cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

reboot.c (32474B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/kernel/reboot.c
      4 *
      5 *  Copyright (C) 2013  Linus Torvalds
      6 */
      7
      8#define pr_fmt(fmt)	"reboot: " fmt
      9
     10#include <linux/atomic.h>
     11#include <linux/ctype.h>
     12#include <linux/export.h>
     13#include <linux/kexec.h>
     14#include <linux/kmod.h>
     15#include <linux/kmsg_dump.h>
     16#include <linux/reboot.h>
     17#include <linux/suspend.h>
     18#include <linux/syscalls.h>
     19#include <linux/syscore_ops.h>
     20#include <linux/uaccess.h>
     21
     22/*
     23 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
     24 */
     25
     26static int C_A_D = 1;
     27struct pid *cad_pid;
     28EXPORT_SYMBOL(cad_pid);
     29
     30#if defined(CONFIG_ARM)
     31#define DEFAULT_REBOOT_MODE		= REBOOT_HARD
     32#else
     33#define DEFAULT_REBOOT_MODE
     34#endif
     35enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
     36EXPORT_SYMBOL_GPL(reboot_mode);
     37enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
     38
     39/*
     40 * This variable is used privately to keep track of whether or not
     41 * reboot_type is still set to its default value (i.e., reboot= hasn't
     42 * been set on the command line).  This is needed so that we can
     43 * suppress DMI scanning for reboot quirks.  Without it, it's
     44 * impossible to override a faulty reboot quirk without recompiling.
     45 */
     46int reboot_default = 1;
     47int reboot_cpu;
     48enum reboot_type reboot_type = BOOT_ACPI;
     49int reboot_force;
     50
     51struct sys_off_handler {
     52	struct notifier_block nb;
     53	int (*sys_off_cb)(struct sys_off_data *data);
     54	void *cb_data;
     55	enum sys_off_mode mode;
     56	bool blocking;
     57	void *list;
     58};
     59
     60/*
     61 * Temporary stub that prevents linkage failure while we're in process
     62 * of removing all uses of legacy pm_power_off() around the kernel.
     63 */
     64void __weak (*pm_power_off)(void);
     65
     66/**
     67 *	emergency_restart - reboot the system
     68 *
     69 *	Without shutting down any hardware or taking any locks
     70 *	reboot the system.  This is called when we know we are in
     71 *	trouble so this is our best effort to reboot.  This is
     72 *	safe to call in interrupt context.
     73 */
     74void emergency_restart(void)
     75{
     76	kmsg_dump(KMSG_DUMP_EMERG);
     77	machine_emergency_restart();
     78}
     79EXPORT_SYMBOL_GPL(emergency_restart);
     80
     81void kernel_restart_prepare(char *cmd)
     82{
     83	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
     84	system_state = SYSTEM_RESTART;
     85	usermodehelper_disable();
     86	device_shutdown();
     87}
     88
     89/**
     90 *	register_reboot_notifier - Register function to be called at reboot time
     91 *	@nb: Info about notifier function to be called
     92 *
     93 *	Registers a function with the list of functions
     94 *	to be called at reboot time.
     95 *
     96 *	Currently always returns zero, as blocking_notifier_chain_register()
     97 *	always returns zero.
     98 */
     99int register_reboot_notifier(struct notifier_block *nb)
    100{
    101	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
    102}
    103EXPORT_SYMBOL(register_reboot_notifier);
    104
    105/**
    106 *	unregister_reboot_notifier - Unregister previously registered reboot notifier
    107 *	@nb: Hook to be unregistered
    108 *
    109 *	Unregisters a previously registered reboot
    110 *	notifier function.
    111 *
    112 *	Returns zero on success, or %-ENOENT on failure.
    113 */
    114int unregister_reboot_notifier(struct notifier_block *nb)
    115{
    116	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
    117}
    118EXPORT_SYMBOL(unregister_reboot_notifier);
    119
    120static void devm_unregister_reboot_notifier(struct device *dev, void *res)
    121{
    122	WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
    123}
    124
    125int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
    126{
    127	struct notifier_block **rcnb;
    128	int ret;
    129
    130	rcnb = devres_alloc(devm_unregister_reboot_notifier,
    131			    sizeof(*rcnb), GFP_KERNEL);
    132	if (!rcnb)
    133		return -ENOMEM;
    134
    135	ret = register_reboot_notifier(nb);
    136	if (!ret) {
    137		*rcnb = nb;
    138		devres_add(dev, rcnb);
    139	} else {
    140		devres_free(rcnb);
    141	}
    142
    143	return ret;
    144}
    145EXPORT_SYMBOL(devm_register_reboot_notifier);
    146
    147/*
    148 *	Notifier list for kernel code which wants to be called
    149 *	to restart the system.
    150 */
    151static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
    152
    153/**
    154 *	register_restart_handler - Register function to be called to reset
    155 *				   the system
    156 *	@nb: Info about handler function to be called
    157 *	@nb->priority:	Handler priority. Handlers should follow the
    158 *			following guidelines for setting priorities.
    159 *			0:	Restart handler of last resort,
    160 *				with limited restart capabilities
    161 *			128:	Default restart handler; use if no other
    162 *				restart handler is expected to be available,
    163 *				and/or if restart functionality is
    164 *				sufficient to restart the entire system
    165 *			255:	Highest priority restart handler, will
    166 *				preempt all other restart handlers
    167 *
    168 *	Registers a function with code to be called to restart the
    169 *	system.
    170 *
    171 *	Registered functions will be called from machine_restart as last
    172 *	step of the restart sequence (if the architecture specific
    173 *	machine_restart function calls do_kernel_restart - see below
    174 *	for details).
    175 *	Registered functions are expected to restart the system immediately.
    176 *	If more than one function is registered, the restart handler priority
    177 *	selects which function will be called first.
    178 *
    179 *	Restart handlers are expected to be registered from non-architecture
    180 *	code, typically from drivers. A typical use case would be a system
    181 *	where restart functionality is provided through a watchdog. Multiple
    182 *	restart handlers may exist; for example, one restart handler might
    183 *	restart the entire system, while another only restarts the CPU.
    184 *	In such cases, the restart handler which only restarts part of the
    185 *	hardware is expected to register with low priority to ensure that
    186 *	it only runs if no other means to restart the system is available.
    187 *
    188 *	Currently always returns zero, as atomic_notifier_chain_register()
    189 *	always returns zero.
    190 */
    191int register_restart_handler(struct notifier_block *nb)
    192{
    193	return atomic_notifier_chain_register(&restart_handler_list, nb);
    194}
    195EXPORT_SYMBOL(register_restart_handler);
    196
    197/**
    198 *	unregister_restart_handler - Unregister previously registered
    199 *				     restart handler
    200 *	@nb: Hook to be unregistered
    201 *
    202 *	Unregisters a previously registered restart handler function.
    203 *
    204 *	Returns zero on success, or %-ENOENT on failure.
    205 */
    206int unregister_restart_handler(struct notifier_block *nb)
    207{
    208	return atomic_notifier_chain_unregister(&restart_handler_list, nb);
    209}
    210EXPORT_SYMBOL(unregister_restart_handler);
    211
    212/**
    213 *	do_kernel_restart - Execute kernel restart handler call chain
    214 *
    215 *	Calls functions registered with register_restart_handler.
    216 *
    217 *	Expected to be called from machine_restart as last step of the restart
    218 *	sequence.
    219 *
    220 *	Restarts the system immediately if a restart handler function has been
    221 *	registered. Otherwise does nothing.
    222 */
    223void do_kernel_restart(char *cmd)
    224{
    225	atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
    226}
    227
    228void migrate_to_reboot_cpu(void)
    229{
    230	/* The boot cpu is always logical cpu 0 */
    231	int cpu = reboot_cpu;
    232
    233	cpu_hotplug_disable();
    234
    235	/* Make certain the cpu I'm about to reboot on is online */
    236	if (!cpu_online(cpu))
    237		cpu = cpumask_first(cpu_online_mask);
    238
    239	/* Prevent races with other tasks migrating this task */
    240	current->flags |= PF_NO_SETAFFINITY;
    241
    242	/* Make certain I only run on the appropriate processor */
    243	set_cpus_allowed_ptr(current, cpumask_of(cpu));
    244}
    245
    246/**
    247 *	kernel_restart - reboot the system
    248 *	@cmd: pointer to buffer containing command to execute for restart
    249 *		or %NULL
    250 *
    251 *	Shutdown everything and perform a clean reboot.
    252 *	This is not safe to call in interrupt context.
    253 */
    254void kernel_restart(char *cmd)
    255{
    256	kernel_restart_prepare(cmd);
    257	migrate_to_reboot_cpu();
    258	syscore_shutdown();
    259	if (!cmd)
    260		pr_emerg("Restarting system\n");
    261	else
    262		pr_emerg("Restarting system with command '%s'\n", cmd);
    263	kmsg_dump(KMSG_DUMP_SHUTDOWN);
    264	machine_restart(cmd);
    265}
    266EXPORT_SYMBOL_GPL(kernel_restart);
    267
    268static void kernel_shutdown_prepare(enum system_states state)
    269{
    270	blocking_notifier_call_chain(&reboot_notifier_list,
    271		(state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
    272	system_state = state;
    273	usermodehelper_disable();
    274	device_shutdown();
    275}
    276/**
    277 *	kernel_halt - halt the system
    278 *
    279 *	Shutdown everything and perform a clean system halt.
    280 */
    281void kernel_halt(void)
    282{
    283	kernel_shutdown_prepare(SYSTEM_HALT);
    284	migrate_to_reboot_cpu();
    285	syscore_shutdown();
    286	pr_emerg("System halted\n");
    287	kmsg_dump(KMSG_DUMP_SHUTDOWN);
    288	machine_halt();
    289}
    290EXPORT_SYMBOL_GPL(kernel_halt);
    291
    292/*
    293 *	Notifier list for kernel code which wants to be called
    294 *	to prepare system for power off.
    295 */
    296static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
    297
    298/*
    299 *	Notifier list for kernel code which wants to be called
    300 *	to power off system.
    301 */
    302static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
    303
    304static int sys_off_notify(struct notifier_block *nb,
    305			  unsigned long mode, void *cmd)
    306{
    307	struct sys_off_handler *handler;
    308	struct sys_off_data data = {};
    309
    310	handler = container_of(nb, struct sys_off_handler, nb);
    311	data.cb_data = handler->cb_data;
    312	data.mode = mode;
    313	data.cmd = cmd;
    314
    315	return handler->sys_off_cb(&data);
    316}
    317
    318static struct sys_off_handler platform_sys_off_handler;
    319
    320static struct sys_off_handler *alloc_sys_off_handler(int priority)
    321{
    322	struct sys_off_handler *handler;
    323	gfp_t flags;
    324
    325	/*
    326	 * Platforms like m68k can't allocate sys_off handler dynamically
    327	 * at the early boot time because memory allocator isn't available yet.
    328	 */
    329	if (priority == SYS_OFF_PRIO_PLATFORM) {
    330		handler = &platform_sys_off_handler;
    331		if (handler->cb_data)
    332			return ERR_PTR(-EBUSY);
    333	} else {
    334		if (system_state > SYSTEM_RUNNING)
    335			flags = GFP_ATOMIC;
    336		else
    337			flags = GFP_KERNEL;
    338
    339		handler = kzalloc(sizeof(*handler), flags);
    340		if (!handler)
    341			return ERR_PTR(-ENOMEM);
    342	}
    343
    344	return handler;
    345}
    346
    347static void free_sys_off_handler(struct sys_off_handler *handler)
    348{
    349	if (handler == &platform_sys_off_handler)
    350		memset(handler, 0, sizeof(*handler));
    351	else
    352		kfree(handler);
    353}
    354
    355/**
    356 *	register_sys_off_handler - Register sys-off handler
    357 *	@mode: Sys-off mode
    358 *	@priority: Handler priority
    359 *	@callback: Callback function
    360 *	@cb_data: Callback argument
    361 *
    362 *	Registers system power-off or restart handler that will be invoked
    363 *	at the step corresponding to the given sys-off mode. Handler's callback
    364 *	should return NOTIFY_DONE to permit execution of the next handler in
    365 *	the call chain or NOTIFY_STOP to break the chain (in error case for
    366 *	example).
    367 *
    368 *	Multiple handlers can be registered at the default priority level.
    369 *
    370 *	Only one handler can be registered at the non-default priority level,
    371 *	otherwise ERR_PTR(-EBUSY) is returned.
    372 *
    373 *	Returns a new instance of struct sys_off_handler on success, or
    374 *	an ERR_PTR()-encoded error code otherwise.
    375 */
    376struct sys_off_handler *
    377register_sys_off_handler(enum sys_off_mode mode,
    378			 int priority,
    379			 int (*callback)(struct sys_off_data *data),
    380			 void *cb_data)
    381{
    382	struct sys_off_handler *handler;
    383	int err;
    384
    385	handler = alloc_sys_off_handler(priority);
    386	if (IS_ERR(handler))
    387		return handler;
    388
    389	switch (mode) {
    390	case SYS_OFF_MODE_POWER_OFF_PREPARE:
    391		handler->list = &power_off_prep_handler_list;
    392		handler->blocking = true;
    393		break;
    394
    395	case SYS_OFF_MODE_POWER_OFF:
    396		handler->list = &power_off_handler_list;
    397		break;
    398
    399	case SYS_OFF_MODE_RESTART:
    400		handler->list = &restart_handler_list;
    401		break;
    402
    403	default:
    404		free_sys_off_handler(handler);
    405		return ERR_PTR(-EINVAL);
    406	}
    407
    408	handler->nb.notifier_call = sys_off_notify;
    409	handler->nb.priority = priority;
    410	handler->sys_off_cb = callback;
    411	handler->cb_data = cb_data;
    412	handler->mode = mode;
    413
    414	if (handler->blocking) {
    415		if (priority == SYS_OFF_PRIO_DEFAULT)
    416			err = blocking_notifier_chain_register(handler->list,
    417							       &handler->nb);
    418		else
    419			err = blocking_notifier_chain_register_unique_prio(handler->list,
    420									   &handler->nb);
    421	} else {
    422		if (priority == SYS_OFF_PRIO_DEFAULT)
    423			err = atomic_notifier_chain_register(handler->list,
    424							     &handler->nb);
    425		else
    426			err = atomic_notifier_chain_register_unique_prio(handler->list,
    427									 &handler->nb);
    428	}
    429
    430	if (err) {
    431		free_sys_off_handler(handler);
    432		return ERR_PTR(err);
    433	}
    434
    435	return handler;
    436}
    437EXPORT_SYMBOL_GPL(register_sys_off_handler);
    438
    439/**
    440 *	unregister_sys_off_handler - Unregister sys-off handler
    441 *	@handler: Sys-off handler
    442 *
    443 *	Unregisters given sys-off handler.
    444 */
    445void unregister_sys_off_handler(struct sys_off_handler *handler)
    446{
    447	int err;
    448
    449	if (IS_ERR_OR_NULL(handler))
    450		return;
    451
    452	if (handler->blocking)
    453		err = blocking_notifier_chain_unregister(handler->list,
    454							 &handler->nb);
    455	else
    456		err = atomic_notifier_chain_unregister(handler->list,
    457						       &handler->nb);
    458
    459	/* sanity check, shall never happen */
    460	WARN_ON(err);
    461
    462	free_sys_off_handler(handler);
    463}
    464EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
    465
    466static void devm_unregister_sys_off_handler(void *data)
    467{
    468	struct sys_off_handler *handler = data;
    469
    470	unregister_sys_off_handler(handler);
    471}
    472
    473/**
    474 *	devm_register_sys_off_handler - Register sys-off handler
    475 *	@dev: Device that registers handler
    476 *	@mode: Sys-off mode
    477 *	@priority: Handler priority
    478 *	@callback: Callback function
    479 *	@cb_data: Callback argument
    480 *
    481 *	Registers resource-managed sys-off handler.
    482 *
    483 *	Returns zero on success, or error code on failure.
    484 */
    485int devm_register_sys_off_handler(struct device *dev,
    486				  enum sys_off_mode mode,
    487				  int priority,
    488				  int (*callback)(struct sys_off_data *data),
    489				  void *cb_data)
    490{
    491	struct sys_off_handler *handler;
    492
    493	handler = register_sys_off_handler(mode, priority, callback, cb_data);
    494	if (IS_ERR(handler))
    495		return PTR_ERR(handler);
    496
    497	return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
    498					handler);
    499}
    500EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
    501
    502/**
    503 *	devm_register_power_off_handler - Register power-off handler
    504 *	@dev: Device that registers callback
    505 *	@callback: Callback function
    506 *	@cb_data: Callback's argument
    507 *
    508 *	Registers resource-managed sys-off handler with a default priority
    509 *	and using power-off mode.
    510 *
    511 *	Returns zero on success, or error code on failure.
    512 */
    513int devm_register_power_off_handler(struct device *dev,
    514				    int (*callback)(struct sys_off_data *data),
    515				    void *cb_data)
    516{
    517	return devm_register_sys_off_handler(dev,
    518					     SYS_OFF_MODE_POWER_OFF,
    519					     SYS_OFF_PRIO_DEFAULT,
    520					     callback, cb_data);
    521}
    522EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
    523
    524/**
    525 *	devm_register_restart_handler - Register restart handler
    526 *	@dev: Device that registers callback
    527 *	@callback: Callback function
    528 *	@cb_data: Callback's argument
    529 *
    530 *	Registers resource-managed sys-off handler with a default priority
    531 *	and using restart mode.
    532 *
    533 *	Returns zero on success, or error code on failure.
    534 */
    535int devm_register_restart_handler(struct device *dev,
    536				  int (*callback)(struct sys_off_data *data),
    537				  void *cb_data)
    538{
    539	return devm_register_sys_off_handler(dev,
    540					     SYS_OFF_MODE_RESTART,
    541					     SYS_OFF_PRIO_DEFAULT,
    542					     callback, cb_data);
    543}
    544EXPORT_SYMBOL_GPL(devm_register_restart_handler);
    545
    546static struct sys_off_handler *platform_power_off_handler;
    547
    548static int platform_power_off_notify(struct sys_off_data *data)
    549{
    550	void (*platform_power_power_off_cb)(void) = data->cb_data;
    551
    552	platform_power_power_off_cb();
    553
    554	return NOTIFY_DONE;
    555}
    556
    557/**
    558 *	register_platform_power_off - Register platform-level power-off callback
    559 *	@power_off: Power-off callback
    560 *
    561 *	Registers power-off callback that will be called as last step
    562 *	of the power-off sequence. This callback is expected to be invoked
    563 *	for the last resort. Only one platform power-off callback is allowed
    564 *	to be registered at a time.
    565 *
    566 *	Returns zero on success, or error code on failure.
    567 */
    568int register_platform_power_off(void (*power_off)(void))
    569{
    570	struct sys_off_handler *handler;
    571
    572	handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
    573					   SYS_OFF_PRIO_PLATFORM,
    574					   platform_power_off_notify,
    575					   power_off);
    576	if (IS_ERR(handler))
    577		return PTR_ERR(handler);
    578
    579	platform_power_off_handler = handler;
    580
    581	return 0;
    582}
    583EXPORT_SYMBOL_GPL(register_platform_power_off);
    584
    585/**
    586 *	unregister_platform_power_off - Unregister platform-level power-off callback
    587 *	@power_off: Power-off callback
    588 *
    589 *	Unregisters previously registered platform power-off callback.
    590 */
    591void unregister_platform_power_off(void (*power_off)(void))
    592{
    593	if (platform_power_off_handler &&
    594	    platform_power_off_handler->cb_data == power_off) {
    595		unregister_sys_off_handler(platform_power_off_handler);
    596		platform_power_off_handler = NULL;
    597	}
    598}
    599EXPORT_SYMBOL_GPL(unregister_platform_power_off);
    600
    601static int legacy_pm_power_off(struct sys_off_data *data)
    602{
    603	if (pm_power_off)
    604		pm_power_off();
    605
    606	return NOTIFY_DONE;
    607}
    608
    609static void do_kernel_power_off_prepare(void)
    610{
    611	blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
    612}
    613
    614/**
    615 *	do_kernel_power_off - Execute kernel power-off handler call chain
    616 *
    617 *	Expected to be called as last step of the power-off sequence.
    618 *
    619 *	Powers off the system immediately if a power-off handler function has
    620 *	been registered. Otherwise does nothing.
    621 */
    622void do_kernel_power_off(void)
    623{
    624	struct sys_off_handler *sys_off = NULL;
    625
    626	/*
    627	 * Register sys-off handlers for legacy PM callback. This allows
    628	 * legacy PM callbacks temporary co-exist with the new sys-off API.
    629	 *
    630	 * TODO: Remove legacy handlers once all legacy PM users will be
    631	 *       switched to the sys-off based APIs.
    632	 */
    633	if (pm_power_off)
    634		sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
    635						   SYS_OFF_PRIO_DEFAULT,
    636						   legacy_pm_power_off, NULL);
    637
    638	atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
    639
    640	unregister_sys_off_handler(sys_off);
    641}
    642
    643/**
    644 *	kernel_can_power_off - check whether system can be powered off
    645 *
    646 *	Returns true if power-off handler is registered and system can be
    647 *	powered off, false otherwise.
    648 */
    649bool kernel_can_power_off(void)
    650{
    651	return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
    652		pm_power_off;
    653}
    654EXPORT_SYMBOL_GPL(kernel_can_power_off);
    655
    656/**
    657 *	kernel_power_off - power_off the system
    658 *
    659 *	Shutdown everything and perform a clean system power_off.
    660 */
    661void kernel_power_off(void)
    662{
    663	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
    664	do_kernel_power_off_prepare();
    665	migrate_to_reboot_cpu();
    666	syscore_shutdown();
    667	pr_emerg("Power down\n");
    668	kmsg_dump(KMSG_DUMP_SHUTDOWN);
    669	machine_power_off();
    670}
    671EXPORT_SYMBOL_GPL(kernel_power_off);
    672
    673DEFINE_MUTEX(system_transition_mutex);
    674
    675/*
    676 * Reboot system call: for obvious reasons only root may call it,
    677 * and even root needs to set up some magic numbers in the registers
    678 * so that some mistake won't make this reboot the whole machine.
    679 * You can also set the meaning of the ctrl-alt-del-key here.
    680 *
    681 * reboot doesn't sync: do that yourself before calling this.
    682 */
    683SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
    684		void __user *, arg)
    685{
    686	struct pid_namespace *pid_ns = task_active_pid_ns(current);
    687	char buffer[256];
    688	int ret = 0;
    689
    690	/* We only trust the superuser with rebooting the system. */
    691	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
    692		return -EPERM;
    693
    694	/* For safety, we require "magic" arguments. */
    695	if (magic1 != LINUX_REBOOT_MAGIC1 ||
    696			(magic2 != LINUX_REBOOT_MAGIC2 &&
    697			magic2 != LINUX_REBOOT_MAGIC2A &&
    698			magic2 != LINUX_REBOOT_MAGIC2B &&
    699			magic2 != LINUX_REBOOT_MAGIC2C))
    700		return -EINVAL;
    701
    702	/*
    703	 * If pid namespaces are enabled and the current task is in a child
    704	 * pid_namespace, the command is handled by reboot_pid_ns() which will
    705	 * call do_exit().
    706	 */
    707	ret = reboot_pid_ns(pid_ns, cmd);
    708	if (ret)
    709		return ret;
    710
    711	/* Instead of trying to make the power_off code look like
    712	 * halt when pm_power_off is not set do it the easy way.
    713	 */
    714	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off())
    715		cmd = LINUX_REBOOT_CMD_HALT;
    716
    717	mutex_lock(&system_transition_mutex);
    718	switch (cmd) {
    719	case LINUX_REBOOT_CMD_RESTART:
    720		kernel_restart(NULL);
    721		break;
    722
    723	case LINUX_REBOOT_CMD_CAD_ON:
    724		C_A_D = 1;
    725		break;
    726
    727	case LINUX_REBOOT_CMD_CAD_OFF:
    728		C_A_D = 0;
    729		break;
    730
    731	case LINUX_REBOOT_CMD_HALT:
    732		kernel_halt();
    733		do_exit(0);
    734
    735	case LINUX_REBOOT_CMD_POWER_OFF:
    736		kernel_power_off();
    737		do_exit(0);
    738		break;
    739
    740	case LINUX_REBOOT_CMD_RESTART2:
    741		ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
    742		if (ret < 0) {
    743			ret = -EFAULT;
    744			break;
    745		}
    746		buffer[sizeof(buffer) - 1] = '\0';
    747
    748		kernel_restart(buffer);
    749		break;
    750
    751#ifdef CONFIG_KEXEC_CORE
    752	case LINUX_REBOOT_CMD_KEXEC:
    753		ret = kernel_kexec();
    754		break;
    755#endif
    756
    757#ifdef CONFIG_HIBERNATION
    758	case LINUX_REBOOT_CMD_SW_SUSPEND:
    759		ret = hibernate();
    760		break;
    761#endif
    762
    763	default:
    764		ret = -EINVAL;
    765		break;
    766	}
    767	mutex_unlock(&system_transition_mutex);
    768	return ret;
    769}
    770
    771static void deferred_cad(struct work_struct *dummy)
    772{
    773	kernel_restart(NULL);
    774}
    775
    776/*
    777 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
    778 * As it's called within an interrupt, it may NOT sync: the only choice
    779 * is whether to reboot at once, or just ignore the ctrl-alt-del.
    780 */
    781void ctrl_alt_del(void)
    782{
    783	static DECLARE_WORK(cad_work, deferred_cad);
    784
    785	if (C_A_D)
    786		schedule_work(&cad_work);
    787	else
    788		kill_cad_pid(SIGINT, 1);
    789}
    790
    791#define POWEROFF_CMD_PATH_LEN  256
    792static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
    793static const char reboot_cmd[] = "/sbin/reboot";
    794
    795static int run_cmd(const char *cmd)
    796{
    797	char **argv;
    798	static char *envp[] = {
    799		"HOME=/",
    800		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
    801		NULL
    802	};
    803	int ret;
    804	argv = argv_split(GFP_KERNEL, cmd, NULL);
    805	if (argv) {
    806		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
    807		argv_free(argv);
    808	} else {
    809		ret = -ENOMEM;
    810	}
    811
    812	return ret;
    813}
    814
    815static int __orderly_reboot(void)
    816{
    817	int ret;
    818
    819	ret = run_cmd(reboot_cmd);
    820
    821	if (ret) {
    822		pr_warn("Failed to start orderly reboot: forcing the issue\n");
    823		emergency_sync();
    824		kernel_restart(NULL);
    825	}
    826
    827	return ret;
    828}
    829
    830static int __orderly_poweroff(bool force)
    831{
    832	int ret;
    833
    834	ret = run_cmd(poweroff_cmd);
    835
    836	if (ret && force) {
    837		pr_warn("Failed to start orderly shutdown: forcing the issue\n");
    838
    839		/*
    840		 * I guess this should try to kick off some daemon to sync and
    841		 * poweroff asap.  Or not even bother syncing if we're doing an
    842		 * emergency shutdown?
    843		 */
    844		emergency_sync();
    845		kernel_power_off();
    846	}
    847
    848	return ret;
    849}
    850
    851static bool poweroff_force;
    852
    853static void poweroff_work_func(struct work_struct *work)
    854{
    855	__orderly_poweroff(poweroff_force);
    856}
    857
    858static DECLARE_WORK(poweroff_work, poweroff_work_func);
    859
    860/**
    861 * orderly_poweroff - Trigger an orderly system poweroff
    862 * @force: force poweroff if command execution fails
    863 *
    864 * This may be called from any context to trigger a system shutdown.
    865 * If the orderly shutdown fails, it will force an immediate shutdown.
    866 */
    867void orderly_poweroff(bool force)
    868{
    869	if (force) /* do not override the pending "true" */
    870		poweroff_force = true;
    871	schedule_work(&poweroff_work);
    872}
    873EXPORT_SYMBOL_GPL(orderly_poweroff);
    874
    875static void reboot_work_func(struct work_struct *work)
    876{
    877	__orderly_reboot();
    878}
    879
    880static DECLARE_WORK(reboot_work, reboot_work_func);
    881
    882/**
    883 * orderly_reboot - Trigger an orderly system reboot
    884 *
    885 * This may be called from any context to trigger a system reboot.
    886 * If the orderly reboot fails, it will force an immediate reboot.
    887 */
    888void orderly_reboot(void)
    889{
    890	schedule_work(&reboot_work);
    891}
    892EXPORT_SYMBOL_GPL(orderly_reboot);
    893
    894/**
    895 * hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay
    896 * @work: work_struct associated with the emergency poweroff function
    897 *
    898 * This function is called in very critical situations to force
    899 * a kernel poweroff after a configurable timeout value.
    900 */
    901static void hw_failure_emergency_poweroff_func(struct work_struct *work)
    902{
    903	/*
    904	 * We have reached here after the emergency shutdown waiting period has
    905	 * expired. This means orderly_poweroff has not been able to shut off
    906	 * the system for some reason.
    907	 *
    908	 * Try to shut down the system immediately using kernel_power_off
    909	 * if populated
    910	 */
    911	pr_emerg("Hardware protection timed-out. Trying forced poweroff\n");
    912	kernel_power_off();
    913
    914	/*
    915	 * Worst of the worst case trigger emergency restart
    916	 */
    917	pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n");
    918	emergency_restart();
    919}
    920
    921static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work,
    922			    hw_failure_emergency_poweroff_func);
    923
    924/**
    925 * hw_failure_emergency_poweroff - Trigger an emergency system poweroff
    926 *
    927 * This may be called from any critical situation to trigger a system shutdown
    928 * after a given period of time. If time is negative this is not scheduled.
    929 */
    930static void hw_failure_emergency_poweroff(int poweroff_delay_ms)
    931{
    932	if (poweroff_delay_ms <= 0)
    933		return;
    934	schedule_delayed_work(&hw_failure_emergency_poweroff_work,
    935			      msecs_to_jiffies(poweroff_delay_ms));
    936}
    937
    938/**
    939 * hw_protection_shutdown - Trigger an emergency system poweroff
    940 *
    941 * @reason:		Reason of emergency shutdown to be printed.
    942 * @ms_until_forced:	Time to wait for orderly shutdown before tiggering a
    943 *			forced shudown. Negative value disables the forced
    944 *			shutdown.
    945 *
    946 * Initiate an emergency system shutdown in order to protect hardware from
    947 * further damage. Usage examples include a thermal protection or a voltage or
    948 * current regulator failures.
    949 * NOTE: The request is ignored if protection shutdown is already pending even
    950 * if the previous request has given a large timeout for forced shutdown.
    951 * Can be called from any context.
    952 */
    953void hw_protection_shutdown(const char *reason, int ms_until_forced)
    954{
    955	static atomic_t allow_proceed = ATOMIC_INIT(1);
    956
    957	pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason);
    958
    959	/* Shutdown should be initiated only once. */
    960	if (!atomic_dec_and_test(&allow_proceed))
    961		return;
    962
    963	/*
    964	 * Queue a backup emergency shutdown in the event of
    965	 * orderly_poweroff failure
    966	 */
    967	hw_failure_emergency_poweroff(ms_until_forced);
    968	orderly_poweroff(true);
    969}
    970EXPORT_SYMBOL_GPL(hw_protection_shutdown);
    971
    972static int __init reboot_setup(char *str)
    973{
    974	for (;;) {
    975		enum reboot_mode *mode;
    976
    977		/*
    978		 * Having anything passed on the command line via
    979		 * reboot= will cause us to disable DMI checking
    980		 * below.
    981		 */
    982		reboot_default = 0;
    983
    984		if (!strncmp(str, "panic_", 6)) {
    985			mode = &panic_reboot_mode;
    986			str += 6;
    987		} else {
    988			mode = &reboot_mode;
    989		}
    990
    991		switch (*str) {
    992		case 'w':
    993			*mode = REBOOT_WARM;
    994			break;
    995
    996		case 'c':
    997			*mode = REBOOT_COLD;
    998			break;
    999
   1000		case 'h':
   1001			*mode = REBOOT_HARD;
   1002			break;
   1003
   1004		case 's':
   1005			/*
   1006			 * reboot_cpu is s[mp]#### with #### being the processor
   1007			 * to be used for rebooting. Skip 's' or 'smp' prefix.
   1008			 */
   1009			str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
   1010
   1011			if (isdigit(str[0])) {
   1012				int cpu = simple_strtoul(str, NULL, 0);
   1013
   1014				if (cpu >= num_possible_cpus()) {
   1015					pr_err("Ignoring the CPU number in reboot= option. "
   1016					"CPU %d exceeds possible cpu number %d\n",
   1017					cpu, num_possible_cpus());
   1018					break;
   1019				}
   1020				reboot_cpu = cpu;
   1021			} else
   1022				*mode = REBOOT_SOFT;
   1023			break;
   1024
   1025		case 'g':
   1026			*mode = REBOOT_GPIO;
   1027			break;
   1028
   1029		case 'b':
   1030		case 'a':
   1031		case 'k':
   1032		case 't':
   1033		case 'e':
   1034		case 'p':
   1035			reboot_type = *str;
   1036			break;
   1037
   1038		case 'f':
   1039			reboot_force = 1;
   1040			break;
   1041		}
   1042
   1043		str = strchr(str, ',');
   1044		if (str)
   1045			str++;
   1046		else
   1047			break;
   1048	}
   1049	return 1;
   1050}
   1051__setup("reboot=", reboot_setup);
   1052
   1053#ifdef CONFIG_SYSFS
   1054
   1055#define REBOOT_COLD_STR		"cold"
   1056#define REBOOT_WARM_STR		"warm"
   1057#define REBOOT_HARD_STR		"hard"
   1058#define REBOOT_SOFT_STR		"soft"
   1059#define REBOOT_GPIO_STR		"gpio"
   1060#define REBOOT_UNDEFINED_STR	"undefined"
   1061
   1062#define BOOT_TRIPLE_STR		"triple"
   1063#define BOOT_KBD_STR		"kbd"
   1064#define BOOT_BIOS_STR		"bios"
   1065#define BOOT_ACPI_STR		"acpi"
   1066#define BOOT_EFI_STR		"efi"
   1067#define BOOT_PCI_STR		"pci"
   1068
   1069static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
   1070{
   1071	const char *val;
   1072
   1073	switch (reboot_mode) {
   1074	case REBOOT_COLD:
   1075		val = REBOOT_COLD_STR;
   1076		break;
   1077	case REBOOT_WARM:
   1078		val = REBOOT_WARM_STR;
   1079		break;
   1080	case REBOOT_HARD:
   1081		val = REBOOT_HARD_STR;
   1082		break;
   1083	case REBOOT_SOFT:
   1084		val = REBOOT_SOFT_STR;
   1085		break;
   1086	case REBOOT_GPIO:
   1087		val = REBOOT_GPIO_STR;
   1088		break;
   1089	default:
   1090		val = REBOOT_UNDEFINED_STR;
   1091	}
   1092
   1093	return sprintf(buf, "%s\n", val);
   1094}
   1095static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
   1096			  const char *buf, size_t count)
   1097{
   1098	if (!capable(CAP_SYS_BOOT))
   1099		return -EPERM;
   1100
   1101	if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
   1102		reboot_mode = REBOOT_COLD;
   1103	else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
   1104		reboot_mode = REBOOT_WARM;
   1105	else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
   1106		reboot_mode = REBOOT_HARD;
   1107	else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
   1108		reboot_mode = REBOOT_SOFT;
   1109	else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
   1110		reboot_mode = REBOOT_GPIO;
   1111	else
   1112		return -EINVAL;
   1113
   1114	reboot_default = 0;
   1115
   1116	return count;
   1117}
   1118static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
   1119
   1120#ifdef CONFIG_X86
   1121static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
   1122{
   1123	return sprintf(buf, "%d\n", reboot_force);
   1124}
   1125static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
   1126			  const char *buf, size_t count)
   1127{
   1128	bool res;
   1129
   1130	if (!capable(CAP_SYS_BOOT))
   1131		return -EPERM;
   1132
   1133	if (kstrtobool(buf, &res))
   1134		return -EINVAL;
   1135
   1136	reboot_default = 0;
   1137	reboot_force = res;
   1138
   1139	return count;
   1140}
   1141static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
   1142
   1143static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
   1144{
   1145	const char *val;
   1146
   1147	switch (reboot_type) {
   1148	case BOOT_TRIPLE:
   1149		val = BOOT_TRIPLE_STR;
   1150		break;
   1151	case BOOT_KBD:
   1152		val = BOOT_KBD_STR;
   1153		break;
   1154	case BOOT_BIOS:
   1155		val = BOOT_BIOS_STR;
   1156		break;
   1157	case BOOT_ACPI:
   1158		val = BOOT_ACPI_STR;
   1159		break;
   1160	case BOOT_EFI:
   1161		val = BOOT_EFI_STR;
   1162		break;
   1163	case BOOT_CF9_FORCE:
   1164		val = BOOT_PCI_STR;
   1165		break;
   1166	default:
   1167		val = REBOOT_UNDEFINED_STR;
   1168	}
   1169
   1170	return sprintf(buf, "%s\n", val);
   1171}
   1172static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
   1173			  const char *buf, size_t count)
   1174{
   1175	if (!capable(CAP_SYS_BOOT))
   1176		return -EPERM;
   1177
   1178	if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
   1179		reboot_type = BOOT_TRIPLE;
   1180	else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
   1181		reboot_type = BOOT_KBD;
   1182	else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
   1183		reboot_type = BOOT_BIOS;
   1184	else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
   1185		reboot_type = BOOT_ACPI;
   1186	else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
   1187		reboot_type = BOOT_EFI;
   1188	else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
   1189		reboot_type = BOOT_CF9_FORCE;
   1190	else
   1191		return -EINVAL;
   1192
   1193	reboot_default = 0;
   1194
   1195	return count;
   1196}
   1197static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
   1198#endif
   1199
   1200#ifdef CONFIG_SMP
   1201static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
   1202{
   1203	return sprintf(buf, "%d\n", reboot_cpu);
   1204}
   1205static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
   1206			  const char *buf, size_t count)
   1207{
   1208	unsigned int cpunum;
   1209	int rc;
   1210
   1211	if (!capable(CAP_SYS_BOOT))
   1212		return -EPERM;
   1213
   1214	rc = kstrtouint(buf, 0, &cpunum);
   1215
   1216	if (rc)
   1217		return rc;
   1218
   1219	if (cpunum >= num_possible_cpus())
   1220		return -ERANGE;
   1221
   1222	reboot_default = 0;
   1223	reboot_cpu = cpunum;
   1224
   1225	return count;
   1226}
   1227static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
   1228#endif
   1229
   1230static struct attribute *reboot_attrs[] = {
   1231	&reboot_mode_attr.attr,
   1232#ifdef CONFIG_X86
   1233	&reboot_force_attr.attr,
   1234	&reboot_type_attr.attr,
   1235#endif
   1236#ifdef CONFIG_SMP
   1237	&reboot_cpu_attr.attr,
   1238#endif
   1239	NULL,
   1240};
   1241
   1242#ifdef CONFIG_SYSCTL
   1243static struct ctl_table kern_reboot_table[] = {
   1244	{
   1245		.procname       = "poweroff_cmd",
   1246		.data           = &poweroff_cmd,
   1247		.maxlen         = POWEROFF_CMD_PATH_LEN,
   1248		.mode           = 0644,
   1249		.proc_handler   = proc_dostring,
   1250	},
   1251	{
   1252		.procname       = "ctrl-alt-del",
   1253		.data           = &C_A_D,
   1254		.maxlen         = sizeof(int),
   1255		.mode           = 0644,
   1256		.proc_handler   = proc_dointvec,
   1257	},
   1258	{ }
   1259};
   1260
   1261static void __init kernel_reboot_sysctls_init(void)
   1262{
   1263	register_sysctl_init("kernel", kern_reboot_table);
   1264}
   1265#else
   1266#define kernel_reboot_sysctls_init() do { } while (0)
   1267#endif /* CONFIG_SYSCTL */
   1268
   1269static const struct attribute_group reboot_attr_group = {
   1270	.attrs = reboot_attrs,
   1271};
   1272
   1273static int __init reboot_ksysfs_init(void)
   1274{
   1275	struct kobject *reboot_kobj;
   1276	int ret;
   1277
   1278	reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
   1279	if (!reboot_kobj)
   1280		return -ENOMEM;
   1281
   1282	ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
   1283	if (ret) {
   1284		kobject_put(reboot_kobj);
   1285		return ret;
   1286	}
   1287
   1288	kernel_reboot_sysctls_init();
   1289
   1290	return 0;
   1291}
   1292late_initcall(reboot_ksysfs_init);
   1293
   1294#endif