cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tree_plugin.h (43976B)


      1/* SPDX-License-Identifier: GPL-2.0+ */
      2/*
      3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
      4 * Internal non-public definitions that provide either classic
      5 * or preemptible semantics.
      6 *
      7 * Copyright Red Hat, 2009
      8 * Copyright IBM Corporation, 2009
      9 *
     10 * Author: Ingo Molnar <mingo@elte.hu>
     11 *	   Paul E. McKenney <paulmck@linux.ibm.com>
     12 */
     13
     14#include "../locking/rtmutex_common.h"
     15
     16static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
     17{
     18	/*
     19	 * In order to read the offloaded state of an rdp in a safe
     20	 * and stable way and prevent from its value to be changed
     21	 * under us, we must either hold the barrier mutex, the cpu
     22	 * hotplug lock (read or write) or the nocb lock. Local
     23	 * non-preemptible reads are also safe. NOCB kthreads and
     24	 * timers have their own means of synchronization against the
     25	 * offloaded state updaters.
     26	 */
     27	RCU_LOCKDEP_WARN(
     28		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
     29		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
     30		  rcu_lockdep_is_held_nocb(rdp) ||
     31		  (rdp == this_cpu_ptr(&rcu_data) &&
     32		   !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
     33		  rcu_current_is_nocb_kthread(rdp)),
     34		"Unsafe read of RCU_NOCB offloaded state"
     35	);
     36
     37	return rcu_segcblist_is_offloaded(&rdp->cblist);
     38}
     39
     40/*
     41 * Check the RCU kernel configuration parameters and print informative
     42 * messages about anything out of the ordinary.
     43 */
     44static void __init rcu_bootup_announce_oddness(void)
     45{
     46	if (IS_ENABLED(CONFIG_RCU_TRACE))
     47		pr_info("\tRCU event tracing is enabled.\n");
     48	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
     49	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
     50		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
     51			RCU_FANOUT);
     52	if (rcu_fanout_exact)
     53		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
     54	if (IS_ENABLED(CONFIG_PROVE_RCU))
     55		pr_info("\tRCU lockdep checking is enabled.\n");
     56	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
     57		pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
     58	if (RCU_NUM_LVLS >= 4)
     59		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
     60	if (RCU_FANOUT_LEAF != 16)
     61		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
     62			RCU_FANOUT_LEAF);
     63	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
     64		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
     65			rcu_fanout_leaf);
     66	if (nr_cpu_ids != NR_CPUS)
     67		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
     68#ifdef CONFIG_RCU_BOOST
     69	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
     70		kthread_prio, CONFIG_RCU_BOOST_DELAY);
     71#endif
     72	if (blimit != DEFAULT_RCU_BLIMIT)
     73		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
     74	if (qhimark != DEFAULT_RCU_QHIMARK)
     75		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
     76	if (qlowmark != DEFAULT_RCU_QLOMARK)
     77		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
     78	if (qovld != DEFAULT_RCU_QOVLD)
     79		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
     80	if (jiffies_till_first_fqs != ULONG_MAX)
     81		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
     82	if (jiffies_till_next_fqs != ULONG_MAX)
     83		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
     84	if (jiffies_till_sched_qs != ULONG_MAX)
     85		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
     86	if (rcu_kick_kthreads)
     87		pr_info("\tKick kthreads if too-long grace period.\n");
     88	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
     89		pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
     90	if (gp_preinit_delay)
     91		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
     92	if (gp_init_delay)
     93		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
     94	if (gp_cleanup_delay)
     95		pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
     96	if (!use_softirq)
     97		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
     98	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
     99		pr_info("\tRCU debug extended QS entry/exit.\n");
    100	rcupdate_announce_bootup_oddness();
    101}
    102
    103#ifdef CONFIG_PREEMPT_RCU
    104
    105static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
    106static void rcu_read_unlock_special(struct task_struct *t);
    107
    108/*
    109 * Tell them what RCU they are running.
    110 */
    111static void __init rcu_bootup_announce(void)
    112{
    113	pr_info("Preemptible hierarchical RCU implementation.\n");
    114	rcu_bootup_announce_oddness();
    115}
    116
    117/* Flags for rcu_preempt_ctxt_queue() decision table. */
    118#define RCU_GP_TASKS	0x8
    119#define RCU_EXP_TASKS	0x4
    120#define RCU_GP_BLKD	0x2
    121#define RCU_EXP_BLKD	0x1
    122
    123/*
    124 * Queues a task preempted within an RCU-preempt read-side critical
    125 * section into the appropriate location within the ->blkd_tasks list,
    126 * depending on the states of any ongoing normal and expedited grace
    127 * periods.  The ->gp_tasks pointer indicates which element the normal
    128 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
    129 * indicates which element the expedited grace period is waiting on (again,
    130 * NULL if none).  If a grace period is waiting on a given element in the
    131 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
    132 * adding a task to the tail of the list blocks any grace period that is
    133 * already waiting on one of the elements.  In contrast, adding a task
    134 * to the head of the list won't block any grace period that is already
    135 * waiting on one of the elements.
    136 *
    137 * This queuing is imprecise, and can sometimes make an ongoing grace
    138 * period wait for a task that is not strictly speaking blocking it.
    139 * Given the choice, we needlessly block a normal grace period rather than
    140 * blocking an expedited grace period.
    141 *
    142 * Note that an endless sequence of expedited grace periods still cannot
    143 * indefinitely postpone a normal grace period.  Eventually, all of the
    144 * fixed number of preempted tasks blocking the normal grace period that are
    145 * not also blocking the expedited grace period will resume and complete
    146 * their RCU read-side critical sections.  At that point, the ->gp_tasks
    147 * pointer will equal the ->exp_tasks pointer, at which point the end of
    148 * the corresponding expedited grace period will also be the end of the
    149 * normal grace period.
    150 */
    151static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
    152	__releases(rnp->lock) /* But leaves rrupts disabled. */
    153{
    154	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
    155			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
    156			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
    157			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
    158	struct task_struct *t = current;
    159
    160	raw_lockdep_assert_held_rcu_node(rnp);
    161	WARN_ON_ONCE(rdp->mynode != rnp);
    162	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
    163	/* RCU better not be waiting on newly onlined CPUs! */
    164	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
    165		     rdp->grpmask);
    166
    167	/*
    168	 * Decide where to queue the newly blocked task.  In theory,
    169	 * this could be an if-statement.  In practice, when I tried
    170	 * that, it was quite messy.
    171	 */
    172	switch (blkd_state) {
    173	case 0:
    174	case                RCU_EXP_TASKS:
    175	case                RCU_EXP_TASKS + RCU_GP_BLKD:
    176	case RCU_GP_TASKS:
    177	case RCU_GP_TASKS + RCU_EXP_TASKS:
    178
    179		/*
    180		 * Blocking neither GP, or first task blocking the normal
    181		 * GP but not blocking the already-waiting expedited GP.
    182		 * Queue at the head of the list to avoid unnecessarily
    183		 * blocking the already-waiting GPs.
    184		 */
    185		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
    186		break;
    187
    188	case                                              RCU_EXP_BLKD:
    189	case                                RCU_GP_BLKD:
    190	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
    191	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
    192	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
    193	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
    194
    195		/*
    196		 * First task arriving that blocks either GP, or first task
    197		 * arriving that blocks the expedited GP (with the normal
    198		 * GP already waiting), or a task arriving that blocks
    199		 * both GPs with both GPs already waiting.  Queue at the
    200		 * tail of the list to avoid any GP waiting on any of the
    201		 * already queued tasks that are not blocking it.
    202		 */
    203		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
    204		break;
    205
    206	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
    207	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
    208	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
    209
    210		/*
    211		 * Second or subsequent task blocking the expedited GP.
    212		 * The task either does not block the normal GP, or is the
    213		 * first task blocking the normal GP.  Queue just after
    214		 * the first task blocking the expedited GP.
    215		 */
    216		list_add(&t->rcu_node_entry, rnp->exp_tasks);
    217		break;
    218
    219	case RCU_GP_TASKS +                 RCU_GP_BLKD:
    220	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
    221
    222		/*
    223		 * Second or subsequent task blocking the normal GP.
    224		 * The task does not block the expedited GP. Queue just
    225		 * after the first task blocking the normal GP.
    226		 */
    227		list_add(&t->rcu_node_entry, rnp->gp_tasks);
    228		break;
    229
    230	default:
    231
    232		/* Yet another exercise in excessive paranoia. */
    233		WARN_ON_ONCE(1);
    234		break;
    235	}
    236
    237	/*
    238	 * We have now queued the task.  If it was the first one to
    239	 * block either grace period, update the ->gp_tasks and/or
    240	 * ->exp_tasks pointers, respectively, to reference the newly
    241	 * blocked tasks.
    242	 */
    243	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
    244		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
    245		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
    246	}
    247	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
    248		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
    249	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
    250		     !(rnp->qsmask & rdp->grpmask));
    251	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
    252		     !(rnp->expmask & rdp->grpmask));
    253	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
    254
    255	/*
    256	 * Report the quiescent state for the expedited GP.  This expedited
    257	 * GP should not be able to end until we report, so there should be
    258	 * no need to check for a subsequent expedited GP.  (Though we are
    259	 * still in a quiescent state in any case.)
    260	 */
    261	if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
    262		rcu_report_exp_rdp(rdp);
    263	else
    264		WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
    265}
    266
    267/*
    268 * Record a preemptible-RCU quiescent state for the specified CPU.
    269 * Note that this does not necessarily mean that the task currently running
    270 * on the CPU is in a quiescent state:  Instead, it means that the current
    271 * grace period need not wait on any RCU read-side critical section that
    272 * starts later on this CPU.  It also means that if the current task is
    273 * in an RCU read-side critical section, it has already added itself to
    274 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
    275 * current task, there might be any number of other tasks blocked while
    276 * in an RCU read-side critical section.
    277 *
    278 * Unlike non-preemptible-RCU, quiescent state reports for expedited
    279 * grace periods are handled separately via deferred quiescent states
    280 * and context switch events.
    281 *
    282 * Callers to this function must disable preemption.
    283 */
    284static void rcu_qs(void)
    285{
    286	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
    287	if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
    288		trace_rcu_grace_period(TPS("rcu_preempt"),
    289				       __this_cpu_read(rcu_data.gp_seq),
    290				       TPS("cpuqs"));
    291		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
    292		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
    293		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
    294	}
    295}
    296
    297/*
    298 * We have entered the scheduler, and the current task might soon be
    299 * context-switched away from.  If this task is in an RCU read-side
    300 * critical section, we will no longer be able to rely on the CPU to
    301 * record that fact, so we enqueue the task on the blkd_tasks list.
    302 * The task will dequeue itself when it exits the outermost enclosing
    303 * RCU read-side critical section.  Therefore, the current grace period
    304 * cannot be permitted to complete until the blkd_tasks list entries
    305 * predating the current grace period drain, in other words, until
    306 * rnp->gp_tasks becomes NULL.
    307 *
    308 * Caller must disable interrupts.
    309 */
    310void rcu_note_context_switch(bool preempt)
    311{
    312	struct task_struct *t = current;
    313	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
    314	struct rcu_node *rnp;
    315
    316	trace_rcu_utilization(TPS("Start context switch"));
    317	lockdep_assert_irqs_disabled();
    318	WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
    319	if (rcu_preempt_depth() > 0 &&
    320	    !t->rcu_read_unlock_special.b.blocked) {
    321
    322		/* Possibly blocking in an RCU read-side critical section. */
    323		rnp = rdp->mynode;
    324		raw_spin_lock_rcu_node(rnp);
    325		t->rcu_read_unlock_special.b.blocked = true;
    326		t->rcu_blocked_node = rnp;
    327
    328		/*
    329		 * Verify the CPU's sanity, trace the preemption, and
    330		 * then queue the task as required based on the states
    331		 * of any ongoing and expedited grace periods.
    332		 */
    333		WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
    334		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
    335		trace_rcu_preempt_task(rcu_state.name,
    336				       t->pid,
    337				       (rnp->qsmask & rdp->grpmask)
    338				       ? rnp->gp_seq
    339				       : rcu_seq_snap(&rnp->gp_seq));
    340		rcu_preempt_ctxt_queue(rnp, rdp);
    341	} else {
    342		rcu_preempt_deferred_qs(t);
    343	}
    344
    345	/*
    346	 * Either we were not in an RCU read-side critical section to
    347	 * begin with, or we have now recorded that critical section
    348	 * globally.  Either way, we can now note a quiescent state
    349	 * for this CPU.  Again, if we were in an RCU read-side critical
    350	 * section, and if that critical section was blocking the current
    351	 * grace period, then the fact that the task has been enqueued
    352	 * means that we continue to block the current grace period.
    353	 */
    354	rcu_qs();
    355	if (rdp->cpu_no_qs.b.exp)
    356		rcu_report_exp_rdp(rdp);
    357	rcu_tasks_qs(current, preempt);
    358	trace_rcu_utilization(TPS("End context switch"));
    359}
    360EXPORT_SYMBOL_GPL(rcu_note_context_switch);
    361
    362/*
    363 * Check for preempted RCU readers blocking the current grace period
    364 * for the specified rcu_node structure.  If the caller needs a reliable
    365 * answer, it must hold the rcu_node's ->lock.
    366 */
    367static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
    368{
    369	return READ_ONCE(rnp->gp_tasks) != NULL;
    370}
    371
    372/* limit value for ->rcu_read_lock_nesting. */
    373#define RCU_NEST_PMAX (INT_MAX / 2)
    374
    375static void rcu_preempt_read_enter(void)
    376{
    377	WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
    378}
    379
    380static int rcu_preempt_read_exit(void)
    381{
    382	int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
    383
    384	WRITE_ONCE(current->rcu_read_lock_nesting, ret);
    385	return ret;
    386}
    387
    388static void rcu_preempt_depth_set(int val)
    389{
    390	WRITE_ONCE(current->rcu_read_lock_nesting, val);
    391}
    392
    393/*
    394 * Preemptible RCU implementation for rcu_read_lock().
    395 * Just increment ->rcu_read_lock_nesting, shared state will be updated
    396 * if we block.
    397 */
    398void __rcu_read_lock(void)
    399{
    400	rcu_preempt_read_enter();
    401	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
    402		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
    403	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
    404		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
    405	barrier();  /* critical section after entry code. */
    406}
    407EXPORT_SYMBOL_GPL(__rcu_read_lock);
    408
    409/*
    410 * Preemptible RCU implementation for rcu_read_unlock().
    411 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
    412 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
    413 * invoke rcu_read_unlock_special() to clean up after a context switch
    414 * in an RCU read-side critical section and other special cases.
    415 */
    416void __rcu_read_unlock(void)
    417{
    418	struct task_struct *t = current;
    419
    420	barrier();  // critical section before exit code.
    421	if (rcu_preempt_read_exit() == 0) {
    422		barrier();  // critical-section exit before .s check.
    423		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
    424			rcu_read_unlock_special(t);
    425	}
    426	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
    427		int rrln = rcu_preempt_depth();
    428
    429		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
    430	}
    431}
    432EXPORT_SYMBOL_GPL(__rcu_read_unlock);
    433
    434/*
    435 * Advance a ->blkd_tasks-list pointer to the next entry, instead
    436 * returning NULL if at the end of the list.
    437 */
    438static struct list_head *rcu_next_node_entry(struct task_struct *t,
    439					     struct rcu_node *rnp)
    440{
    441	struct list_head *np;
    442
    443	np = t->rcu_node_entry.next;
    444	if (np == &rnp->blkd_tasks)
    445		np = NULL;
    446	return np;
    447}
    448
    449/*
    450 * Return true if the specified rcu_node structure has tasks that were
    451 * preempted within an RCU read-side critical section.
    452 */
    453static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
    454{
    455	return !list_empty(&rnp->blkd_tasks);
    456}
    457
    458/*
    459 * Report deferred quiescent states.  The deferral time can
    460 * be quite short, for example, in the case of the call from
    461 * rcu_read_unlock_special().
    462 */
    463static void
    464rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
    465{
    466	bool empty_exp;
    467	bool empty_norm;
    468	bool empty_exp_now;
    469	struct list_head *np;
    470	bool drop_boost_mutex = false;
    471	struct rcu_data *rdp;
    472	struct rcu_node *rnp;
    473	union rcu_special special;
    474
    475	/*
    476	 * If RCU core is waiting for this CPU to exit its critical section,
    477	 * report the fact that it has exited.  Because irqs are disabled,
    478	 * t->rcu_read_unlock_special cannot change.
    479	 */
    480	special = t->rcu_read_unlock_special;
    481	rdp = this_cpu_ptr(&rcu_data);
    482	if (!special.s && !rdp->cpu_no_qs.b.exp) {
    483		local_irq_restore(flags);
    484		return;
    485	}
    486	t->rcu_read_unlock_special.s = 0;
    487	if (special.b.need_qs) {
    488		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
    489			rdp->cpu_no_qs.b.norm = false;
    490			rcu_report_qs_rdp(rdp);
    491			udelay(rcu_unlock_delay);
    492		} else {
    493			rcu_qs();
    494		}
    495	}
    496
    497	/*
    498	 * Respond to a request by an expedited grace period for a
    499	 * quiescent state from this CPU.  Note that requests from
    500	 * tasks are handled when removing the task from the
    501	 * blocked-tasks list below.
    502	 */
    503	if (rdp->cpu_no_qs.b.exp)
    504		rcu_report_exp_rdp(rdp);
    505
    506	/* Clean up if blocked during RCU read-side critical section. */
    507	if (special.b.blocked) {
    508
    509		/*
    510		 * Remove this task from the list it blocked on.  The task
    511		 * now remains queued on the rcu_node corresponding to the
    512		 * CPU it first blocked on, so there is no longer any need
    513		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
    514		 */
    515		rnp = t->rcu_blocked_node;
    516		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
    517		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
    518		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
    519		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
    520		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
    521			     (!empty_norm || rnp->qsmask));
    522		empty_exp = sync_rcu_exp_done(rnp);
    523		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
    524		np = rcu_next_node_entry(t, rnp);
    525		list_del_init(&t->rcu_node_entry);
    526		t->rcu_blocked_node = NULL;
    527		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
    528						rnp->gp_seq, t->pid);
    529		if (&t->rcu_node_entry == rnp->gp_tasks)
    530			WRITE_ONCE(rnp->gp_tasks, np);
    531		if (&t->rcu_node_entry == rnp->exp_tasks)
    532			WRITE_ONCE(rnp->exp_tasks, np);
    533		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
    534			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
    535			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
    536			if (&t->rcu_node_entry == rnp->boost_tasks)
    537				WRITE_ONCE(rnp->boost_tasks, np);
    538		}
    539
    540		/*
    541		 * If this was the last task on the current list, and if
    542		 * we aren't waiting on any CPUs, report the quiescent state.
    543		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
    544		 * so we must take a snapshot of the expedited state.
    545		 */
    546		empty_exp_now = sync_rcu_exp_done(rnp);
    547		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
    548			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
    549							 rnp->gp_seq,
    550							 0, rnp->qsmask,
    551							 rnp->level,
    552							 rnp->grplo,
    553							 rnp->grphi,
    554							 !!rnp->gp_tasks);
    555			rcu_report_unblock_qs_rnp(rnp, flags);
    556		} else {
    557			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
    558		}
    559
    560		/*
    561		 * If this was the last task on the expedited lists,
    562		 * then we need to report up the rcu_node hierarchy.
    563		 */
    564		if (!empty_exp && empty_exp_now)
    565			rcu_report_exp_rnp(rnp, true);
    566
    567		/* Unboost if we were boosted. */
    568		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
    569			rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
    570	} else {
    571		local_irq_restore(flags);
    572	}
    573}
    574
    575/*
    576 * Is a deferred quiescent-state pending, and are we also not in
    577 * an RCU read-side critical section?  It is the caller's responsibility
    578 * to ensure it is otherwise safe to report any deferred quiescent
    579 * states.  The reason for this is that it is safe to report a
    580 * quiescent state during context switch even though preemption
    581 * is disabled.  This function cannot be expected to understand these
    582 * nuances, so the caller must handle them.
    583 */
    584static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
    585{
    586	return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
    587		READ_ONCE(t->rcu_read_unlock_special.s)) &&
    588	       rcu_preempt_depth() == 0;
    589}
    590
    591/*
    592 * Report a deferred quiescent state if needed and safe to do so.
    593 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
    594 * not being in an RCU read-side critical section.  The caller must
    595 * evaluate safety in terms of interrupt, softirq, and preemption
    596 * disabling.
    597 */
    598static void rcu_preempt_deferred_qs(struct task_struct *t)
    599{
    600	unsigned long flags;
    601
    602	if (!rcu_preempt_need_deferred_qs(t))
    603		return;
    604	local_irq_save(flags);
    605	rcu_preempt_deferred_qs_irqrestore(t, flags);
    606}
    607
    608/*
    609 * Minimal handler to give the scheduler a chance to re-evaluate.
    610 */
    611static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
    612{
    613	struct rcu_data *rdp;
    614
    615	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
    616	rdp->defer_qs_iw_pending = false;
    617}
    618
    619/*
    620 * Handle special cases during rcu_read_unlock(), such as needing to
    621 * notify RCU core processing or task having blocked during the RCU
    622 * read-side critical section.
    623 */
    624static void rcu_read_unlock_special(struct task_struct *t)
    625{
    626	unsigned long flags;
    627	bool irqs_were_disabled;
    628	bool preempt_bh_were_disabled =
    629			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
    630
    631	/* NMI handlers cannot block and cannot safely manipulate state. */
    632	if (in_nmi())
    633		return;
    634
    635	local_irq_save(flags);
    636	irqs_were_disabled = irqs_disabled_flags(flags);
    637	if (preempt_bh_were_disabled || irqs_were_disabled) {
    638		bool expboost; // Expedited GP in flight or possible boosting.
    639		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
    640		struct rcu_node *rnp = rdp->mynode;
    641
    642		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
    643			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
    644			   IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
    645			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
    646			    t->rcu_blocked_node);
    647		// Need to defer quiescent state until everything is enabled.
    648		if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
    649			// Using softirq, safe to awaken, and either the
    650			// wakeup is free or there is either an expedited
    651			// GP in flight or a potential need to deboost.
    652			raise_softirq_irqoff(RCU_SOFTIRQ);
    653		} else {
    654			// Enabling BH or preempt does reschedule, so...
    655			// Also if no expediting and no possible deboosting,
    656			// slow is OK.  Plus nohz_full CPUs eventually get
    657			// tick enabled.
    658			set_tsk_need_resched(current);
    659			set_preempt_need_resched();
    660			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
    661			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
    662				// Get scheduler to re-evaluate and call hooks.
    663				// If !IRQ_WORK, FQS scan will eventually IPI.
    664				if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
    665				    IS_ENABLED(CONFIG_PREEMPT_RT))
    666					rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(
    667								rcu_preempt_deferred_qs_handler);
    668				else
    669					init_irq_work(&rdp->defer_qs_iw,
    670						      rcu_preempt_deferred_qs_handler);
    671				rdp->defer_qs_iw_pending = true;
    672				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
    673			}
    674		}
    675		local_irq_restore(flags);
    676		return;
    677	}
    678	rcu_preempt_deferred_qs_irqrestore(t, flags);
    679}
    680
    681/*
    682 * Check that the list of blocked tasks for the newly completed grace
    683 * period is in fact empty.  It is a serious bug to complete a grace
    684 * period that still has RCU readers blocked!  This function must be
    685 * invoked -before- updating this rnp's ->gp_seq.
    686 *
    687 * Also, if there are blocked tasks on the list, they automatically
    688 * block the newly created grace period, so set up ->gp_tasks accordingly.
    689 */
    690static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
    691{
    692	struct task_struct *t;
    693
    694	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
    695	raw_lockdep_assert_held_rcu_node(rnp);
    696	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
    697		dump_blkd_tasks(rnp, 10);
    698	if (rcu_preempt_has_tasks(rnp) &&
    699	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
    700		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
    701		t = container_of(rnp->gp_tasks, struct task_struct,
    702				 rcu_node_entry);
    703		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
    704						rnp->gp_seq, t->pid);
    705	}
    706	WARN_ON_ONCE(rnp->qsmask);
    707}
    708
    709/*
    710 * Check for a quiescent state from the current CPU, including voluntary
    711 * context switches for Tasks RCU.  When a task blocks, the task is
    712 * recorded in the corresponding CPU's rcu_node structure, which is checked
    713 * elsewhere, hence this function need only check for quiescent states
    714 * related to the current CPU, not to those related to tasks.
    715 */
    716static void rcu_flavor_sched_clock_irq(int user)
    717{
    718	struct task_struct *t = current;
    719
    720	lockdep_assert_irqs_disabled();
    721	if (user || rcu_is_cpu_rrupt_from_idle()) {
    722		rcu_note_voluntary_context_switch(current);
    723	}
    724	if (rcu_preempt_depth() > 0 ||
    725	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
    726		/* No QS, force context switch if deferred. */
    727		if (rcu_preempt_need_deferred_qs(t)) {
    728			set_tsk_need_resched(t);
    729			set_preempt_need_resched();
    730		}
    731	} else if (rcu_preempt_need_deferred_qs(t)) {
    732		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
    733		return;
    734	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
    735		rcu_qs(); /* Report immediate QS. */
    736		return;
    737	}
    738
    739	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
    740	if (rcu_preempt_depth() > 0 &&
    741	    __this_cpu_read(rcu_data.core_needs_qs) &&
    742	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
    743	    !t->rcu_read_unlock_special.b.need_qs &&
    744	    time_after(jiffies, rcu_state.gp_start + HZ))
    745		t->rcu_read_unlock_special.b.need_qs = true;
    746}
    747
    748/*
    749 * Check for a task exiting while in a preemptible-RCU read-side
    750 * critical section, clean up if so.  No need to issue warnings, as
    751 * debug_check_no_locks_held() already does this if lockdep is enabled.
    752 * Besides, if this function does anything other than just immediately
    753 * return, there was a bug of some sort.  Spewing warnings from this
    754 * function is like as not to simply obscure important prior warnings.
    755 */
    756void exit_rcu(void)
    757{
    758	struct task_struct *t = current;
    759
    760	if (unlikely(!list_empty(&current->rcu_node_entry))) {
    761		rcu_preempt_depth_set(1);
    762		barrier();
    763		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
    764	} else if (unlikely(rcu_preempt_depth())) {
    765		rcu_preempt_depth_set(1);
    766	} else {
    767		return;
    768	}
    769	__rcu_read_unlock();
    770	rcu_preempt_deferred_qs(current);
    771}
    772
    773/*
    774 * Dump the blocked-tasks state, but limit the list dump to the
    775 * specified number of elements.
    776 */
    777static void
    778dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
    779{
    780	int cpu;
    781	int i;
    782	struct list_head *lhp;
    783	struct rcu_data *rdp;
    784	struct rcu_node *rnp1;
    785
    786	raw_lockdep_assert_held_rcu_node(rnp);
    787	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
    788		__func__, rnp->grplo, rnp->grphi, rnp->level,
    789		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
    790	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
    791		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
    792			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
    793	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
    794		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
    795		READ_ONCE(rnp->exp_tasks));
    796	pr_info("%s: ->blkd_tasks", __func__);
    797	i = 0;
    798	list_for_each(lhp, &rnp->blkd_tasks) {
    799		pr_cont(" %p", lhp);
    800		if (++i >= ncheck)
    801			break;
    802	}
    803	pr_cont("\n");
    804	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
    805		rdp = per_cpu_ptr(&rcu_data, cpu);
    806		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
    807			cpu, ".o"[rcu_rdp_cpu_online(rdp)],
    808			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
    809			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
    810	}
    811}
    812
    813#else /* #ifdef CONFIG_PREEMPT_RCU */
    814
    815/*
    816 * If strict grace periods are enabled, and if the calling
    817 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
    818 * report that quiescent state and, if requested, spin for a bit.
    819 */
    820void rcu_read_unlock_strict(void)
    821{
    822	struct rcu_data *rdp;
    823
    824	if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
    825		return;
    826	rdp = this_cpu_ptr(&rcu_data);
    827	rcu_report_qs_rdp(rdp);
    828	udelay(rcu_unlock_delay);
    829}
    830EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
    831
    832/*
    833 * Tell them what RCU they are running.
    834 */
    835static void __init rcu_bootup_announce(void)
    836{
    837	pr_info("Hierarchical RCU implementation.\n");
    838	rcu_bootup_announce_oddness();
    839}
    840
    841/*
    842 * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
    843 * how many quiescent states passed, just if there was at least one since
    844 * the start of the grace period, this just sets a flag.  The caller must
    845 * have disabled preemption.
    846 */
    847static void rcu_qs(void)
    848{
    849	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
    850	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
    851		return;
    852	trace_rcu_grace_period(TPS("rcu_sched"),
    853			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
    854	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
    855	if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
    856		rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
    857}
    858
    859/*
    860 * Register an urgently needed quiescent state.  If there is an
    861 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
    862 * dyntick-idle quiescent state visible to other CPUs, which will in
    863 * some cases serve for expedited as well as normal grace periods.
    864 * Either way, register a lightweight quiescent state.
    865 */
    866void rcu_all_qs(void)
    867{
    868	unsigned long flags;
    869
    870	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
    871		return;
    872	preempt_disable();
    873	/* Load rcu_urgent_qs before other flags. */
    874	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
    875		preempt_enable();
    876		return;
    877	}
    878	this_cpu_write(rcu_data.rcu_urgent_qs, false);
    879	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
    880		local_irq_save(flags);
    881		rcu_momentary_dyntick_idle();
    882		local_irq_restore(flags);
    883	}
    884	rcu_qs();
    885	preempt_enable();
    886}
    887EXPORT_SYMBOL_GPL(rcu_all_qs);
    888
    889/*
    890 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
    891 */
    892void rcu_note_context_switch(bool preempt)
    893{
    894	trace_rcu_utilization(TPS("Start context switch"));
    895	rcu_qs();
    896	/* Load rcu_urgent_qs before other flags. */
    897	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
    898		goto out;
    899	this_cpu_write(rcu_data.rcu_urgent_qs, false);
    900	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
    901		rcu_momentary_dyntick_idle();
    902	rcu_tasks_qs(current, preempt);
    903out:
    904	trace_rcu_utilization(TPS("End context switch"));
    905}
    906EXPORT_SYMBOL_GPL(rcu_note_context_switch);
    907
    908/*
    909 * Because preemptible RCU does not exist, there are never any preempted
    910 * RCU readers.
    911 */
    912static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
    913{
    914	return 0;
    915}
    916
    917/*
    918 * Because there is no preemptible RCU, there can be no readers blocked.
    919 */
    920static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
    921{
    922	return false;
    923}
    924
    925/*
    926 * Because there is no preemptible RCU, there can be no deferred quiescent
    927 * states.
    928 */
    929static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
    930{
    931	return false;
    932}
    933
    934// Except that we do need to respond to a request by an expedited grace
    935// period for a quiescent state from this CPU.  Note that requests from
    936// tasks are handled when removing the task from the blocked-tasks list
    937// below.
    938static void rcu_preempt_deferred_qs(struct task_struct *t)
    939{
    940	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
    941
    942	if (rdp->cpu_no_qs.b.exp)
    943		rcu_report_exp_rdp(rdp);
    944}
    945
    946/*
    947 * Because there is no preemptible RCU, there can be no readers blocked,
    948 * so there is no need to check for blocked tasks.  So check only for
    949 * bogus qsmask values.
    950 */
    951static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
    952{
    953	WARN_ON_ONCE(rnp->qsmask);
    954}
    955
    956/*
    957 * Check to see if this CPU is in a non-context-switch quiescent state,
    958 * namely user mode and idle loop.
    959 */
    960static void rcu_flavor_sched_clock_irq(int user)
    961{
    962	if (user || rcu_is_cpu_rrupt_from_idle()) {
    963
    964		/*
    965		 * Get here if this CPU took its interrupt from user
    966		 * mode or from the idle loop, and if this is not a
    967		 * nested interrupt.  In this case, the CPU is in
    968		 * a quiescent state, so note it.
    969		 *
    970		 * No memory barrier is required here because rcu_qs()
    971		 * references only CPU-local variables that other CPUs
    972		 * neither access nor modify, at least not while the
    973		 * corresponding CPU is online.
    974		 */
    975
    976		rcu_qs();
    977	}
    978}
    979
    980/*
    981 * Because preemptible RCU does not exist, tasks cannot possibly exit
    982 * while in preemptible RCU read-side critical sections.
    983 */
    984void exit_rcu(void)
    985{
    986}
    987
    988/*
    989 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
    990 */
    991static void
    992dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
    993{
    994	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
    995}
    996
    997#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
    998
    999/*
   1000 * If boosting, set rcuc kthreads to realtime priority.
   1001 */
   1002static void rcu_cpu_kthread_setup(unsigned int cpu)
   1003{
   1004	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
   1005#ifdef CONFIG_RCU_BOOST
   1006	struct sched_param sp;
   1007
   1008	sp.sched_priority = kthread_prio;
   1009	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
   1010#endif /* #ifdef CONFIG_RCU_BOOST */
   1011
   1012	WRITE_ONCE(rdp->rcuc_activity, jiffies);
   1013}
   1014
   1015#ifdef CONFIG_RCU_BOOST
   1016
   1017/*
   1018 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
   1019 * or ->boost_tasks, advancing the pointer to the next task in the
   1020 * ->blkd_tasks list.
   1021 *
   1022 * Note that irqs must be enabled: boosting the task can block.
   1023 * Returns 1 if there are more tasks needing to be boosted.
   1024 */
   1025static int rcu_boost(struct rcu_node *rnp)
   1026{
   1027	unsigned long flags;
   1028	struct task_struct *t;
   1029	struct list_head *tb;
   1030
   1031	if (READ_ONCE(rnp->exp_tasks) == NULL &&
   1032	    READ_ONCE(rnp->boost_tasks) == NULL)
   1033		return 0;  /* Nothing left to boost. */
   1034
   1035	raw_spin_lock_irqsave_rcu_node(rnp, flags);
   1036
   1037	/*
   1038	 * Recheck under the lock: all tasks in need of boosting
   1039	 * might exit their RCU read-side critical sections on their own.
   1040	 */
   1041	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
   1042		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
   1043		return 0;
   1044	}
   1045
   1046	/*
   1047	 * Preferentially boost tasks blocking expedited grace periods.
   1048	 * This cannot starve the normal grace periods because a second
   1049	 * expedited grace period must boost all blocked tasks, including
   1050	 * those blocking the pre-existing normal grace period.
   1051	 */
   1052	if (rnp->exp_tasks != NULL)
   1053		tb = rnp->exp_tasks;
   1054	else
   1055		tb = rnp->boost_tasks;
   1056
   1057	/*
   1058	 * We boost task t by manufacturing an rt_mutex that appears to
   1059	 * be held by task t.  We leave a pointer to that rt_mutex where
   1060	 * task t can find it, and task t will release the mutex when it
   1061	 * exits its outermost RCU read-side critical section.  Then
   1062	 * simply acquiring this artificial rt_mutex will boost task
   1063	 * t's priority.  (Thanks to tglx for suggesting this approach!)
   1064	 *
   1065	 * Note that task t must acquire rnp->lock to remove itself from
   1066	 * the ->blkd_tasks list, which it will do from exit() if from
   1067	 * nowhere else.  We therefore are guaranteed that task t will
   1068	 * stay around at least until we drop rnp->lock.  Note that
   1069	 * rnp->lock also resolves races between our priority boosting
   1070	 * and task t's exiting its outermost RCU read-side critical
   1071	 * section.
   1072	 */
   1073	t = container_of(tb, struct task_struct, rcu_node_entry);
   1074	rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
   1075	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
   1076	/* Lock only for side effect: boosts task t's priority. */
   1077	rt_mutex_lock(&rnp->boost_mtx);
   1078	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
   1079	rnp->n_boosts++;
   1080
   1081	return READ_ONCE(rnp->exp_tasks) != NULL ||
   1082	       READ_ONCE(rnp->boost_tasks) != NULL;
   1083}
   1084
   1085/*
   1086 * Priority-boosting kthread, one per leaf rcu_node.
   1087 */
   1088static int rcu_boost_kthread(void *arg)
   1089{
   1090	struct rcu_node *rnp = (struct rcu_node *)arg;
   1091	int spincnt = 0;
   1092	int more2boost;
   1093
   1094	trace_rcu_utilization(TPS("Start boost kthread@init"));
   1095	for (;;) {
   1096		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
   1097		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
   1098		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
   1099			 READ_ONCE(rnp->exp_tasks));
   1100		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
   1101		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
   1102		more2boost = rcu_boost(rnp);
   1103		if (more2boost)
   1104			spincnt++;
   1105		else
   1106			spincnt = 0;
   1107		if (spincnt > 10) {
   1108			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
   1109			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
   1110			schedule_timeout_idle(2);
   1111			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
   1112			spincnt = 0;
   1113		}
   1114	}
   1115	/* NOTREACHED */
   1116	trace_rcu_utilization(TPS("End boost kthread@notreached"));
   1117	return 0;
   1118}
   1119
   1120/*
   1121 * Check to see if it is time to start boosting RCU readers that are
   1122 * blocking the current grace period, and, if so, tell the per-rcu_node
   1123 * kthread to start boosting them.  If there is an expedited grace
   1124 * period in progress, it is always time to boost.
   1125 *
   1126 * The caller must hold rnp->lock, which this function releases.
   1127 * The ->boost_kthread_task is immortal, so we don't need to worry
   1128 * about it going away.
   1129 */
   1130static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
   1131	__releases(rnp->lock)
   1132{
   1133	raw_lockdep_assert_held_rcu_node(rnp);
   1134	if (!rnp->boost_kthread_task ||
   1135	    (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
   1136		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
   1137		return;
   1138	}
   1139	if (rnp->exp_tasks != NULL ||
   1140	    (rnp->gp_tasks != NULL &&
   1141	     rnp->boost_tasks == NULL &&
   1142	     rnp->qsmask == 0 &&
   1143	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
   1144		if (rnp->exp_tasks == NULL)
   1145			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
   1146		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
   1147		rcu_wake_cond(rnp->boost_kthread_task,
   1148			      READ_ONCE(rnp->boost_kthread_status));
   1149	} else {
   1150		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
   1151	}
   1152}
   1153
   1154/*
   1155 * Is the current CPU running the RCU-callbacks kthread?
   1156 * Caller must have preemption disabled.
   1157 */
   1158static bool rcu_is_callbacks_kthread(void)
   1159{
   1160	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
   1161}
   1162
   1163#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
   1164
   1165/*
   1166 * Do priority-boost accounting for the start of a new grace period.
   1167 */
   1168static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
   1169{
   1170	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
   1171}
   1172
   1173/*
   1174 * Create an RCU-boost kthread for the specified node if one does not
   1175 * already exist.  We only create this kthread for preemptible RCU.
   1176 */
   1177static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
   1178{
   1179	unsigned long flags;
   1180	int rnp_index = rnp - rcu_get_root();
   1181	struct sched_param sp;
   1182	struct task_struct *t;
   1183
   1184	mutex_lock(&rnp->boost_kthread_mutex);
   1185	if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
   1186		goto out;
   1187
   1188	t = kthread_create(rcu_boost_kthread, (void *)rnp,
   1189			   "rcub/%d", rnp_index);
   1190	if (WARN_ON_ONCE(IS_ERR(t)))
   1191		goto out;
   1192
   1193	raw_spin_lock_irqsave_rcu_node(rnp, flags);
   1194	rnp->boost_kthread_task = t;
   1195	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
   1196	sp.sched_priority = kthread_prio;
   1197	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
   1198	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
   1199
   1200 out:
   1201	mutex_unlock(&rnp->boost_kthread_mutex);
   1202}
   1203
   1204/*
   1205 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
   1206 * served by the rcu_node in question.  The CPU hotplug lock is still
   1207 * held, so the value of rnp->qsmaskinit will be stable.
   1208 *
   1209 * We don't include outgoingcpu in the affinity set, use -1 if there is
   1210 * no outgoing CPU.  If there are no CPUs left in the affinity set,
   1211 * this function allows the kthread to execute on any CPU.
   1212 */
   1213static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
   1214{
   1215	struct task_struct *t = rnp->boost_kthread_task;
   1216	unsigned long mask = rcu_rnp_online_cpus(rnp);
   1217	cpumask_var_t cm;
   1218	int cpu;
   1219
   1220	if (!t)
   1221		return;
   1222	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
   1223		return;
   1224	mutex_lock(&rnp->boost_kthread_mutex);
   1225	for_each_leaf_node_possible_cpu(rnp, cpu)
   1226		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
   1227		    cpu != outgoingcpu)
   1228			cpumask_set_cpu(cpu, cm);
   1229	cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
   1230	if (cpumask_empty(cm))
   1231		cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
   1232	set_cpus_allowed_ptr(t, cm);
   1233	mutex_unlock(&rnp->boost_kthread_mutex);
   1234	free_cpumask_var(cm);
   1235}
   1236
   1237#else /* #ifdef CONFIG_RCU_BOOST */
   1238
   1239static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
   1240	__releases(rnp->lock)
   1241{
   1242	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
   1243}
   1244
   1245static bool rcu_is_callbacks_kthread(void)
   1246{
   1247	return false;
   1248}
   1249
   1250static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
   1251{
   1252}
   1253
   1254static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
   1255{
   1256}
   1257
   1258static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
   1259{
   1260}
   1261
   1262#endif /* #else #ifdef CONFIG_RCU_BOOST */
   1263
   1264/*
   1265 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
   1266 * grace-period kthread will do force_quiescent_state() processing?
   1267 * The idea is to avoid waking up RCU core processing on such a
   1268 * CPU unless the grace period has extended for too long.
   1269 *
   1270 * This code relies on the fact that all NO_HZ_FULL CPUs are also
   1271 * RCU_NOCB_CPU CPUs.
   1272 */
   1273static bool rcu_nohz_full_cpu(void)
   1274{
   1275#ifdef CONFIG_NO_HZ_FULL
   1276	if (tick_nohz_full_cpu(smp_processor_id()) &&
   1277	    (!rcu_gp_in_progress() ||
   1278	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
   1279		return true;
   1280#endif /* #ifdef CONFIG_NO_HZ_FULL */
   1281	return false;
   1282}
   1283
   1284/*
   1285 * Bind the RCU grace-period kthreads to the housekeeping CPU.
   1286 */
   1287static void rcu_bind_gp_kthread(void)
   1288{
   1289	if (!tick_nohz_full_enabled())
   1290		return;
   1291	housekeeping_affine(current, HK_TYPE_RCU);
   1292}
   1293
   1294/* Record the current task on dyntick-idle entry. */
   1295static __always_inline void rcu_dynticks_task_enter(void)
   1296{
   1297#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
   1298	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
   1299#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
   1300}
   1301
   1302/* Record no current task on dyntick-idle exit. */
   1303static __always_inline void rcu_dynticks_task_exit(void)
   1304{
   1305#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
   1306	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
   1307#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
   1308}
   1309
   1310/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
   1311static __always_inline void rcu_dynticks_task_trace_enter(void)
   1312{
   1313#ifdef CONFIG_TASKS_TRACE_RCU
   1314	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
   1315		current->trc_reader_special.b.need_mb = true;
   1316#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
   1317}
   1318
   1319/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
   1320static __always_inline void rcu_dynticks_task_trace_exit(void)
   1321{
   1322#ifdef CONFIG_TASKS_TRACE_RCU
   1323	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
   1324		current->trc_reader_special.b.need_mb = false;
   1325#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
   1326}