tree_plugin.h (43976B)
1/* SPDX-License-Identifier: GPL-2.0+ */ 2/* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * 10 * Author: Ingo Molnar <mingo@elte.hu> 11 * Paul E. McKenney <paulmck@linux.ibm.com> 12 */ 13 14#include "../locking/rtmutex_common.h" 15 16static bool rcu_rdp_is_offloaded(struct rcu_data *rdp) 17{ 18 /* 19 * In order to read the offloaded state of an rdp in a safe 20 * and stable way and prevent from its value to be changed 21 * under us, we must either hold the barrier mutex, the cpu 22 * hotplug lock (read or write) or the nocb lock. Local 23 * non-preemptible reads are also safe. NOCB kthreads and 24 * timers have their own means of synchronization against the 25 * offloaded state updaters. 26 */ 27 RCU_LOCKDEP_WARN( 28 !(lockdep_is_held(&rcu_state.barrier_mutex) || 29 (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) || 30 rcu_lockdep_is_held_nocb(rdp) || 31 (rdp == this_cpu_ptr(&rcu_data) && 32 !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) || 33 rcu_current_is_nocb_kthread(rdp)), 34 "Unsafe read of RCU_NOCB offloaded state" 35 ); 36 37 return rcu_segcblist_is_offloaded(&rdp->cblist); 38} 39 40/* 41 * Check the RCU kernel configuration parameters and print informative 42 * messages about anything out of the ordinary. 43 */ 44static void __init rcu_bootup_announce_oddness(void) 45{ 46 if (IS_ENABLED(CONFIG_RCU_TRACE)) 47 pr_info("\tRCU event tracing is enabled.\n"); 48 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 49 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 50 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 51 RCU_FANOUT); 52 if (rcu_fanout_exact) 53 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 54 if (IS_ENABLED(CONFIG_PROVE_RCU)) 55 pr_info("\tRCU lockdep checking is enabled.\n"); 56 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 57 pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n"); 58 if (RCU_NUM_LVLS >= 4) 59 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 60 if (RCU_FANOUT_LEAF != 16) 61 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 62 RCU_FANOUT_LEAF); 63 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 64 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 65 rcu_fanout_leaf); 66 if (nr_cpu_ids != NR_CPUS) 67 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 68#ifdef CONFIG_RCU_BOOST 69 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 70 kthread_prio, CONFIG_RCU_BOOST_DELAY); 71#endif 72 if (blimit != DEFAULT_RCU_BLIMIT) 73 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 74 if (qhimark != DEFAULT_RCU_QHIMARK) 75 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 76 if (qlowmark != DEFAULT_RCU_QLOMARK) 77 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 78 if (qovld != DEFAULT_RCU_QOVLD) 79 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); 80 if (jiffies_till_first_fqs != ULONG_MAX) 81 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 82 if (jiffies_till_next_fqs != ULONG_MAX) 83 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 84 if (jiffies_till_sched_qs != ULONG_MAX) 85 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); 86 if (rcu_kick_kthreads) 87 pr_info("\tKick kthreads if too-long grace period.\n"); 88 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 89 pr_info("\tRCU callback double-/use-after-free debug is enabled.\n"); 90 if (gp_preinit_delay) 91 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 92 if (gp_init_delay) 93 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 94 if (gp_cleanup_delay) 95 pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay); 96 if (!use_softirq) 97 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); 98 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 99 pr_info("\tRCU debug extended QS entry/exit.\n"); 100 rcupdate_announce_bootup_oddness(); 101} 102 103#ifdef CONFIG_PREEMPT_RCU 104 105static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); 106static void rcu_read_unlock_special(struct task_struct *t); 107 108/* 109 * Tell them what RCU they are running. 110 */ 111static void __init rcu_bootup_announce(void) 112{ 113 pr_info("Preemptible hierarchical RCU implementation.\n"); 114 rcu_bootup_announce_oddness(); 115} 116 117/* Flags for rcu_preempt_ctxt_queue() decision table. */ 118#define RCU_GP_TASKS 0x8 119#define RCU_EXP_TASKS 0x4 120#define RCU_GP_BLKD 0x2 121#define RCU_EXP_BLKD 0x1 122 123/* 124 * Queues a task preempted within an RCU-preempt read-side critical 125 * section into the appropriate location within the ->blkd_tasks list, 126 * depending on the states of any ongoing normal and expedited grace 127 * periods. The ->gp_tasks pointer indicates which element the normal 128 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 129 * indicates which element the expedited grace period is waiting on (again, 130 * NULL if none). If a grace period is waiting on a given element in the 131 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 132 * adding a task to the tail of the list blocks any grace period that is 133 * already waiting on one of the elements. In contrast, adding a task 134 * to the head of the list won't block any grace period that is already 135 * waiting on one of the elements. 136 * 137 * This queuing is imprecise, and can sometimes make an ongoing grace 138 * period wait for a task that is not strictly speaking blocking it. 139 * Given the choice, we needlessly block a normal grace period rather than 140 * blocking an expedited grace period. 141 * 142 * Note that an endless sequence of expedited grace periods still cannot 143 * indefinitely postpone a normal grace period. Eventually, all of the 144 * fixed number of preempted tasks blocking the normal grace period that are 145 * not also blocking the expedited grace period will resume and complete 146 * their RCU read-side critical sections. At that point, the ->gp_tasks 147 * pointer will equal the ->exp_tasks pointer, at which point the end of 148 * the corresponding expedited grace period will also be the end of the 149 * normal grace period. 150 */ 151static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 152 __releases(rnp->lock) /* But leaves rrupts disabled. */ 153{ 154 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 155 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 156 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 157 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 158 struct task_struct *t = current; 159 160 raw_lockdep_assert_held_rcu_node(rnp); 161 WARN_ON_ONCE(rdp->mynode != rnp); 162 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 163 /* RCU better not be waiting on newly onlined CPUs! */ 164 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 165 rdp->grpmask); 166 167 /* 168 * Decide where to queue the newly blocked task. In theory, 169 * this could be an if-statement. In practice, when I tried 170 * that, it was quite messy. 171 */ 172 switch (blkd_state) { 173 case 0: 174 case RCU_EXP_TASKS: 175 case RCU_EXP_TASKS + RCU_GP_BLKD: 176 case RCU_GP_TASKS: 177 case RCU_GP_TASKS + RCU_EXP_TASKS: 178 179 /* 180 * Blocking neither GP, or first task blocking the normal 181 * GP but not blocking the already-waiting expedited GP. 182 * Queue at the head of the list to avoid unnecessarily 183 * blocking the already-waiting GPs. 184 */ 185 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 186 break; 187 188 case RCU_EXP_BLKD: 189 case RCU_GP_BLKD: 190 case RCU_GP_BLKD + RCU_EXP_BLKD: 191 case RCU_GP_TASKS + RCU_EXP_BLKD: 192 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 193 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 194 195 /* 196 * First task arriving that blocks either GP, or first task 197 * arriving that blocks the expedited GP (with the normal 198 * GP already waiting), or a task arriving that blocks 199 * both GPs with both GPs already waiting. Queue at the 200 * tail of the list to avoid any GP waiting on any of the 201 * already queued tasks that are not blocking it. 202 */ 203 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 204 break; 205 206 case RCU_EXP_TASKS + RCU_EXP_BLKD: 207 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 208 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 209 210 /* 211 * Second or subsequent task blocking the expedited GP. 212 * The task either does not block the normal GP, or is the 213 * first task blocking the normal GP. Queue just after 214 * the first task blocking the expedited GP. 215 */ 216 list_add(&t->rcu_node_entry, rnp->exp_tasks); 217 break; 218 219 case RCU_GP_TASKS + RCU_GP_BLKD: 220 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 221 222 /* 223 * Second or subsequent task blocking the normal GP. 224 * The task does not block the expedited GP. Queue just 225 * after the first task blocking the normal GP. 226 */ 227 list_add(&t->rcu_node_entry, rnp->gp_tasks); 228 break; 229 230 default: 231 232 /* Yet another exercise in excessive paranoia. */ 233 WARN_ON_ONCE(1); 234 break; 235 } 236 237 /* 238 * We have now queued the task. If it was the first one to 239 * block either grace period, update the ->gp_tasks and/or 240 * ->exp_tasks pointers, respectively, to reference the newly 241 * blocked tasks. 242 */ 243 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 244 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); 245 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 246 } 247 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 248 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); 249 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 250 !(rnp->qsmask & rdp->grpmask)); 251 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 252 !(rnp->expmask & rdp->grpmask)); 253 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 254 255 /* 256 * Report the quiescent state for the expedited GP. This expedited 257 * GP should not be able to end until we report, so there should be 258 * no need to check for a subsequent expedited GP. (Though we are 259 * still in a quiescent state in any case.) 260 */ 261 if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp) 262 rcu_report_exp_rdp(rdp); 263 else 264 WARN_ON_ONCE(rdp->cpu_no_qs.b.exp); 265} 266 267/* 268 * Record a preemptible-RCU quiescent state for the specified CPU. 269 * Note that this does not necessarily mean that the task currently running 270 * on the CPU is in a quiescent state: Instead, it means that the current 271 * grace period need not wait on any RCU read-side critical section that 272 * starts later on this CPU. It also means that if the current task is 273 * in an RCU read-side critical section, it has already added itself to 274 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 275 * current task, there might be any number of other tasks blocked while 276 * in an RCU read-side critical section. 277 * 278 * Unlike non-preemptible-RCU, quiescent state reports for expedited 279 * grace periods are handled separately via deferred quiescent states 280 * and context switch events. 281 * 282 * Callers to this function must disable preemption. 283 */ 284static void rcu_qs(void) 285{ 286 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); 287 if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) { 288 trace_rcu_grace_period(TPS("rcu_preempt"), 289 __this_cpu_read(rcu_data.gp_seq), 290 TPS("cpuqs")); 291 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 292 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ 293 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); 294 } 295} 296 297/* 298 * We have entered the scheduler, and the current task might soon be 299 * context-switched away from. If this task is in an RCU read-side 300 * critical section, we will no longer be able to rely on the CPU to 301 * record that fact, so we enqueue the task on the blkd_tasks list. 302 * The task will dequeue itself when it exits the outermost enclosing 303 * RCU read-side critical section. Therefore, the current grace period 304 * cannot be permitted to complete until the blkd_tasks list entries 305 * predating the current grace period drain, in other words, until 306 * rnp->gp_tasks becomes NULL. 307 * 308 * Caller must disable interrupts. 309 */ 310void rcu_note_context_switch(bool preempt) 311{ 312 struct task_struct *t = current; 313 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 314 struct rcu_node *rnp; 315 316 trace_rcu_utilization(TPS("Start context switch")); 317 lockdep_assert_irqs_disabled(); 318 WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!"); 319 if (rcu_preempt_depth() > 0 && 320 !t->rcu_read_unlock_special.b.blocked) { 321 322 /* Possibly blocking in an RCU read-side critical section. */ 323 rnp = rdp->mynode; 324 raw_spin_lock_rcu_node(rnp); 325 t->rcu_read_unlock_special.b.blocked = true; 326 t->rcu_blocked_node = rnp; 327 328 /* 329 * Verify the CPU's sanity, trace the preemption, and 330 * then queue the task as required based on the states 331 * of any ongoing and expedited grace periods. 332 */ 333 WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp)); 334 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 335 trace_rcu_preempt_task(rcu_state.name, 336 t->pid, 337 (rnp->qsmask & rdp->grpmask) 338 ? rnp->gp_seq 339 : rcu_seq_snap(&rnp->gp_seq)); 340 rcu_preempt_ctxt_queue(rnp, rdp); 341 } else { 342 rcu_preempt_deferred_qs(t); 343 } 344 345 /* 346 * Either we were not in an RCU read-side critical section to 347 * begin with, or we have now recorded that critical section 348 * globally. Either way, we can now note a quiescent state 349 * for this CPU. Again, if we were in an RCU read-side critical 350 * section, and if that critical section was blocking the current 351 * grace period, then the fact that the task has been enqueued 352 * means that we continue to block the current grace period. 353 */ 354 rcu_qs(); 355 if (rdp->cpu_no_qs.b.exp) 356 rcu_report_exp_rdp(rdp); 357 rcu_tasks_qs(current, preempt); 358 trace_rcu_utilization(TPS("End context switch")); 359} 360EXPORT_SYMBOL_GPL(rcu_note_context_switch); 361 362/* 363 * Check for preempted RCU readers blocking the current grace period 364 * for the specified rcu_node structure. If the caller needs a reliable 365 * answer, it must hold the rcu_node's ->lock. 366 */ 367static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 368{ 369 return READ_ONCE(rnp->gp_tasks) != NULL; 370} 371 372/* limit value for ->rcu_read_lock_nesting. */ 373#define RCU_NEST_PMAX (INT_MAX / 2) 374 375static void rcu_preempt_read_enter(void) 376{ 377 WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1); 378} 379 380static int rcu_preempt_read_exit(void) 381{ 382 int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1; 383 384 WRITE_ONCE(current->rcu_read_lock_nesting, ret); 385 return ret; 386} 387 388static void rcu_preempt_depth_set(int val) 389{ 390 WRITE_ONCE(current->rcu_read_lock_nesting, val); 391} 392 393/* 394 * Preemptible RCU implementation for rcu_read_lock(). 395 * Just increment ->rcu_read_lock_nesting, shared state will be updated 396 * if we block. 397 */ 398void __rcu_read_lock(void) 399{ 400 rcu_preempt_read_enter(); 401 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 402 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); 403 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) 404 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); 405 barrier(); /* critical section after entry code. */ 406} 407EXPORT_SYMBOL_GPL(__rcu_read_lock); 408 409/* 410 * Preemptible RCU implementation for rcu_read_unlock(). 411 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 412 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 413 * invoke rcu_read_unlock_special() to clean up after a context switch 414 * in an RCU read-side critical section and other special cases. 415 */ 416void __rcu_read_unlock(void) 417{ 418 struct task_struct *t = current; 419 420 barrier(); // critical section before exit code. 421 if (rcu_preempt_read_exit() == 0) { 422 barrier(); // critical-section exit before .s check. 423 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 424 rcu_read_unlock_special(t); 425 } 426 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 427 int rrln = rcu_preempt_depth(); 428 429 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); 430 } 431} 432EXPORT_SYMBOL_GPL(__rcu_read_unlock); 433 434/* 435 * Advance a ->blkd_tasks-list pointer to the next entry, instead 436 * returning NULL if at the end of the list. 437 */ 438static struct list_head *rcu_next_node_entry(struct task_struct *t, 439 struct rcu_node *rnp) 440{ 441 struct list_head *np; 442 443 np = t->rcu_node_entry.next; 444 if (np == &rnp->blkd_tasks) 445 np = NULL; 446 return np; 447} 448 449/* 450 * Return true if the specified rcu_node structure has tasks that were 451 * preempted within an RCU read-side critical section. 452 */ 453static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 454{ 455 return !list_empty(&rnp->blkd_tasks); 456} 457 458/* 459 * Report deferred quiescent states. The deferral time can 460 * be quite short, for example, in the case of the call from 461 * rcu_read_unlock_special(). 462 */ 463static void 464rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) 465{ 466 bool empty_exp; 467 bool empty_norm; 468 bool empty_exp_now; 469 struct list_head *np; 470 bool drop_boost_mutex = false; 471 struct rcu_data *rdp; 472 struct rcu_node *rnp; 473 union rcu_special special; 474 475 /* 476 * If RCU core is waiting for this CPU to exit its critical section, 477 * report the fact that it has exited. Because irqs are disabled, 478 * t->rcu_read_unlock_special cannot change. 479 */ 480 special = t->rcu_read_unlock_special; 481 rdp = this_cpu_ptr(&rcu_data); 482 if (!special.s && !rdp->cpu_no_qs.b.exp) { 483 local_irq_restore(flags); 484 return; 485 } 486 t->rcu_read_unlock_special.s = 0; 487 if (special.b.need_qs) { 488 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 489 rdp->cpu_no_qs.b.norm = false; 490 rcu_report_qs_rdp(rdp); 491 udelay(rcu_unlock_delay); 492 } else { 493 rcu_qs(); 494 } 495 } 496 497 /* 498 * Respond to a request by an expedited grace period for a 499 * quiescent state from this CPU. Note that requests from 500 * tasks are handled when removing the task from the 501 * blocked-tasks list below. 502 */ 503 if (rdp->cpu_no_qs.b.exp) 504 rcu_report_exp_rdp(rdp); 505 506 /* Clean up if blocked during RCU read-side critical section. */ 507 if (special.b.blocked) { 508 509 /* 510 * Remove this task from the list it blocked on. The task 511 * now remains queued on the rcu_node corresponding to the 512 * CPU it first blocked on, so there is no longer any need 513 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 514 */ 515 rnp = t->rcu_blocked_node; 516 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 517 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 518 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 519 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 520 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 521 (!empty_norm || rnp->qsmask)); 522 empty_exp = sync_rcu_exp_done(rnp); 523 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 524 np = rcu_next_node_entry(t, rnp); 525 list_del_init(&t->rcu_node_entry); 526 t->rcu_blocked_node = NULL; 527 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 528 rnp->gp_seq, t->pid); 529 if (&t->rcu_node_entry == rnp->gp_tasks) 530 WRITE_ONCE(rnp->gp_tasks, np); 531 if (&t->rcu_node_entry == rnp->exp_tasks) 532 WRITE_ONCE(rnp->exp_tasks, np); 533 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 534 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 535 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t; 536 if (&t->rcu_node_entry == rnp->boost_tasks) 537 WRITE_ONCE(rnp->boost_tasks, np); 538 } 539 540 /* 541 * If this was the last task on the current list, and if 542 * we aren't waiting on any CPUs, report the quiescent state. 543 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 544 * so we must take a snapshot of the expedited state. 545 */ 546 empty_exp_now = sync_rcu_exp_done(rnp); 547 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 548 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 549 rnp->gp_seq, 550 0, rnp->qsmask, 551 rnp->level, 552 rnp->grplo, 553 rnp->grphi, 554 !!rnp->gp_tasks); 555 rcu_report_unblock_qs_rnp(rnp, flags); 556 } else { 557 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 558 } 559 560 /* 561 * If this was the last task on the expedited lists, 562 * then we need to report up the rcu_node hierarchy. 563 */ 564 if (!empty_exp && empty_exp_now) 565 rcu_report_exp_rnp(rnp, true); 566 567 /* Unboost if we were boosted. */ 568 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 569 rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex); 570 } else { 571 local_irq_restore(flags); 572 } 573} 574 575/* 576 * Is a deferred quiescent-state pending, and are we also not in 577 * an RCU read-side critical section? It is the caller's responsibility 578 * to ensure it is otherwise safe to report any deferred quiescent 579 * states. The reason for this is that it is safe to report a 580 * quiescent state during context switch even though preemption 581 * is disabled. This function cannot be expected to understand these 582 * nuances, so the caller must handle them. 583 */ 584static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 585{ 586 return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) || 587 READ_ONCE(t->rcu_read_unlock_special.s)) && 588 rcu_preempt_depth() == 0; 589} 590 591/* 592 * Report a deferred quiescent state if needed and safe to do so. 593 * As with rcu_preempt_need_deferred_qs(), "safe" involves only 594 * not being in an RCU read-side critical section. The caller must 595 * evaluate safety in terms of interrupt, softirq, and preemption 596 * disabling. 597 */ 598static void rcu_preempt_deferred_qs(struct task_struct *t) 599{ 600 unsigned long flags; 601 602 if (!rcu_preempt_need_deferred_qs(t)) 603 return; 604 local_irq_save(flags); 605 rcu_preempt_deferred_qs_irqrestore(t, flags); 606} 607 608/* 609 * Minimal handler to give the scheduler a chance to re-evaluate. 610 */ 611static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) 612{ 613 struct rcu_data *rdp; 614 615 rdp = container_of(iwp, struct rcu_data, defer_qs_iw); 616 rdp->defer_qs_iw_pending = false; 617} 618 619/* 620 * Handle special cases during rcu_read_unlock(), such as needing to 621 * notify RCU core processing or task having blocked during the RCU 622 * read-side critical section. 623 */ 624static void rcu_read_unlock_special(struct task_struct *t) 625{ 626 unsigned long flags; 627 bool irqs_were_disabled; 628 bool preempt_bh_were_disabled = 629 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); 630 631 /* NMI handlers cannot block and cannot safely manipulate state. */ 632 if (in_nmi()) 633 return; 634 635 local_irq_save(flags); 636 irqs_were_disabled = irqs_disabled_flags(flags); 637 if (preempt_bh_were_disabled || irqs_were_disabled) { 638 bool expboost; // Expedited GP in flight or possible boosting. 639 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 640 struct rcu_node *rnp = rdp->mynode; 641 642 expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) || 643 (rdp->grpmask & READ_ONCE(rnp->expmask)) || 644 IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || 645 (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled && 646 t->rcu_blocked_node); 647 // Need to defer quiescent state until everything is enabled. 648 if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) { 649 // Using softirq, safe to awaken, and either the 650 // wakeup is free or there is either an expedited 651 // GP in flight or a potential need to deboost. 652 raise_softirq_irqoff(RCU_SOFTIRQ); 653 } else { 654 // Enabling BH or preempt does reschedule, so... 655 // Also if no expediting and no possible deboosting, 656 // slow is OK. Plus nohz_full CPUs eventually get 657 // tick enabled. 658 set_tsk_need_resched(current); 659 set_preempt_need_resched(); 660 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && 661 expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) { 662 // Get scheduler to re-evaluate and call hooks. 663 // If !IRQ_WORK, FQS scan will eventually IPI. 664 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && 665 IS_ENABLED(CONFIG_PREEMPT_RT)) 666 rdp->defer_qs_iw = IRQ_WORK_INIT_HARD( 667 rcu_preempt_deferred_qs_handler); 668 else 669 init_irq_work(&rdp->defer_qs_iw, 670 rcu_preempt_deferred_qs_handler); 671 rdp->defer_qs_iw_pending = true; 672 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); 673 } 674 } 675 local_irq_restore(flags); 676 return; 677 } 678 rcu_preempt_deferred_qs_irqrestore(t, flags); 679} 680 681/* 682 * Check that the list of blocked tasks for the newly completed grace 683 * period is in fact empty. It is a serious bug to complete a grace 684 * period that still has RCU readers blocked! This function must be 685 * invoked -before- updating this rnp's ->gp_seq. 686 * 687 * Also, if there are blocked tasks on the list, they automatically 688 * block the newly created grace period, so set up ->gp_tasks accordingly. 689 */ 690static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 691{ 692 struct task_struct *t; 693 694 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 695 raw_lockdep_assert_held_rcu_node(rnp); 696 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 697 dump_blkd_tasks(rnp, 10); 698 if (rcu_preempt_has_tasks(rnp) && 699 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 700 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); 701 t = container_of(rnp->gp_tasks, struct task_struct, 702 rcu_node_entry); 703 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 704 rnp->gp_seq, t->pid); 705 } 706 WARN_ON_ONCE(rnp->qsmask); 707} 708 709/* 710 * Check for a quiescent state from the current CPU, including voluntary 711 * context switches for Tasks RCU. When a task blocks, the task is 712 * recorded in the corresponding CPU's rcu_node structure, which is checked 713 * elsewhere, hence this function need only check for quiescent states 714 * related to the current CPU, not to those related to tasks. 715 */ 716static void rcu_flavor_sched_clock_irq(int user) 717{ 718 struct task_struct *t = current; 719 720 lockdep_assert_irqs_disabled(); 721 if (user || rcu_is_cpu_rrupt_from_idle()) { 722 rcu_note_voluntary_context_switch(current); 723 } 724 if (rcu_preempt_depth() > 0 || 725 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { 726 /* No QS, force context switch if deferred. */ 727 if (rcu_preempt_need_deferred_qs(t)) { 728 set_tsk_need_resched(t); 729 set_preempt_need_resched(); 730 } 731 } else if (rcu_preempt_need_deferred_qs(t)) { 732 rcu_preempt_deferred_qs(t); /* Report deferred QS. */ 733 return; 734 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { 735 rcu_qs(); /* Report immediate QS. */ 736 return; 737 } 738 739 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ 740 if (rcu_preempt_depth() > 0 && 741 __this_cpu_read(rcu_data.core_needs_qs) && 742 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && 743 !t->rcu_read_unlock_special.b.need_qs && 744 time_after(jiffies, rcu_state.gp_start + HZ)) 745 t->rcu_read_unlock_special.b.need_qs = true; 746} 747 748/* 749 * Check for a task exiting while in a preemptible-RCU read-side 750 * critical section, clean up if so. No need to issue warnings, as 751 * debug_check_no_locks_held() already does this if lockdep is enabled. 752 * Besides, if this function does anything other than just immediately 753 * return, there was a bug of some sort. Spewing warnings from this 754 * function is like as not to simply obscure important prior warnings. 755 */ 756void exit_rcu(void) 757{ 758 struct task_struct *t = current; 759 760 if (unlikely(!list_empty(¤t->rcu_node_entry))) { 761 rcu_preempt_depth_set(1); 762 barrier(); 763 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); 764 } else if (unlikely(rcu_preempt_depth())) { 765 rcu_preempt_depth_set(1); 766 } else { 767 return; 768 } 769 __rcu_read_unlock(); 770 rcu_preempt_deferred_qs(current); 771} 772 773/* 774 * Dump the blocked-tasks state, but limit the list dump to the 775 * specified number of elements. 776 */ 777static void 778dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 779{ 780 int cpu; 781 int i; 782 struct list_head *lhp; 783 struct rcu_data *rdp; 784 struct rcu_node *rnp1; 785 786 raw_lockdep_assert_held_rcu_node(rnp); 787 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 788 __func__, rnp->grplo, rnp->grphi, rnp->level, 789 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); 790 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 791 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 792 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 793 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 794 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), 795 READ_ONCE(rnp->exp_tasks)); 796 pr_info("%s: ->blkd_tasks", __func__); 797 i = 0; 798 list_for_each(lhp, &rnp->blkd_tasks) { 799 pr_cont(" %p", lhp); 800 if (++i >= ncheck) 801 break; 802 } 803 pr_cont("\n"); 804 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 805 rdp = per_cpu_ptr(&rcu_data, cpu); 806 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 807 cpu, ".o"[rcu_rdp_cpu_online(rdp)], 808 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 809 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 810 } 811} 812 813#else /* #ifdef CONFIG_PREEMPT_RCU */ 814 815/* 816 * If strict grace periods are enabled, and if the calling 817 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately 818 * report that quiescent state and, if requested, spin for a bit. 819 */ 820void rcu_read_unlock_strict(void) 821{ 822 struct rcu_data *rdp; 823 824 if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) 825 return; 826 rdp = this_cpu_ptr(&rcu_data); 827 rcu_report_qs_rdp(rdp); 828 udelay(rcu_unlock_delay); 829} 830EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); 831 832/* 833 * Tell them what RCU they are running. 834 */ 835static void __init rcu_bootup_announce(void) 836{ 837 pr_info("Hierarchical RCU implementation.\n"); 838 rcu_bootup_announce_oddness(); 839} 840 841/* 842 * Note a quiescent state for PREEMPTION=n. Because we do not need to know 843 * how many quiescent states passed, just if there was at least one since 844 * the start of the grace period, this just sets a flag. The caller must 845 * have disabled preemption. 846 */ 847static void rcu_qs(void) 848{ 849 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); 850 if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) 851 return; 852 trace_rcu_grace_period(TPS("rcu_sched"), 853 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); 854 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 855 if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) 856 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 857} 858 859/* 860 * Register an urgently needed quiescent state. If there is an 861 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 862 * dyntick-idle quiescent state visible to other CPUs, which will in 863 * some cases serve for expedited as well as normal grace periods. 864 * Either way, register a lightweight quiescent state. 865 */ 866void rcu_all_qs(void) 867{ 868 unsigned long flags; 869 870 if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) 871 return; 872 preempt_disable(); 873 /* Load rcu_urgent_qs before other flags. */ 874 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 875 preempt_enable(); 876 return; 877 } 878 this_cpu_write(rcu_data.rcu_urgent_qs, false); 879 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { 880 local_irq_save(flags); 881 rcu_momentary_dyntick_idle(); 882 local_irq_restore(flags); 883 } 884 rcu_qs(); 885 preempt_enable(); 886} 887EXPORT_SYMBOL_GPL(rcu_all_qs); 888 889/* 890 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. 891 */ 892void rcu_note_context_switch(bool preempt) 893{ 894 trace_rcu_utilization(TPS("Start context switch")); 895 rcu_qs(); 896 /* Load rcu_urgent_qs before other flags. */ 897 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) 898 goto out; 899 this_cpu_write(rcu_data.rcu_urgent_qs, false); 900 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) 901 rcu_momentary_dyntick_idle(); 902 rcu_tasks_qs(current, preempt); 903out: 904 trace_rcu_utilization(TPS("End context switch")); 905} 906EXPORT_SYMBOL_GPL(rcu_note_context_switch); 907 908/* 909 * Because preemptible RCU does not exist, there are never any preempted 910 * RCU readers. 911 */ 912static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 913{ 914 return 0; 915} 916 917/* 918 * Because there is no preemptible RCU, there can be no readers blocked. 919 */ 920static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 921{ 922 return false; 923} 924 925/* 926 * Because there is no preemptible RCU, there can be no deferred quiescent 927 * states. 928 */ 929static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 930{ 931 return false; 932} 933 934// Except that we do need to respond to a request by an expedited grace 935// period for a quiescent state from this CPU. Note that requests from 936// tasks are handled when removing the task from the blocked-tasks list 937// below. 938static void rcu_preempt_deferred_qs(struct task_struct *t) 939{ 940 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 941 942 if (rdp->cpu_no_qs.b.exp) 943 rcu_report_exp_rdp(rdp); 944} 945 946/* 947 * Because there is no preemptible RCU, there can be no readers blocked, 948 * so there is no need to check for blocked tasks. So check only for 949 * bogus qsmask values. 950 */ 951static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 952{ 953 WARN_ON_ONCE(rnp->qsmask); 954} 955 956/* 957 * Check to see if this CPU is in a non-context-switch quiescent state, 958 * namely user mode and idle loop. 959 */ 960static void rcu_flavor_sched_clock_irq(int user) 961{ 962 if (user || rcu_is_cpu_rrupt_from_idle()) { 963 964 /* 965 * Get here if this CPU took its interrupt from user 966 * mode or from the idle loop, and if this is not a 967 * nested interrupt. In this case, the CPU is in 968 * a quiescent state, so note it. 969 * 970 * No memory barrier is required here because rcu_qs() 971 * references only CPU-local variables that other CPUs 972 * neither access nor modify, at least not while the 973 * corresponding CPU is online. 974 */ 975 976 rcu_qs(); 977 } 978} 979 980/* 981 * Because preemptible RCU does not exist, tasks cannot possibly exit 982 * while in preemptible RCU read-side critical sections. 983 */ 984void exit_rcu(void) 985{ 986} 987 988/* 989 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 990 */ 991static void 992dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 993{ 994 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 995} 996 997#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 998 999/* 1000 * If boosting, set rcuc kthreads to realtime priority. 1001 */ 1002static void rcu_cpu_kthread_setup(unsigned int cpu) 1003{ 1004 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1005#ifdef CONFIG_RCU_BOOST 1006 struct sched_param sp; 1007 1008 sp.sched_priority = kthread_prio; 1009 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1010#endif /* #ifdef CONFIG_RCU_BOOST */ 1011 1012 WRITE_ONCE(rdp->rcuc_activity, jiffies); 1013} 1014 1015#ifdef CONFIG_RCU_BOOST 1016 1017/* 1018 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 1019 * or ->boost_tasks, advancing the pointer to the next task in the 1020 * ->blkd_tasks list. 1021 * 1022 * Note that irqs must be enabled: boosting the task can block. 1023 * Returns 1 if there are more tasks needing to be boosted. 1024 */ 1025static int rcu_boost(struct rcu_node *rnp) 1026{ 1027 unsigned long flags; 1028 struct task_struct *t; 1029 struct list_head *tb; 1030 1031 if (READ_ONCE(rnp->exp_tasks) == NULL && 1032 READ_ONCE(rnp->boost_tasks) == NULL) 1033 return 0; /* Nothing left to boost. */ 1034 1035 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1036 1037 /* 1038 * Recheck under the lock: all tasks in need of boosting 1039 * might exit their RCU read-side critical sections on their own. 1040 */ 1041 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1042 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1043 return 0; 1044 } 1045 1046 /* 1047 * Preferentially boost tasks blocking expedited grace periods. 1048 * This cannot starve the normal grace periods because a second 1049 * expedited grace period must boost all blocked tasks, including 1050 * those blocking the pre-existing normal grace period. 1051 */ 1052 if (rnp->exp_tasks != NULL) 1053 tb = rnp->exp_tasks; 1054 else 1055 tb = rnp->boost_tasks; 1056 1057 /* 1058 * We boost task t by manufacturing an rt_mutex that appears to 1059 * be held by task t. We leave a pointer to that rt_mutex where 1060 * task t can find it, and task t will release the mutex when it 1061 * exits its outermost RCU read-side critical section. Then 1062 * simply acquiring this artificial rt_mutex will boost task 1063 * t's priority. (Thanks to tglx for suggesting this approach!) 1064 * 1065 * Note that task t must acquire rnp->lock to remove itself from 1066 * the ->blkd_tasks list, which it will do from exit() if from 1067 * nowhere else. We therefore are guaranteed that task t will 1068 * stay around at least until we drop rnp->lock. Note that 1069 * rnp->lock also resolves races between our priority boosting 1070 * and task t's exiting its outermost RCU read-side critical 1071 * section. 1072 */ 1073 t = container_of(tb, struct task_struct, rcu_node_entry); 1074 rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t); 1075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1076 /* Lock only for side effect: boosts task t's priority. */ 1077 rt_mutex_lock(&rnp->boost_mtx); 1078 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1079 rnp->n_boosts++; 1080 1081 return READ_ONCE(rnp->exp_tasks) != NULL || 1082 READ_ONCE(rnp->boost_tasks) != NULL; 1083} 1084 1085/* 1086 * Priority-boosting kthread, one per leaf rcu_node. 1087 */ 1088static int rcu_boost_kthread(void *arg) 1089{ 1090 struct rcu_node *rnp = (struct rcu_node *)arg; 1091 int spincnt = 0; 1092 int more2boost; 1093 1094 trace_rcu_utilization(TPS("Start boost kthread@init")); 1095 for (;;) { 1096 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); 1097 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1098 rcu_wait(READ_ONCE(rnp->boost_tasks) || 1099 READ_ONCE(rnp->exp_tasks)); 1100 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1101 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); 1102 more2boost = rcu_boost(rnp); 1103 if (more2boost) 1104 spincnt++; 1105 else 1106 spincnt = 0; 1107 if (spincnt > 10) { 1108 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); 1109 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1110 schedule_timeout_idle(2); 1111 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1112 spincnt = 0; 1113 } 1114 } 1115 /* NOTREACHED */ 1116 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1117 return 0; 1118} 1119 1120/* 1121 * Check to see if it is time to start boosting RCU readers that are 1122 * blocking the current grace period, and, if so, tell the per-rcu_node 1123 * kthread to start boosting them. If there is an expedited grace 1124 * period in progress, it is always time to boost. 1125 * 1126 * The caller must hold rnp->lock, which this function releases. 1127 * The ->boost_kthread_task is immortal, so we don't need to worry 1128 * about it going away. 1129 */ 1130static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1131 __releases(rnp->lock) 1132{ 1133 raw_lockdep_assert_held_rcu_node(rnp); 1134 if (!rnp->boost_kthread_task || 1135 (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) { 1136 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1137 return; 1138 } 1139 if (rnp->exp_tasks != NULL || 1140 (rnp->gp_tasks != NULL && 1141 rnp->boost_tasks == NULL && 1142 rnp->qsmask == 0 && 1143 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) { 1144 if (rnp->exp_tasks == NULL) 1145 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); 1146 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1147 rcu_wake_cond(rnp->boost_kthread_task, 1148 READ_ONCE(rnp->boost_kthread_status)); 1149 } else { 1150 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1151 } 1152} 1153 1154/* 1155 * Is the current CPU running the RCU-callbacks kthread? 1156 * Caller must have preemption disabled. 1157 */ 1158static bool rcu_is_callbacks_kthread(void) 1159{ 1160 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; 1161} 1162 1163#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1164 1165/* 1166 * Do priority-boost accounting for the start of a new grace period. 1167 */ 1168static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1169{ 1170 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1171} 1172 1173/* 1174 * Create an RCU-boost kthread for the specified node if one does not 1175 * already exist. We only create this kthread for preemptible RCU. 1176 */ 1177static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1178{ 1179 unsigned long flags; 1180 int rnp_index = rnp - rcu_get_root(); 1181 struct sched_param sp; 1182 struct task_struct *t; 1183 1184 mutex_lock(&rnp->boost_kthread_mutex); 1185 if (rnp->boost_kthread_task || !rcu_scheduler_fully_active) 1186 goto out; 1187 1188 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1189 "rcub/%d", rnp_index); 1190 if (WARN_ON_ONCE(IS_ERR(t))) 1191 goto out; 1192 1193 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1194 rnp->boost_kthread_task = t; 1195 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1196 sp.sched_priority = kthread_prio; 1197 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1198 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1199 1200 out: 1201 mutex_unlock(&rnp->boost_kthread_mutex); 1202} 1203 1204/* 1205 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1206 * served by the rcu_node in question. The CPU hotplug lock is still 1207 * held, so the value of rnp->qsmaskinit will be stable. 1208 * 1209 * We don't include outgoingcpu in the affinity set, use -1 if there is 1210 * no outgoing CPU. If there are no CPUs left in the affinity set, 1211 * this function allows the kthread to execute on any CPU. 1212 */ 1213static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1214{ 1215 struct task_struct *t = rnp->boost_kthread_task; 1216 unsigned long mask = rcu_rnp_online_cpus(rnp); 1217 cpumask_var_t cm; 1218 int cpu; 1219 1220 if (!t) 1221 return; 1222 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1223 return; 1224 mutex_lock(&rnp->boost_kthread_mutex); 1225 for_each_leaf_node_possible_cpu(rnp, cpu) 1226 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1227 cpu != outgoingcpu) 1228 cpumask_set_cpu(cpu, cm); 1229 cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU)); 1230 if (cpumask_empty(cm)) 1231 cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU)); 1232 set_cpus_allowed_ptr(t, cm); 1233 mutex_unlock(&rnp->boost_kthread_mutex); 1234 free_cpumask_var(cm); 1235} 1236 1237#else /* #ifdef CONFIG_RCU_BOOST */ 1238 1239static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1240 __releases(rnp->lock) 1241{ 1242 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1243} 1244 1245static bool rcu_is_callbacks_kthread(void) 1246{ 1247 return false; 1248} 1249 1250static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1251{ 1252} 1253 1254static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1255{ 1256} 1257 1258static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1259{ 1260} 1261 1262#endif /* #else #ifdef CONFIG_RCU_BOOST */ 1263 1264/* 1265 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 1266 * grace-period kthread will do force_quiescent_state() processing? 1267 * The idea is to avoid waking up RCU core processing on such a 1268 * CPU unless the grace period has extended for too long. 1269 * 1270 * This code relies on the fact that all NO_HZ_FULL CPUs are also 1271 * RCU_NOCB_CPU CPUs. 1272 */ 1273static bool rcu_nohz_full_cpu(void) 1274{ 1275#ifdef CONFIG_NO_HZ_FULL 1276 if (tick_nohz_full_cpu(smp_processor_id()) && 1277 (!rcu_gp_in_progress() || 1278 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) 1279 return true; 1280#endif /* #ifdef CONFIG_NO_HZ_FULL */ 1281 return false; 1282} 1283 1284/* 1285 * Bind the RCU grace-period kthreads to the housekeeping CPU. 1286 */ 1287static void rcu_bind_gp_kthread(void) 1288{ 1289 if (!tick_nohz_full_enabled()) 1290 return; 1291 housekeeping_affine(current, HK_TYPE_RCU); 1292} 1293 1294/* Record the current task on dyntick-idle entry. */ 1295static __always_inline void rcu_dynticks_task_enter(void) 1296{ 1297#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 1298 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 1299#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 1300} 1301 1302/* Record no current task on dyntick-idle exit. */ 1303static __always_inline void rcu_dynticks_task_exit(void) 1304{ 1305#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 1306 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 1307#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 1308} 1309 1310/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ 1311static __always_inline void rcu_dynticks_task_trace_enter(void) 1312{ 1313#ifdef CONFIG_TASKS_TRACE_RCU 1314 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1315 current->trc_reader_special.b.need_mb = true; 1316#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1317} 1318 1319/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ 1320static __always_inline void rcu_dynticks_task_trace_exit(void) 1321{ 1322#ifdef CONFIG_TASKS_TRACE_RCU 1323 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1324 current->trc_reader_special.b.need_mb = false; 1325#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1326}