cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tasks.h (61503B)


      1/* SPDX-License-Identifier: GPL-2.0+ */
      2/*
      3 * Task-based RCU implementations.
      4 *
      5 * Copyright (C) 2020 Paul E. McKenney
      6 */
      7
      8#ifdef CONFIG_TASKS_RCU_GENERIC
      9#include "rcu_segcblist.h"
     10
     11////////////////////////////////////////////////////////////////////////
     12//
     13// Generic data structures.
     14
     15struct rcu_tasks;
     16typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
     17typedef void (*pregp_func_t)(void);
     18typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
     19typedef void (*postscan_func_t)(struct list_head *hop);
     20typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
     21typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
     22
     23/**
     24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
     25 * @cblist: Callback list.
     26 * @lock: Lock protecting per-CPU callback list.
     27 * @rtp_jiffies: Jiffies counter value for statistics.
     28 * @rtp_n_lock_retries: Rough lock-contention statistic.
     29 * @rtp_work: Work queue for invoking callbacks.
     30 * @rtp_irq_work: IRQ work queue for deferred wakeups.
     31 * @barrier_q_head: RCU callback for barrier operation.
     32 * @cpu: CPU number corresponding to this entry.
     33 * @rtpp: Pointer to the rcu_tasks structure.
     34 */
     35struct rcu_tasks_percpu {
     36	struct rcu_segcblist cblist;
     37	raw_spinlock_t __private lock;
     38	unsigned long rtp_jiffies;
     39	unsigned long rtp_n_lock_retries;
     40	struct work_struct rtp_work;
     41	struct irq_work rtp_irq_work;
     42	struct rcu_head barrier_q_head;
     43	int cpu;
     44	struct rcu_tasks *rtpp;
     45};
     46
     47/**
     48 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
     49 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
     50 * @cbs_gbl_lock: Lock protecting callback list.
     51 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
     52 * @gp_func: This flavor's grace-period-wait function.
     53 * @gp_state: Grace period's most recent state transition (debugging).
     54 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
     55 * @init_fract: Initial backoff sleep interval.
     56 * @gp_jiffies: Time of last @gp_state transition.
     57 * @gp_start: Most recent grace-period start in jiffies.
     58 * @tasks_gp_seq: Number of grace periods completed since boot.
     59 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
     60 * @n_ipis_fails: Number of IPI-send failures.
     61 * @pregp_func: This flavor's pre-grace-period function (optional).
     62 * @pertask_func: This flavor's per-task scan function (optional).
     63 * @postscan_func: This flavor's post-task scan function (optional).
     64 * @holdouts_func: This flavor's holdout-list scan function (optional).
     65 * @postgp_func: This flavor's post-grace-period function (optional).
     66 * @call_func: This flavor's call_rcu()-equivalent function.
     67 * @rtpcpu: This flavor's rcu_tasks_percpu structure.
     68 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
     69 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
     70 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
     71 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
     72 * @barrier_q_mutex: Serialize barrier operations.
     73 * @barrier_q_count: Number of queues being waited on.
     74 * @barrier_q_completion: Barrier wait/wakeup mechanism.
     75 * @barrier_q_seq: Sequence number for barrier operations.
     76 * @name: This flavor's textual name.
     77 * @kname: This flavor's kthread name.
     78 */
     79struct rcu_tasks {
     80	struct rcuwait cbs_wait;
     81	raw_spinlock_t cbs_gbl_lock;
     82	int gp_state;
     83	int gp_sleep;
     84	int init_fract;
     85	unsigned long gp_jiffies;
     86	unsigned long gp_start;
     87	unsigned long tasks_gp_seq;
     88	unsigned long n_ipis;
     89	unsigned long n_ipis_fails;
     90	struct task_struct *kthread_ptr;
     91	rcu_tasks_gp_func_t gp_func;
     92	pregp_func_t pregp_func;
     93	pertask_func_t pertask_func;
     94	postscan_func_t postscan_func;
     95	holdouts_func_t holdouts_func;
     96	postgp_func_t postgp_func;
     97	call_rcu_func_t call_func;
     98	struct rcu_tasks_percpu __percpu *rtpcpu;
     99	int percpu_enqueue_shift;
    100	int percpu_enqueue_lim;
    101	int percpu_dequeue_lim;
    102	unsigned long percpu_dequeue_gpseq;
    103	struct mutex barrier_q_mutex;
    104	atomic_t barrier_q_count;
    105	struct completion barrier_q_completion;
    106	unsigned long barrier_q_seq;
    107	char *name;
    108	char *kname;
    109};
    110
    111static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
    112
    113#define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
    114static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
    115	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
    116	.rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),			\
    117};											\
    118static struct rcu_tasks rt_name =							\
    119{											\
    120	.cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),				\
    121	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
    122	.gp_func = gp,									\
    123	.call_func = call,								\
    124	.rtpcpu = &rt_name ## __percpu,							\
    125	.name = n,									\
    126	.percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),				\
    127	.percpu_enqueue_lim = 1,							\
    128	.percpu_dequeue_lim = 1,							\
    129	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
    130	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
    131	.kname = #rt_name,								\
    132}
    133
    134/* Track exiting tasks in order to allow them to be waited for. */
    135DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
    136
    137/* Avoid IPIing CPUs early in the grace period. */
    138#define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
    139static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
    140module_param(rcu_task_ipi_delay, int, 0644);
    141
    142/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
    143#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
    144static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
    145module_param(rcu_task_stall_timeout, int, 0644);
    146#define RCU_TASK_STALL_INFO (HZ * 10)
    147static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
    148module_param(rcu_task_stall_info, int, 0644);
    149static int rcu_task_stall_info_mult __read_mostly = 3;
    150module_param(rcu_task_stall_info_mult, int, 0444);
    151
    152static int rcu_task_enqueue_lim __read_mostly = -1;
    153module_param(rcu_task_enqueue_lim, int, 0444);
    154
    155static bool rcu_task_cb_adjust;
    156static int rcu_task_contend_lim __read_mostly = 100;
    157module_param(rcu_task_contend_lim, int, 0444);
    158static int rcu_task_collapse_lim __read_mostly = 10;
    159module_param(rcu_task_collapse_lim, int, 0444);
    160
    161/* RCU tasks grace-period state for debugging. */
    162#define RTGS_INIT		 0
    163#define RTGS_WAIT_WAIT_CBS	 1
    164#define RTGS_WAIT_GP		 2
    165#define RTGS_PRE_WAIT_GP	 3
    166#define RTGS_SCAN_TASKLIST	 4
    167#define RTGS_POST_SCAN_TASKLIST	 5
    168#define RTGS_WAIT_SCAN_HOLDOUTS	 6
    169#define RTGS_SCAN_HOLDOUTS	 7
    170#define RTGS_POST_GP		 8
    171#define RTGS_WAIT_READERS	 9
    172#define RTGS_INVOKE_CBS		10
    173#define RTGS_WAIT_CBS		11
    174#ifndef CONFIG_TINY_RCU
    175static const char * const rcu_tasks_gp_state_names[] = {
    176	"RTGS_INIT",
    177	"RTGS_WAIT_WAIT_CBS",
    178	"RTGS_WAIT_GP",
    179	"RTGS_PRE_WAIT_GP",
    180	"RTGS_SCAN_TASKLIST",
    181	"RTGS_POST_SCAN_TASKLIST",
    182	"RTGS_WAIT_SCAN_HOLDOUTS",
    183	"RTGS_SCAN_HOLDOUTS",
    184	"RTGS_POST_GP",
    185	"RTGS_WAIT_READERS",
    186	"RTGS_INVOKE_CBS",
    187	"RTGS_WAIT_CBS",
    188};
    189#endif /* #ifndef CONFIG_TINY_RCU */
    190
    191////////////////////////////////////////////////////////////////////////
    192//
    193// Generic code.
    194
    195static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
    196
    197/* Record grace-period phase and time. */
    198static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
    199{
    200	rtp->gp_state = newstate;
    201	rtp->gp_jiffies = jiffies;
    202}
    203
    204#ifndef CONFIG_TINY_RCU
    205/* Return state name. */
    206static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
    207{
    208	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
    209	int j = READ_ONCE(i); // Prevent the compiler from reading twice
    210
    211	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
    212		return "???";
    213	return rcu_tasks_gp_state_names[j];
    214}
    215#endif /* #ifndef CONFIG_TINY_RCU */
    216
    217// Initialize per-CPU callback lists for the specified flavor of
    218// Tasks RCU.
    219static void cblist_init_generic(struct rcu_tasks *rtp)
    220{
    221	int cpu;
    222	unsigned long flags;
    223	int lim;
    224	int shift;
    225
    226	raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
    227	if (rcu_task_enqueue_lim < 0) {
    228		rcu_task_enqueue_lim = 1;
    229		rcu_task_cb_adjust = true;
    230		pr_info("%s: Setting adjustable number of callback queues.\n", __func__);
    231	} else if (rcu_task_enqueue_lim == 0) {
    232		rcu_task_enqueue_lim = 1;
    233	}
    234	lim = rcu_task_enqueue_lim;
    235
    236	if (lim > nr_cpu_ids)
    237		lim = nr_cpu_ids;
    238	shift = ilog2(nr_cpu_ids / lim);
    239	if (((nr_cpu_ids - 1) >> shift) >= lim)
    240		shift++;
    241	WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
    242	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
    243	smp_store_release(&rtp->percpu_enqueue_lim, lim);
    244	for_each_possible_cpu(cpu) {
    245		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
    246
    247		WARN_ON_ONCE(!rtpcp);
    248		if (cpu)
    249			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
    250		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
    251		if (rcu_segcblist_empty(&rtpcp->cblist))
    252			rcu_segcblist_init(&rtpcp->cblist);
    253		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
    254		rtpcp->cpu = cpu;
    255		rtpcp->rtpp = rtp;
    256		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
    257	}
    258	raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
    259	pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim));
    260}
    261
    262// IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
    263static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
    264{
    265	struct rcu_tasks *rtp;
    266	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
    267
    268	rtp = rtpcp->rtpp;
    269	rcuwait_wake_up(&rtp->cbs_wait);
    270}
    271
    272// Enqueue a callback for the specified flavor of Tasks RCU.
    273static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
    274				   struct rcu_tasks *rtp)
    275{
    276	int chosen_cpu;
    277	unsigned long flags;
    278	int ideal_cpu;
    279	unsigned long j;
    280	bool needadjust = false;
    281	bool needwake;
    282	struct rcu_tasks_percpu *rtpcp;
    283
    284	rhp->next = NULL;
    285	rhp->func = func;
    286	local_irq_save(flags);
    287	rcu_read_lock();
    288	ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
    289	chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
    290	rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
    291	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
    292		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
    293		j = jiffies;
    294		if (rtpcp->rtp_jiffies != j) {
    295			rtpcp->rtp_jiffies = j;
    296			rtpcp->rtp_n_lock_retries = 0;
    297		}
    298		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
    299		    READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
    300			needadjust = true;  // Defer adjustment to avoid deadlock.
    301	}
    302	if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) {
    303		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
    304		cblist_init_generic(rtp);
    305		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
    306	}
    307	needwake = rcu_segcblist_empty(&rtpcp->cblist);
    308	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
    309	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
    310	if (unlikely(needadjust)) {
    311		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
    312		if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
    313			WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
    314			WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
    315			smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
    316			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
    317		}
    318		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
    319	}
    320	rcu_read_unlock();
    321	/* We can't create the thread unless interrupts are enabled. */
    322	if (needwake && READ_ONCE(rtp->kthread_ptr))
    323		irq_work_queue(&rtpcp->rtp_irq_work);
    324}
    325
    326// Wait for a grace period for the specified flavor of Tasks RCU.
    327static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
    328{
    329	/* Complain if the scheduler has not started.  */
    330	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
    331			 "synchronize_rcu_tasks called too soon");
    332
    333	/* Wait for the grace period. */
    334	wait_rcu_gp(rtp->call_func);
    335}
    336
    337// RCU callback function for rcu_barrier_tasks_generic().
    338static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
    339{
    340	struct rcu_tasks *rtp;
    341	struct rcu_tasks_percpu *rtpcp;
    342
    343	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
    344	rtp = rtpcp->rtpp;
    345	if (atomic_dec_and_test(&rtp->barrier_q_count))
    346		complete(&rtp->barrier_q_completion);
    347}
    348
    349// Wait for all in-flight callbacks for the specified RCU Tasks flavor.
    350// Operates in a manner similar to rcu_barrier().
    351static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
    352{
    353	int cpu;
    354	unsigned long flags;
    355	struct rcu_tasks_percpu *rtpcp;
    356	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
    357
    358	mutex_lock(&rtp->barrier_q_mutex);
    359	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
    360		smp_mb();
    361		mutex_unlock(&rtp->barrier_q_mutex);
    362		return;
    363	}
    364	rcu_seq_start(&rtp->barrier_q_seq);
    365	init_completion(&rtp->barrier_q_completion);
    366	atomic_set(&rtp->barrier_q_count, 2);
    367	for_each_possible_cpu(cpu) {
    368		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
    369			break;
    370		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
    371		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
    372		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
    373		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
    374			atomic_inc(&rtp->barrier_q_count);
    375		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
    376	}
    377	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
    378		complete(&rtp->barrier_q_completion);
    379	wait_for_completion(&rtp->barrier_q_completion);
    380	rcu_seq_end(&rtp->barrier_q_seq);
    381	mutex_unlock(&rtp->barrier_q_mutex);
    382}
    383
    384// Advance callbacks and indicate whether either a grace period or
    385// callback invocation is needed.
    386static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
    387{
    388	int cpu;
    389	unsigned long flags;
    390	long n;
    391	long ncbs = 0;
    392	long ncbsnz = 0;
    393	int needgpcb = 0;
    394
    395	for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
    396		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
    397
    398		/* Advance and accelerate any new callbacks. */
    399		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
    400			continue;
    401		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
    402		// Should we shrink down to a single callback queue?
    403		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
    404		if (n) {
    405			ncbs += n;
    406			if (cpu > 0)
    407				ncbsnz += n;
    408		}
    409		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
    410		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
    411		if (rcu_segcblist_pend_cbs(&rtpcp->cblist))
    412			needgpcb |= 0x3;
    413		if (!rcu_segcblist_empty(&rtpcp->cblist))
    414			needgpcb |= 0x1;
    415		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
    416	}
    417
    418	// Shrink down to a single callback queue if appropriate.
    419	// This is done in two stages: (1) If there are no more than
    420	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
    421	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
    422	// if there has not been an increase in callbacks, limit dequeuing
    423	// to CPU 0.  Note the matching RCU read-side critical section in
    424	// call_rcu_tasks_generic().
    425	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
    426		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
    427		if (rtp->percpu_enqueue_lim > 1) {
    428			WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
    429			smp_store_release(&rtp->percpu_enqueue_lim, 1);
    430			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
    431			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
    432		}
    433		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
    434	}
    435	if (rcu_task_cb_adjust && !ncbsnz &&
    436	    poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) {
    437		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
    438		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
    439			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
    440			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
    441		}
    442		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
    443	}
    444
    445	return needgpcb;
    446}
    447
    448// Advance callbacks and invoke any that are ready.
    449static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
    450{
    451	int cpu;
    452	int cpunext;
    453	unsigned long flags;
    454	int len;
    455	struct rcu_head *rhp;
    456	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
    457	struct rcu_tasks_percpu *rtpcp_next;
    458
    459	cpu = rtpcp->cpu;
    460	cpunext = cpu * 2 + 1;
    461	if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
    462		rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
    463		queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
    464		cpunext++;
    465		if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
    466			rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
    467			queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
    468		}
    469	}
    470
    471	if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
    472		return;
    473	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
    474	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
    475	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
    476	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
    477	len = rcl.len;
    478	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
    479		local_bh_disable();
    480		rhp->func(rhp);
    481		local_bh_enable();
    482		cond_resched();
    483	}
    484	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
    485	rcu_segcblist_add_len(&rtpcp->cblist, -len);
    486	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
    487	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
    488}
    489
    490// Workqueue flood to advance callbacks and invoke any that are ready.
    491static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
    492{
    493	struct rcu_tasks *rtp;
    494	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
    495
    496	rtp = rtpcp->rtpp;
    497	rcu_tasks_invoke_cbs(rtp, rtpcp);
    498}
    499
    500/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
    501static int __noreturn rcu_tasks_kthread(void *arg)
    502{
    503	int needgpcb;
    504	struct rcu_tasks *rtp = arg;
    505
    506	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
    507	housekeeping_affine(current, HK_TYPE_RCU);
    508	WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
    509
    510	/*
    511	 * Each pass through the following loop makes one check for
    512	 * newly arrived callbacks, and, if there are some, waits for
    513	 * one RCU-tasks grace period and then invokes the callbacks.
    514	 * This loop is terminated by the system going down.  ;-)
    515	 */
    516	for (;;) {
    517		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
    518
    519		/* If there were none, wait a bit and start over. */
    520		rcuwait_wait_event(&rtp->cbs_wait,
    521				   (needgpcb = rcu_tasks_need_gpcb(rtp)),
    522				   TASK_IDLE);
    523
    524		if (needgpcb & 0x2) {
    525			// Wait for one grace period.
    526			set_tasks_gp_state(rtp, RTGS_WAIT_GP);
    527			rtp->gp_start = jiffies;
    528			rcu_seq_start(&rtp->tasks_gp_seq);
    529			rtp->gp_func(rtp);
    530			rcu_seq_end(&rtp->tasks_gp_seq);
    531		}
    532
    533		/* Invoke callbacks. */
    534		set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
    535		rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
    536
    537		/* Paranoid sleep to keep this from entering a tight loop */
    538		schedule_timeout_idle(rtp->gp_sleep);
    539	}
    540}
    541
    542/* Spawn RCU-tasks grace-period kthread. */
    543static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
    544{
    545	struct task_struct *t;
    546
    547	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
    548	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
    549		return;
    550	smp_mb(); /* Ensure others see full kthread. */
    551}
    552
    553#ifndef CONFIG_TINY_RCU
    554
    555/*
    556 * Print any non-default Tasks RCU settings.
    557 */
    558static void __init rcu_tasks_bootup_oddness(void)
    559{
    560#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
    561	int rtsimc;
    562
    563	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
    564		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
    565	rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
    566	if (rtsimc != rcu_task_stall_info_mult) {
    567		pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
    568		rcu_task_stall_info_mult = rtsimc;
    569	}
    570#endif /* #ifdef CONFIG_TASKS_RCU */
    571#ifdef CONFIG_TASKS_RCU
    572	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
    573#endif /* #ifdef CONFIG_TASKS_RCU */
    574#ifdef CONFIG_TASKS_RUDE_RCU
    575	pr_info("\tRude variant of Tasks RCU enabled.\n");
    576#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
    577#ifdef CONFIG_TASKS_TRACE_RCU
    578	pr_info("\tTracing variant of Tasks RCU enabled.\n");
    579#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
    580}
    581
    582#endif /* #ifndef CONFIG_TINY_RCU */
    583
    584#ifndef CONFIG_TINY_RCU
    585/* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
    586static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
    587{
    588	int cpu;
    589	bool havecbs = false;
    590
    591	for_each_possible_cpu(cpu) {
    592		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
    593
    594		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) {
    595			havecbs = true;
    596			break;
    597		}
    598	}
    599	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
    600		rtp->kname,
    601		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
    602		jiffies - data_race(rtp->gp_jiffies),
    603		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
    604		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
    605		".k"[!!data_race(rtp->kthread_ptr)],
    606		".C"[havecbs],
    607		s);
    608}
    609#endif // #ifndef CONFIG_TINY_RCU
    610
    611static void exit_tasks_rcu_finish_trace(struct task_struct *t);
    612
    613#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
    614
    615////////////////////////////////////////////////////////////////////////
    616//
    617// Shared code between task-list-scanning variants of Tasks RCU.
    618
    619/* Wait for one RCU-tasks grace period. */
    620static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
    621{
    622	struct task_struct *g;
    623	int fract;
    624	LIST_HEAD(holdouts);
    625	unsigned long j;
    626	unsigned long lastinfo;
    627	unsigned long lastreport;
    628	bool reported = false;
    629	int rtsi;
    630	struct task_struct *t;
    631
    632	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
    633	rtp->pregp_func();
    634
    635	/*
    636	 * There were callbacks, so we need to wait for an RCU-tasks
    637	 * grace period.  Start off by scanning the task list for tasks
    638	 * that are not already voluntarily blocked.  Mark these tasks
    639	 * and make a list of them in holdouts.
    640	 */
    641	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
    642	rcu_read_lock();
    643	for_each_process_thread(g, t)
    644		rtp->pertask_func(t, &holdouts);
    645	rcu_read_unlock();
    646
    647	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
    648	rtp->postscan_func(&holdouts);
    649
    650	/*
    651	 * Each pass through the following loop scans the list of holdout
    652	 * tasks, removing any that are no longer holdouts.  When the list
    653	 * is empty, we are done.
    654	 */
    655	lastreport = jiffies;
    656	lastinfo = lastreport;
    657	rtsi = READ_ONCE(rcu_task_stall_info);
    658
    659	// Start off with initial wait and slowly back off to 1 HZ wait.
    660	fract = rtp->init_fract;
    661
    662	while (!list_empty(&holdouts)) {
    663		ktime_t exp;
    664		bool firstreport;
    665		bool needreport;
    666		int rtst;
    667
    668		// Slowly back off waiting for holdouts
    669		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
    670		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
    671			schedule_timeout_idle(fract);
    672		} else {
    673			exp = jiffies_to_nsecs(fract);
    674			__set_current_state(TASK_IDLE);
    675			schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
    676		}
    677
    678		if (fract < HZ)
    679			fract++;
    680
    681		rtst = READ_ONCE(rcu_task_stall_timeout);
    682		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
    683		if (needreport) {
    684			lastreport = jiffies;
    685			reported = true;
    686		}
    687		firstreport = true;
    688		WARN_ON(signal_pending(current));
    689		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
    690		rtp->holdouts_func(&holdouts, needreport, &firstreport);
    691
    692		// Print pre-stall informational messages if needed.
    693		j = jiffies;
    694		if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
    695			lastinfo = j;
    696			rtsi = rtsi * rcu_task_stall_info_mult;
    697			pr_info("%s: %s grace period %lu is %lu jiffies old.\n",
    698				__func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
    699		}
    700	}
    701
    702	set_tasks_gp_state(rtp, RTGS_POST_GP);
    703	rtp->postgp_func(rtp);
    704}
    705
    706#endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
    707
    708#ifdef CONFIG_TASKS_RCU
    709
    710////////////////////////////////////////////////////////////////////////
    711//
    712// Simple variant of RCU whose quiescent states are voluntary context
    713// switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
    714// As such, grace periods can take one good long time.  There are no
    715// read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
    716// because this implementation is intended to get the system into a safe
    717// state for some of the manipulations involved in tracing and the like.
    718// Finally, this implementation does not support high call_rcu_tasks()
    719// rates from multiple CPUs.  If this is required, per-CPU callback lists
    720// will be needed.
    721//
    722// The implementation uses rcu_tasks_wait_gp(), which relies on function
    723// pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
    724// function sets these function pointers up so that rcu_tasks_wait_gp()
    725// invokes these functions in this order:
    726//
    727// rcu_tasks_pregp_step():
    728//	Invokes synchronize_rcu() in order to wait for all in-flight
    729//	t->on_rq and t->nvcsw transitions to complete.	This works because
    730//	all such transitions are carried out with interrupts disabled.
    731// rcu_tasks_pertask(), invoked on every non-idle task:
    732//	For every runnable non-idle task other than the current one, use
    733//	get_task_struct() to pin down that task, snapshot that task's
    734//	number of voluntary context switches, and add that task to the
    735//	holdout list.
    736// rcu_tasks_postscan():
    737//	Invoke synchronize_srcu() to ensure that all tasks that were
    738//	in the process of exiting (and which thus might not know to
    739//	synchronize with this RCU Tasks grace period) have completed
    740//	exiting.
    741// check_all_holdout_tasks(), repeatedly until holdout list is empty:
    742//	Scans the holdout list, attempting to identify a quiescent state
    743//	for each task on the list.  If there is a quiescent state, the
    744//	corresponding task is removed from the holdout list.
    745// rcu_tasks_postgp():
    746//	Invokes synchronize_rcu() in order to ensure that all prior
    747//	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
    748//	to have happened before the end of this RCU Tasks grace period.
    749//	Again, this works because all such transitions are carried out
    750//	with interrupts disabled.
    751//
    752// For each exiting task, the exit_tasks_rcu_start() and
    753// exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
    754// read-side critical sections waited for by rcu_tasks_postscan().
    755//
    756// Pre-grace-period update-side code is ordered before the grace
    757// via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
    758// is ordered before the grace period via synchronize_rcu() call in
    759// rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
    760// disabling.
    761
    762/* Pre-grace-period preparation. */
    763static void rcu_tasks_pregp_step(void)
    764{
    765	/*
    766	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
    767	 * to complete.  Invoking synchronize_rcu() suffices because all
    768	 * these transitions occur with interrupts disabled.  Without this
    769	 * synchronize_rcu(), a read-side critical section that started
    770	 * before the grace period might be incorrectly seen as having
    771	 * started after the grace period.
    772	 *
    773	 * This synchronize_rcu() also dispenses with the need for a
    774	 * memory barrier on the first store to t->rcu_tasks_holdout,
    775	 * as it forces the store to happen after the beginning of the
    776	 * grace period.
    777	 */
    778	synchronize_rcu();
    779}
    780
    781/* Per-task initial processing. */
    782static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
    783{
    784	if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
    785		get_task_struct(t);
    786		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
    787		WRITE_ONCE(t->rcu_tasks_holdout, true);
    788		list_add(&t->rcu_tasks_holdout_list, hop);
    789	}
    790}
    791
    792/* Processing between scanning taskslist and draining the holdout list. */
    793static void rcu_tasks_postscan(struct list_head *hop)
    794{
    795	/*
    796	 * Wait for tasks that are in the process of exiting.  This
    797	 * does only part of the job, ensuring that all tasks that were
    798	 * previously exiting reach the point where they have disabled
    799	 * preemption, allowing the later synchronize_rcu() to finish
    800	 * the job.
    801	 */
    802	synchronize_srcu(&tasks_rcu_exit_srcu);
    803}
    804
    805/* See if tasks are still holding out, complain if so. */
    806static void check_holdout_task(struct task_struct *t,
    807			       bool needreport, bool *firstreport)
    808{
    809	int cpu;
    810
    811	if (!READ_ONCE(t->rcu_tasks_holdout) ||
    812	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
    813	    !READ_ONCE(t->on_rq) ||
    814	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
    815	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
    816		WRITE_ONCE(t->rcu_tasks_holdout, false);
    817		list_del_init(&t->rcu_tasks_holdout_list);
    818		put_task_struct(t);
    819		return;
    820	}
    821	rcu_request_urgent_qs_task(t);
    822	if (!needreport)
    823		return;
    824	if (*firstreport) {
    825		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
    826		*firstreport = false;
    827	}
    828	cpu = task_cpu(t);
    829	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
    830		 t, ".I"[is_idle_task(t)],
    831		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
    832		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
    833		 t->rcu_tasks_idle_cpu, cpu);
    834	sched_show_task(t);
    835}
    836
    837/* Scan the holdout lists for tasks no longer holding out. */
    838static void check_all_holdout_tasks(struct list_head *hop,
    839				    bool needreport, bool *firstreport)
    840{
    841	struct task_struct *t, *t1;
    842
    843	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
    844		check_holdout_task(t, needreport, firstreport);
    845		cond_resched();
    846	}
    847}
    848
    849/* Finish off the Tasks-RCU grace period. */
    850static void rcu_tasks_postgp(struct rcu_tasks *rtp)
    851{
    852	/*
    853	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
    854	 * memory barriers prior to them in the schedule() path, memory
    855	 * reordering on other CPUs could cause their RCU-tasks read-side
    856	 * critical sections to extend past the end of the grace period.
    857	 * However, because these ->nvcsw updates are carried out with
    858	 * interrupts disabled, we can use synchronize_rcu() to force the
    859	 * needed ordering on all such CPUs.
    860	 *
    861	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
    862	 * accesses to be within the grace period, avoiding the need for
    863	 * memory barriers for ->rcu_tasks_holdout accesses.
    864	 *
    865	 * In addition, this synchronize_rcu() waits for exiting tasks
    866	 * to complete their final preempt_disable() region of execution,
    867	 * cleaning up after the synchronize_srcu() above.
    868	 */
    869	synchronize_rcu();
    870}
    871
    872void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
    873DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
    874
    875/**
    876 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
    877 * @rhp: structure to be used for queueing the RCU updates.
    878 * @func: actual callback function to be invoked after the grace period
    879 *
    880 * The callback function will be invoked some time after a full grace
    881 * period elapses, in other words after all currently executing RCU
    882 * read-side critical sections have completed. call_rcu_tasks() assumes
    883 * that the read-side critical sections end at a voluntary context
    884 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
    885 * or transition to usermode execution.  As such, there are no read-side
    886 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
    887 * this primitive is intended to determine that all tasks have passed
    888 * through a safe state, not so much for data-structure synchronization.
    889 *
    890 * See the description of call_rcu() for more detailed information on
    891 * memory ordering guarantees.
    892 */
    893void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
    894{
    895	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
    896}
    897EXPORT_SYMBOL_GPL(call_rcu_tasks);
    898
    899/**
    900 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
    901 *
    902 * Control will return to the caller some time after a full rcu-tasks
    903 * grace period has elapsed, in other words after all currently
    904 * executing rcu-tasks read-side critical sections have elapsed.  These
    905 * read-side critical sections are delimited by calls to schedule(),
    906 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
    907 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
    908 *
    909 * This is a very specialized primitive, intended only for a few uses in
    910 * tracing and other situations requiring manipulation of function
    911 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
    912 * is not (yet) intended for heavy use from multiple CPUs.
    913 *
    914 * See the description of synchronize_rcu() for more detailed information
    915 * on memory ordering guarantees.
    916 */
    917void synchronize_rcu_tasks(void)
    918{
    919	synchronize_rcu_tasks_generic(&rcu_tasks);
    920}
    921EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
    922
    923/**
    924 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
    925 *
    926 * Although the current implementation is guaranteed to wait, it is not
    927 * obligated to, for example, if there are no pending callbacks.
    928 */
    929void rcu_barrier_tasks(void)
    930{
    931	rcu_barrier_tasks_generic(&rcu_tasks);
    932}
    933EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
    934
    935static int __init rcu_spawn_tasks_kthread(void)
    936{
    937	cblist_init_generic(&rcu_tasks);
    938	rcu_tasks.gp_sleep = HZ / 10;
    939	rcu_tasks.init_fract = HZ / 10;
    940	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
    941	rcu_tasks.pertask_func = rcu_tasks_pertask;
    942	rcu_tasks.postscan_func = rcu_tasks_postscan;
    943	rcu_tasks.holdouts_func = check_all_holdout_tasks;
    944	rcu_tasks.postgp_func = rcu_tasks_postgp;
    945	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
    946	return 0;
    947}
    948
    949#if !defined(CONFIG_TINY_RCU)
    950void show_rcu_tasks_classic_gp_kthread(void)
    951{
    952	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
    953}
    954EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
    955#endif // !defined(CONFIG_TINY_RCU)
    956
    957/* Do the srcu_read_lock() for the above synchronize_srcu().  */
    958void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
    959{
    960	preempt_disable();
    961	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
    962	preempt_enable();
    963}
    964
    965/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
    966void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
    967{
    968	struct task_struct *t = current;
    969
    970	preempt_disable();
    971	__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
    972	preempt_enable();
    973	exit_tasks_rcu_finish_trace(t);
    974}
    975
    976#else /* #ifdef CONFIG_TASKS_RCU */
    977void exit_tasks_rcu_start(void) { }
    978void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
    979#endif /* #else #ifdef CONFIG_TASKS_RCU */
    980
    981#ifdef CONFIG_TASKS_RUDE_RCU
    982
    983////////////////////////////////////////////////////////////////////////
    984//
    985// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
    986// passing an empty function to schedule_on_each_cpu().  This approach
    987// provides an asynchronous call_rcu_tasks_rude() API and batching of
    988// concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
    989// This invokes schedule_on_each_cpu() in order to send IPIs far and wide
    990// and induces otherwise unnecessary context switches on all online CPUs,
    991// whether idle or not.
    992//
    993// Callback handling is provided by the rcu_tasks_kthread() function.
    994//
    995// Ordering is provided by the scheduler's context-switch code.
    996
    997// Empty function to allow workqueues to force a context switch.
    998static void rcu_tasks_be_rude(struct work_struct *work)
    999{
   1000}
   1001
   1002// Wait for one rude RCU-tasks grace period.
   1003static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
   1004{
   1005	if (num_online_cpus() <= 1)
   1006		return;	// Fastpath for only one CPU.
   1007
   1008	rtp->n_ipis += cpumask_weight(cpu_online_mask);
   1009	schedule_on_each_cpu(rcu_tasks_be_rude);
   1010}
   1011
   1012void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
   1013DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
   1014		 "RCU Tasks Rude");
   1015
   1016/**
   1017 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
   1018 * @rhp: structure to be used for queueing the RCU updates.
   1019 * @func: actual callback function to be invoked after the grace period
   1020 *
   1021 * The callback function will be invoked some time after a full grace
   1022 * period elapses, in other words after all currently executing RCU
   1023 * read-side critical sections have completed. call_rcu_tasks_rude()
   1024 * assumes that the read-side critical sections end at context switch,
   1025 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
   1026 * usermode execution is schedulable). As such, there are no read-side
   1027 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
   1028 * this primitive is intended to determine that all tasks have passed
   1029 * through a safe state, not so much for data-structure synchronization.
   1030 *
   1031 * See the description of call_rcu() for more detailed information on
   1032 * memory ordering guarantees.
   1033 */
   1034void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
   1035{
   1036	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
   1037}
   1038EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
   1039
   1040/**
   1041 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
   1042 *
   1043 * Control will return to the caller some time after a rude rcu-tasks
   1044 * grace period has elapsed, in other words after all currently
   1045 * executing rcu-tasks read-side critical sections have elapsed.  These
   1046 * read-side critical sections are delimited by calls to schedule(),
   1047 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
   1048 * context), and (in theory, anyway) cond_resched().
   1049 *
   1050 * This is a very specialized primitive, intended only for a few uses in
   1051 * tracing and other situations requiring manipulation of function preambles
   1052 * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
   1053 * (yet) intended for heavy use from multiple CPUs.
   1054 *
   1055 * See the description of synchronize_rcu() for more detailed information
   1056 * on memory ordering guarantees.
   1057 */
   1058void synchronize_rcu_tasks_rude(void)
   1059{
   1060	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
   1061}
   1062EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
   1063
   1064/**
   1065 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
   1066 *
   1067 * Although the current implementation is guaranteed to wait, it is not
   1068 * obligated to, for example, if there are no pending callbacks.
   1069 */
   1070void rcu_barrier_tasks_rude(void)
   1071{
   1072	rcu_barrier_tasks_generic(&rcu_tasks_rude);
   1073}
   1074EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
   1075
   1076static int __init rcu_spawn_tasks_rude_kthread(void)
   1077{
   1078	cblist_init_generic(&rcu_tasks_rude);
   1079	rcu_tasks_rude.gp_sleep = HZ / 10;
   1080	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
   1081	return 0;
   1082}
   1083
   1084#if !defined(CONFIG_TINY_RCU)
   1085void show_rcu_tasks_rude_gp_kthread(void)
   1086{
   1087	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
   1088}
   1089EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
   1090#endif // !defined(CONFIG_TINY_RCU)
   1091#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
   1092
   1093////////////////////////////////////////////////////////////////////////
   1094//
   1095// Tracing variant of Tasks RCU.  This variant is designed to be used
   1096// to protect tracing hooks, including those of BPF.  This variant
   1097// therefore:
   1098//
   1099// 1.	Has explicit read-side markers to allow finite grace periods
   1100//	in the face of in-kernel loops for PREEMPT=n builds.
   1101//
   1102// 2.	Protects code in the idle loop, exception entry/exit, and
   1103//	CPU-hotplug code paths, similar to the capabilities of SRCU.
   1104//
   1105// 3.	Avoids expensive read-side instructions, having overhead similar
   1106//	to that of Preemptible RCU.
   1107//
   1108// There are of course downsides.  The grace-period code can send IPIs to
   1109// CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
   1110// It is necessary to scan the full tasklist, much as for Tasks RCU.  There
   1111// is a single callback queue guarded by a single lock, again, much as for
   1112// Tasks RCU.  If needed, these downsides can be at least partially remedied.
   1113//
   1114// Perhaps most important, this variant of RCU does not affect the vanilla
   1115// flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
   1116// readers can operate from idle, offline, and exception entry/exit in no
   1117// way allows rcu_preempt and rcu_sched readers to also do so.
   1118//
   1119// The implementation uses rcu_tasks_wait_gp(), which relies on function
   1120// pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
   1121// function sets these function pointers up so that rcu_tasks_wait_gp()
   1122// invokes these functions in this order:
   1123//
   1124// rcu_tasks_trace_pregp_step():
   1125//	Initialize the count of readers and block CPU-hotplug operations.
   1126// rcu_tasks_trace_pertask(), invoked on every non-idle task:
   1127//	Initialize per-task state and attempt to identify an immediate
   1128//	quiescent state for that task, or, failing that, attempt to
   1129//	set that task's .need_qs flag so that task's next outermost
   1130//	rcu_read_unlock_trace() will report the quiescent state (in which
   1131//	case the count of readers is incremented).  If both attempts fail,
   1132//	the task is added to a "holdout" list.  Note that IPIs are used
   1133//	to invoke trc_read_check_handler() in the context of running tasks
   1134//	in order to avoid ordering overhead on common-case shared-variable
   1135//	accessses.
   1136// rcu_tasks_trace_postscan():
   1137//	Initialize state and attempt to identify an immediate quiescent
   1138//	state as above (but only for idle tasks), unblock CPU-hotplug
   1139//	operations, and wait for an RCU grace period to avoid races with
   1140//	tasks that are in the process of exiting.
   1141// check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
   1142//	Scans the holdout list, attempting to identify a quiescent state
   1143//	for each task on the list.  If there is a quiescent state, the
   1144//	corresponding task is removed from the holdout list.
   1145// rcu_tasks_trace_postgp():
   1146//	Wait for the count of readers do drop to zero, reporting any stalls.
   1147//	Also execute full memory barriers to maintain ordering with code
   1148//	executing after the grace period.
   1149//
   1150// The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
   1151//
   1152// Pre-grace-period update-side code is ordered before the grace
   1153// period via the ->cbs_lock and barriers in rcu_tasks_kthread().
   1154// Pre-grace-period read-side code is ordered before the grace period by
   1155// atomic_dec_and_test() of the count of readers (for IPIed readers) and by
   1156// scheduler context-switch ordering (for locked-down non-running readers).
   1157
   1158// The lockdep state must be outside of #ifdef to be useful.
   1159#ifdef CONFIG_DEBUG_LOCK_ALLOC
   1160static struct lock_class_key rcu_lock_trace_key;
   1161struct lockdep_map rcu_trace_lock_map =
   1162	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
   1163EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
   1164#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
   1165
   1166#ifdef CONFIG_TASKS_TRACE_RCU
   1167
   1168static atomic_t trc_n_readers_need_end;		// Number of waited-for readers.
   1169static DECLARE_WAIT_QUEUE_HEAD(trc_wait);	// List of holdout tasks.
   1170
   1171// Record outstanding IPIs to each CPU.  No point in sending two...
   1172static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
   1173
   1174// The number of detections of task quiescent state relying on
   1175// heavyweight readers executing explicit memory barriers.
   1176static unsigned long n_heavy_reader_attempts;
   1177static unsigned long n_heavy_reader_updates;
   1178static unsigned long n_heavy_reader_ofl_updates;
   1179
   1180void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
   1181DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
   1182		 "RCU Tasks Trace");
   1183
   1184/*
   1185 * This irq_work handler allows rcu_read_unlock_trace() to be invoked
   1186 * while the scheduler locks are held.
   1187 */
   1188static void rcu_read_unlock_iw(struct irq_work *iwp)
   1189{
   1190	wake_up(&trc_wait);
   1191}
   1192static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
   1193
   1194/* If we are the last reader, wake up the grace-period kthread. */
   1195void rcu_read_unlock_trace_special(struct task_struct *t)
   1196{
   1197	int nq = READ_ONCE(t->trc_reader_special.b.need_qs);
   1198
   1199	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
   1200	    t->trc_reader_special.b.need_mb)
   1201		smp_mb(); // Pairs with update-side barriers.
   1202	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
   1203	if (nq)
   1204		WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
   1205	WRITE_ONCE(t->trc_reader_nesting, 0);
   1206	if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
   1207		irq_work_queue(&rcu_tasks_trace_iw);
   1208}
   1209EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
   1210
   1211/* Add a task to the holdout list, if it is not already on the list. */
   1212static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
   1213{
   1214	if (list_empty(&t->trc_holdout_list)) {
   1215		get_task_struct(t);
   1216		list_add(&t->trc_holdout_list, bhp);
   1217	}
   1218}
   1219
   1220/* Remove a task from the holdout list, if it is in fact present. */
   1221static void trc_del_holdout(struct task_struct *t)
   1222{
   1223	if (!list_empty(&t->trc_holdout_list)) {
   1224		list_del_init(&t->trc_holdout_list);
   1225		put_task_struct(t);
   1226	}
   1227}
   1228
   1229/* IPI handler to check task state. */
   1230static void trc_read_check_handler(void *t_in)
   1231{
   1232	struct task_struct *t = current;
   1233	struct task_struct *texp = t_in;
   1234
   1235	// If the task is no longer running on this CPU, leave.
   1236	if (unlikely(texp != t)) {
   1237		goto reset_ipi; // Already on holdout list, so will check later.
   1238	}
   1239
   1240	// If the task is not in a read-side critical section, and
   1241	// if this is the last reader, awaken the grace-period kthread.
   1242	if (likely(!READ_ONCE(t->trc_reader_nesting))) {
   1243		WRITE_ONCE(t->trc_reader_checked, true);
   1244		goto reset_ipi;
   1245	}
   1246	// If we are racing with an rcu_read_unlock_trace(), try again later.
   1247	if (unlikely(READ_ONCE(t->trc_reader_nesting) < 0))
   1248		goto reset_ipi;
   1249	WRITE_ONCE(t->trc_reader_checked, true);
   1250
   1251	// Get here if the task is in a read-side critical section.  Set
   1252	// its state so that it will awaken the grace-period kthread upon
   1253	// exit from that critical section.
   1254	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
   1255	WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
   1256	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
   1257
   1258reset_ipi:
   1259	// Allow future IPIs to be sent on CPU and for task.
   1260	// Also order this IPI handler against any later manipulations of
   1261	// the intended task.
   1262	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
   1263	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
   1264}
   1265
   1266/* Callback function for scheduler to check locked-down task.  */
   1267static int trc_inspect_reader(struct task_struct *t, void *arg)
   1268{
   1269	int cpu = task_cpu(t);
   1270	int nesting;
   1271	bool ofl = cpu_is_offline(cpu);
   1272
   1273	if (task_curr(t)) {
   1274		WARN_ON_ONCE(ofl && !is_idle_task(t));
   1275
   1276		// If no chance of heavyweight readers, do it the hard way.
   1277		if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
   1278			return -EINVAL;
   1279
   1280		// If heavyweight readers are enabled on the remote task,
   1281		// we can inspect its state despite its currently running.
   1282		// However, we cannot safely change its state.
   1283		n_heavy_reader_attempts++;
   1284		if (!ofl && // Check for "running" idle tasks on offline CPUs.
   1285		    !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
   1286			return -EINVAL; // No quiescent state, do it the hard way.
   1287		n_heavy_reader_updates++;
   1288		if (ofl)
   1289			n_heavy_reader_ofl_updates++;
   1290		nesting = 0;
   1291	} else {
   1292		// The task is not running, so C-language access is safe.
   1293		nesting = t->trc_reader_nesting;
   1294	}
   1295
   1296	// If not exiting a read-side critical section, mark as checked
   1297	// so that the grace-period kthread will remove it from the
   1298	// holdout list.
   1299	t->trc_reader_checked = nesting >= 0;
   1300	if (nesting <= 0)
   1301		return nesting ? -EINVAL : 0;  // If in QS, done, otherwise try again later.
   1302
   1303	// The task is in a read-side critical section, so set up its
   1304	// state so that it will awaken the grace-period kthread upon exit
   1305	// from that critical section.
   1306	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
   1307	WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
   1308	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
   1309	return 0;
   1310}
   1311
   1312/* Attempt to extract the state for the specified task. */
   1313static void trc_wait_for_one_reader(struct task_struct *t,
   1314				    struct list_head *bhp)
   1315{
   1316	int cpu;
   1317
   1318	// If a previous IPI is still in flight, let it complete.
   1319	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
   1320		return;
   1321
   1322	// The current task had better be in a quiescent state.
   1323	if (t == current) {
   1324		t->trc_reader_checked = true;
   1325		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
   1326		return;
   1327	}
   1328
   1329	// Attempt to nail down the task for inspection.
   1330	get_task_struct(t);
   1331	if (!task_call_func(t, trc_inspect_reader, NULL)) {
   1332		put_task_struct(t);
   1333		return;
   1334	}
   1335	put_task_struct(t);
   1336
   1337	// If this task is not yet on the holdout list, then we are in
   1338	// an RCU read-side critical section.  Otherwise, the invocation of
   1339	// trc_add_holdout() that added it to the list did the necessary
   1340	// get_task_struct().  Either way, the task cannot be freed out
   1341	// from under this code.
   1342
   1343	// If currently running, send an IPI, either way, add to list.
   1344	trc_add_holdout(t, bhp);
   1345	if (task_curr(t) &&
   1346	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
   1347		// The task is currently running, so try IPIing it.
   1348		cpu = task_cpu(t);
   1349
   1350		// If there is already an IPI outstanding, let it happen.
   1351		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
   1352			return;
   1353
   1354		per_cpu(trc_ipi_to_cpu, cpu) = true;
   1355		t->trc_ipi_to_cpu = cpu;
   1356		rcu_tasks_trace.n_ipis++;
   1357		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
   1358			// Just in case there is some other reason for
   1359			// failure than the target CPU being offline.
   1360			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
   1361				  __func__, cpu);
   1362			rcu_tasks_trace.n_ipis_fails++;
   1363			per_cpu(trc_ipi_to_cpu, cpu) = false;
   1364			t->trc_ipi_to_cpu = -1;
   1365		}
   1366	}
   1367}
   1368
   1369/* Initialize for a new RCU-tasks-trace grace period. */
   1370static void rcu_tasks_trace_pregp_step(void)
   1371{
   1372	int cpu;
   1373
   1374	// Allow for fast-acting IPIs.
   1375	atomic_set(&trc_n_readers_need_end, 1);
   1376
   1377	// There shouldn't be any old IPIs, but...
   1378	for_each_possible_cpu(cpu)
   1379		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
   1380
   1381	// Disable CPU hotplug across the tasklist scan.
   1382	// This also waits for all readers in CPU-hotplug code paths.
   1383	cpus_read_lock();
   1384}
   1385
   1386/* Do first-round processing for the specified task. */
   1387static void rcu_tasks_trace_pertask(struct task_struct *t,
   1388				    struct list_head *hop)
   1389{
   1390	// During early boot when there is only the one boot CPU, there
   1391	// is no idle task for the other CPUs. Just return.
   1392	if (unlikely(t == NULL))
   1393		return;
   1394
   1395	WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
   1396	WRITE_ONCE(t->trc_reader_checked, false);
   1397	t->trc_ipi_to_cpu = -1;
   1398	trc_wait_for_one_reader(t, hop);
   1399}
   1400
   1401/*
   1402 * Do intermediate processing between task and holdout scans and
   1403 * pick up the idle tasks.
   1404 */
   1405static void rcu_tasks_trace_postscan(struct list_head *hop)
   1406{
   1407	int cpu;
   1408
   1409	for_each_possible_cpu(cpu)
   1410		rcu_tasks_trace_pertask(idle_task(cpu), hop);
   1411
   1412	// Re-enable CPU hotplug now that the tasklist scan has completed.
   1413	cpus_read_unlock();
   1414
   1415	// Wait for late-stage exiting tasks to finish exiting.
   1416	// These might have passed the call to exit_tasks_rcu_finish().
   1417	synchronize_rcu();
   1418	// Any tasks that exit after this point will set ->trc_reader_checked.
   1419}
   1420
   1421/* Communicate task state back to the RCU tasks trace stall warning request. */
   1422struct trc_stall_chk_rdr {
   1423	int nesting;
   1424	int ipi_to_cpu;
   1425	u8 needqs;
   1426};
   1427
   1428static int trc_check_slow_task(struct task_struct *t, void *arg)
   1429{
   1430	struct trc_stall_chk_rdr *trc_rdrp = arg;
   1431
   1432	if (task_curr(t))
   1433		return false; // It is running, so decline to inspect it.
   1434	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
   1435	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
   1436	trc_rdrp->needqs = READ_ONCE(t->trc_reader_special.b.need_qs);
   1437	return true;
   1438}
   1439
   1440/* Show the state of a task stalling the current RCU tasks trace GP. */
   1441static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
   1442{
   1443	int cpu;
   1444	struct trc_stall_chk_rdr trc_rdr;
   1445	bool is_idle_tsk = is_idle_task(t);
   1446
   1447	if (*firstreport) {
   1448		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
   1449		*firstreport = false;
   1450	}
   1451	cpu = task_cpu(t);
   1452	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
   1453		pr_alert("P%d: %c\n",
   1454			 t->pid,
   1455			 ".i"[is_idle_tsk]);
   1456	else
   1457		pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
   1458			 t->pid,
   1459			 ".I"[trc_rdr.ipi_to_cpu >= 0],
   1460			 ".i"[is_idle_tsk],
   1461			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
   1462			 trc_rdr.nesting,
   1463			 " N"[!!trc_rdr.needqs],
   1464			 cpu);
   1465	sched_show_task(t);
   1466}
   1467
   1468/* List stalled IPIs for RCU tasks trace. */
   1469static void show_stalled_ipi_trace(void)
   1470{
   1471	int cpu;
   1472
   1473	for_each_possible_cpu(cpu)
   1474		if (per_cpu(trc_ipi_to_cpu, cpu))
   1475			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
   1476}
   1477
   1478/* Do one scan of the holdout list. */
   1479static void check_all_holdout_tasks_trace(struct list_head *hop,
   1480					  bool needreport, bool *firstreport)
   1481{
   1482	struct task_struct *g, *t;
   1483
   1484	// Disable CPU hotplug across the holdout list scan.
   1485	cpus_read_lock();
   1486
   1487	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
   1488		// If safe and needed, try to check the current task.
   1489		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
   1490		    !READ_ONCE(t->trc_reader_checked))
   1491			trc_wait_for_one_reader(t, hop);
   1492
   1493		// If check succeeded, remove this task from the list.
   1494		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
   1495		    READ_ONCE(t->trc_reader_checked))
   1496			trc_del_holdout(t);
   1497		else if (needreport)
   1498			show_stalled_task_trace(t, firstreport);
   1499	}
   1500
   1501	// Re-enable CPU hotplug now that the holdout list scan has completed.
   1502	cpus_read_unlock();
   1503
   1504	if (needreport) {
   1505		if (*firstreport)
   1506			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
   1507		show_stalled_ipi_trace();
   1508	}
   1509}
   1510
   1511static void rcu_tasks_trace_empty_fn(void *unused)
   1512{
   1513}
   1514
   1515/* Wait for grace period to complete and provide ordering. */
   1516static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
   1517{
   1518	int cpu;
   1519	bool firstreport;
   1520	struct task_struct *g, *t;
   1521	LIST_HEAD(holdouts);
   1522	long ret;
   1523
   1524	// Wait for any lingering IPI handlers to complete.  Note that
   1525	// if a CPU has gone offline or transitioned to userspace in the
   1526	// meantime, all IPI handlers should have been drained beforehand.
   1527	// Yes, this assumes that CPUs process IPIs in order.  If that ever
   1528	// changes, there will need to be a recheck and/or timed wait.
   1529	for_each_online_cpu(cpu)
   1530		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
   1531			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
   1532
   1533	// Remove the safety count.
   1534	smp_mb__before_atomic();  // Order vs. earlier atomics
   1535	atomic_dec(&trc_n_readers_need_end);
   1536	smp_mb__after_atomic();  // Order vs. later atomics
   1537
   1538	// Wait for readers.
   1539	set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
   1540	for (;;) {
   1541		ret = wait_event_idle_exclusive_timeout(
   1542				trc_wait,
   1543				atomic_read(&trc_n_readers_need_end) == 0,
   1544				READ_ONCE(rcu_task_stall_timeout));
   1545		if (ret)
   1546			break;  // Count reached zero.
   1547		// Stall warning time, so make a list of the offenders.
   1548		rcu_read_lock();
   1549		for_each_process_thread(g, t)
   1550			if (READ_ONCE(t->trc_reader_special.b.need_qs))
   1551				trc_add_holdout(t, &holdouts);
   1552		rcu_read_unlock();
   1553		firstreport = true;
   1554		list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
   1555			if (READ_ONCE(t->trc_reader_special.b.need_qs))
   1556				show_stalled_task_trace(t, &firstreport);
   1557			trc_del_holdout(t); // Release task_struct reference.
   1558		}
   1559		if (firstreport)
   1560			pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
   1561		show_stalled_ipi_trace();
   1562		pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
   1563	}
   1564	smp_mb(); // Caller's code must be ordered after wakeup.
   1565		  // Pairs with pretty much every ordering primitive.
   1566}
   1567
   1568/* Report any needed quiescent state for this exiting task. */
   1569static void exit_tasks_rcu_finish_trace(struct task_struct *t)
   1570{
   1571	WRITE_ONCE(t->trc_reader_checked, true);
   1572	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
   1573	WRITE_ONCE(t->trc_reader_nesting, 0);
   1574	if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
   1575		rcu_read_unlock_trace_special(t);
   1576}
   1577
   1578/**
   1579 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
   1580 * @rhp: structure to be used for queueing the RCU updates.
   1581 * @func: actual callback function to be invoked after the grace period
   1582 *
   1583 * The callback function will be invoked some time after a trace rcu-tasks
   1584 * grace period elapses, in other words after all currently executing
   1585 * trace rcu-tasks read-side critical sections have completed. These
   1586 * read-side critical sections are delimited by calls to rcu_read_lock_trace()
   1587 * and rcu_read_unlock_trace().
   1588 *
   1589 * See the description of call_rcu() for more detailed information on
   1590 * memory ordering guarantees.
   1591 */
   1592void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
   1593{
   1594	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
   1595}
   1596EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
   1597
   1598/**
   1599 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
   1600 *
   1601 * Control will return to the caller some time after a trace rcu-tasks
   1602 * grace period has elapsed, in other words after all currently executing
   1603 * trace rcu-tasks read-side critical sections have elapsed. These read-side
   1604 * critical sections are delimited by calls to rcu_read_lock_trace()
   1605 * and rcu_read_unlock_trace().
   1606 *
   1607 * This is a very specialized primitive, intended only for a few uses in
   1608 * tracing and other situations requiring manipulation of function preambles
   1609 * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
   1610 * (yet) intended for heavy use from multiple CPUs.
   1611 *
   1612 * See the description of synchronize_rcu() for more detailed information
   1613 * on memory ordering guarantees.
   1614 */
   1615void synchronize_rcu_tasks_trace(void)
   1616{
   1617	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
   1618	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
   1619}
   1620EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
   1621
   1622/**
   1623 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
   1624 *
   1625 * Although the current implementation is guaranteed to wait, it is not
   1626 * obligated to, for example, if there are no pending callbacks.
   1627 */
   1628void rcu_barrier_tasks_trace(void)
   1629{
   1630	rcu_barrier_tasks_generic(&rcu_tasks_trace);
   1631}
   1632EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
   1633
   1634static int __init rcu_spawn_tasks_trace_kthread(void)
   1635{
   1636	cblist_init_generic(&rcu_tasks_trace);
   1637	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
   1638		rcu_tasks_trace.gp_sleep = HZ / 10;
   1639		rcu_tasks_trace.init_fract = HZ / 10;
   1640	} else {
   1641		rcu_tasks_trace.gp_sleep = HZ / 200;
   1642		if (rcu_tasks_trace.gp_sleep <= 0)
   1643			rcu_tasks_trace.gp_sleep = 1;
   1644		rcu_tasks_trace.init_fract = HZ / 200;
   1645		if (rcu_tasks_trace.init_fract <= 0)
   1646			rcu_tasks_trace.init_fract = 1;
   1647	}
   1648	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
   1649	rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
   1650	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
   1651	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
   1652	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
   1653	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
   1654	return 0;
   1655}
   1656
   1657#if !defined(CONFIG_TINY_RCU)
   1658void show_rcu_tasks_trace_gp_kthread(void)
   1659{
   1660	char buf[64];
   1661
   1662	sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
   1663		data_race(n_heavy_reader_ofl_updates),
   1664		data_race(n_heavy_reader_updates),
   1665		data_race(n_heavy_reader_attempts));
   1666	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
   1667}
   1668EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
   1669#endif // !defined(CONFIG_TINY_RCU)
   1670
   1671#else /* #ifdef CONFIG_TASKS_TRACE_RCU */
   1672static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
   1673#endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
   1674
   1675#ifndef CONFIG_TINY_RCU
   1676void show_rcu_tasks_gp_kthreads(void)
   1677{
   1678	show_rcu_tasks_classic_gp_kthread();
   1679	show_rcu_tasks_rude_gp_kthread();
   1680	show_rcu_tasks_trace_gp_kthread();
   1681}
   1682#endif /* #ifndef CONFIG_TINY_RCU */
   1683
   1684#ifdef CONFIG_PROVE_RCU
   1685struct rcu_tasks_test_desc {
   1686	struct rcu_head rh;
   1687	const char *name;
   1688	bool notrun;
   1689};
   1690
   1691static struct rcu_tasks_test_desc tests[] = {
   1692	{
   1693		.name = "call_rcu_tasks()",
   1694		/* If not defined, the test is skipped. */
   1695		.notrun = !IS_ENABLED(CONFIG_TASKS_RCU),
   1696	},
   1697	{
   1698		.name = "call_rcu_tasks_rude()",
   1699		/* If not defined, the test is skipped. */
   1700		.notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
   1701	},
   1702	{
   1703		.name = "call_rcu_tasks_trace()",
   1704		/* If not defined, the test is skipped. */
   1705		.notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
   1706	}
   1707};
   1708
   1709static void test_rcu_tasks_callback(struct rcu_head *rhp)
   1710{
   1711	struct rcu_tasks_test_desc *rttd =
   1712		container_of(rhp, struct rcu_tasks_test_desc, rh);
   1713
   1714	pr_info("Callback from %s invoked.\n", rttd->name);
   1715
   1716	rttd->notrun = true;
   1717}
   1718
   1719static void rcu_tasks_initiate_self_tests(void)
   1720{
   1721	pr_info("Running RCU-tasks wait API self tests\n");
   1722#ifdef CONFIG_TASKS_RCU
   1723	synchronize_rcu_tasks();
   1724	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
   1725#endif
   1726
   1727#ifdef CONFIG_TASKS_RUDE_RCU
   1728	synchronize_rcu_tasks_rude();
   1729	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
   1730#endif
   1731
   1732#ifdef CONFIG_TASKS_TRACE_RCU
   1733	synchronize_rcu_tasks_trace();
   1734	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
   1735#endif
   1736}
   1737
   1738static int rcu_tasks_verify_self_tests(void)
   1739{
   1740	int ret = 0;
   1741	int i;
   1742
   1743	for (i = 0; i < ARRAY_SIZE(tests); i++) {
   1744		if (!tests[i].notrun) {		// still hanging.
   1745			pr_err("%s has been failed.\n", tests[i].name);
   1746			ret = -1;
   1747		}
   1748	}
   1749
   1750	if (ret)
   1751		WARN_ON(1);
   1752
   1753	return ret;
   1754}
   1755late_initcall(rcu_tasks_verify_self_tests);
   1756#else /* #ifdef CONFIG_PROVE_RCU */
   1757static void rcu_tasks_initiate_self_tests(void) { }
   1758#endif /* #else #ifdef CONFIG_PROVE_RCU */
   1759
   1760void __init rcu_init_tasks_generic(void)
   1761{
   1762#ifdef CONFIG_TASKS_RCU
   1763	rcu_spawn_tasks_kthread();
   1764#endif
   1765
   1766#ifdef CONFIG_TASKS_RUDE_RCU
   1767	rcu_spawn_tasks_rude_kthread();
   1768#endif
   1769
   1770#ifdef CONFIG_TASKS_TRACE_RCU
   1771	rcu_spawn_tasks_trace_kthread();
   1772#endif
   1773
   1774	// Run the self-tests.
   1775	rcu_tasks_initiate_self_tests();
   1776}
   1777
   1778#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
   1779static inline void rcu_tasks_bootup_oddness(void) {}
   1780#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */