structure, then initialize the source. Any pending 603 * callbacks from the source get to start over. It is best to 604 * advance and accelerate both the destination and the source 605 * before merging. 606 */ 607void rcu_segcblist_merge(struct rcu_segcblist *dst_rsclp, 608 struct rcu_segcblist *src_rsclp) 609{ 610 struct rcu_cblist donecbs; 611 struct rcu_cblist pendcbs; 612 613 lockdep_assert_cpus_held(); 614 615 rcu_cblist_init(&donecbs); 616 rcu_cblist_init(&pendcbs); 617 618 rcu_segcblist_extract_done_cbs(src_rsclp, &donecbs); 619 rcu_segcblist_extract_pend_cbs(src_rsclp, &pendcbs); 620 621 /* 622 * No need smp_mb() before setting length to 0, because CPU hotplug 623 * lock excludes rcu_barrier. 624 */ 625 rcu_segcblist_set_len(src_rsclp, 0); 626 627 rcu_segcblist_insert_count(dst_rsclp, &donecbs); 628 rcu_segcblist_insert_count(dst_rsclp, &pendcbs); 629 rcu_segcblist_insert_done_cbs(dst_rsclp, &donecbs); 630 rcu_segcblist_insert_pend_cbs(dst_rsclp, &pendcbs); 631 632 rcu_segcblist_init(src_rsclp); 633}