tree.c (162263B)
1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18#define pr_fmt(fmt) "rcu: " fmt 19 20#include <linux/types.h> 21#include <linux/kernel.h> 22#include <linux/init.h> 23#include <linux/spinlock.h> 24#include <linux/smp.h> 25#include <linux/rcupdate_wait.h> 26#include <linux/interrupt.h> 27#include <linux/sched.h> 28#include <linux/sched/debug.h> 29#include <linux/nmi.h> 30#include <linux/atomic.h> 31#include <linux/bitops.h> 32#include <linux/export.h> 33#include <linux/completion.h> 34#include <linux/moduleparam.h> 35#include <linux/panic.h> 36#include <linux/panic_notifier.h> 37#include <linux/percpu.h> 38#include <linux/notifier.h> 39#include <linux/cpu.h> 40#include <linux/mutex.h> 41#include <linux/time.h> 42#include <linux/kernel_stat.h> 43#include <linux/wait.h> 44#include <linux/kthread.h> 45#include <uapi/linux/sched/types.h> 46#include <linux/prefetch.h> 47#include <linux/delay.h> 48#include <linux/random.h> 49#include <linux/trace_events.h> 50#include <linux/suspend.h> 51#include <linux/ftrace.h> 52#include <linux/tick.h> 53#include <linux/sysrq.h> 54#include <linux/kprobes.h> 55#include <linux/gfp.h> 56#include <linux/oom.h> 57#include <linux/smpboot.h> 58#include <linux/jiffies.h> 59#include <linux/slab.h> 60#include <linux/sched/isolation.h> 61#include <linux/sched/clock.h> 62#include <linux/vmalloc.h> 63#include <linux/mm.h> 64#include <linux/kasan.h> 65#include "../time/tick-internal.h" 66 67#include "tree.h" 68#include "rcu.h" 69 70#ifdef MODULE_PARAM_PREFIX 71#undef MODULE_PARAM_PREFIX 72#endif 73#define MODULE_PARAM_PREFIX "rcutree." 74 75/* Data structures. */ 76 77static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 78 .dynticks_nesting = 1, 79 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 80 .dynticks = ATOMIC_INIT(1), 81#ifdef CONFIG_RCU_NOCB_CPU 82 .cblist.flags = SEGCBLIST_RCU_CORE, 83#endif 84}; 85static struct rcu_state rcu_state = { 86 .level = { &rcu_state.node[0] }, 87 .gp_state = RCU_GP_IDLE, 88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 90 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 91 .name = RCU_NAME, 92 .abbr = RCU_ABBR, 93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 95 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 96}; 97 98/* Dump rcu_node combining tree at boot to verify correct setup. */ 99static bool dump_tree; 100module_param(dump_tree, bool, 0444); 101/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 102static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 103#ifndef CONFIG_PREEMPT_RT 104module_param(use_softirq, bool, 0444); 105#endif 106/* Control rcu_node-tree auto-balancing at boot time. */ 107static bool rcu_fanout_exact; 108module_param(rcu_fanout_exact, bool, 0444); 109/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 110static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 111module_param(rcu_fanout_leaf, int, 0444); 112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113/* Number of rcu_nodes at specified level. */ 114int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 115int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 116 117/* 118 * The rcu_scheduler_active variable is initialized to the value 119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 121 * RCU can assume that there is but one task, allowing RCU to (for example) 122 * optimize synchronize_rcu() to a simple barrier(). When this variable 123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 124 * to detect real grace periods. This variable is also used to suppress 125 * boot-time false positives from lockdep-RCU error checking. Finally, it 126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 127 * is fully initialized, including all of its kthreads having been spawned. 128 */ 129int rcu_scheduler_active __read_mostly; 130EXPORT_SYMBOL_GPL(rcu_scheduler_active); 131 132/* 133 * The rcu_scheduler_fully_active variable transitions from zero to one 134 * during the early_initcall() processing, which is after the scheduler 135 * is capable of creating new tasks. So RCU processing (for example, 136 * creating tasks for RCU priority boosting) must be delayed until after 137 * rcu_scheduler_fully_active transitions from zero to one. We also 138 * currently delay invocation of any RCU callbacks until after this point. 139 * 140 * It might later prove better for people registering RCU callbacks during 141 * early boot to take responsibility for these callbacks, but one step at 142 * a time. 143 */ 144static int rcu_scheduler_fully_active __read_mostly; 145 146static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 147 unsigned long gps, unsigned long flags); 148static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 149static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 150static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 151static void invoke_rcu_core(void); 152static void rcu_report_exp_rdp(struct rcu_data *rdp); 153static void sync_sched_exp_online_cleanup(int cpu); 154static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 155static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 156 157/* rcuc/rcub/rcuop kthread realtime priority */ 158static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 159module_param(kthread_prio, int, 0444); 160 161/* Delay in jiffies for grace-period initialization delays, debug only. */ 162 163static int gp_preinit_delay; 164module_param(gp_preinit_delay, int, 0444); 165static int gp_init_delay; 166module_param(gp_init_delay, int, 0444); 167static int gp_cleanup_delay; 168module_param(gp_cleanup_delay, int, 0444); 169 170// Add delay to rcu_read_unlock() for strict grace periods. 171static int rcu_unlock_delay; 172#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 173module_param(rcu_unlock_delay, int, 0444); 174#endif 175 176/* 177 * This rcu parameter is runtime-read-only. It reflects 178 * a minimum allowed number of objects which can be cached 179 * per-CPU. Object size is equal to one page. This value 180 * can be changed at boot time. 181 */ 182static int rcu_min_cached_objs = 5; 183module_param(rcu_min_cached_objs, int, 0444); 184 185// A page shrinker can ask for pages to be freed to make them 186// available for other parts of the system. This usually happens 187// under low memory conditions, and in that case we should also 188// defer page-cache filling for a short time period. 189// 190// The default value is 5 seconds, which is long enough to reduce 191// interference with the shrinker while it asks other systems to 192// drain their caches. 193static int rcu_delay_page_cache_fill_msec = 5000; 194module_param(rcu_delay_page_cache_fill_msec, int, 0444); 195 196/* Retrieve RCU kthreads priority for rcutorture */ 197int rcu_get_gp_kthreads_prio(void) 198{ 199 return kthread_prio; 200} 201EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 202 203/* 204 * Number of grace periods between delays, normalized by the duration of 205 * the delay. The longer the delay, the more the grace periods between 206 * each delay. The reason for this normalization is that it means that, 207 * for non-zero delays, the overall slowdown of grace periods is constant 208 * regardless of the duration of the delay. This arrangement balances 209 * the need for long delays to increase some race probabilities with the 210 * need for fast grace periods to increase other race probabilities. 211 */ 212#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 213 214/* 215 * Compute the mask of online CPUs for the specified rcu_node structure. 216 * This will not be stable unless the rcu_node structure's ->lock is 217 * held, but the bit corresponding to the current CPU will be stable 218 * in most contexts. 219 */ 220static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 221{ 222 return READ_ONCE(rnp->qsmaskinitnext); 223} 224 225/* 226 * Is the CPU corresponding to the specified rcu_data structure online 227 * from RCU's perspective? This perspective is given by that structure's 228 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 229 */ 230static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 231{ 232 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 233} 234 235/* 236 * Return true if an RCU grace period is in progress. The READ_ONCE()s 237 * permit this function to be invoked without holding the root rcu_node 238 * structure's ->lock, but of course results can be subject to change. 239 */ 240static int rcu_gp_in_progress(void) 241{ 242 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 243} 244 245/* 246 * Return the number of callbacks queued on the specified CPU. 247 * Handles both the nocbs and normal cases. 248 */ 249static long rcu_get_n_cbs_cpu(int cpu) 250{ 251 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 252 253 if (rcu_segcblist_is_enabled(&rdp->cblist)) 254 return rcu_segcblist_n_cbs(&rdp->cblist); 255 return 0; 256} 257 258void rcu_softirq_qs(void) 259{ 260 rcu_qs(); 261 rcu_preempt_deferred_qs(current); 262 rcu_tasks_qs(current, false); 263} 264 265/* 266 * Increment the current CPU's rcu_data structure's ->dynticks field 267 * with ordering. Return the new value. 268 */ 269static noinline noinstr unsigned long rcu_dynticks_inc(int incby) 270{ 271 return arch_atomic_add_return(incby, this_cpu_ptr(&rcu_data.dynticks)); 272} 273 274/* 275 * Record entry into an extended quiescent state. This is only to be 276 * called when not already in an extended quiescent state, that is, 277 * RCU is watching prior to the call to this function and is no longer 278 * watching upon return. 279 */ 280static noinstr void rcu_dynticks_eqs_enter(void) 281{ 282 int seq; 283 284 /* 285 * CPUs seeing atomic_add_return() must see prior RCU read-side 286 * critical sections, and we also must force ordering with the 287 * next idle sojourn. 288 */ 289 rcu_dynticks_task_trace_enter(); // Before ->dynticks update! 290 seq = rcu_dynticks_inc(1); 291 // RCU is no longer watching. Better be in extended quiescent state! 292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & 0x1)); 293} 294 295/* 296 * Record exit from an extended quiescent state. This is only to be 297 * called from an extended quiescent state, that is, RCU is not watching 298 * prior to the call to this function and is watching upon return. 299 */ 300static noinstr void rcu_dynticks_eqs_exit(void) 301{ 302 int seq; 303 304 /* 305 * CPUs seeing atomic_add_return() must see prior idle sojourns, 306 * and we also must force ordering with the next RCU read-side 307 * critical section. 308 */ 309 seq = rcu_dynticks_inc(1); 310 // RCU is now watching. Better not be in an extended quiescent state! 311 rcu_dynticks_task_trace_exit(); // After ->dynticks update! 312 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & 0x1)); 313} 314 315/* 316 * Reset the current CPU's ->dynticks counter to indicate that the 317 * newly onlined CPU is no longer in an extended quiescent state. 318 * This will either leave the counter unchanged, or increment it 319 * to the next non-quiescent value. 320 * 321 * The non-atomic test/increment sequence works because the upper bits 322 * of the ->dynticks counter are manipulated only by the corresponding CPU, 323 * or when the corresponding CPU is offline. 324 */ 325static void rcu_dynticks_eqs_online(void) 326{ 327 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 328 329 if (atomic_read(&rdp->dynticks) & 0x1) 330 return; 331 rcu_dynticks_inc(1); 332} 333 334/* 335 * Is the current CPU in an extended quiescent state? 336 * 337 * No ordering, as we are sampling CPU-local information. 338 */ 339static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void) 340{ 341 return !(arch_atomic_read(this_cpu_ptr(&rcu_data.dynticks)) & 0x1); 342} 343 344/* 345 * Snapshot the ->dynticks counter with full ordering so as to allow 346 * stable comparison of this counter with past and future snapshots. 347 */ 348static int rcu_dynticks_snap(struct rcu_data *rdp) 349{ 350 smp_mb(); // Fundamental RCU ordering guarantee. 351 return atomic_read_acquire(&rdp->dynticks); 352} 353 354/* 355 * Return true if the snapshot returned from rcu_dynticks_snap() 356 * indicates that RCU is in an extended quiescent state. 357 */ 358static bool rcu_dynticks_in_eqs(int snap) 359{ 360 return !(snap & 0x1); 361} 362 363/* Return true if the specified CPU is currently idle from an RCU viewpoint. */ 364bool rcu_is_idle_cpu(int cpu) 365{ 366 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 367 368 return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)); 369} 370 371/* 372 * Return true if the CPU corresponding to the specified rcu_data 373 * structure has spent some time in an extended quiescent state since 374 * rcu_dynticks_snap() returned the specified snapshot. 375 */ 376static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 377{ 378 return snap != rcu_dynticks_snap(rdp); 379} 380 381/* 382 * Return true if the referenced integer is zero while the specified 383 * CPU remains within a single extended quiescent state. 384 */ 385bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 386{ 387 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 388 int snap; 389 390 // If not quiescent, force back to earlier extended quiescent state. 391 snap = atomic_read(&rdp->dynticks) & ~0x1; 392 393 smp_rmb(); // Order ->dynticks and *vp reads. 394 if (READ_ONCE(*vp)) 395 return false; // Non-zero, so report failure; 396 smp_rmb(); // Order *vp read and ->dynticks re-read. 397 398 // If still in the same extended quiescent state, we are good! 399 return snap == atomic_read(&rdp->dynticks); 400} 401 402/* 403 * Let the RCU core know that this CPU has gone through the scheduler, 404 * which is a quiescent state. This is called when the need for a 405 * quiescent state is urgent, so we burn an atomic operation and full 406 * memory barriers to let the RCU core know about it, regardless of what 407 * this CPU might (or might not) do in the near future. 408 * 409 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 410 * 411 * The caller must have disabled interrupts and must not be idle. 412 */ 413notrace void rcu_momentary_dyntick_idle(void) 414{ 415 int seq; 416 417 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 418 seq = rcu_dynticks_inc(2); 419 /* It is illegal to call this from idle state. */ 420 WARN_ON_ONCE(!(seq & 0x1)); 421 rcu_preempt_deferred_qs(current); 422} 423EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 424 425/** 426 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 427 * 428 * If the current CPU is idle and running at a first-level (not nested) 429 * interrupt, or directly, from idle, return true. 430 * 431 * The caller must have at least disabled IRQs. 432 */ 433static int rcu_is_cpu_rrupt_from_idle(void) 434{ 435 long nesting; 436 437 /* 438 * Usually called from the tick; but also used from smp_function_call() 439 * for expedited grace periods. This latter can result in running from 440 * the idle task, instead of an actual IPI. 441 */ 442 lockdep_assert_irqs_disabled(); 443 444 /* Check for counter underflows */ 445 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 446 "RCU dynticks_nesting counter underflow!"); 447 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 448 "RCU dynticks_nmi_nesting counter underflow/zero!"); 449 450 /* Are we at first interrupt nesting level? */ 451 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting); 452 if (nesting > 1) 453 return false; 454 455 /* 456 * If we're not in an interrupt, we must be in the idle task! 457 */ 458 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 459 460 /* Does CPU appear to be idle from an RCU standpoint? */ 461 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 462} 463 464#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 465 // Maximum callbacks per rcu_do_batch ... 466#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 467static long blimit = DEFAULT_RCU_BLIMIT; 468#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 469static long qhimark = DEFAULT_RCU_QHIMARK; 470#define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 471static long qlowmark = DEFAULT_RCU_QLOMARK; 472#define DEFAULT_RCU_QOVLD_MULT 2 473#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 474static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 475static long qovld_calc = -1; // No pre-initialization lock acquisitions! 476 477module_param(blimit, long, 0444); 478module_param(qhimark, long, 0444); 479module_param(qlowmark, long, 0444); 480module_param(qovld, long, 0444); 481 482static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 483static ulong jiffies_till_next_fqs = ULONG_MAX; 484static bool rcu_kick_kthreads; 485static int rcu_divisor = 7; 486module_param(rcu_divisor, int, 0644); 487 488/* Force an exit from rcu_do_batch() after 3 milliseconds. */ 489static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 490module_param(rcu_resched_ns, long, 0644); 491 492/* 493 * How long the grace period must be before we start recruiting 494 * quiescent-state help from rcu_note_context_switch(). 495 */ 496static ulong jiffies_till_sched_qs = ULONG_MAX; 497module_param(jiffies_till_sched_qs, ulong, 0444); 498static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 499module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 500 501/* 502 * Make sure that we give the grace-period kthread time to detect any 503 * idle CPUs before taking active measures to force quiescent states. 504 * However, don't go below 100 milliseconds, adjusted upwards for really 505 * large systems. 506 */ 507static void adjust_jiffies_till_sched_qs(void) 508{ 509 unsigned long j; 510 511 /* If jiffies_till_sched_qs was specified, respect the request. */ 512 if (jiffies_till_sched_qs != ULONG_MAX) { 513 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 514 return; 515 } 516 /* Otherwise, set to third fqs scan, but bound below on large system. */ 517 j = READ_ONCE(jiffies_till_first_fqs) + 518 2 * READ_ONCE(jiffies_till_next_fqs); 519 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 520 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 521 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 522 WRITE_ONCE(jiffies_to_sched_qs, j); 523} 524 525static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 526{ 527 ulong j; 528 int ret = kstrtoul(val, 0, &j); 529 530 if (!ret) { 531 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 532 adjust_jiffies_till_sched_qs(); 533 } 534 return ret; 535} 536 537static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 538{ 539 ulong j; 540 int ret = kstrtoul(val, 0, &j); 541 542 if (!ret) { 543 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 544 adjust_jiffies_till_sched_qs(); 545 } 546 return ret; 547} 548 549static const struct kernel_param_ops first_fqs_jiffies_ops = { 550 .set = param_set_first_fqs_jiffies, 551 .get = param_get_ulong, 552}; 553 554static const struct kernel_param_ops next_fqs_jiffies_ops = { 555 .set = param_set_next_fqs_jiffies, 556 .get = param_get_ulong, 557}; 558 559module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 560module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 561module_param(rcu_kick_kthreads, bool, 0644); 562 563static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 564static int rcu_pending(int user); 565 566/* 567 * Return the number of RCU GPs completed thus far for debug & stats. 568 */ 569unsigned long rcu_get_gp_seq(void) 570{ 571 return READ_ONCE(rcu_state.gp_seq); 572} 573EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 574 575/* 576 * Return the number of RCU expedited batches completed thus far for 577 * debug & stats. Odd numbers mean that a batch is in progress, even 578 * numbers mean idle. The value returned will thus be roughly double 579 * the cumulative batches since boot. 580 */ 581unsigned long rcu_exp_batches_completed(void) 582{ 583 return rcu_state.expedited_sequence; 584} 585EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 586 587/* 588 * Return the root node of the rcu_state structure. 589 */ 590static struct rcu_node *rcu_get_root(void) 591{ 592 return &rcu_state.node[0]; 593} 594 595/* 596 * Send along grace-period-related data for rcutorture diagnostics. 597 */ 598void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 599 unsigned long *gp_seq) 600{ 601 switch (test_type) { 602 case RCU_FLAVOR: 603 *flags = READ_ONCE(rcu_state.gp_flags); 604 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 605 break; 606 default: 607 break; 608 } 609} 610EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 611 612/* 613 * Enter an RCU extended quiescent state, which can be either the 614 * idle loop or adaptive-tickless usermode execution. 615 * 616 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 617 * the possibility of usermode upcalls having messed up our count 618 * of interrupt nesting level during the prior busy period. 619 */ 620static noinstr void rcu_eqs_enter(bool user) 621{ 622 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 623 624 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 625 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 626 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 627 rdp->dynticks_nesting == 0); 628 if (rdp->dynticks_nesting != 1) { 629 // RCU will still be watching, so just do accounting and leave. 630 rdp->dynticks_nesting--; 631 return; 632 } 633 634 lockdep_assert_irqs_disabled(); 635 instrumentation_begin(); 636 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks)); 637 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 638 rcu_preempt_deferred_qs(current); 639 640 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 641 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 642 643 instrumentation_end(); 644 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 645 // RCU is watching here ... 646 rcu_dynticks_eqs_enter(); 647 // ... but is no longer watching here. 648 rcu_dynticks_task_enter(); 649} 650 651/** 652 * rcu_idle_enter - inform RCU that current CPU is entering idle 653 * 654 * Enter idle mode, in other words, -leave- the mode in which RCU 655 * read-side critical sections can occur. (Though RCU read-side 656 * critical sections can occur in irq handlers in idle, a possibility 657 * handled by irq_enter() and irq_exit().) 658 * 659 * If you add or remove a call to rcu_idle_enter(), be sure to test with 660 * CONFIG_RCU_EQS_DEBUG=y. 661 */ 662void rcu_idle_enter(void) 663{ 664 lockdep_assert_irqs_disabled(); 665 rcu_eqs_enter(false); 666} 667EXPORT_SYMBOL_GPL(rcu_idle_enter); 668 669#ifdef CONFIG_NO_HZ_FULL 670 671#if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK) 672/* 673 * An empty function that will trigger a reschedule on 674 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 675 */ 676static void late_wakeup_func(struct irq_work *work) 677{ 678} 679 680static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 681 IRQ_WORK_INIT(late_wakeup_func); 682 683/* 684 * If either: 685 * 686 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 687 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 688 * 689 * In these cases the late RCU wake ups aren't supported in the resched loops and our 690 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 691 * get re-enabled again. 692 */ 693noinstr static void rcu_irq_work_resched(void) 694{ 695 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 696 697 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 698 return; 699 700 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 701 return; 702 703 instrumentation_begin(); 704 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 705 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 706 } 707 instrumentation_end(); 708} 709 710#else 711static inline void rcu_irq_work_resched(void) { } 712#endif 713 714/** 715 * rcu_user_enter - inform RCU that we are resuming userspace. 716 * 717 * Enter RCU idle mode right before resuming userspace. No use of RCU 718 * is permitted between this call and rcu_user_exit(). This way the 719 * CPU doesn't need to maintain the tick for RCU maintenance purposes 720 * when the CPU runs in userspace. 721 * 722 * If you add or remove a call to rcu_user_enter(), be sure to test with 723 * CONFIG_RCU_EQS_DEBUG=y. 724 */ 725noinstr void rcu_user_enter(void) 726{ 727 lockdep_assert_irqs_disabled(); 728 729 /* 730 * Other than generic entry implementation, we may be past the last 731 * rescheduling opportunity in the entry code. Trigger a self IPI 732 * that will fire and reschedule once we resume in user/guest mode. 733 */ 734 rcu_irq_work_resched(); 735 rcu_eqs_enter(true); 736} 737 738#endif /* CONFIG_NO_HZ_FULL */ 739 740/** 741 * rcu_nmi_exit - inform RCU of exit from NMI context 742 * 743 * If we are returning from the outermost NMI handler that interrupted an 744 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 745 * to let the RCU grace-period handling know that the CPU is back to 746 * being RCU-idle. 747 * 748 * If you add or remove a call to rcu_nmi_exit(), be sure to test 749 * with CONFIG_RCU_EQS_DEBUG=y. 750 */ 751noinstr void rcu_nmi_exit(void) 752{ 753 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 754 755 instrumentation_begin(); 756 /* 757 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 758 * (We are exiting an NMI handler, so RCU better be paying attention 759 * to us!) 760 */ 761 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 762 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 763 764 /* 765 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 766 * leave it in non-RCU-idle state. 767 */ 768 if (rdp->dynticks_nmi_nesting != 1) { 769 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, 770 atomic_read(&rdp->dynticks)); 771 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 772 rdp->dynticks_nmi_nesting - 2); 773 instrumentation_end(); 774 return; 775 } 776 777 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 778 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks)); 779 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 780 781 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 782 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 783 instrumentation_end(); 784 785 // RCU is watching here ... 786 rcu_dynticks_eqs_enter(); 787 // ... but is no longer watching here. 788 789 if (!in_nmi()) 790 rcu_dynticks_task_enter(); 791} 792 793/** 794 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 795 * 796 * Exit from an interrupt handler, which might possibly result in entering 797 * idle mode, in other words, leaving the mode in which read-side critical 798 * sections can occur. The caller must have disabled interrupts. 799 * 800 * This code assumes that the idle loop never does anything that might 801 * result in unbalanced calls to irq_enter() and irq_exit(). If your 802 * architecture's idle loop violates this assumption, RCU will give you what 803 * you deserve, good and hard. But very infrequently and irreproducibly. 804 * 805 * Use things like work queues to work around this limitation. 806 * 807 * You have been warned. 808 * 809 * If you add or remove a call to rcu_irq_exit(), be sure to test with 810 * CONFIG_RCU_EQS_DEBUG=y. 811 */ 812void noinstr rcu_irq_exit(void) 813{ 814 lockdep_assert_irqs_disabled(); 815 rcu_nmi_exit(); 816} 817 818#ifdef CONFIG_PROVE_RCU 819/** 820 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 821 */ 822void rcu_irq_exit_check_preempt(void) 823{ 824 lockdep_assert_irqs_disabled(); 825 826 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 827 "RCU dynticks_nesting counter underflow/zero!"); 828 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 829 DYNTICK_IRQ_NONIDLE, 830 "Bad RCU dynticks_nmi_nesting counter\n"); 831 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 832 "RCU in extended quiescent state!"); 833} 834#endif /* #ifdef CONFIG_PROVE_RCU */ 835 836/* 837 * Wrapper for rcu_irq_exit() where interrupts are enabled. 838 * 839 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 840 * with CONFIG_RCU_EQS_DEBUG=y. 841 */ 842void rcu_irq_exit_irqson(void) 843{ 844 unsigned long flags; 845 846 local_irq_save(flags); 847 rcu_irq_exit(); 848 local_irq_restore(flags); 849} 850 851/* 852 * Exit an RCU extended quiescent state, which can be either the 853 * idle loop or adaptive-tickless usermode execution. 854 * 855 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 856 * allow for the possibility of usermode upcalls messing up our count of 857 * interrupt nesting level during the busy period that is just now starting. 858 */ 859static void noinstr rcu_eqs_exit(bool user) 860{ 861 struct rcu_data *rdp; 862 long oldval; 863 864 lockdep_assert_irqs_disabled(); 865 rdp = this_cpu_ptr(&rcu_data); 866 oldval = rdp->dynticks_nesting; 867 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 868 if (oldval) { 869 // RCU was already watching, so just do accounting and leave. 870 rdp->dynticks_nesting++; 871 return; 872 } 873 rcu_dynticks_task_exit(); 874 // RCU is not watching here ... 875 rcu_dynticks_eqs_exit(); 876 // ... but is watching here. 877 instrumentation_begin(); 878 879 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 880 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 881 882 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks)); 883 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 884 WRITE_ONCE(rdp->dynticks_nesting, 1); 885 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 886 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 887 instrumentation_end(); 888} 889 890/** 891 * rcu_idle_exit - inform RCU that current CPU is leaving idle 892 * 893 * Exit idle mode, in other words, -enter- the mode in which RCU 894 * read-side critical sections can occur. 895 * 896 * If you add or remove a call to rcu_idle_exit(), be sure to test with 897 * CONFIG_RCU_EQS_DEBUG=y. 898 */ 899void rcu_idle_exit(void) 900{ 901 unsigned long flags; 902 903 local_irq_save(flags); 904 rcu_eqs_exit(false); 905 local_irq_restore(flags); 906} 907EXPORT_SYMBOL_GPL(rcu_idle_exit); 908 909#ifdef CONFIG_NO_HZ_FULL 910/** 911 * rcu_user_exit - inform RCU that we are exiting userspace. 912 * 913 * Exit RCU idle mode while entering the kernel because it can 914 * run a RCU read side critical section anytime. 915 * 916 * If you add or remove a call to rcu_user_exit(), be sure to test with 917 * CONFIG_RCU_EQS_DEBUG=y. 918 */ 919void noinstr rcu_user_exit(void) 920{ 921 rcu_eqs_exit(true); 922} 923 924/** 925 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 926 * 927 * The scheduler tick is not normally enabled when CPUs enter the kernel 928 * from nohz_full userspace execution. After all, nohz_full userspace 929 * execution is an RCU quiescent state and the time executing in the kernel 930 * is quite short. Except of course when it isn't. And it is not hard to 931 * cause a large system to spend tens of seconds or even minutes looping 932 * in the kernel, which can cause a number of problems, include RCU CPU 933 * stall warnings. 934 * 935 * Therefore, if a nohz_full CPU fails to report a quiescent state 936 * in a timely manner, the RCU grace-period kthread sets that CPU's 937 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 938 * exception will invoke this function, which will turn on the scheduler 939 * tick, which will enable RCU to detect that CPU's quiescent states, 940 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 941 * The tick will be disabled once a quiescent state is reported for 942 * this CPU. 943 * 944 * Of course, in carefully tuned systems, there might never be an 945 * interrupt or exception. In that case, the RCU grace-period kthread 946 * will eventually cause one to happen. However, in less carefully 947 * controlled environments, this function allows RCU to get what it 948 * needs without creating otherwise useless interruptions. 949 */ 950void __rcu_irq_enter_check_tick(void) 951{ 952 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 953 954 // If we're here from NMI there's nothing to do. 955 if (in_nmi()) 956 return; 957 958 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 959 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 960 961 if (!tick_nohz_full_cpu(rdp->cpu) || 962 !READ_ONCE(rdp->rcu_urgent_qs) || 963 READ_ONCE(rdp->rcu_forced_tick)) { 964 // RCU doesn't need nohz_full help from this CPU, or it is 965 // already getting that help. 966 return; 967 } 968 969 // We get here only when not in an extended quiescent state and 970 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 971 // already watching and (2) The fact that we are in an interrupt 972 // handler and that the rcu_node lock is an irq-disabled lock 973 // prevents self-deadlock. So we can safely recheck under the lock. 974 // Note that the nohz_full state currently cannot change. 975 raw_spin_lock_rcu_node(rdp->mynode); 976 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 977 // A nohz_full CPU is in the kernel and RCU needs a 978 // quiescent state. Turn on the tick! 979 WRITE_ONCE(rdp->rcu_forced_tick, true); 980 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 981 } 982 raw_spin_unlock_rcu_node(rdp->mynode); 983} 984#endif /* CONFIG_NO_HZ_FULL */ 985 986/** 987 * rcu_nmi_enter - inform RCU of entry to NMI context 988 * 989 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 990 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 991 * that the CPU is active. This implementation permits nested NMIs, as 992 * long as the nesting level does not overflow an int. (You will probably 993 * run out of stack space first.) 994 * 995 * If you add or remove a call to rcu_nmi_enter(), be sure to test 996 * with CONFIG_RCU_EQS_DEBUG=y. 997 */ 998noinstr void rcu_nmi_enter(void) 999{ 1000 long incby = 2; 1001 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1002 1003 /* Complain about underflow. */ 1004 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 1005 1006 /* 1007 * If idle from RCU viewpoint, atomically increment ->dynticks 1008 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1009 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1010 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1011 * to be in the outermost NMI handler that interrupted an RCU-idle 1012 * period (observation due to Andy Lutomirski). 1013 */ 1014 if (rcu_dynticks_curr_cpu_in_eqs()) { 1015 1016 if (!in_nmi()) 1017 rcu_dynticks_task_exit(); 1018 1019 // RCU is not watching here ... 1020 rcu_dynticks_eqs_exit(); 1021 // ... but is watching here. 1022 1023 instrumentation_begin(); 1024 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs() 1025 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks)); 1026 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 1027 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 1028 1029 incby = 1; 1030 } else if (!in_nmi()) { 1031 instrumentation_begin(); 1032 rcu_irq_enter_check_tick(); 1033 } else { 1034 instrumentation_begin(); 1035 } 1036 1037 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 1038 rdp->dynticks_nmi_nesting, 1039 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks)); 1040 instrumentation_end(); 1041 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 1042 rdp->dynticks_nmi_nesting + incby); 1043 barrier(); 1044} 1045 1046/** 1047 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1048 * 1049 * Enter an interrupt handler, which might possibly result in exiting 1050 * idle mode, in other words, entering the mode in which read-side critical 1051 * sections can occur. The caller must have disabled interrupts. 1052 * 1053 * Note that the Linux kernel is fully capable of entering an interrupt 1054 * handler that it never exits, for example when doing upcalls to user mode! 1055 * This code assumes that the idle loop never does upcalls to user mode. 1056 * If your architecture's idle loop does do upcalls to user mode (or does 1057 * anything else that results in unbalanced calls to the irq_enter() and 1058 * irq_exit() functions), RCU will give you what you deserve, good and hard. 1059 * But very infrequently and irreproducibly. 1060 * 1061 * Use things like work queues to work around this limitation. 1062 * 1063 * You have been warned. 1064 * 1065 * If you add or remove a call to rcu_irq_enter(), be sure to test with 1066 * CONFIG_RCU_EQS_DEBUG=y. 1067 */ 1068noinstr void rcu_irq_enter(void) 1069{ 1070 lockdep_assert_irqs_disabled(); 1071 rcu_nmi_enter(); 1072} 1073 1074/* 1075 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1076 * 1077 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1078 * with CONFIG_RCU_EQS_DEBUG=y. 1079 */ 1080void rcu_irq_enter_irqson(void) 1081{ 1082 unsigned long flags; 1083 1084 local_irq_save(flags); 1085 rcu_irq_enter(); 1086 local_irq_restore(flags); 1087} 1088 1089/* 1090 * Check to see if any future non-offloaded RCU-related work will need 1091 * to be done by the current CPU, even if none need be done immediately, 1092 * returning 1 if so. This function is part of the RCU implementation; 1093 * it is -not- an exported member of the RCU API. This is used by 1094 * the idle-entry code to figure out whether it is safe to disable the 1095 * scheduler-clock interrupt. 1096 * 1097 * Just check whether or not this CPU has non-offloaded RCU callbacks 1098 * queued. 1099 */ 1100int rcu_needs_cpu(void) 1101{ 1102 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 1103 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 1104} 1105 1106/* 1107 * If any sort of urgency was applied to the current CPU (for example, 1108 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 1109 * to get to a quiescent state, disable it. 1110 */ 1111static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 1112{ 1113 raw_lockdep_assert_held_rcu_node(rdp->mynode); 1114 WRITE_ONCE(rdp->rcu_urgent_qs, false); 1115 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 1116 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 1117 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1118 WRITE_ONCE(rdp->rcu_forced_tick, false); 1119 } 1120} 1121 1122/** 1123 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 1124 * 1125 * Return true if RCU is watching the running CPU, which means that this 1126 * CPU can safely enter RCU read-side critical sections. In other words, 1127 * if the current CPU is not in its idle loop or is in an interrupt or 1128 * NMI handler, return true. 1129 * 1130 * Make notrace because it can be called by the internal functions of 1131 * ftrace, and making this notrace removes unnecessary recursion calls. 1132 */ 1133notrace bool rcu_is_watching(void) 1134{ 1135 bool ret; 1136 1137 preempt_disable_notrace(); 1138 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1139 preempt_enable_notrace(); 1140 return ret; 1141} 1142EXPORT_SYMBOL_GPL(rcu_is_watching); 1143 1144/* 1145 * If a holdout task is actually running, request an urgent quiescent 1146 * state from its CPU. This is unsynchronized, so migrations can cause 1147 * the request to go to the wrong CPU. Which is OK, all that will happen 1148 * is that the CPU's next context switch will be a bit slower and next 1149 * time around this task will generate another request. 1150 */ 1151void rcu_request_urgent_qs_task(struct task_struct *t) 1152{ 1153 int cpu; 1154 1155 barrier(); 1156 cpu = task_cpu(t); 1157 if (!task_curr(t)) 1158 return; /* This task is not running on that CPU. */ 1159 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 1160} 1161 1162#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1163 1164/* 1165 * Is the current CPU online as far as RCU is concerned? 1166 * 1167 * Disable preemption to avoid false positives that could otherwise 1168 * happen due to the current CPU number being sampled, this task being 1169 * preempted, its old CPU being taken offline, resuming on some other CPU, 1170 * then determining that its old CPU is now offline. 1171 * 1172 * Disable checking if in an NMI handler because we cannot safely 1173 * report errors from NMI handlers anyway. In addition, it is OK to use 1174 * RCU on an offline processor during initial boot, hence the check for 1175 * rcu_scheduler_fully_active. 1176 */ 1177bool rcu_lockdep_current_cpu_online(void) 1178{ 1179 struct rcu_data *rdp; 1180 bool ret = false; 1181 1182 if (in_nmi() || !rcu_scheduler_fully_active) 1183 return true; 1184 preempt_disable_notrace(); 1185 rdp = this_cpu_ptr(&rcu_data); 1186 /* 1187 * Strictly, we care here about the case where the current CPU is 1188 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask 1189 * not being up to date. So arch_spin_is_locked() might have a 1190 * false positive if it's held by some *other* CPU, but that's 1191 * OK because that just means a false *negative* on the warning. 1192 */ 1193 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 1194 ret = true; 1195 preempt_enable_notrace(); 1196 return ret; 1197} 1198EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1199 1200#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1201 1202/* 1203 * When trying to report a quiescent state on behalf of some other CPU, 1204 * it is our responsibility to check for and handle potential overflow 1205 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1206 * After all, the CPU might be in deep idle state, and thus executing no 1207 * code whatsoever. 1208 */ 1209static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1210{ 1211 raw_lockdep_assert_held_rcu_node(rnp); 1212 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1213 rnp->gp_seq)) 1214 WRITE_ONCE(rdp->gpwrap, true); 1215 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1216 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1217} 1218 1219/* 1220 * Snapshot the specified CPU's dynticks counter so that we can later 1221 * credit them with an implicit quiescent state. Return 1 if this CPU 1222 * is in dynticks idle mode, which is an extended quiescent state. 1223 */ 1224static int dyntick_save_progress_counter(struct rcu_data *rdp) 1225{ 1226 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1227 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1228 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1229 rcu_gpnum_ovf(rdp->mynode, rdp); 1230 return 1; 1231 } 1232 return 0; 1233} 1234 1235/* 1236 * Return true if the specified CPU has passed through a quiescent 1237 * state by virtue of being in or having passed through an dynticks 1238 * idle state since the last call to dyntick_save_progress_counter() 1239 * for this same CPU, or by virtue of having been offline. 1240 */ 1241static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1242{ 1243 unsigned long jtsq; 1244 struct rcu_node *rnp = rdp->mynode; 1245 1246 /* 1247 * If the CPU passed through or entered a dynticks idle phase with 1248 * no active irq/NMI handlers, then we can safely pretend that the CPU 1249 * already acknowledged the request to pass through a quiescent 1250 * state. Either way, that CPU cannot possibly be in an RCU 1251 * read-side critical section that started before the beginning 1252 * of the current RCU grace period. 1253 */ 1254 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1255 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1256 rcu_gpnum_ovf(rnp, rdp); 1257 return 1; 1258 } 1259 1260 /* 1261 * Complain if a CPU that is considered to be offline from RCU's 1262 * perspective has not yet reported a quiescent state. After all, 1263 * the offline CPU should have reported a quiescent state during 1264 * the CPU-offline process, or, failing that, by rcu_gp_init() 1265 * if it ran concurrently with either the CPU going offline or the 1266 * last task on a leaf rcu_node structure exiting its RCU read-side 1267 * critical section while all CPUs corresponding to that structure 1268 * are offline. This added warning detects bugs in any of these 1269 * code paths. 1270 * 1271 * The rcu_node structure's ->lock is held here, which excludes 1272 * the relevant portions the CPU-hotplug code, the grace-period 1273 * initialization code, and the rcu_read_unlock() code paths. 1274 * 1275 * For more detail, please refer to the "Hotplug CPU" section 1276 * of RCU's Requirements documentation. 1277 */ 1278 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 1279 struct rcu_node *rnp1; 1280 1281 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1282 __func__, rnp->grplo, rnp->grphi, rnp->level, 1283 (long)rnp->gp_seq, (long)rnp->completedqs); 1284 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1285 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1286 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1287 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1288 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 1289 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1290 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1291 return 1; /* Break things loose after complaining. */ 1292 } 1293 1294 /* 1295 * A CPU running for an extended time within the kernel can 1296 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1297 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1298 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1299 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1300 * variable are safe because the assignments are repeated if this 1301 * CPU failed to pass through a quiescent state. This code 1302 * also checks .jiffies_resched in case jiffies_to_sched_qs 1303 * is set way high. 1304 */ 1305 jtsq = READ_ONCE(jiffies_to_sched_qs); 1306 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 1307 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1308 time_after(jiffies, rcu_state.jiffies_resched) || 1309 rcu_state.cbovld)) { 1310 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 1311 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1312 smp_store_release(&rdp->rcu_urgent_qs, true); 1313 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1314 WRITE_ONCE(rdp->rcu_urgent_qs, true); 1315 } 1316 1317 /* 1318 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1319 * The above code handles this, but only for straight cond_resched(). 1320 * And some in-kernel loops check need_resched() before calling 1321 * cond_resched(), which defeats the above code for CPUs that are 1322 * running in-kernel with scheduling-clock interrupts disabled. 1323 * So hit them over the head with the resched_cpu() hammer! 1324 */ 1325 if (tick_nohz_full_cpu(rdp->cpu) && 1326 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 1327 rcu_state.cbovld)) { 1328 WRITE_ONCE(rdp->rcu_urgent_qs, true); 1329 resched_cpu(rdp->cpu); 1330 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1331 } 1332 1333 /* 1334 * If more than halfway to RCU CPU stall-warning time, invoke 1335 * resched_cpu() more frequently to try to loosen things up a bit. 1336 * Also check to see if the CPU is getting hammered with interrupts, 1337 * but only once per grace period, just to keep the IPIs down to 1338 * a dull roar. 1339 */ 1340 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1341 if (time_after(jiffies, 1342 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1343 resched_cpu(rdp->cpu); 1344 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1345 } 1346 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1347 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1348 (rnp->ffmask & rdp->grpmask)) { 1349 rdp->rcu_iw_pending = true; 1350 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1351 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1352 } 1353 } 1354 1355 return 0; 1356} 1357 1358/* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1359static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1360 unsigned long gp_seq_req, const char *s) 1361{ 1362 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 1363 gp_seq_req, rnp->level, 1364 rnp->grplo, rnp->grphi, s); 1365} 1366 1367/* 1368 * rcu_start_this_gp - Request the start of a particular grace period 1369 * @rnp_start: The leaf node of the CPU from which to start. 1370 * @rdp: The rcu_data corresponding to the CPU from which to start. 1371 * @gp_seq_req: The gp_seq of the grace period to start. 1372 * 1373 * Start the specified grace period, as needed to handle newly arrived 1374 * callbacks. The required future grace periods are recorded in each 1375 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1376 * is reason to awaken the grace-period kthread. 1377 * 1378 * The caller must hold the specified rcu_node structure's ->lock, which 1379 * is why the caller is responsible for waking the grace-period kthread. 1380 * 1381 * Returns true if the GP thread needs to be awakened else false. 1382 */ 1383static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1384 unsigned long gp_seq_req) 1385{ 1386 bool ret = false; 1387 struct rcu_node *rnp; 1388 1389 /* 1390 * Use funnel locking to either acquire the root rcu_node 1391 * structure's lock or bail out if the need for this grace period 1392 * has already been recorded -- or if that grace period has in 1393 * fact already started. If there is already a grace period in 1394 * progress in a non-leaf node, no recording is needed because the 1395 * end of the grace period will scan the leaf rcu_node structures. 1396 * Note that rnp_start->lock must not be released. 1397 */ 1398 raw_lockdep_assert_held_rcu_node(rnp_start); 1399 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1400 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1401 if (rnp != rnp_start) 1402 raw_spin_lock_rcu_node(rnp); 1403 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1404 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1405 (rnp != rnp_start && 1406 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1407 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1408 TPS("Prestarted")); 1409 goto unlock_out; 1410 } 1411 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1412 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1413 /* 1414 * We just marked the leaf or internal node, and a 1415 * grace period is in progress, which means that 1416 * rcu_gp_cleanup() will see the marking. Bail to 1417 * reduce contention. 1418 */ 1419 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1420 TPS("Startedleaf")); 1421 goto unlock_out; 1422 } 1423 if (rnp != rnp_start && rnp->parent != NULL) 1424 raw_spin_unlock_rcu_node(rnp); 1425 if (!rnp->parent) 1426 break; /* At root, and perhaps also leaf. */ 1427 } 1428 1429 /* If GP already in progress, just leave, otherwise start one. */ 1430 if (rcu_gp_in_progress()) { 1431 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1432 goto unlock_out; 1433 } 1434 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1435 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1436 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1437 if (!READ_ONCE(rcu_state.gp_kthread)) { 1438 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1439 goto unlock_out; 1440 } 1441 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1442 ret = true; /* Caller must wake GP kthread. */ 1443unlock_out: 1444 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1445 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1446 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1447 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1448 } 1449 if (rnp != rnp_start) 1450 raw_spin_unlock_rcu_node(rnp); 1451 return ret; 1452} 1453 1454/* 1455 * Clean up any old requests for the just-ended grace period. Also return 1456 * whether any additional grace periods have been requested. 1457 */ 1458static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1459{ 1460 bool needmore; 1461 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1462 1463 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1464 if (!needmore) 1465 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1466 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1467 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1468 return needmore; 1469} 1470 1471/* 1472 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1473 * interrupt or softirq handler, in which case we just might immediately 1474 * sleep upon return, resulting in a grace-period hang), and don't bother 1475 * awakening when there is nothing for the grace-period kthread to do 1476 * (as in several CPUs raced to awaken, we lost), and finally don't try 1477 * to awaken a kthread that has not yet been created. If all those checks 1478 * are passed, track some debug information and awaken. 1479 * 1480 * So why do the self-wakeup when in an interrupt or softirq handler 1481 * in the grace-period kthread's context? Because the kthread might have 1482 * been interrupted just as it was going to sleep, and just after the final 1483 * pre-sleep check of the awaken condition. In this case, a wakeup really 1484 * is required, and is therefore supplied. 1485 */ 1486static void rcu_gp_kthread_wake(void) 1487{ 1488 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1489 1490 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1491 !READ_ONCE(rcu_state.gp_flags) || !t) 1492 return; 1493 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1494 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1495 swake_up_one(&rcu_state.gp_wq); 1496} 1497 1498/* 1499 * If there is room, assign a ->gp_seq number to any callbacks on this 1500 * CPU that have not already been assigned. Also accelerate any callbacks 1501 * that were previously assigned a ->gp_seq number that has since proven 1502 * to be too conservative, which can happen if callbacks get assigned a 1503 * ->gp_seq number while RCU is idle, but with reference to a non-root 1504 * rcu_node structure. This function is idempotent, so it does not hurt 1505 * to call it repeatedly. Returns an flag saying that we should awaken 1506 * the RCU grace-period kthread. 1507 * 1508 * The caller must hold rnp->lock with interrupts disabled. 1509 */ 1510static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1511{ 1512 unsigned long gp_seq_req; 1513 bool ret = false; 1514 1515 rcu_lockdep_assert_cblist_protected(rdp); 1516 raw_lockdep_assert_held_rcu_node(rnp); 1517 1518 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1519 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1520 return false; 1521 1522 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1523 1524 /* 1525 * Callbacks are often registered with incomplete grace-period 1526 * information. Something about the fact that getting exact 1527 * information requires acquiring a global lock... RCU therefore 1528 * makes a conservative estimate of the grace period number at which 1529 * a given callback will become ready to invoke. The following 1530 * code checks this estimate and improves it when possible, thus 1531 * accelerating callback invocation to an earlier grace-period 1532 * number. 1533 */ 1534 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1535 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1536 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1537 1538 /* Trace depending on how much we were able to accelerate. */ 1539 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1540 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1541 else 1542 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1543 1544 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1545 1546 return ret; 1547} 1548 1549/* 1550 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1551 * rcu_node structure's ->lock be held. It consults the cached value 1552 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1553 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1554 * while holding the leaf rcu_node structure's ->lock. 1555 */ 1556static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1557 struct rcu_data *rdp) 1558{ 1559 unsigned long c; 1560 bool needwake; 1561 1562 rcu_lockdep_assert_cblist_protected(rdp); 1563 c = rcu_seq_snap(&rcu_state.gp_seq); 1564 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1565 /* Old request still live, so mark recent callbacks. */ 1566 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1567 return; 1568 } 1569 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1570 needwake = rcu_accelerate_cbs(rnp, rdp); 1571 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1572 if (needwake) 1573 rcu_gp_kthread_wake(); 1574} 1575 1576/* 1577 * Move any callbacks whose grace period has completed to the 1578 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1579 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1580 * sublist. This function is idempotent, so it does not hurt to 1581 * invoke it repeatedly. As long as it is not invoked -too- often... 1582 * Returns true if the RCU grace-period kthread needs to be awakened. 1583 * 1584 * The caller must hold rnp->lock with interrupts disabled. 1585 */ 1586static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1587{ 1588 rcu_lockdep_assert_cblist_protected(rdp); 1589 raw_lockdep_assert_held_rcu_node(rnp); 1590 1591 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1592 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1593 return false; 1594 1595 /* 1596 * Find all callbacks whose ->gp_seq numbers indicate that they 1597 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1598 */ 1599 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1600 1601 /* Classify any remaining callbacks. */ 1602 return rcu_accelerate_cbs(rnp, rdp); 1603} 1604 1605/* 1606 * Move and classify callbacks, but only if doing so won't require 1607 * that the RCU grace-period kthread be awakened. 1608 */ 1609static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1610 struct rcu_data *rdp) 1611{ 1612 rcu_lockdep_assert_cblist_protected(rdp); 1613 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1614 return; 1615 // The grace period cannot end while we hold the rcu_node lock. 1616 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1617 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1618 raw_spin_unlock_rcu_node(rnp); 1619} 1620 1621/* 1622 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1623 * quiescent state. This is intended to be invoked when the CPU notices 1624 * a new grace period. 1625 */ 1626static void rcu_strict_gp_check_qs(void) 1627{ 1628 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1629 rcu_read_lock(); 1630 rcu_read_unlock(); 1631 } 1632} 1633 1634/* 1635 * Update CPU-local rcu_data state to record the beginnings and ends of 1636 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1637 * structure corresponding to the current CPU, and must have irqs disabled. 1638 * Returns true if the grace-period kthread needs to be awakened. 1639 */ 1640static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1641{ 1642 bool ret = false; 1643 bool need_qs; 1644 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1645 1646 raw_lockdep_assert_held_rcu_node(rnp); 1647 1648 if (rdp->gp_seq == rnp->gp_seq) 1649 return false; /* Nothing to do. */ 1650 1651 /* Handle the ends of any preceding grace periods first. */ 1652 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1653 unlikely(READ_ONCE(rdp->gpwrap))) { 1654 if (!offloaded) 1655 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1656 rdp->core_needs_qs = false; 1657 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1658 } else { 1659 if (!offloaded) 1660 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1661 if (rdp->core_needs_qs) 1662 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1663 } 1664 1665 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1666 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1667 unlikely(READ_ONCE(rdp->gpwrap))) { 1668 /* 1669 * If the current grace period is waiting for this CPU, 1670 * set up to detect a quiescent state, otherwise don't 1671 * go looking for one. 1672 */ 1673 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1674 need_qs = !!(rnp->qsmask & rdp->grpmask); 1675 rdp->cpu_no_qs.b.norm = need_qs; 1676 rdp->core_needs_qs = need_qs; 1677 zero_cpu_stall_ticks(rdp); 1678 } 1679 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1680 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1681 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1682 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1683 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1684 WRITE_ONCE(rdp->gpwrap, false); 1685 rcu_gpnum_ovf(rnp, rdp); 1686 return ret; 1687} 1688 1689static void note_gp_changes(struct rcu_data *rdp) 1690{ 1691 unsigned long flags; 1692 bool needwake; 1693 struct rcu_node *rnp; 1694 1695 local_irq_save(flags); 1696 rnp = rdp->mynode; 1697 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1698 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1699 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1700 local_irq_restore(flags); 1701 return; 1702 } 1703 needwake = __note_gp_changes(rnp, rdp); 1704 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1705 rcu_strict_gp_check_qs(); 1706 if (needwake) 1707 rcu_gp_kthread_wake(); 1708} 1709 1710static atomic_t *rcu_gp_slow_suppress; 1711 1712/* Register a counter to suppress debugging grace-period delays. */ 1713void rcu_gp_slow_register(atomic_t *rgssp) 1714{ 1715 WARN_ON_ONCE(rcu_gp_slow_suppress); 1716 1717 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1718} 1719EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1720 1721/* Unregister a counter, with NULL for not caring which. */ 1722void rcu_gp_slow_unregister(atomic_t *rgssp) 1723{ 1724 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress); 1725 1726 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1727} 1728EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1729 1730static bool rcu_gp_slow_is_suppressed(void) 1731{ 1732 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1733 1734 return rgssp && atomic_read(rgssp); 1735} 1736 1737static void rcu_gp_slow(int delay) 1738{ 1739 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1740 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1741 schedule_timeout_idle(delay); 1742} 1743 1744static unsigned long sleep_duration; 1745 1746/* Allow rcutorture to stall the grace-period kthread. */ 1747void rcu_gp_set_torture_wait(int duration) 1748{ 1749 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1750 WRITE_ONCE(sleep_duration, duration); 1751} 1752EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1753 1754/* Actually implement the aforementioned wait. */ 1755static void rcu_gp_torture_wait(void) 1756{ 1757 unsigned long duration; 1758 1759 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1760 return; 1761 duration = xchg(&sleep_duration, 0UL); 1762 if (duration > 0) { 1763 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1764 schedule_timeout_idle(duration); 1765 pr_alert("%s: Wait complete\n", __func__); 1766 } 1767} 1768 1769/* 1770 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1771 * processing. 1772 */ 1773static void rcu_strict_gp_boundary(void *unused) 1774{ 1775 invoke_rcu_core(); 1776} 1777 1778/* 1779 * Initialize a new grace period. Return false if no grace period required. 1780 */ 1781static noinline_for_stack bool rcu_gp_init(void) 1782{ 1783 unsigned long flags; 1784 unsigned long oldmask; 1785 unsigned long mask; 1786 struct rcu_data *rdp; 1787 struct rcu_node *rnp = rcu_get_root(); 1788 1789 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1790 raw_spin_lock_irq_rcu_node(rnp); 1791 if (!READ_ONCE(rcu_state.gp_flags)) { 1792 /* Spurious wakeup, tell caller to go back to sleep. */ 1793 raw_spin_unlock_irq_rcu_node(rnp); 1794 return false; 1795 } 1796 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1797 1798 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1799 /* 1800 * Grace period already in progress, don't start another. 1801 * Not supposed to be able to happen. 1802 */ 1803 raw_spin_unlock_irq_rcu_node(rnp); 1804 return false; 1805 } 1806 1807 /* Advance to a new grace period and initialize state. */ 1808 record_gp_stall_check_time(); 1809 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1810 rcu_seq_start(&rcu_state.gp_seq); 1811 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1812 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1813 raw_spin_unlock_irq_rcu_node(rnp); 1814 1815 /* 1816 * Apply per-leaf buffered online and offline operations to 1817 * the rcu_node tree. Note that this new grace period need not 1818 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1819 * offlining path, when combined with checks in this function, 1820 * will handle CPUs that are currently going offline or that will 1821 * go offline later. Please also refer to "Hotplug CPU" section 1822 * of RCU's Requirements documentation. 1823 */ 1824 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1825 /* Exclude CPU hotplug operations. */ 1826 rcu_for_each_leaf_node(rnp) { 1827 local_irq_save(flags); 1828 arch_spin_lock(&rcu_state.ofl_lock); 1829 raw_spin_lock_rcu_node(rnp); 1830 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1831 !rnp->wait_blkd_tasks) { 1832 /* Nothing to do on this leaf rcu_node structure. */ 1833 raw_spin_unlock_rcu_node(rnp); 1834 arch_spin_unlock(&rcu_state.ofl_lock); 1835 local_irq_restore(flags); 1836 continue; 1837 } 1838 1839 /* Record old state, apply changes to ->qsmaskinit field. */ 1840 oldmask = rnp->qsmaskinit; 1841 rnp->qsmaskinit = rnp->qsmaskinitnext; 1842 1843 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1844 if (!oldmask != !rnp->qsmaskinit) { 1845 if (!oldmask) { /* First online CPU for rcu_node. */ 1846 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1847 rcu_init_new_rnp(rnp); 1848 } else if (rcu_preempt_has_tasks(rnp)) { 1849 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1850 } else { /* Last offline CPU and can propagate. */ 1851 rcu_cleanup_dead_rnp(rnp); 1852 } 1853 } 1854 1855 /* 1856 * If all waited-on tasks from prior grace period are 1857 * done, and if all this rcu_node structure's CPUs are 1858 * still offline, propagate up the rcu_node tree and 1859 * clear ->wait_blkd_tasks. Otherwise, if one of this 1860 * rcu_node structure's CPUs has since come back online, 1861 * simply clear ->wait_blkd_tasks. 1862 */ 1863 if (rnp->wait_blkd_tasks && 1864 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1865 rnp->wait_blkd_tasks = false; 1866 if (!rnp->qsmaskinit) 1867 rcu_cleanup_dead_rnp(rnp); 1868 } 1869 1870 raw_spin_unlock_rcu_node(rnp); 1871 arch_spin_unlock(&rcu_state.ofl_lock); 1872 local_irq_restore(flags); 1873 } 1874 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1875 1876 /* 1877 * Set the quiescent-state-needed bits in all the rcu_node 1878 * structures for all currently online CPUs in breadth-first 1879 * order, starting from the root rcu_node structure, relying on the 1880 * layout of the tree within the rcu_state.node[] array. Note that 1881 * other CPUs will access only the leaves of the hierarchy, thus 1882 * seeing that no grace period is in progress, at least until the 1883 * corresponding leaf node has been initialized. 1884 * 1885 * The grace period cannot complete until the initialization 1886 * process finishes, because this kthread handles both. 1887 */ 1888 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1889 rcu_for_each_node_breadth_first(rnp) { 1890 rcu_gp_slow(gp_init_delay); 1891 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1892 rdp = this_cpu_ptr(&rcu_data); 1893 rcu_preempt_check_blocked_tasks(rnp); 1894 rnp->qsmask = rnp->qsmaskinit; 1895 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1896 if (rnp == rdp->mynode) 1897 (void)__note_gp_changes(rnp, rdp); 1898 rcu_preempt_boost_start_gp(rnp); 1899 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1900 rnp->level, rnp->grplo, 1901 rnp->grphi, rnp->qsmask); 1902 /* Quiescent states for tasks on any now-offline CPUs. */ 1903 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1904 rnp->rcu_gp_init_mask = mask; 1905 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1906 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1907 else 1908 raw_spin_unlock_irq_rcu_node(rnp); 1909 cond_resched_tasks_rcu_qs(); 1910 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1911 } 1912 1913 // If strict, make all CPUs aware of new grace period. 1914 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1915 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1916 1917 return true; 1918} 1919 1920/* 1921 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1922 * time. 1923 */ 1924static bool rcu_gp_fqs_check_wake(int *gfp) 1925{ 1926 struct rcu_node *rnp = rcu_get_root(); 1927 1928 // If under overload conditions, force an immediate FQS scan. 1929 if (*gfp & RCU_GP_FLAG_OVLD) 1930 return true; 1931 1932 // Someone like call_rcu() requested a force-quiescent-state scan. 1933 *gfp = READ_ONCE(rcu_state.gp_flags); 1934 if (*gfp & RCU_GP_FLAG_FQS) 1935 return true; 1936 1937 // The current grace period has completed. 1938 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1939 return true; 1940 1941 return false; 1942} 1943 1944/* 1945 * Do one round of quiescent-state forcing. 1946 */ 1947static void rcu_gp_fqs(bool first_time) 1948{ 1949 struct rcu_node *rnp = rcu_get_root(); 1950 1951 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1952 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1953 if (first_time) { 1954 /* Collect dyntick-idle snapshots. */ 1955 force_qs_rnp(dyntick_save_progress_counter); 1956 } else { 1957 /* Handle dyntick-idle and offline CPUs. */ 1958 force_qs_rnp(rcu_implicit_dynticks_qs); 1959 } 1960 /* Clear flag to prevent immediate re-entry. */ 1961 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1962 raw_spin_lock_irq_rcu_node(rnp); 1963 WRITE_ONCE(rcu_state.gp_flags, 1964 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1965 raw_spin_unlock_irq_rcu_node(rnp); 1966 } 1967} 1968 1969/* 1970 * Loop doing repeated quiescent-state forcing until the grace period ends. 1971 */ 1972static noinline_for_stack void rcu_gp_fqs_loop(void) 1973{ 1974 bool first_gp_fqs; 1975 int gf = 0; 1976 unsigned long j; 1977 int ret; 1978 struct rcu_node *rnp = rcu_get_root(); 1979 1980 first_gp_fqs = true; 1981 j = READ_ONCE(jiffies_till_first_fqs); 1982 if (rcu_state.cbovld) 1983 gf = RCU_GP_FLAG_OVLD; 1984 ret = 0; 1985 for (;;) { 1986 if (!ret) { 1987 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1988 /* 1989 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1990 * update; required for stall checks. 1991 */ 1992 smp_wmb(); 1993 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1994 jiffies + (j ? 3 * j : 2)); 1995 } 1996 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1997 TPS("fqswait")); 1998 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1999 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 2000 rcu_gp_fqs_check_wake(&gf), j); 2001 rcu_gp_torture_wait(); 2002 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 2003 /* Locking provides needed memory barriers. */ 2004 /* If grace period done, leave loop. */ 2005 if (!READ_ONCE(rnp->qsmask) && 2006 !rcu_preempt_blocked_readers_cgp(rnp)) 2007 break; 2008 /* If time for quiescent-state forcing, do it. */ 2009 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 2010 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 2011 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2012 TPS("fqsstart")); 2013 rcu_gp_fqs(first_gp_fqs); 2014 gf = 0; 2015 if (first_gp_fqs) { 2016 first_gp_fqs = false; 2017 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 2018 } 2019 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2020 TPS("fqsend")); 2021 cond_resched_tasks_rcu_qs(); 2022 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2023 ret = 0; /* Force full wait till next FQS. */ 2024 j = READ_ONCE(jiffies_till_next_fqs); 2025 } else { 2026 /* Deal with stray signal. */ 2027 cond_resched_tasks_rcu_qs(); 2028 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2029 WARN_ON(signal_pending(current)); 2030 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2031 TPS("fqswaitsig")); 2032 ret = 1; /* Keep old FQS timing. */ 2033 j = jiffies; 2034 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2035 j = 1; 2036 else 2037 j = rcu_state.jiffies_force_qs - j; 2038 gf = 0; 2039 } 2040 } 2041} 2042 2043/* 2044 * Clean up after the old grace period. 2045 */ 2046static noinline void rcu_gp_cleanup(void) 2047{ 2048 int cpu; 2049 bool needgp = false; 2050 unsigned long gp_duration; 2051 unsigned long new_gp_seq; 2052 bool offloaded; 2053 struct rcu_data *rdp; 2054 struct rcu_node *rnp = rcu_get_root(); 2055 struct swait_queue_head *sq; 2056 2057 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2058 raw_spin_lock_irq_rcu_node(rnp); 2059 rcu_state.gp_end = jiffies; 2060 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2061 if (gp_duration > rcu_state.gp_max) 2062 rcu_state.gp_max = gp_duration; 2063 2064 /* 2065 * We know the grace period is complete, but to everyone else 2066 * it appears to still be ongoing. But it is also the case 2067 * that to everyone else it looks like there is nothing that 2068 * they can do to advance the grace period. It is therefore 2069 * safe for us to drop the lock in order to mark the grace 2070 * period as completed in all of the rcu_node structures. 2071 */ 2072 raw_spin_unlock_irq_rcu_node(rnp); 2073 2074 /* 2075 * Propagate new ->gp_seq value to rcu_node structures so that 2076 * other CPUs don't have to wait until the start of the next grace 2077 * period to process their callbacks. This also avoids some nasty 2078 * RCU grace-period initialization races by forcing the end of 2079 * the current grace period to be completely recorded in all of 2080 * the rcu_node structures before the beginning of the next grace 2081 * period is recorded in any of the rcu_node structures. 2082 */ 2083 new_gp_seq = rcu_state.gp_seq; 2084 rcu_seq_end(&new_gp_seq); 2085 rcu_for_each_node_breadth_first(rnp) { 2086 raw_spin_lock_irq_rcu_node(rnp); 2087 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2088 dump_blkd_tasks(rnp, 10); 2089 WARN_ON_ONCE(rnp->qsmask); 2090 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2091 rdp = this_cpu_ptr(&rcu_data); 2092 if (rnp == rdp->mynode) 2093 needgp = __note_gp_changes(rnp, rdp) || needgp; 2094 /* smp_mb() provided by prior unlock-lock pair. */ 2095 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2096 // Reset overload indication for CPUs no longer overloaded 2097 if (rcu_is_leaf_node(rnp)) 2098 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2099 rdp = per_cpu_ptr(&rcu_data, cpu); 2100 check_cb_ovld_locked(rdp, rnp); 2101 } 2102 sq = rcu_nocb_gp_get(rnp); 2103 raw_spin_unlock_irq_rcu_node(rnp); 2104 rcu_nocb_gp_cleanup(sq); 2105 cond_resched_tasks_rcu_qs(); 2106 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2107 rcu_gp_slow(gp_cleanup_delay); 2108 } 2109 rnp = rcu_get_root(); 2110 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2111 2112 /* Declare grace period done, trace first to use old GP number. */ 2113 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2114 rcu_seq_end(&rcu_state.gp_seq); 2115 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2116 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2117 /* Check for GP requests since above loop. */ 2118 rdp = this_cpu_ptr(&rcu_data); 2119 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2120 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2121 TPS("CleanupMore")); 2122 needgp = true; 2123 } 2124 /* Advance CBs to reduce false positives below. */ 2125 offloaded = rcu_rdp_is_offloaded(rdp); 2126 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2127 2128 // We get here if a grace period was needed (“needgp”) 2129 // and the above call to rcu_accelerate_cbs() did not set 2130 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 2131 // the need for another grace period). The purpose 2132 // of the “offloaded” check is to avoid invoking 2133 // rcu_accelerate_cbs() on an offloaded CPU because we do not 2134 // hold the ->nocb_lock needed to safely access an offloaded 2135 // ->cblist. We do not want to acquire that lock because 2136 // it can be heavily contended during callback floods. 2137 2138 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2139 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2140 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 2141 } else { 2142 2143 // We get here either if there is no need for an 2144 // additional grace period or if rcu_accelerate_cbs() has 2145 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 2146 // So all we need to do is to clear all of the other 2147 // ->gp_flags bits. 2148 2149 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2150 } 2151 raw_spin_unlock_irq_rcu_node(rnp); 2152 2153 // If strict, make all CPUs aware of the end of the old grace period. 2154 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2155 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2156} 2157 2158/* 2159 * Body of kthread that handles grace periods. 2160 */ 2161static int __noreturn rcu_gp_kthread(void *unused) 2162{ 2163 rcu_bind_gp_kthread(); 2164 for (;;) { 2165 2166 /* Handle grace-period start. */ 2167 for (;;) { 2168 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2169 TPS("reqwait")); 2170 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2171 swait_event_idle_exclusive(rcu_state.gp_wq, 2172 READ_ONCE(rcu_state.gp_flags) & 2173 RCU_GP_FLAG_INIT); 2174 rcu_gp_torture_wait(); 2175 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2176 /* Locking provides needed memory barrier. */ 2177 if (rcu_gp_init()) 2178 break; 2179 cond_resched_tasks_rcu_qs(); 2180 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2181 WARN_ON(signal_pending(current)); 2182 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2183 TPS("reqwaitsig")); 2184 } 2185 2186 /* Handle quiescent-state forcing. */ 2187 rcu_gp_fqs_loop(); 2188 2189 /* Handle grace-period end. */ 2190 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2191 rcu_gp_cleanup(); 2192 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2193 } 2194} 2195 2196/* 2197 * Report a full set of quiescent states to the rcu_state data structure. 2198 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2199 * another grace period is required. Whether we wake the grace-period 2200 * kthread or it awakens itself for the next round of quiescent-state 2201 * forcing, that kthread will clean up after the just-completed grace 2202 * period. Note that the caller must hold rnp->lock, which is released 2203 * before return. 2204 */ 2205static void rcu_report_qs_rsp(unsigned long flags) 2206 __releases(rcu_get_root()->lock) 2207{ 2208 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2209 WARN_ON_ONCE(!rcu_gp_in_progress()); 2210 WRITE_ONCE(rcu_state.gp_flags, 2211 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2212 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2213 rcu_gp_kthread_wake(); 2214} 2215 2216/* 2217 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2218 * Allows quiescent states for a group of CPUs to be reported at one go 2219 * to the specified rcu_node structure, though all the CPUs in the group 2220 * must be represented by the same rcu_node structure (which need not be a 2221 * leaf rcu_node structure, though it often will be). The gps parameter 2222 * is the grace-period snapshot, which means that the quiescent states 2223 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2224 * must be held upon entry, and it is released before return. 2225 * 2226 * As a special case, if mask is zero, the bit-already-cleared check is 2227 * disabled. This allows propagating quiescent state due to resumed tasks 2228 * during grace-period initialization. 2229 */ 2230static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2231 unsigned long gps, unsigned long flags) 2232 __releases(rnp->lock) 2233{ 2234 unsigned long oldmask = 0; 2235 struct rcu_node *rnp_c; 2236 2237 raw_lockdep_assert_held_rcu_node(rnp); 2238 2239 /* Walk up the rcu_node hierarchy. */ 2240 for (;;) { 2241 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2242 2243 /* 2244 * Our bit has already been cleared, or the 2245 * relevant grace period is already over, so done. 2246 */ 2247 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2248 return; 2249 } 2250 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2251 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2252 rcu_preempt_blocked_readers_cgp(rnp)); 2253 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2254 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2255 mask, rnp->qsmask, rnp->level, 2256 rnp->grplo, rnp->grphi, 2257 !!rnp->gp_tasks); 2258 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2259 2260 /* Other bits still set at this level, so done. */ 2261 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2262 return; 2263 } 2264 rnp->completedqs = rnp->gp_seq; 2265 mask = rnp->grpmask; 2266 if (rnp->parent == NULL) { 2267 2268 /* No more levels. Exit loop holding root lock. */ 2269 2270 break; 2271 } 2272 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2273 rnp_c = rnp; 2274 rnp = rnp->parent; 2275 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2276 oldmask = READ_ONCE(rnp_c->qsmask); 2277 } 2278 2279 /* 2280 * Get here if we are the last CPU to pass through a quiescent 2281 * state for this grace period. Invoke rcu_report_qs_rsp() 2282 * to clean up and start the next grace period if one is needed. 2283 */ 2284 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2285} 2286 2287/* 2288 * Record a quiescent state for all tasks that were previously queued 2289 * on the specified rcu_node structure and that were blocking the current 2290 * RCU grace period. The caller must hold the corresponding rnp->lock with 2291 * irqs disabled, and this lock is released upon return, but irqs remain 2292 * disabled. 2293 */ 2294static void __maybe_unused 2295rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2296 __releases(rnp->lock) 2297{ 2298 unsigned long gps; 2299 unsigned long mask; 2300 struct rcu_node *rnp_p; 2301 2302 raw_lockdep_assert_held_rcu_node(rnp); 2303 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2304 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2305 rnp->qsmask != 0) { 2306 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2307 return; /* Still need more quiescent states! */ 2308 } 2309 2310 rnp->completedqs = rnp->gp_seq; 2311 rnp_p = rnp->parent; 2312 if (rnp_p == NULL) { 2313 /* 2314 * Only one rcu_node structure in the tree, so don't 2315 * try to report up to its nonexistent parent! 2316 */ 2317 rcu_report_qs_rsp(flags); 2318 return; 2319 } 2320 2321 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2322 gps = rnp->gp_seq; 2323 mask = rnp->grpmask; 2324 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2325 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2326 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2327} 2328 2329/* 2330 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2331 * structure. This must be called from the specified CPU. 2332 */ 2333static void 2334rcu_report_qs_rdp(struct rcu_data *rdp) 2335{ 2336 unsigned long flags; 2337 unsigned long mask; 2338 bool needwake = false; 2339 bool needacc = false; 2340 struct rcu_node *rnp; 2341 2342 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2343 rnp = rdp->mynode; 2344 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2345 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2346 rdp->gpwrap) { 2347 2348 /* 2349 * The grace period in which this quiescent state was 2350 * recorded has ended, so don't report it upwards. 2351 * We will instead need a new quiescent state that lies 2352 * within the current grace period. 2353 */ 2354 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2355 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2356 return; 2357 } 2358 mask = rdp->grpmask; 2359 rdp->core_needs_qs = false; 2360 if ((rnp->qsmask & mask) == 0) { 2361 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2362 } else { 2363 /* 2364 * This GP can't end until cpu checks in, so all of our 2365 * callbacks can be processed during the next GP. 2366 * 2367 * NOCB kthreads have their own way to deal with that... 2368 */ 2369 if (!rcu_rdp_is_offloaded(rdp)) { 2370 needwake = rcu_accelerate_cbs(rnp, rdp); 2371 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2372 /* 2373 * ...but NOCB kthreads may miss or delay callbacks acceleration 2374 * if in the middle of a (de-)offloading process. 2375 */ 2376 needacc = true; 2377 } 2378 2379 rcu_disable_urgency_upon_qs(rdp); 2380 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2381 /* ^^^ Released rnp->lock */ 2382 if (needwake) 2383 rcu_gp_kthread_wake(); 2384 2385 if (needacc) { 2386 rcu_nocb_lock_irqsave(rdp, flags); 2387 rcu_accelerate_cbs_unlocked(rnp, rdp); 2388 rcu_nocb_unlock_irqrestore(rdp, flags); 2389 } 2390 } 2391} 2392 2393/* 2394 * Check to see if there is a new grace period of which this CPU 2395 * is not yet aware, and if so, set up local rcu_data state for it. 2396 * Otherwise, see if this CPU has just passed through its first 2397 * quiescent state for this grace period, and record that fact if so. 2398 */ 2399static void 2400rcu_check_quiescent_state(struct rcu_data *rdp) 2401{ 2402 /* Check for grace-period ends and beginnings. */ 2403 note_gp_changes(rdp); 2404 2405 /* 2406 * Does this CPU still need to do its part for current grace period? 2407 * If no, return and let the other CPUs do their part as well. 2408 */ 2409 if (!rdp->core_needs_qs) 2410 return; 2411 2412 /* 2413 * Was there a quiescent state since the beginning of the grace 2414 * period? If no, then exit and wait for the next call. 2415 */ 2416 if (rdp->cpu_no_qs.b.norm) 2417 return; 2418 2419 /* 2420 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2421 * judge of that). 2422 */ 2423 rcu_report_qs_rdp(rdp); 2424} 2425 2426/* 2427 * Near the end of the offline process. Trace the fact that this CPU 2428 * is going offline. 2429 */ 2430int rcutree_dying_cpu(unsigned int cpu) 2431{ 2432 bool blkd; 2433 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2434 struct rcu_node *rnp = rdp->mynode; 2435 2436 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2437 return 0; 2438 2439 blkd = !!(rnp->qsmask & rdp->grpmask); 2440 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2441 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 2442 return 0; 2443} 2444 2445/* 2446 * All CPUs for the specified rcu_node structure have gone offline, 2447 * and all tasks that were preempted within an RCU read-side critical 2448 * section while running on one of those CPUs have since exited their RCU 2449 * read-side critical section. Some other CPU is reporting this fact with 2450 * the specified rcu_node structure's ->lock held and interrupts disabled. 2451 * This function therefore goes up the tree of rcu_node structures, 2452 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2453 * the leaf rcu_node structure's ->qsmaskinit field has already been 2454 * updated. 2455 * 2456 * This function does check that the specified rcu_node structure has 2457 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2458 * prematurely. That said, invoking it after the fact will cost you 2459 * a needless lock acquisition. So once it has done its work, don't 2460 * invoke it again. 2461 */ 2462static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2463{ 2464 long mask; 2465 struct rcu_node *rnp = rnp_leaf; 2466 2467 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2468 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2469 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2470 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2471 return; 2472 for (;;) { 2473 mask = rnp->grpmask; 2474 rnp = rnp->parent; 2475 if (!rnp) 2476 break; 2477 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2478 rnp->qsmaskinit &= ~mask; 2479 /* Between grace periods, so better already be zero! */ 2480 WARN_ON_ONCE(rnp->qsmask); 2481 if (rnp->qsmaskinit) { 2482 raw_spin_unlock_rcu_node(rnp); 2483 /* irqs remain disabled. */ 2484 return; 2485 } 2486 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2487 } 2488} 2489 2490/* 2491 * The CPU has been completely removed, and some other CPU is reporting 2492 * this fact from process context. Do the remainder of the cleanup. 2493 * There can only be one CPU hotplug operation at a time, so no need for 2494 * explicit locking. 2495 */ 2496int rcutree_dead_cpu(unsigned int cpu) 2497{ 2498 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2499 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2500 2501 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2502 return 0; 2503 2504 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 2505 /* Adjust any no-longer-needed kthreads. */ 2506 rcu_boost_kthread_setaffinity(rnp, -1); 2507 // Stop-machine done, so allow nohz_full to disable tick. 2508 tick_dep_clear(TICK_DEP_BIT_RCU); 2509 return 0; 2510} 2511 2512/* 2513 * Invoke any RCU callbacks that have made it to the end of their grace 2514 * period. Throttle as specified by rdp->blimit. 2515 */ 2516static void rcu_do_batch(struct rcu_data *rdp) 2517{ 2518 int div; 2519 bool __maybe_unused empty; 2520 unsigned long flags; 2521 struct rcu_head *rhp; 2522 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2523 long bl, count = 0; 2524 long pending, tlimit = 0; 2525 2526 /* If no callbacks are ready, just return. */ 2527 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2528 trace_rcu_batch_start(rcu_state.name, 2529 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2530 trace_rcu_batch_end(rcu_state.name, 0, 2531 !rcu_segcblist_empty(&rdp->cblist), 2532 need_resched(), is_idle_task(current), 2533 rcu_is_callbacks_kthread()); 2534 return; 2535 } 2536 2537 /* 2538 * Extract the list of ready callbacks, disabling IRQs to prevent 2539 * races with call_rcu() from interrupt handlers. Leave the 2540 * callback counts, as rcu_barrier() needs to be conservative. 2541 */ 2542 rcu_nocb_lock_irqsave(rdp, flags); 2543 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2544 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2545 div = READ_ONCE(rcu_divisor); 2546 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2547 bl = max(rdp->blimit, pending >> div); 2548 if (in_serving_softirq() && unlikely(bl > 100)) { 2549 long rrn = READ_ONCE(rcu_resched_ns); 2550 2551 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2552 tlimit = local_clock() + rrn; 2553 } 2554 trace_rcu_batch_start(rcu_state.name, 2555 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2556 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2557 if (rcu_rdp_is_offloaded(rdp)) 2558 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2559 2560 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2561 rcu_nocb_unlock_irqrestore(rdp, flags); 2562 2563 /* Invoke callbacks. */ 2564 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2565 rhp = rcu_cblist_dequeue(&rcl); 2566 2567 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2568 rcu_callback_t f; 2569 2570 count++; 2571 debug_rcu_head_unqueue(rhp); 2572 2573 rcu_lock_acquire(&rcu_callback_map); 2574 trace_rcu_invoke_callback(rcu_state.name, rhp); 2575 2576 f = rhp->func; 2577 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2578 f(rhp); 2579 2580 rcu_lock_release(&rcu_callback_map); 2581 2582 /* 2583 * Stop only if limit reached and CPU has something to do. 2584 */ 2585 if (in_serving_softirq()) { 2586 if (count >= bl && (need_resched() || !is_idle_task(current))) 2587 break; 2588 /* 2589 * Make sure we don't spend too much time here and deprive other 2590 * softirq vectors of CPU cycles. 2591 */ 2592 if (unlikely(tlimit)) { 2593 /* only call local_clock() every 32 callbacks */ 2594 if (likely((count & 31) || local_clock() < tlimit)) 2595 continue; 2596 /* Exceeded the time limit, so leave. */ 2597 break; 2598 } 2599 } else { 2600 local_bh_enable(); 2601 lockdep_assert_irqs_enabled(); 2602 cond_resched_tasks_rcu_qs(); 2603 lockdep_assert_irqs_enabled(); 2604 local_bh_disable(); 2605 } 2606 } 2607 2608 rcu_nocb_lock_irqsave(rdp, flags); 2609 rdp->n_cbs_invoked += count; 2610 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2611 is_idle_task(current), rcu_is_callbacks_kthread()); 2612 2613 /* Update counts and requeue any remaining callbacks. */ 2614 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2615 rcu_segcblist_add_len(&rdp->cblist, -count); 2616 2617 /* Reinstate batch limit if we have worked down the excess. */ 2618 count = rcu_segcblist_n_cbs(&rdp->cblist); 2619 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2620 rdp->blimit = blimit; 2621 2622 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2623 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2624 rdp->qlen_last_fqs_check = 0; 2625 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2626 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2627 rdp->qlen_last_fqs_check = count; 2628 2629 /* 2630 * The following usually indicates a double call_rcu(). To track 2631 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2632 */ 2633 empty = rcu_segcblist_empty(&rdp->cblist); 2634 WARN_ON_ONCE(count == 0 && !empty); 2635 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2636 count != 0 && empty); 2637 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2638 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2639 2640 rcu_nocb_unlock_irqrestore(rdp, flags); 2641 2642 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2643} 2644 2645/* 2646 * This function is invoked from each scheduling-clock interrupt, 2647 * and checks to see if this CPU is in a non-context-switch quiescent 2648 * state, for example, user mode or idle loop. It also schedules RCU 2649 * core processing. If the current grace period has gone on too long, 2650 * it will ask the scheduler to manufacture a context switch for the sole 2651 * purpose of providing the needed quiescent state. 2652 */ 2653void rcu_sched_clock_irq(int user) 2654{ 2655 unsigned long j; 2656 2657 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2658 j = jiffies; 2659 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2660 __this_cpu_write(rcu_data.last_sched_clock, j); 2661 } 2662 trace_rcu_utilization(TPS("Start scheduler-tick")); 2663 lockdep_assert_irqs_disabled(); 2664 raw_cpu_inc(rcu_data.ticks_this_gp); 2665 /* The load-acquire pairs with the store-release setting to true. */ 2666 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2667 /* Idle and userspace execution already are quiescent states. */ 2668 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2669 set_tsk_need_resched(current); 2670 set_preempt_need_resched(); 2671 } 2672 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2673 } 2674 rcu_flavor_sched_clock_irq(user); 2675 if (rcu_pending(user)) 2676 invoke_rcu_core(); 2677 if (user) 2678 rcu_tasks_classic_qs(current, false); 2679 lockdep_assert_irqs_disabled(); 2680 2681 trace_rcu_utilization(TPS("End scheduler-tick")); 2682} 2683 2684/* 2685 * Scan the leaf rcu_node structures. For each structure on which all 2686 * CPUs have reported a quiescent state and on which there are tasks 2687 * blocking the current grace period, initiate RCU priority boosting. 2688 * Otherwise, invoke the specified function to check dyntick state for 2689 * each CPU that has not yet reported a quiescent state. 2690 */ 2691static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2692{ 2693 int cpu; 2694 unsigned long flags; 2695 unsigned long mask; 2696 struct rcu_data *rdp; 2697 struct rcu_node *rnp; 2698 2699 rcu_state.cbovld = rcu_state.cbovldnext; 2700 rcu_state.cbovldnext = false; 2701 rcu_for_each_leaf_node(rnp) { 2702 cond_resched_tasks_rcu_qs(); 2703 mask = 0; 2704 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2705 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2706 if (rnp->qsmask == 0) { 2707 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2708 /* 2709 * No point in scanning bits because they 2710 * are all zero. But we might need to 2711 * priority-boost blocked readers. 2712 */ 2713 rcu_initiate_boost(rnp, flags); 2714 /* rcu_initiate_boost() releases rnp->lock */ 2715 continue; 2716 } 2717 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2718 continue; 2719 } 2720 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2721 rdp = per_cpu_ptr(&rcu_data, cpu); 2722 if (f(rdp)) { 2723 mask |= rdp->grpmask; 2724 rcu_disable_urgency_upon_qs(rdp); 2725 } 2726 } 2727 if (mask != 0) { 2728 /* Idle/offline CPUs, report (releases rnp->lock). */ 2729 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2730 } else { 2731 /* Nothing to do here, so just drop the lock. */ 2732 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2733 } 2734 } 2735} 2736 2737/* 2738 * Force quiescent states on reluctant CPUs, and also detect which 2739 * CPUs are in dyntick-idle mode. 2740 */ 2741void rcu_force_quiescent_state(void) 2742{ 2743 unsigned long flags; 2744 bool ret; 2745 struct rcu_node *rnp; 2746 struct rcu_node *rnp_old = NULL; 2747 2748 /* Funnel through hierarchy to reduce memory contention. */ 2749 rnp = __this_cpu_read(rcu_data.mynode); 2750 for (; rnp != NULL; rnp = rnp->parent) { 2751 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2752 !raw_spin_trylock(&rnp->fqslock); 2753 if (rnp_old != NULL) 2754 raw_spin_unlock(&rnp_old->fqslock); 2755 if (ret) 2756 return; 2757 rnp_old = rnp; 2758 } 2759 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2760 2761 /* Reached the root of the rcu_node tree, acquire lock. */ 2762 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2763 raw_spin_unlock(&rnp_old->fqslock); 2764 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2765 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2766 return; /* Someone beat us to it. */ 2767 } 2768 WRITE_ONCE(rcu_state.gp_flags, 2769 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2770 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2771 rcu_gp_kthread_wake(); 2772} 2773EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2774 2775// Workqueue handler for an RCU reader for kernels enforcing struct RCU 2776// grace periods. 2777static void strict_work_handler(struct work_struct *work) 2778{ 2779 rcu_read_lock(); 2780 rcu_read_unlock(); 2781} 2782 2783/* Perform RCU core processing work for the current CPU. */ 2784static __latent_entropy void rcu_core(void) 2785{ 2786 unsigned long flags; 2787 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2788 struct rcu_node *rnp = rdp->mynode; 2789 /* 2790 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2791 * Therefore this function can race with concurrent NOCB (de-)offloading 2792 * on this CPU and the below condition must be considered volatile. 2793 * However if we race with: 2794 * 2795 * _ Offloading: In the worst case we accelerate or process callbacks 2796 * concurrently with NOCB kthreads. We are guaranteed to 2797 * call rcu_nocb_lock() if that happens. 2798 * 2799 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2800 * processing. This is fine because the early stage 2801 * of deoffloading invokes rcu_core() after setting 2802 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2803 * what could have been dismissed without the need to wait 2804 * for the next rcu_pending() check in the next jiffy. 2805 */ 2806 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2807 2808 if (cpu_is_offline(smp_processor_id())) 2809 return; 2810 trace_rcu_utilization(TPS("Start RCU core")); 2811 WARN_ON_ONCE(!rdp->beenonline); 2812 2813 /* Report any deferred quiescent states if preemption enabled. */ 2814 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2815 rcu_preempt_deferred_qs(current); 2816 } else if (rcu_preempt_need_deferred_qs(current)) { 2817 set_tsk_need_resched(current); 2818 set_preempt_need_resched(); 2819 } 2820 2821 /* Update RCU state based on any recent quiescent states. */ 2822 rcu_check_quiescent_state(rdp); 2823 2824 /* No grace period and unregistered callbacks? */ 2825 if (!rcu_gp_in_progress() && 2826 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2827 rcu_nocb_lock_irqsave(rdp, flags); 2828 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2829 rcu_accelerate_cbs_unlocked(rnp, rdp); 2830 rcu_nocb_unlock_irqrestore(rdp, flags); 2831 } 2832 2833 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2834 2835 /* If there are callbacks ready, invoke them. */ 2836 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2837 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2838 rcu_do_batch(rdp); 2839 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2840 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2841 invoke_rcu_core(); 2842 } 2843 2844 /* Do any needed deferred wakeups of rcuo kthreads. */ 2845 do_nocb_deferred_wakeup(rdp); 2846 trace_rcu_utilization(TPS("End RCU core")); 2847 2848 // If strict GPs, schedule an RCU reader in a clean environment. 2849 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2850 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2851} 2852 2853static void rcu_core_si(struct softirq_action *h) 2854{ 2855 rcu_core(); 2856} 2857 2858static void rcu_wake_cond(struct task_struct *t, int status) 2859{ 2860 /* 2861 * If the thread is yielding, only wake it when this 2862 * is invoked from idle 2863 */ 2864 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2865 wake_up_process(t); 2866} 2867 2868static void invoke_rcu_core_kthread(void) 2869{ 2870 struct task_struct *t; 2871 unsigned long flags; 2872 2873 local_irq_save(flags); 2874 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2875 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2876 if (t != NULL && t != current) 2877 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2878 local_irq_restore(flags); 2879} 2880 2881/* 2882 * Wake up this CPU's rcuc kthread to do RCU core processing. 2883 */ 2884static void invoke_rcu_core(void) 2885{ 2886 if (!cpu_online(smp_processor_id())) 2887 return; 2888 if (use_softirq) 2889 raise_softirq(RCU_SOFTIRQ); 2890 else 2891 invoke_rcu_core_kthread(); 2892} 2893 2894static void rcu_cpu_kthread_park(unsigned int cpu) 2895{ 2896 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2897} 2898 2899static int rcu_cpu_kthread_should_run(unsigned int cpu) 2900{ 2901 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2902} 2903 2904/* 2905 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2906 * the RCU softirq used in configurations of RCU that do not support RCU 2907 * priority boosting. 2908 */ 2909static void rcu_cpu_kthread(unsigned int cpu) 2910{ 2911 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2912 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2913 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2914 int spincnt; 2915 2916 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2917 for (spincnt = 0; spincnt < 10; spincnt++) { 2918 WRITE_ONCE(*j, jiffies); 2919 local_bh_disable(); 2920 *statusp = RCU_KTHREAD_RUNNING; 2921 local_irq_disable(); 2922 work = *workp; 2923 *workp = 0; 2924 local_irq_enable(); 2925 if (work) 2926 rcu_core(); 2927 local_bh_enable(); 2928 if (*workp == 0) { 2929 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2930 *statusp = RCU_KTHREAD_WAITING; 2931 return; 2932 } 2933 } 2934 *statusp = RCU_KTHREAD_YIELDING; 2935 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2936 schedule_timeout_idle(2); 2937 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2938 *statusp = RCU_KTHREAD_WAITING; 2939 WRITE_ONCE(*j, jiffies); 2940} 2941 2942static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2943 .store = &rcu_data.rcu_cpu_kthread_task, 2944 .thread_should_run = rcu_cpu_kthread_should_run, 2945 .thread_fn = rcu_cpu_kthread, 2946 .thread_comm = "rcuc/%u", 2947 .setup = rcu_cpu_kthread_setup, 2948 .park = rcu_cpu_kthread_park, 2949}; 2950 2951/* 2952 * Spawn per-CPU RCU core processing kthreads. 2953 */ 2954static int __init rcu_spawn_core_kthreads(void) 2955{ 2956 int cpu; 2957 2958 for_each_possible_cpu(cpu) 2959 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2960 if (use_softirq) 2961 return 0; 2962 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2963 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2964 return 0; 2965} 2966 2967/* 2968 * Handle any core-RCU processing required by a call_rcu() invocation. 2969 */ 2970static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2971 unsigned long flags) 2972{ 2973 /* 2974 * If called from an extended quiescent state, invoke the RCU 2975 * core in order to force a re-evaluation of RCU's idleness. 2976 */ 2977 if (!rcu_is_watching()) 2978 invoke_rcu_core(); 2979 2980 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2981 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2982 return; 2983 2984 /* 2985 * Force the grace period if too many callbacks or too long waiting. 2986 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2987 * if some other CPU has recently done so. Also, don't bother 2988 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2989 * is the only one waiting for a grace period to complete. 2990 */ 2991 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2992 rdp->qlen_last_fqs_check + qhimark)) { 2993 2994 /* Are we ignoring a completed grace period? */ 2995 note_gp_changes(rdp); 2996 2997 /* Start a new grace period if one not already started. */ 2998 if (!rcu_gp_in_progress()) { 2999 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 3000 } else { 3001 /* Give the grace period a kick. */ 3002 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 3003 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 3004 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 3005 rcu_force_quiescent_state(); 3006 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 3007 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 3008 } 3009 } 3010} 3011 3012/* 3013 * RCU callback function to leak a callback. 3014 */ 3015static void rcu_leak_callback(struct rcu_head *rhp) 3016{ 3017} 3018 3019/* 3020 * Check and if necessary update the leaf rcu_node structure's 3021 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3022 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 3023 * structure's ->lock. 3024 */ 3025static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 3026{ 3027 raw_lockdep_assert_held_rcu_node(rnp); 3028 if (qovld_calc <= 0) 3029 return; // Early boot and wildcard value set. 3030 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 3031 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 3032 else 3033 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 3034} 3035 3036/* 3037 * Check and if necessary update the leaf rcu_node structure's 3038 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3039 * number of queued RCU callbacks. No locks need be held, but the 3040 * caller must have disabled interrupts. 3041 * 3042 * Note that this function ignores the possibility that there are a lot 3043 * of callbacks all of which have already seen the end of their respective 3044 * grace periods. This omission is due to the need for no-CBs CPUs to 3045 * be holding ->nocb_lock to do this check, which is too heavy for a 3046 * common-case operation. 3047 */ 3048static void check_cb_ovld(struct rcu_data *rdp) 3049{ 3050 struct rcu_node *const rnp = rdp->mynode; 3051 3052 if (qovld_calc <= 0 || 3053 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 3054 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 3055 return; // Early boot wildcard value or already set correctly. 3056 raw_spin_lock_rcu_node(rnp); 3057 check_cb_ovld_locked(rdp, rnp); 3058 raw_spin_unlock_rcu_node(rnp); 3059} 3060 3061/** 3062 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3063 * @head: structure to be used for queueing the RCU updates. 3064 * @func: actual callback function to be invoked after the grace period 3065 * 3066 * The callback function will be invoked some time after a full grace 3067 * period elapses, in other words after all pre-existing RCU read-side 3068 * critical sections have completed. However, the callback function 3069 * might well execute concurrently with RCU read-side critical sections 3070 * that started after call_rcu() was invoked. 3071 * 3072 * RCU read-side critical sections are delimited by rcu_read_lock() 3073 * and rcu_read_unlock(), and may be nested. In addition, but only in 3074 * v5.0 and later, regions of code across which interrupts, preemption, 3075 * or softirqs have been disabled also serve as RCU read-side critical 3076 * sections. This includes hardware interrupt handlers, softirq handlers, 3077 * and NMI handlers. 3078 * 3079 * Note that all CPUs must agree that the grace period extended beyond 3080 * all pre-existing RCU read-side critical section. On systems with more 3081 * than one CPU, this means that when "func()" is invoked, each CPU is 3082 * guaranteed to have executed a full memory barrier since the end of its 3083 * last RCU read-side critical section whose beginning preceded the call 3084 * to call_rcu(). It also means that each CPU executing an RCU read-side 3085 * critical section that continues beyond the start of "func()" must have 3086 * executed a memory barrier after the call_rcu() but before the beginning 3087 * of that RCU read-side critical section. Note that these guarantees 3088 * include CPUs that are offline, idle, or executing in user mode, as 3089 * well as CPUs that are executing in the kernel. 3090 * 3091 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3092 * resulting RCU callback function "func()", then both CPU A and CPU B are 3093 * guaranteed to execute a full memory barrier during the time interval 3094 * between the call to call_rcu() and the invocation of "func()" -- even 3095 * if CPU A and CPU B are the same CPU (but again only if the system has 3096 * more than one CPU). 3097 * 3098 * Implementation of these memory-ordering guarantees is described here: 3099 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3100 */ 3101void call_rcu(struct rcu_head *head, rcu_callback_t func) 3102{ 3103 static atomic_t doublefrees; 3104 unsigned long flags; 3105 struct rcu_data *rdp; 3106 bool was_alldone; 3107 3108 /* Misaligned rcu_head! */ 3109 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3110 3111 if (debug_rcu_head_queue(head)) { 3112 /* 3113 * Probable double call_rcu(), so leak the callback. 3114 * Use rcu:rcu_callback trace event to find the previous 3115 * time callback was passed to call_rcu(). 3116 */ 3117 if (atomic_inc_return(&doublefrees) < 4) { 3118 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 3119 mem_dump_obj(head); 3120 } 3121 WRITE_ONCE(head->func, rcu_leak_callback); 3122 return; 3123 } 3124 head->func = func; 3125 head->next = NULL; 3126 kasan_record_aux_stack_noalloc(head); 3127 local_irq_save(flags); 3128 rdp = this_cpu_ptr(&rcu_data); 3129 3130 /* Add the callback to our list. */ 3131 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 3132 // This can trigger due to call_rcu() from offline CPU: 3133 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 3134 WARN_ON_ONCE(!rcu_is_watching()); 3135 // Very early boot, before rcu_init(). Initialize if needed 3136 // and then drop through to queue the callback. 3137 if (rcu_segcblist_empty(&rdp->cblist)) 3138 rcu_segcblist_init(&rdp->cblist); 3139 } 3140 3141 check_cb_ovld(rdp); 3142 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 3143 return; // Enqueued onto ->nocb_bypass, so just leave. 3144 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 3145 rcu_segcblist_enqueue(&rdp->cblist, head); 3146 if (__is_kvfree_rcu_offset((unsigned long)func)) 3147 trace_rcu_kvfree_callback(rcu_state.name, head, 3148 (unsigned long)func, 3149 rcu_segcblist_n_cbs(&rdp->cblist)); 3150 else 3151 trace_rcu_callback(rcu_state.name, head, 3152 rcu_segcblist_n_cbs(&rdp->cblist)); 3153 3154 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 3155 3156 /* Go handle any RCU core processing required. */ 3157 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 3158 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 3159 } else { 3160 __call_rcu_core(rdp, head, flags); 3161 local_irq_restore(flags); 3162 } 3163} 3164EXPORT_SYMBOL_GPL(call_rcu); 3165 3166 3167/* Maximum number of jiffies to wait before draining a batch. */ 3168#define KFREE_DRAIN_JIFFIES (HZ / 50) 3169#define KFREE_N_BATCHES 2 3170#define FREE_N_CHANNELS 2 3171 3172/** 3173 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 3174 * @nr_records: Number of active pointers in the array 3175 * @next: Next bulk object in the block chain 3176 * @records: Array of the kvfree_rcu() pointers 3177 */ 3178struct kvfree_rcu_bulk_data { 3179 unsigned long nr_records; 3180 struct kvfree_rcu_bulk_data *next; 3181 void *records[]; 3182}; 3183 3184/* 3185 * This macro defines how many entries the "records" array 3186 * will contain. It is based on the fact that the size of 3187 * kvfree_rcu_bulk_data structure becomes exactly one page. 3188 */ 3189#define KVFREE_BULK_MAX_ENTR \ 3190 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 3191 3192/** 3193 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 3194 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 3195 * @head_free: List of kfree_rcu() objects waiting for a grace period 3196 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 3197 * @krcp: Pointer to @kfree_rcu_cpu structure 3198 */ 3199 3200struct kfree_rcu_cpu_work { 3201 struct rcu_work rcu_work; 3202 struct rcu_head *head_free; 3203 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 3204 struct kfree_rcu_cpu *krcp; 3205}; 3206 3207/** 3208 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 3209 * @head: List of kfree_rcu() objects not yet waiting for a grace period 3210 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 3211 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 3212 * @lock: Synchronize access to this structure 3213 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 3214 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending 3215 * @initialized: The @rcu_work fields have been initialized 3216 * @count: Number of objects for which GP not started 3217 * @bkvcache: 3218 * A simple cache list that contains objects for reuse purpose. 3219 * In order to save some per-cpu space the list is singular. 3220 * Even though it is lockless an access has to be protected by the 3221 * per-cpu lock. 3222 * @page_cache_work: A work to refill the cache when it is empty 3223 * @backoff_page_cache_fill: Delay cache refills 3224 * @work_in_progress: Indicates that page_cache_work is running 3225 * @hrtimer: A hrtimer for scheduling a page_cache_work 3226 * @nr_bkv_objs: number of allocated objects at @bkvcache. 3227 * 3228 * This is a per-CPU structure. The reason that it is not included in 3229 * the rcu_data structure is to permit this code to be extracted from 3230 * the RCU files. Such extraction could allow further optimization of 3231 * the interactions with the slab allocators. 3232 */ 3233struct kfree_rcu_cpu { 3234 struct rcu_head *head; 3235 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 3236 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 3237 raw_spinlock_t lock; 3238 struct delayed_work monitor_work; 3239 bool monitor_todo; 3240 bool initialized; 3241 int count; 3242 3243 struct delayed_work page_cache_work; 3244 atomic_t backoff_page_cache_fill; 3245 atomic_t work_in_progress; 3246 struct hrtimer hrtimer; 3247 3248 struct llist_head bkvcache; 3249 int nr_bkv_objs; 3250}; 3251 3252static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 3253 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 3254}; 3255 3256static __always_inline void 3257debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 3258{ 3259#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3260 int i; 3261 3262 for (i = 0; i < bhead->nr_records; i++) 3263 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 3264#endif 3265} 3266 3267static inline struct kfree_rcu_cpu * 3268krc_this_cpu_lock(unsigned long *flags) 3269{ 3270 struct kfree_rcu_cpu *krcp; 3271 3272 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 3273 krcp = this_cpu_ptr(&krc); 3274 raw_spin_lock(&krcp->lock); 3275 3276 return krcp; 3277} 3278 3279static inline void 3280krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 3281{ 3282 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3283} 3284 3285static inline struct kvfree_rcu_bulk_data * 3286get_cached_bnode(struct kfree_rcu_cpu *krcp) 3287{ 3288 if (!krcp->nr_bkv_objs) 3289 return NULL; 3290 3291 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 3292 return (struct kvfree_rcu_bulk_data *) 3293 llist_del_first(&krcp->bkvcache); 3294} 3295 3296static inline bool 3297put_cached_bnode(struct kfree_rcu_cpu *krcp, 3298 struct kvfree_rcu_bulk_data *bnode) 3299{ 3300 // Check the limit. 3301 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 3302 return false; 3303 3304 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 3305 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 3306 return true; 3307} 3308 3309static int 3310drain_page_cache(struct kfree_rcu_cpu *krcp) 3311{ 3312 unsigned long flags; 3313 struct llist_node *page_list, *pos, *n; 3314 int freed = 0; 3315 3316 raw_spin_lock_irqsave(&krcp->lock, flags); 3317 page_list = llist_del_all(&krcp->bkvcache); 3318 WRITE_ONCE(krcp->nr_bkv_objs, 0); 3319 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3320 3321 llist_for_each_safe(pos, n, page_list) { 3322 free_page((unsigned long)pos); 3323 freed++; 3324 } 3325 3326 return freed; 3327} 3328 3329/* 3330 * This function is invoked in workqueue context after a grace period. 3331 * It frees all the objects queued on ->bkvhead_free or ->head_free. 3332 */ 3333static void kfree_rcu_work(struct work_struct *work) 3334{ 3335 unsigned long flags; 3336 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3337 struct rcu_head *head, *next; 3338 struct kfree_rcu_cpu *krcp; 3339 struct kfree_rcu_cpu_work *krwp; 3340 int i, j; 3341 3342 krwp = container_of(to_rcu_work(work), 3343 struct kfree_rcu_cpu_work, rcu_work); 3344 krcp = krwp->krcp; 3345 3346 raw_spin_lock_irqsave(&krcp->lock, flags); 3347 // Channels 1 and 2. 3348 for (i = 0; i < FREE_N_CHANNELS; i++) { 3349 bkvhead[i] = krwp->bkvhead_free[i]; 3350 krwp->bkvhead_free[i] = NULL; 3351 } 3352 3353 // Channel 3. 3354 head = krwp->head_free; 3355 krwp->head_free = NULL; 3356 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3357 3358 // Handle the first two channels. 3359 for (i = 0; i < FREE_N_CHANNELS; i++) { 3360 for (; bkvhead[i]; bkvhead[i] = bnext) { 3361 bnext = bkvhead[i]->next; 3362 debug_rcu_bhead_unqueue(bkvhead[i]); 3363 3364 rcu_lock_acquire(&rcu_callback_map); 3365 if (i == 0) { // kmalloc() / kfree(). 3366 trace_rcu_invoke_kfree_bulk_callback( 3367 rcu_state.name, bkvhead[i]->nr_records, 3368 bkvhead[i]->records); 3369 3370 kfree_bulk(bkvhead[i]->nr_records, 3371 bkvhead[i]->records); 3372 } else { // vmalloc() / vfree(). 3373 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3374 trace_rcu_invoke_kvfree_callback( 3375 rcu_state.name, 3376 bkvhead[i]->records[j], 0); 3377 3378 vfree(bkvhead[i]->records[j]); 3379 } 3380 } 3381 rcu_lock_release(&rcu_callback_map); 3382 3383 raw_spin_lock_irqsave(&krcp->lock, flags); 3384 if (put_cached_bnode(krcp, bkvhead[i])) 3385 bkvhead[i] = NULL; 3386 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3387 3388 if (bkvhead[i]) 3389 free_page((unsigned long) bkvhead[i]); 3390 3391 cond_resched_tasks_rcu_qs(); 3392 } 3393 } 3394 3395 /* 3396 * This is used when the "bulk" path can not be used for the 3397 * double-argument of kvfree_rcu(). This happens when the 3398 * page-cache is empty, which means that objects are instead 3399 * queued on a linked list through their rcu_head structures. 3400 * This list is named "Channel 3". 3401 */ 3402 for (; head; head = next) { 3403 unsigned long offset = (unsigned long)head->func; 3404 void *ptr = (void *)head - offset; 3405 3406 next = head->next; 3407 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3408 rcu_lock_acquire(&rcu_callback_map); 3409 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3410 3411 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3412 kvfree(ptr); 3413 3414 rcu_lock_release(&rcu_callback_map); 3415 cond_resched_tasks_rcu_qs(); 3416 } 3417} 3418 3419/* 3420 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3421 */ 3422static void kfree_rcu_monitor(struct work_struct *work) 3423{ 3424 struct kfree_rcu_cpu *krcp = container_of(work, 3425 struct kfree_rcu_cpu, monitor_work.work); 3426 unsigned long flags; 3427 int i, j; 3428 3429 raw_spin_lock_irqsave(&krcp->lock, flags); 3430 3431 // Attempt to start a new batch. 3432 for (i = 0; i < KFREE_N_BATCHES; i++) { 3433 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3434 3435 // Try to detach bkvhead or head and attach it over any 3436 // available corresponding free channel. It can be that 3437 // a previous RCU batch is in progress, it means that 3438 // immediately to queue another one is not possible so 3439 // in that case the monitor work is rearmed. 3440 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3441 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3442 (krcp->head && !krwp->head_free)) { 3443 // Channel 1 corresponds to the SLAB-pointer bulk path. 3444 // Channel 2 corresponds to vmalloc-pointer bulk path. 3445 for (j = 0; j < FREE_N_CHANNELS; j++) { 3446 if (!krwp->bkvhead_free[j]) { 3447 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3448 krcp->bkvhead[j] = NULL; 3449 } 3450 } 3451 3452 // Channel 3 corresponds to both SLAB and vmalloc 3453 // objects queued on the linked list. 3454 if (!krwp->head_free) { 3455 krwp->head_free = krcp->head; 3456 krcp->head = NULL; 3457 } 3458 3459 WRITE_ONCE(krcp->count, 0); 3460 3461 // One work is per one batch, so there are three 3462 // "free channels", the batch can handle. It can 3463 // be that the work is in the pending state when 3464 // channels have been detached following by each 3465 // other. 3466 queue_rcu_work(system_wq, &krwp->rcu_work); 3467 } 3468 } 3469 3470 // If there is nothing to detach, it means that our job is 3471 // successfully done here. In case of having at least one 3472 // of the channels that is still busy we should rearm the 3473 // work to repeat an attempt. Because previous batches are 3474 // still in progress. 3475 if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) 3476 krcp->monitor_todo = false; 3477 else 3478 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3479 3480 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3481} 3482 3483static enum hrtimer_restart 3484schedule_page_work_fn(struct hrtimer *t) 3485{ 3486 struct kfree_rcu_cpu *krcp = 3487 container_of(t, struct kfree_rcu_cpu, hrtimer); 3488 3489 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3490 return HRTIMER_NORESTART; 3491} 3492 3493static void fill_page_cache_func(struct work_struct *work) 3494{ 3495 struct kvfree_rcu_bulk_data *bnode; 3496 struct kfree_rcu_cpu *krcp = 3497 container_of(work, struct kfree_rcu_cpu, 3498 page_cache_work.work); 3499 unsigned long flags; 3500 int nr_pages; 3501 bool pushed; 3502 int i; 3503 3504 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3505 1 : rcu_min_cached_objs; 3506 3507 for (i = 0; i < nr_pages; i++) { 3508 bnode = (struct kvfree_rcu_bulk_data *) 3509 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3510 3511 if (bnode) { 3512 raw_spin_lock_irqsave(&krcp->lock, flags); 3513 pushed = put_cached_bnode(krcp, bnode); 3514 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3515 3516 if (!pushed) { 3517 free_page((unsigned long) bnode); 3518 break; 3519 } 3520 } 3521 } 3522 3523 atomic_set(&krcp->work_in_progress, 0); 3524 atomic_set(&krcp->backoff_page_cache_fill, 0); 3525} 3526 3527static void 3528run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3529{ 3530 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3531 !atomic_xchg(&krcp->work_in_progress, 1)) { 3532 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3533 queue_delayed_work(system_wq, 3534 &krcp->page_cache_work, 3535 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3536 } else { 3537 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3538 krcp->hrtimer.function = schedule_page_work_fn; 3539 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3540 } 3541 } 3542} 3543 3544// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3545// state specified by flags. If can_alloc is true, the caller must 3546// be schedulable and not be holding any locks or mutexes that might be 3547// acquired by the memory allocator or anything that it might invoke. 3548// Returns true if ptr was successfully recorded, else the caller must 3549// use a fallback. 3550static inline bool 3551add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3552 unsigned long *flags, void *ptr, bool can_alloc) 3553{ 3554 struct kvfree_rcu_bulk_data *bnode; 3555 int idx; 3556 3557 *krcp = krc_this_cpu_lock(flags); 3558 if (unlikely(!(*krcp)->initialized)) 3559 return false; 3560 3561 idx = !!is_vmalloc_addr(ptr); 3562 3563 /* Check if a new block is required. */ 3564 if (!(*krcp)->bkvhead[idx] || 3565 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3566 bnode = get_cached_bnode(*krcp); 3567 if (!bnode && can_alloc) { 3568 krc_this_cpu_unlock(*krcp, *flags); 3569 3570 // __GFP_NORETRY - allows a light-weight direct reclaim 3571 // what is OK from minimizing of fallback hitting point of 3572 // view. Apart of that it forbids any OOM invoking what is 3573 // also beneficial since we are about to release memory soon. 3574 // 3575 // __GFP_NOMEMALLOC - prevents from consuming of all the 3576 // memory reserves. Please note we have a fallback path. 3577 // 3578 // __GFP_NOWARN - it is supposed that an allocation can 3579 // be failed under low memory or high memory pressure 3580 // scenarios. 3581 bnode = (struct kvfree_rcu_bulk_data *) 3582 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3583 *krcp = krc_this_cpu_lock(flags); 3584 } 3585 3586 if (!bnode) 3587 return false; 3588 3589 /* Initialize the new block. */ 3590 bnode->nr_records = 0; 3591 bnode->next = (*krcp)->bkvhead[idx]; 3592 3593 /* Attach it to the head. */ 3594 (*krcp)->bkvhead[idx] = bnode; 3595 } 3596 3597 /* Finally insert. */ 3598 (*krcp)->bkvhead[idx]->records 3599 [(*krcp)->bkvhead[idx]->nr_records++] = ptr; 3600 3601 return true; 3602} 3603 3604/* 3605 * Queue a request for lazy invocation of the appropriate free routine 3606 * after a grace period. Please note that three paths are maintained, 3607 * two for the common case using arrays of pointers and a third one that 3608 * is used only when the main paths cannot be used, for example, due to 3609 * memory pressure. 3610 * 3611 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3612 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3613 * be free'd in workqueue context. This allows us to: batch requests together to 3614 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3615 */ 3616void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3617{ 3618 unsigned long flags; 3619 struct kfree_rcu_cpu *krcp; 3620 bool success; 3621 void *ptr; 3622 3623 if (head) { 3624 ptr = (void *) head - (unsigned long) func; 3625 } else { 3626 /* 3627 * Please note there is a limitation for the head-less 3628 * variant, that is why there is a clear rule for such 3629 * objects: it can be used from might_sleep() context 3630 * only. For other places please embed an rcu_head to 3631 * your data. 3632 */ 3633 might_sleep(); 3634 ptr = (unsigned long *) func; 3635 } 3636 3637 // Queue the object but don't yet schedule the batch. 3638 if (debug_rcu_head_queue(ptr)) { 3639 // Probable double kfree_rcu(), just leak. 3640 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3641 __func__, head); 3642 3643 // Mark as success and leave. 3644 return; 3645 } 3646 3647 kasan_record_aux_stack_noalloc(ptr); 3648 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3649 if (!success) { 3650 run_page_cache_worker(krcp); 3651 3652 if (head == NULL) 3653 // Inline if kvfree_rcu(one_arg) call. 3654 goto unlock_return; 3655 3656 head->func = func; 3657 head->next = krcp->head; 3658 krcp->head = head; 3659 success = true; 3660 } 3661 3662 WRITE_ONCE(krcp->count, krcp->count + 1); 3663 3664 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3665 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3666 !krcp->monitor_todo) { 3667 krcp->monitor_todo = true; 3668 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3669 } 3670 3671unlock_return: 3672 krc_this_cpu_unlock(krcp, flags); 3673 3674 /* 3675 * Inline kvfree() after synchronize_rcu(). We can do 3676 * it from might_sleep() context only, so the current 3677 * CPU can pass the QS state. 3678 */ 3679 if (!success) { 3680 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3681 synchronize_rcu(); 3682 kvfree(ptr); 3683 } 3684} 3685EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3686 3687static unsigned long 3688kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3689{ 3690 int cpu; 3691 unsigned long count = 0; 3692 3693 /* Snapshot count of all CPUs */ 3694 for_each_possible_cpu(cpu) { 3695 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3696 3697 count += READ_ONCE(krcp->count); 3698 count += READ_ONCE(krcp->nr_bkv_objs); 3699 atomic_set(&krcp->backoff_page_cache_fill, 1); 3700 } 3701 3702 return count; 3703} 3704 3705static unsigned long 3706kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3707{ 3708 int cpu, freed = 0; 3709 3710 for_each_possible_cpu(cpu) { 3711 int count; 3712 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3713 3714 count = krcp->count; 3715 count += drain_page_cache(krcp); 3716 kfree_rcu_monitor(&krcp->monitor_work.work); 3717 3718 sc->nr_to_scan -= count; 3719 freed += count; 3720 3721 if (sc->nr_to_scan <= 0) 3722 break; 3723 } 3724 3725 return freed == 0 ? SHRINK_STOP : freed; 3726} 3727 3728static struct shrinker kfree_rcu_shrinker = { 3729 .count_objects = kfree_rcu_shrink_count, 3730 .scan_objects = kfree_rcu_shrink_scan, 3731 .batch = 0, 3732 .seeks = DEFAULT_SEEKS, 3733}; 3734 3735void __init kfree_rcu_scheduler_running(void) 3736{ 3737 int cpu; 3738 unsigned long flags; 3739 3740 for_each_possible_cpu(cpu) { 3741 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3742 3743 raw_spin_lock_irqsave(&krcp->lock, flags); 3744 if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) || 3745 krcp->monitor_todo) { 3746 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3747 continue; 3748 } 3749 krcp->monitor_todo = true; 3750 schedule_delayed_work_on(cpu, &krcp->monitor_work, 3751 KFREE_DRAIN_JIFFIES); 3752 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3753 } 3754} 3755 3756/* 3757 * During early boot, any blocking grace-period wait automatically 3758 * implies a grace period. Later on, this is never the case for PREEMPTION. 3759 * 3760 * However, because a context switch is a grace period for !PREEMPTION, any 3761 * blocking grace-period wait automatically implies a grace period if 3762 * there is only one CPU online at any point time during execution of 3763 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3764 * occasionally incorrectly indicate that there are multiple CPUs online 3765 * when there was in fact only one the whole time, as this just adds some 3766 * overhead: RCU still operates correctly. 3767 */ 3768static int rcu_blocking_is_gp(void) 3769{ 3770 int ret; 3771 3772 // Invoking preempt_model_*() too early gets a splat. 3773 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE || 3774 preempt_model_full() || preempt_model_rt()) 3775 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3776 might_sleep(); /* Check for RCU read-side critical section. */ 3777 preempt_disable(); 3778 /* 3779 * If the rcu_state.n_online_cpus counter is equal to one, 3780 * there is only one CPU, and that CPU sees all prior accesses 3781 * made by any CPU that was online at the time of its access. 3782 * Furthermore, if this counter is equal to one, its value cannot 3783 * change until after the preempt_enable() below. 3784 * 3785 * Furthermore, if rcu_state.n_online_cpus is equal to one here, 3786 * all later CPUs (both this one and any that come online later 3787 * on) are guaranteed to see all accesses prior to this point 3788 * in the code, without the need for additional memory barriers. 3789 * Those memory barriers are provided by CPU-hotplug code. 3790 */ 3791 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1; 3792 preempt_enable(); 3793 return ret; 3794} 3795 3796/** 3797 * synchronize_rcu - wait until a grace period has elapsed. 3798 * 3799 * Control will return to the caller some time after a full grace 3800 * period has elapsed, in other words after all currently executing RCU 3801 * read-side critical sections have completed. Note, however, that 3802 * upon return from synchronize_rcu(), the caller might well be executing 3803 * concurrently with new RCU read-side critical sections that began while 3804 * synchronize_rcu() was waiting. 3805 * 3806 * RCU read-side critical sections are delimited by rcu_read_lock() 3807 * and rcu_read_unlock(), and may be nested. In addition, but only in 3808 * v5.0 and later, regions of code across which interrupts, preemption, 3809 * or softirqs have been disabled also serve as RCU read-side critical 3810 * sections. This includes hardware interrupt handlers, softirq handlers, 3811 * and NMI handlers. 3812 * 3813 * Note that this guarantee implies further memory-ordering guarantees. 3814 * On systems with more than one CPU, when synchronize_rcu() returns, 3815 * each CPU is guaranteed to have executed a full memory barrier since 3816 * the end of its last RCU read-side critical section whose beginning 3817 * preceded the call to synchronize_rcu(). In addition, each CPU having 3818 * an RCU read-side critical section that extends beyond the return from 3819 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3820 * after the beginning of synchronize_rcu() and before the beginning of 3821 * that RCU read-side critical section. Note that these guarantees include 3822 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3823 * that are executing in the kernel. 3824 * 3825 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3826 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3827 * to have executed a full memory barrier during the execution of 3828 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3829 * again only if the system has more than one CPU). 3830 * 3831 * Implementation of these memory-ordering guarantees is described here: 3832 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3833 */ 3834void synchronize_rcu(void) 3835{ 3836 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3837 lock_is_held(&rcu_lock_map) || 3838 lock_is_held(&rcu_sched_lock_map), 3839 "Illegal synchronize_rcu() in RCU read-side critical section"); 3840 if (rcu_blocking_is_gp()) 3841 return; // Context allows vacuous grace periods. 3842 if (rcu_gp_is_expedited()) 3843 synchronize_rcu_expedited(); 3844 else 3845 wait_rcu_gp(call_rcu); 3846} 3847EXPORT_SYMBOL_GPL(synchronize_rcu); 3848 3849/** 3850 * get_state_synchronize_rcu - Snapshot current RCU state 3851 * 3852 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3853 * or poll_state_synchronize_rcu() to determine whether or not a full 3854 * grace period has elapsed in the meantime. 3855 */ 3856unsigned long get_state_synchronize_rcu(void) 3857{ 3858 /* 3859 * Any prior manipulation of RCU-protected data must happen 3860 * before the load from ->gp_seq. 3861 */ 3862 smp_mb(); /* ^^^ */ 3863 return rcu_seq_snap(&rcu_state.gp_seq); 3864} 3865EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3866 3867/** 3868 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3869 * 3870 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3871 * or poll_state_synchronize_rcu() to determine whether or not a full 3872 * grace period has elapsed in the meantime. If the needed grace period 3873 * is not already slated to start, notifies RCU core of the need for that 3874 * grace period. 3875 * 3876 * Interrupts must be enabled for the case where it is necessary to awaken 3877 * the grace-period kthread. 3878 */ 3879unsigned long start_poll_synchronize_rcu(void) 3880{ 3881 unsigned long flags; 3882 unsigned long gp_seq = get_state_synchronize_rcu(); 3883 bool needwake; 3884 struct rcu_data *rdp; 3885 struct rcu_node *rnp; 3886 3887 lockdep_assert_irqs_enabled(); 3888 local_irq_save(flags); 3889 rdp = this_cpu_ptr(&rcu_data); 3890 rnp = rdp->mynode; 3891 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3892 needwake = rcu_start_this_gp(rnp, rdp, gp_seq); 3893 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3894 if (needwake) 3895 rcu_gp_kthread_wake(); 3896 return gp_seq; 3897} 3898EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3899 3900/** 3901 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period 3902 * 3903 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3904 * 3905 * If a full RCU grace period has elapsed since the earlier call from 3906 * which oldstate was obtained, return @true, otherwise return @false. 3907 * If @false is returned, it is the caller's responsibility to invoke this 3908 * function later on until it does return @true. Alternatively, the caller 3909 * can explicitly wait for a grace period, for example, by passing @oldstate 3910 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3911 * 3912 * Yes, this function does not take counter wrap into account. 3913 * But counter wrap is harmless. If the counter wraps, we have waited for 3914 * more than 2 billion grace periods (and way more on a 64-bit system!). 3915 * Those needing to keep oldstate values for very long time periods 3916 * (many hours even on 32-bit systems) should check them occasionally 3917 * and either refresh them or set a flag indicating that the grace period 3918 * has completed. 3919 * 3920 * This function provides the same memory-ordering guarantees that 3921 * would be provided by a synchronize_rcu() that was invoked at the call 3922 * to the function that provided @oldstate, and that returned at the end 3923 * of this function. 3924 */ 3925bool poll_state_synchronize_rcu(unsigned long oldstate) 3926{ 3927 if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) { 3928 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3929 return true; 3930 } 3931 return false; 3932} 3933EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3934 3935/** 3936 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3937 * 3938 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3939 * 3940 * If a full RCU grace period has elapsed since the earlier call to 3941 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3942 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3943 * 3944 * Yes, this function does not take counter wrap into account. But 3945 * counter wrap is harmless. If the counter wraps, we have waited for 3946 * more than 2 billion grace periods (and way more on a 64-bit system!), 3947 * so waiting for one additional grace period should be just fine. 3948 * 3949 * This function provides the same memory-ordering guarantees that 3950 * would be provided by a synchronize_rcu() that was invoked at the call 3951 * to the function that provided @oldstate, and that returned at the end 3952 * of this function. 3953 */ 3954void cond_synchronize_rcu(unsigned long oldstate) 3955{ 3956 if (!poll_state_synchronize_rcu(oldstate)) 3957 synchronize_rcu(); 3958} 3959EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3960 3961/* 3962 * Check to see if there is any immediate RCU-related work to be done by 3963 * the current CPU, returning 1 if so and zero otherwise. The checks are 3964 * in order of increasing expense: checks that can be carried out against 3965 * CPU-local state are performed first. However, we must check for CPU 3966 * stalls first, else we might not get a chance. 3967 */ 3968static int rcu_pending(int user) 3969{ 3970 bool gp_in_progress; 3971 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3972 struct rcu_node *rnp = rdp->mynode; 3973 3974 lockdep_assert_irqs_disabled(); 3975 3976 /* Check for CPU stalls, if enabled. */ 3977 check_cpu_stall(rdp); 3978 3979 /* Does this CPU need a deferred NOCB wakeup? */ 3980 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3981 return 1; 3982 3983 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3984 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3985 return 0; 3986 3987 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3988 gp_in_progress = rcu_gp_in_progress(); 3989 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3990 return 1; 3991 3992 /* Does this CPU have callbacks ready to invoke? */ 3993 if (!rcu_rdp_is_offloaded(rdp) && 3994 rcu_segcblist_ready_cbs(&rdp->cblist)) 3995 return 1; 3996 3997 /* Has RCU gone idle with this CPU needing another grace period? */ 3998 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3999 !rcu_rdp_is_offloaded(rdp) && 4000 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 4001 return 1; 4002 4003 /* Have RCU grace period completed or started? */ 4004 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 4005 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 4006 return 1; 4007 4008 /* nothing to do */ 4009 return 0; 4010} 4011 4012/* 4013 * Helper function for rcu_barrier() tracing. If tracing is disabled, 4014 * the compiler is expected to optimize this away. 4015 */ 4016static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 4017{ 4018 trace_rcu_barrier(rcu_state.name, s, cpu, 4019 atomic_read(&rcu_state.barrier_cpu_count), done); 4020} 4021 4022/* 4023 * RCU callback function for rcu_barrier(). If we are last, wake 4024 * up the task executing rcu_barrier(). 4025 * 4026 * Note that the value of rcu_state.barrier_sequence must be captured 4027 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 4028 * other CPUs might count the value down to zero before this CPU gets 4029 * around to invoking rcu_barrier_trace(), which might result in bogus 4030 * data from the next instance of rcu_barrier(). 4031 */ 4032static void rcu_barrier_callback(struct rcu_head *rhp) 4033{ 4034 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 4035 4036 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 4037 rcu_barrier_trace(TPS("LastCB"), -1, s); 4038 complete(&rcu_state.barrier_completion); 4039 } else { 4040 rcu_barrier_trace(TPS("CB"), -1, s); 4041 } 4042} 4043 4044/* 4045 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 4046 */ 4047static void rcu_barrier_entrain(struct rcu_data *rdp) 4048{ 4049 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 4050 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 4051 4052 lockdep_assert_held(&rcu_state.barrier_lock); 4053 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 4054 return; 4055 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 4056 rdp->barrier_head.func = rcu_barrier_callback; 4057 debug_rcu_head_queue(&rdp->barrier_head); 4058 rcu_nocb_lock(rdp); 4059 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 4060 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 4061 atomic_inc(&rcu_state.barrier_cpu_count); 4062 } else { 4063 debug_rcu_head_unqueue(&rdp->barrier_head); 4064 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 4065 } 4066 rcu_nocb_unlock(rdp); 4067 smp_store_release(&rdp->barrier_seq_snap, gseq); 4068} 4069 4070/* 4071 * Called with preemption disabled, and from cross-cpu IRQ context. 4072 */ 4073static void rcu_barrier_handler(void *cpu_in) 4074{ 4075 uintptr_t cpu = (uintptr_t)cpu_in; 4076 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4077 4078 lockdep_assert_irqs_disabled(); 4079 WARN_ON_ONCE(cpu != rdp->cpu); 4080 WARN_ON_ONCE(cpu != smp_processor_id()); 4081 raw_spin_lock(&rcu_state.barrier_lock); 4082 rcu_barrier_entrain(rdp); 4083 raw_spin_unlock(&rcu_state.barrier_lock); 4084} 4085 4086/** 4087 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 4088 * 4089 * Note that this primitive does not necessarily wait for an RCU grace period 4090 * to complete. For example, if there are no RCU callbacks queued anywhere 4091 * in the system, then rcu_barrier() is within its rights to return 4092 * immediately, without waiting for anything, much less an RCU grace period. 4093 */ 4094void rcu_barrier(void) 4095{ 4096 uintptr_t cpu; 4097 unsigned long flags; 4098 unsigned long gseq; 4099 struct rcu_data *rdp; 4100 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4101 4102 rcu_barrier_trace(TPS("Begin"), -1, s); 4103 4104 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4105 mutex_lock(&rcu_state.barrier_mutex); 4106 4107 /* Did someone else do our work for us? */ 4108 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4109 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 4110 smp_mb(); /* caller's subsequent code after above check. */ 4111 mutex_unlock(&rcu_state.barrier_mutex); 4112 return; 4113 } 4114 4115 /* Mark the start of the barrier operation. */ 4116 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4117 rcu_seq_start(&rcu_state.barrier_sequence); 4118 gseq = rcu_state.barrier_sequence; 4119 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4120 4121 /* 4122 * Initialize the count to two rather than to zero in order 4123 * to avoid a too-soon return to zero in case of an immediate 4124 * invocation of the just-enqueued callback (or preemption of 4125 * this task). Exclude CPU-hotplug operations to ensure that no 4126 * offline non-offloaded CPU has callbacks queued. 4127 */ 4128 init_completion(&rcu_state.barrier_completion); 4129 atomic_set(&rcu_state.barrier_cpu_count, 2); 4130 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4131 4132 /* 4133 * Force each CPU with callbacks to register a new callback. 4134 * When that callback is invoked, we will know that all of the 4135 * corresponding CPU's preceding callbacks have been invoked. 4136 */ 4137 for_each_possible_cpu(cpu) { 4138 rdp = per_cpu_ptr(&rcu_data, cpu); 4139retry: 4140 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 4141 continue; 4142 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4143 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4144 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4145 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4146 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4147 continue; 4148 } 4149 if (!rcu_rdp_cpu_online(rdp)) { 4150 rcu_barrier_entrain(rdp); 4151 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4152 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4153 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4154 continue; 4155 } 4156 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4157 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4158 schedule_timeout_uninterruptible(1); 4159 goto retry; 4160 } 4161 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4162 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4163 } 4164 4165 /* 4166 * Now that we have an rcu_barrier_callback() callback on each 4167 * CPU, and thus each counted, remove the initial count. 4168 */ 4169 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4170 complete(&rcu_state.barrier_completion); 4171 4172 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4173 wait_for_completion(&rcu_state.barrier_completion); 4174 4175 /* Mark the end of the barrier operation. */ 4176 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4177 rcu_seq_end(&rcu_state.barrier_sequence); 4178 gseq = rcu_state.barrier_sequence; 4179 for_each_possible_cpu(cpu) { 4180 rdp = per_cpu_ptr(&rcu_data, cpu); 4181 4182 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4183 } 4184 4185 /* Other rcu_barrier() invocations can now safely proceed. */ 4186 mutex_unlock(&rcu_state.barrier_mutex); 4187} 4188EXPORT_SYMBOL_GPL(rcu_barrier); 4189 4190/* 4191 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4192 * first CPU in a given leaf rcu_node structure coming online. The caller 4193 * must hold the corresponding leaf rcu_node ->lock with interrupts 4194 * disabled. 4195 */ 4196static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4197{ 4198 long mask; 4199 long oldmask; 4200 struct rcu_node *rnp = rnp_leaf; 4201 4202 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4203 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4204 for (;;) { 4205 mask = rnp->grpmask; 4206 rnp = rnp->parent; 4207 if (rnp == NULL) 4208 return; 4209 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4210 oldmask = rnp->qsmaskinit; 4211 rnp->qsmaskinit |= mask; 4212 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4213 if (oldmask) 4214 return; 4215 } 4216} 4217 4218/* 4219 * Do boot-time initialization of a CPU's per-CPU RCU data. 4220 */ 4221static void __init 4222rcu_boot_init_percpu_data(int cpu) 4223{ 4224 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4225 4226 /* Set up local state, ensuring consistent view of global state. */ 4227 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4228 INIT_WORK(&rdp->strict_work, strict_work_handler); 4229 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 4230 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 4231 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4232 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4233 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4234 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4235 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4236 rdp->last_sched_clock = jiffies; 4237 rdp->cpu = cpu; 4238 rcu_boot_init_nocb_percpu_data(rdp); 4239} 4240 4241/* 4242 * Invoked early in the CPU-online process, when pretty much all services 4243 * are available. The incoming CPU is not present. 4244 * 4245 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4246 * offline event can be happening at a given time. Note also that we can 4247 * accept some slop in the rsp->gp_seq access due to the fact that this 4248 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4249 * And any offloaded callbacks are being numbered elsewhere. 4250 */ 4251int rcutree_prepare_cpu(unsigned int cpu) 4252{ 4253 unsigned long flags; 4254 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4255 struct rcu_node *rnp = rcu_get_root(); 4256 4257 /* Set up local state, ensuring consistent view of global state. */ 4258 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4259 rdp->qlen_last_fqs_check = 0; 4260 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4261 rdp->blimit = blimit; 4262 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4263 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4264 4265 /* 4266 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4267 * (re-)initialized. 4268 */ 4269 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4270 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4271 4272 /* 4273 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4274 * propagation up the rcu_node tree will happen at the beginning 4275 * of the next grace period. 4276 */ 4277 rnp = rdp->mynode; 4278 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4279 rdp->beenonline = true; /* We have now been online. */ 4280 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4281 rdp->gp_seq_needed = rdp->gp_seq; 4282 rdp->cpu_no_qs.b.norm = true; 4283 rdp->core_needs_qs = false; 4284 rdp->rcu_iw_pending = false; 4285 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4286 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4287 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4288 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4289 rcu_spawn_one_boost_kthread(rnp); 4290 rcu_spawn_cpu_nocb_kthread(cpu); 4291 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4292 4293 return 0; 4294} 4295 4296/* 4297 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4298 */ 4299static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4300{ 4301 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4302 4303 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4304} 4305 4306/* 4307 * Near the end of the CPU-online process. Pretty much all services 4308 * enabled, and the CPU is now very much alive. 4309 */ 4310int rcutree_online_cpu(unsigned int cpu) 4311{ 4312 unsigned long flags; 4313 struct rcu_data *rdp; 4314 struct rcu_node *rnp; 4315 4316 rdp = per_cpu_ptr(&rcu_data, cpu); 4317 rnp = rdp->mynode; 4318 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4319 rnp->ffmask |= rdp->grpmask; 4320 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4321 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4322 return 0; /* Too early in boot for scheduler work. */ 4323 sync_sched_exp_online_cleanup(cpu); 4324 rcutree_affinity_setting(cpu, -1); 4325 4326 // Stop-machine done, so allow nohz_full to disable tick. 4327 tick_dep_clear(TICK_DEP_BIT_RCU); 4328 return 0; 4329} 4330 4331/* 4332 * Near the beginning of the process. The CPU is still very much alive 4333 * with pretty much all services enabled. 4334 */ 4335int rcutree_offline_cpu(unsigned int cpu) 4336{ 4337 unsigned long flags; 4338 struct rcu_data *rdp; 4339 struct rcu_node *rnp; 4340 4341 rdp = per_cpu_ptr(&rcu_data, cpu); 4342 rnp = rdp->mynode; 4343 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4344 rnp->ffmask &= ~rdp->grpmask; 4345 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4346 4347 rcutree_affinity_setting(cpu, cpu); 4348 4349 // nohz_full CPUs need the tick for stop-machine to work quickly 4350 tick_dep_set(TICK_DEP_BIT_RCU); 4351 return 0; 4352} 4353 4354/* 4355 * Mark the specified CPU as being online so that subsequent grace periods 4356 * (both expedited and normal) will wait on it. Note that this means that 4357 * incoming CPUs are not allowed to use RCU read-side critical sections 4358 * until this function is called. Failing to observe this restriction 4359 * will result in lockdep splats. 4360 * 4361 * Note that this function is special in that it is invoked directly 4362 * from the incoming CPU rather than from the cpuhp_step mechanism. 4363 * This is because this function must be invoked at a precise location. 4364 */ 4365void rcu_cpu_starting(unsigned int cpu) 4366{ 4367 unsigned long flags; 4368 unsigned long mask; 4369 struct rcu_data *rdp; 4370 struct rcu_node *rnp; 4371 bool newcpu; 4372 4373 rdp = per_cpu_ptr(&rcu_data, cpu); 4374 if (rdp->cpu_started) 4375 return; 4376 rdp->cpu_started = true; 4377 4378 rnp = rdp->mynode; 4379 mask = rdp->grpmask; 4380 local_irq_save(flags); 4381 arch_spin_lock(&rcu_state.ofl_lock); 4382 rcu_dynticks_eqs_online(); 4383 raw_spin_lock(&rcu_state.barrier_lock); 4384 raw_spin_lock_rcu_node(rnp); 4385 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4386 raw_spin_unlock(&rcu_state.barrier_lock); 4387 newcpu = !(rnp->expmaskinitnext & mask); 4388 rnp->expmaskinitnext |= mask; 4389 /* Allow lockless access for expedited grace periods. */ 4390 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4391 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4392 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4393 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4394 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4395 4396 /* An incoming CPU should never be blocking a grace period. */ 4397 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4398 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4399 unsigned long flags2; 4400 4401 local_irq_save(flags2); 4402 rcu_disable_urgency_upon_qs(rdp); 4403 /* Report QS -after- changing ->qsmaskinitnext! */ 4404 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2); 4405 } else { 4406 raw_spin_unlock_rcu_node(rnp); 4407 } 4408 arch_spin_unlock(&rcu_state.ofl_lock); 4409 local_irq_restore(flags); 4410 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4411} 4412 4413/* 4414 * The outgoing function has no further need of RCU, so remove it from 4415 * the rcu_node tree's ->qsmaskinitnext bit masks. 4416 * 4417 * Note that this function is special in that it is invoked directly 4418 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4419 * This is because this function must be invoked at a precise location. 4420 */ 4421void rcu_report_dead(unsigned int cpu) 4422{ 4423 unsigned long flags, seq_flags; 4424 unsigned long mask; 4425 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4426 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4427 4428 // Do any dangling deferred wakeups. 4429 do_nocb_deferred_wakeup(rdp); 4430 4431 /* QS for any half-done expedited grace period. */ 4432 rcu_report_exp_rdp(rdp); 4433 rcu_preempt_deferred_qs(current); 4434 4435 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4436 mask = rdp->grpmask; 4437 local_irq_save(seq_flags); 4438 arch_spin_lock(&rcu_state.ofl_lock); 4439 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4440 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4441 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4442 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4443 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4444 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4445 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4446 } 4447 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4448 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4449 arch_spin_unlock(&rcu_state.ofl_lock); 4450 local_irq_restore(seq_flags); 4451 4452 rdp->cpu_started = false; 4453} 4454 4455#ifdef CONFIG_HOTPLUG_CPU 4456/* 4457 * The outgoing CPU has just passed through the dying-idle state, and we 4458 * are being invoked from the CPU that was IPIed to continue the offline 4459 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4460 */ 4461void rcutree_migrate_callbacks(int cpu) 4462{ 4463 unsigned long flags; 4464 struct rcu_data *my_rdp; 4465 struct rcu_node *my_rnp; 4466 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4467 bool needwake; 4468 4469 if (rcu_rdp_is_offloaded(rdp) || 4470 rcu_segcblist_empty(&rdp->cblist)) 4471 return; /* No callbacks to migrate. */ 4472 4473 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4474 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4475 rcu_barrier_entrain(rdp); 4476 my_rdp = this_cpu_ptr(&rcu_data); 4477 my_rnp = my_rdp->mynode; 4478 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4479 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 4480 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4481 /* Leverage recent GPs and set GP for new callbacks. */ 4482 needwake = rcu_advance_cbs(my_rnp, rdp) || 4483 rcu_advance_cbs(my_rnp, my_rdp); 4484 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4485 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4486 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4487 rcu_segcblist_disable(&rdp->cblist); 4488 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4489 if (rcu_rdp_is_offloaded(my_rdp)) { 4490 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4491 __call_rcu_nocb_wake(my_rdp, true, flags); 4492 } else { 4493 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4494 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4495 } 4496 if (needwake) 4497 rcu_gp_kthread_wake(); 4498 lockdep_assert_irqs_enabled(); 4499 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4500 !rcu_segcblist_empty(&rdp->cblist), 4501 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4502 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4503 rcu_segcblist_first_cb(&rdp->cblist)); 4504} 4505#endif 4506 4507/* 4508 * On non-huge systems, use expedited RCU grace periods to make suspend 4509 * and hibernation run faster. 4510 */ 4511static int rcu_pm_notify(struct notifier_block *self, 4512 unsigned long action, void *hcpu) 4513{ 4514 switch (action) { 4515 case PM_HIBERNATION_PREPARE: 4516 case PM_SUSPEND_PREPARE: 4517 rcu_expedite_gp(); 4518 break; 4519 case PM_POST_HIBERNATION: 4520 case PM_POST_SUSPEND: 4521 rcu_unexpedite_gp(); 4522 break; 4523 default: 4524 break; 4525 } 4526 return NOTIFY_OK; 4527} 4528 4529#ifdef CONFIG_RCU_EXP_KTHREAD 4530struct kthread_worker *rcu_exp_gp_kworker; 4531struct kthread_worker *rcu_exp_par_gp_kworker; 4532 4533static void __init rcu_start_exp_gp_kworkers(void) 4534{ 4535 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4536 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4537 struct sched_param param = { .sched_priority = kthread_prio }; 4538 4539 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4540 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4541 pr_err("Failed to create %s!\n", gp_kworker_name); 4542 return; 4543 } 4544 4545 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4546 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4547 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4548 kthread_destroy_worker(rcu_exp_gp_kworker); 4549 return; 4550 } 4551 4552 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4553 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4554 ¶m); 4555} 4556 4557static inline void rcu_alloc_par_gp_wq(void) 4558{ 4559} 4560#else /* !CONFIG_RCU_EXP_KTHREAD */ 4561struct workqueue_struct *rcu_par_gp_wq; 4562 4563static void __init rcu_start_exp_gp_kworkers(void) 4564{ 4565} 4566 4567static inline void rcu_alloc_par_gp_wq(void) 4568{ 4569 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4570 WARN_ON(!rcu_par_gp_wq); 4571} 4572#endif /* CONFIG_RCU_EXP_KTHREAD */ 4573 4574/* 4575 * Spawn the kthreads that handle RCU's grace periods. 4576 */ 4577static int __init rcu_spawn_gp_kthread(void) 4578{ 4579 unsigned long flags; 4580 struct rcu_node *rnp; 4581 struct sched_param sp; 4582 struct task_struct *t; 4583 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4584 4585 rcu_scheduler_fully_active = 1; 4586 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4587 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4588 return 0; 4589 if (kthread_prio) { 4590 sp.sched_priority = kthread_prio; 4591 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4592 } 4593 rnp = rcu_get_root(); 4594 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4595 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4596 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4597 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4598 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4599 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4600 wake_up_process(t); 4601 /* This is a pre-SMP initcall, we expect a single CPU */ 4602 WARN_ON(num_online_cpus() > 1); 4603 /* 4604 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4605 * due to rcu_scheduler_fully_active. 4606 */ 4607 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4608 rcu_spawn_one_boost_kthread(rdp->mynode); 4609 rcu_spawn_core_kthreads(); 4610 /* Create kthread worker for expedited GPs */ 4611 rcu_start_exp_gp_kworkers(); 4612 return 0; 4613} 4614early_initcall(rcu_spawn_gp_kthread); 4615 4616/* 4617 * This function is invoked towards the end of the scheduler's 4618 * initialization process. Before this is called, the idle task might 4619 * contain synchronous grace-period primitives (during which time, this idle 4620 * task is booting the system, and such primitives are no-ops). After this 4621 * function is called, any synchronous grace-period primitives are run as 4622 * expedited, with the requesting task driving the grace period forward. 4623 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4624 * runtime RCU functionality. 4625 */ 4626void rcu_scheduler_starting(void) 4627{ 4628 WARN_ON(num_online_cpus() != 1); 4629 WARN_ON(nr_context_switches() > 0); 4630 rcu_test_sync_prims(); 4631 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4632 rcu_test_sync_prims(); 4633} 4634 4635/* 4636 * Helper function for rcu_init() that initializes the rcu_state structure. 4637 */ 4638static void __init rcu_init_one(void) 4639{ 4640 static const char * const buf[] = RCU_NODE_NAME_INIT; 4641 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4642 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4643 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4644 4645 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4646 int cpustride = 1; 4647 int i; 4648 int j; 4649 struct rcu_node *rnp; 4650 4651 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4652 4653 /* Silence gcc 4.8 false positive about array index out of range. */ 4654 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4655 panic("rcu_init_one: rcu_num_lvls out of range"); 4656 4657 /* Initialize the level-tracking arrays. */ 4658 4659 for (i = 1; i < rcu_num_lvls; i++) 4660 rcu_state.level[i] = 4661 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4662 rcu_init_levelspread(levelspread, num_rcu_lvl); 4663 4664 /* Initialize the elements themselves, starting from the leaves. */ 4665 4666 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4667 cpustride *= levelspread[i]; 4668 rnp = rcu_state.level[i]; 4669 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4670 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4671 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4672 &rcu_node_class[i], buf[i]); 4673 raw_spin_lock_init(&rnp->fqslock); 4674 lockdep_set_class_and_name(&rnp->fqslock, 4675 &rcu_fqs_class[i], fqs[i]); 4676 rnp->gp_seq = rcu_state.gp_seq; 4677 rnp->gp_seq_needed = rcu_state.gp_seq; 4678 rnp->completedqs = rcu_state.gp_seq; 4679 rnp->qsmask = 0; 4680 rnp->qsmaskinit = 0; 4681 rnp->grplo = j * cpustride; 4682 rnp->grphi = (j + 1) * cpustride - 1; 4683 if (rnp->grphi >= nr_cpu_ids) 4684 rnp->grphi = nr_cpu_ids - 1; 4685 if (i == 0) { 4686 rnp->grpnum = 0; 4687 rnp->grpmask = 0; 4688 rnp->parent = NULL; 4689 } else { 4690 rnp->grpnum = j % levelspread[i - 1]; 4691 rnp->grpmask = BIT(rnp->grpnum); 4692 rnp->parent = rcu_state.level[i - 1] + 4693 j / levelspread[i - 1]; 4694 } 4695 rnp->level = i; 4696 INIT_LIST_HEAD(&rnp->blkd_tasks); 4697 rcu_init_one_nocb(rnp); 4698 init_waitqueue_head(&rnp->exp_wq[0]); 4699 init_waitqueue_head(&rnp->exp_wq[1]); 4700 init_waitqueue_head(&rnp->exp_wq[2]); 4701 init_waitqueue_head(&rnp->exp_wq[3]); 4702 spin_lock_init(&rnp->exp_lock); 4703 mutex_init(&rnp->boost_kthread_mutex); 4704 } 4705 } 4706 4707 init_swait_queue_head(&rcu_state.gp_wq); 4708 init_swait_queue_head(&rcu_state.expedited_wq); 4709 rnp = rcu_first_leaf_node(); 4710 for_each_possible_cpu(i) { 4711 while (i > rnp->grphi) 4712 rnp++; 4713 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4714 rcu_boot_init_percpu_data(i); 4715 } 4716} 4717 4718/* 4719 * Force priority from the kernel command-line into range. 4720 */ 4721static void __init sanitize_kthread_prio(void) 4722{ 4723 int kthread_prio_in = kthread_prio; 4724 4725 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4726 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4727 kthread_prio = 2; 4728 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4729 kthread_prio = 1; 4730 else if (kthread_prio < 0) 4731 kthread_prio = 0; 4732 else if (kthread_prio > 99) 4733 kthread_prio = 99; 4734 4735 if (kthread_prio != kthread_prio_in) 4736 pr_alert("%s: Limited prio to %d from %d\n", 4737 __func__, kthread_prio, kthread_prio_in); 4738} 4739 4740/* 4741 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4742 * replace the definitions in tree.h because those are needed to size 4743 * the ->node array in the rcu_state structure. 4744 */ 4745void rcu_init_geometry(void) 4746{ 4747 ulong d; 4748 int i; 4749 static unsigned long old_nr_cpu_ids; 4750 int rcu_capacity[RCU_NUM_LVLS]; 4751 static bool initialized; 4752 4753 if (initialized) { 4754 /* 4755 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4756 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4757 */ 4758 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4759 return; 4760 } 4761 4762 old_nr_cpu_ids = nr_cpu_ids; 4763 initialized = true; 4764 4765 /* 4766 * Initialize any unspecified boot parameters. 4767 * The default values of jiffies_till_first_fqs and 4768 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4769 * value, which is a function of HZ, then adding one for each 4770 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4771 */ 4772 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4773 if (jiffies_till_first_fqs == ULONG_MAX) 4774 jiffies_till_first_fqs = d; 4775 if (jiffies_till_next_fqs == ULONG_MAX) 4776 jiffies_till_next_fqs = d; 4777 adjust_jiffies_till_sched_qs(); 4778 4779 /* If the compile-time values are accurate, just leave. */ 4780 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4781 nr_cpu_ids == NR_CPUS) 4782 return; 4783 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4784 rcu_fanout_leaf, nr_cpu_ids); 4785 4786 /* 4787 * The boot-time rcu_fanout_leaf parameter must be at least two 4788 * and cannot exceed the number of bits in the rcu_node masks. 4789 * Complain and fall back to the compile-time values if this 4790 * limit is exceeded. 4791 */ 4792 if (rcu_fanout_leaf < 2 || 4793 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4794 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4795 WARN_ON(1); 4796 return; 4797 } 4798 4799 /* 4800 * Compute number of nodes that can be handled an rcu_node tree 4801 * with the given number of levels. 4802 */ 4803 rcu_capacity[0] = rcu_fanout_leaf; 4804 for (i = 1; i < RCU_NUM_LVLS; i++) 4805 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4806 4807 /* 4808 * The tree must be able to accommodate the configured number of CPUs. 4809 * If this limit is exceeded, fall back to the compile-time values. 4810 */ 4811 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4812 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4813 WARN_ON(1); 4814 return; 4815 } 4816 4817 /* Calculate the number of levels in the tree. */ 4818 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4819 } 4820 rcu_num_lvls = i + 1; 4821 4822 /* Calculate the number of rcu_nodes at each level of the tree. */ 4823 for (i = 0; i < rcu_num_lvls; i++) { 4824 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4825 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4826 } 4827 4828 /* Calculate the total number of rcu_node structures. */ 4829 rcu_num_nodes = 0; 4830 for (i = 0; i < rcu_num_lvls; i++) 4831 rcu_num_nodes += num_rcu_lvl[i]; 4832} 4833 4834/* 4835 * Dump out the structure of the rcu_node combining tree associated 4836 * with the rcu_state structure. 4837 */ 4838static void __init rcu_dump_rcu_node_tree(void) 4839{ 4840 int level = 0; 4841 struct rcu_node *rnp; 4842 4843 pr_info("rcu_node tree layout dump\n"); 4844 pr_info(" "); 4845 rcu_for_each_node_breadth_first(rnp) { 4846 if (rnp->level != level) { 4847 pr_cont("\n"); 4848 pr_info(" "); 4849 level = rnp->level; 4850 } 4851 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4852 } 4853 pr_cont("\n"); 4854} 4855 4856struct workqueue_struct *rcu_gp_wq; 4857 4858static void __init kfree_rcu_batch_init(void) 4859{ 4860 int cpu; 4861 int i; 4862 4863 /* Clamp it to [0:100] seconds interval. */ 4864 if (rcu_delay_page_cache_fill_msec < 0 || 4865 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4866 4867 rcu_delay_page_cache_fill_msec = 4868 clamp(rcu_delay_page_cache_fill_msec, 0, 4869 (int) (100 * MSEC_PER_SEC)); 4870 4871 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4872 rcu_delay_page_cache_fill_msec); 4873 } 4874 4875 for_each_possible_cpu(cpu) { 4876 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4877 4878 for (i = 0; i < KFREE_N_BATCHES; i++) { 4879 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4880 krcp->krw_arr[i].krcp = krcp; 4881 } 4882 4883 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4884 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4885 krcp->initialized = true; 4886 } 4887 if (register_shrinker(&kfree_rcu_shrinker)) 4888 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4889} 4890 4891void __init rcu_init(void) 4892{ 4893 int cpu = smp_processor_id(); 4894 4895 rcu_early_boot_tests(); 4896 4897 kfree_rcu_batch_init(); 4898 rcu_bootup_announce(); 4899 sanitize_kthread_prio(); 4900 rcu_init_geometry(); 4901 rcu_init_one(); 4902 if (dump_tree) 4903 rcu_dump_rcu_node_tree(); 4904 if (use_softirq) 4905 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4906 4907 /* 4908 * We don't need protection against CPU-hotplug here because 4909 * this is called early in boot, before either interrupts 4910 * or the scheduler are operational. 4911 */ 4912 pm_notifier(rcu_pm_notify, 0); 4913 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4914 rcutree_prepare_cpu(cpu); 4915 rcu_cpu_starting(cpu); 4916 rcutree_online_cpu(cpu); 4917 4918 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4919 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4920 WARN_ON(!rcu_gp_wq); 4921 rcu_alloc_par_gp_wq(); 4922 4923 /* Fill in default value for rcutree.qovld boot parameter. */ 4924 /* -After- the rcu_node ->lock fields are initialized! */ 4925 if (qovld < 0) 4926 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4927 else 4928 qovld_calc = qovld; 4929} 4930 4931#include "tree_stall.h" 4932#include "tree_exp.h" 4933#include "tree_nocb.h" 4934#include "tree_plugin.h"